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Abstract

We determine the computational complexity of the dynamic convex hull problem
in the planar case. We present a data structure that maintains a finite set of n
points in the plane under insertion and deletion of points in amortized O(log n)
time per operation. The space usage of the data structure is O(n). The data struc-
ture supports extreme point queries in a given direction, tangent queries through a
given point, and queries for the neighboring points on the convex hull in O(log n)
time. The extreme point queries can be used to decide whether or not a given line
intersects the convex hull, and the tangent queries to determine whether a given
point is inside the convex hull. The space usage of the data structure is O(n). We
give a lower bound on the amortized asymptotic time complexity that matches the
performance of this data structure.
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Chapter 1

Introduction

Planar geometry is one of the oldest branches of mathematics. It is concerned with
the position of points relative to each other and to objects such as lines and circles.
For example we can prove that all three perpendicular bisectors of a triangle meet
in one point. Highly related, but different in flavor, is the question of how we can
find this point, given only the corners of the triangle. The first is an existential
statement, whereas the second is an algorithmic question, the type of question we
are concerned about in this thesis.

Computational geometry is the branch of computer science that considers al-
gorithmic problems in geometry. The name was coined in the late 1970’s. Since
then the field has attracted numerous scientists. Part of this interests stems from
applications where the underlying objects are most naturally modeled as geometric
objects. Application areas of this type are as diverse as robotics, pattern recog-
nition, virtual reality, scheduling, geographical information systems, typesetting,
computer games and Computer Aided Design (CAD). Besides these application,
computational geometry developed a solid theoretical framework and lead to sev-
eral powerful paradigms for geometric algorithms. The maturity of the field is
documented in textbooks [PS85, dBvK+97, Meh84b] and handbooks [GO97, SU00]
on computational geometry.

One of the first questions computational geometry raises is that of the nature
of an algorithm. One of the oldest type of algorithms is the construction with
ruler and compass. There one can draw a line through two (already constructed)
points, and draw circles around a point (with an arbitrary radius or with the radius
defined by another already constructed point). The intersection of two lines, two
circles or a line with a circle define a point. This framework allows to consider if
and how fast certain geometric points can be constructed. In other situations one
is only interested in classifying the input points, for example whether they all lie
on a circle. For this it might be convenient to construct the center point, but the
problem definition does not require to produce such a center point.

Generalizing the geometric primitives, we can express geometric construction in
terms of algebraic computations on the (real) coordinates of points. We formalize
the notion of an algorithm (the model of computation) in Section 2.1.

Having defined the precise primitives of algorithms, we can consider the running
time of an algorithm and try to find fast (efficient) algorithms. We measure the
speed of an algorithm as a function bounding the number of elementary steps de-
pending on the input size. In our setting this is the number of algebraic definitions
and comparisons depending on the number of input points in the plane that we
process. The usual measure is asymptotic, leading to the well know O(·) notation.
Specifically we ignore constant factors. On a Turing machine this is justified by
the linear speed-up theorem. In the geometric setting this is more a matter of
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2 CHAPTER 1. INTRODUCTION

convenience and focus.

1.1 Static convex hull computation

Computing the convex hull of a finite set of points in the plane is one of the oldest
problems considered in the setting of computational geometry. It is actually older
than the term computational geometry itself. The convex hull of a set S of points is
intuitively easy to describe: think of the shape of a rubber band that is snapped from
the outside against the points of S. Figure 1.1 illustrates the concept. (Section 2.4.1
provides a precise definition.) Applications of convex hull computations range from
pattern recognition, scheduling, statistics, and collision detection.

Figure 1.1: The convex hull of a set of points. The point a is the result of the
extreme point query in direction d.

Several algorithms solve the convex hull problem in the plane. For a finite set S
of points in the plane as input the algorithms compute the convex hull of S as a
clockwise sorted list of the points of S that are vertices of the convex hull of S.

We only name a few such algorithms, in particular the ones that (in variants)
will be used in the algorithm(s) presented in this thesis. Let n = |S| be the number
of points in the set and h the size of the convex hull, i.e., the number of vertices
of the convex hull of S. There is Jarvis’ march [Jar73] using time O(n · h), com-
puting the vertices of the convex hull in clockwise order, finding the next vertex
by exhaustive search. Then there is Graham’s scan [Gra72] using time O(n log n),
Andrew’s vertical sweep line variant of Graham’s scan [And79]). This algorithm
first sorts the points in lexicographical order and then eliminates vertices that are
not on the convex hull. There is a solution by Preparata and Hong [PH77] that
achieves also O(n log n) time. It is a divide-and-combine algorithm based on a re-
cursive bridge finding between vertically separated convex hulls. Later Kirkpatrick
and Seidel [KS86] settled the asymptotic computational complexity of the prob-
lem by giving a recursive bridge finding algorithm that runs in O(n log h) time.
This algorithm introduces the marriage-before-conquer paradigm. They also show
a matching lower bound. Finally Chan [Cha96] gave a much simpler algorithm
that achieves the same time bound. There the basic idea is to partition the set of
input points, compute the convex hull of the parts with Graham’s scan and to then
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compute the overall convex hull (merging the parts) in an efficient version of Jarvis’
march.

1.2 Dynamic planar convex hull problem

The dynamic version of this problem is to keep track of the convex hull as the set
of points S is changed by inserting and deleting points. There are applications
asking for this kind of a data structure. Furthermore a dynamic planar convex hull
data structure can be used as a black box inside an algorithm. Examples are the
k-level problem in the plane [EW86, HPS01, Cha99b], the order-k Voronoi-diagram
in the plane [CE87, AdB+98], the (connected) segment intersection problem in the
plane [BGR96], and the two-dimensional linear programming problem with violated
constraints [Mat95].

Usually the time complexity of a data structure is expressed as upper bounds on
the execution time of a single operation. This is referred to as a worst-case bound.
In an application, especially if the data structure is used as a black box inside an
algorithm, the running time of a single operation is often not so important. It is
more important how much time the algorithm spends inside the data structure.
This is formalized as amortized analysis, where we average the execution time of
the operation inside an arbitrary sequence of operations. (Section 2.2 provides a
definition.)

The algorithms for the static problem can be used as a solution to the dynamic
planar convex hull problem. After every change to the set S the convex hull of S is
recomputed from scratch. The O(n log h) update time can easily be reduced to O(n).
This is achieved by keeping the set S in lexicographic order. Then Graham’s scan
(in Andrew’s variant) runs in O(n) time. A single insertion or deletion of one point
can have a drastic impact on the convex hull of S. More precisely can a single
insertion change the convex hull from containing all the points of S to containing
only three points. The corresponding deletion can change the size of the convex
hull from 3 to n. Given this, it is unclear in which sense an improvement over the
linear update time is at all possible.

Instead of reporting the changes, we can require the data structure to maintain
the points of the convex hull accessible in a specific data structure, which would
naturally be a leaf-linked balanced search tree, storing the vertices of the convex
hull in clockwise order. Such a tree representation allows to perform all kinds of
queries in optimal O(log n) time. In this setting the data structure presented by
Overmars and van Leeuwen [OvL81] achieves updates in worst-case time O(log2 n).
This is still the fastest solution providing an explicit representation of the convex
hull (in a search tree as stated above). It also achieves the best known worst-case
time bounds on the single update operations.

The problem gets somewhat easier if the data structure allows only specific
queries to the convex hull of the set. One of the easiest such queries is the extreme
point query in direction d. The task is to report the point p ∈ S that maximizes
the inner product 〈d, p〉. The inner product for 2-dimensional vectors (or points in
the plane) is defined by 〈(u, v), (x, y)〉 := u · x + v · y for u, v, x, y ∈ R. This query
is related to the convex hull in the sense that the answer point p is a vertex of the
convex hull. Such a situation is depicted in Figure 1.1 (p. 2). Another important
query is the gift-wrapping query. The query consists of a point of the convex hull
and asks for the two neighboring points on the convex hull. The gift wrapping query
can be seen as a degenerate case of the tangent query that gives a point and asks for
the two tangents on the convex hull that pass through this point (or the statement
that the point is inside the hull).

Another interesting variant of the problem is the restriction of the updates to be
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either insertions only or deletions only, or if we assume that we know the complete
sequence of updates in advance. For the insertion-only problem Preparata [Pre79]
gives an O(log n) worst-case time algorithm to maintain the convex hull in a search
tree. The deletion-only problem is solved by Hershberger and Suri in [HS92], where
the authors give a construction where initializing the data structure (build) with n
points and up to n deletions are accomplished in overall O(n log n) time.

Again Hershberger and Suri consider the off-line variant of the problem [HS96].
In this variant both insertions and deletions are allowed, but the times of all inser-
tions and deletions are known a priori. In other words, the algorithm processes a
list of insertions and deletions, and produces in O(n log n) time and space a data
structure that can answer extreme point queries for any time using O(log n) time.
Their data structure does not provide an explicit representation of the convex hull.
They can reduce the space usage to O(n) if the queries are also part of the off-line
information. They consider the online version of the problem a long-standing open
problem. In a survey paper Chiang and Tamassia [CT92] regard dynamic planar
convex hull as one of the two most important problems in dynamic computational
geometry. More precisely they ask, whether a data structure exists that has O(log n)
update and query times.

Chan [Cha99a, Cha01] presents a data structure that achieves O(log1+ε n) amor-
tized update time for the fully dynamic problem. This construction does not main-
tain an explicit representation of the convex hull, but allows for extreme point (and
other) queries. The construction is based on a general dynamization technique at-
tributed to Bentley and Saxe [BS80]. Using the semidynamic deletions only data
structure of Hershberger and Suri [HS92], and the right choice of parameters in a
finite number of bootstrapping steps, this achieves update times of O(log1+ε) for
an arbitrarily small constant ε > 0. To achieve the O(log n) extreme point queries,
a construction based on an interval tree is used. Brodal and the author [BJ00] im-
prove the amortized update time to O(log n log log n). This work can be seen as an
intermediate result between Chan’s construction and the data structure presented
in this thesis. The improved update time is achieved by constructing a semidy-
namic data structure that is adapted better to the particular use. More precisely
this data structure supports build in O(n) time under the assumption that the
points are lexicographically sorted. The deletions cost O(log n log log n) amortized
time. This, together with a careful choice of the parameters for the interval tree
and two bootstrapping steps, yields amortized O(log n log log n) update times and
worst-case O(log n) query time.

All these data structure have an O(n) overall space usage.

1.3 Duality, lower envelopes, parametric heaps

We can transform the (dynamic) convex hull question by a standard duality transfor-
mation (mapping points to lines and vice versa) into an (upper and lower) envelope
question. The lower envelope of a set of lines H is the boundary of the region U in
the plane that is the intersection of the lower half-planes defined by the lines in H .
See Figure 1.2 (p. 5) for an illustration. The lower envelope consists of segments
of the lines in H . The region U is a convex set, and we can basically describe it
as the convex hull of some points in the plane. The simple extreme point query
transforms (in the dual) to a vertical line query, where we take a vertical line l in
the plane and ask for the input line that intersects l lowest. Section 4.1.3 gives a
definition of the duality transformation.

The dual transformation is computationally trivial. It is more changing the point
of view than changing the problem. If we are interested in an explicit representation
of the convex hull or lower envelope, there is no algorithmic difference. We will
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Figure 1.2: The lower envelope of a set of 5 lines. In the kinetic setting time elapses
from left to right.

change the point of view from the primal to the dual whenever this makes the
exposition easier.

The dual problem of maintaining the lower envelope is also known as parametric
and kinetic heaps. The concept arises when generalizing heaps (priority queues).
Instead of storing single values, a parametric heap stores linear functions. The
intuition is that the values change (linearly) over time. A query is then asking for
the minimal element at a certain point of time. This is precisely a vertical line query
on a lower envelope. By duality this is equivalent to a extreme point query on a
planar convex hull. The data structure can be updated by inserting and deleting
linear functions. A kinetic heap is a parametric heap with the restriction that the
argument (time) of a query has to advance (not decrease) between queries.

Kaplan, Tarjan and Tsioutsiouliklis [HTK01] consider several (restricted) vari-
ants of parametric and kinetic heaps. They (independently) give a construction that
is very similar to the solution of Brodal and the author [BJ00]. They also consider
several special cases of the problem where the update operations are restricted in
various ways.

1.4 Known lower bounds

For the static convex hull computation there is a well known reduction to sorting,
presented for example by Shamos in his PhD-thesis [Sha78] or in the textbook by
Preparata and Shamos [PS85]. This establishes together with Ben-Or’s [BO83] re-
sult an Ω(n log n) lower bound on the real-RAM for computing the convex hull. This
result is strengthened by van Emde Boas [vEB80], and Preparata and Hong [PH77].
They consider the task of identifying the vertices of the convex hull (without mak-
ing their order explicit). Even this simpler problem requires time Ω(n log n). This
lower bound is tightened by Kirkpatrick and Seidel [KS86] to Ω(n log h), matching
their algorithm. Here the parameter h denotes the number of vertices on the convex
hull. This immediately leads to that n insert and query operations require a total
of Ω(n log n) time.

The above lower bounds for the static problem imply some lower bound on the
dynamic problem. We can use the dynamic data structure to compute the convex
hull of a static set of points. To do so we insert the points one by one, and then
perform Jarvis’ march by performing gift-wrapping queries. This yields the lower



6 CHAPTER 1. INTRODUCTION

bound that n insertions and n queries require a total processing time of Ω(n log n).
Insert and query together cannot be faster than Ω(log n). As a query (intuitively
and as we will show) requires Ω(log n) time, this does not yield a non-trivial lower
bound for insertions (or deletions).

In analogy to the reduction from sorting we can consider the predecessor prob-
lem. For this problem Miltersen (in a course) presents a lower bound in the com-
parison based setting. His proof is based on Fredman’s use [Fre75] of Dilworth’s
theorem about chains and anti-chains. He achieves the same type of lower bound
for insertions as we present in this thesis. The difference is that our bound holds in
the stronger real-RAM model.

Ben-Amram and Galil [BAG01] study lower bounds for data structures on the
real-RAM. Their methodology stems from the world of cell-probe complexity intro-
duced by Fredman and Saks [FS89].

1.5 Contribution of this thesis

In this thesis we develop a data structure that achieves amortized O(log n) up-
date time for the fully dynamic planar convex hull problem. The data structure
allows worst-case O(log n) extreme point, gift-wrapping and tangent queries. The
overall construction resembles that of Chan [Cha99a, Cha01] and Brodal and the
author [BJ00].

The main improvement is a new semidynamic, deletions-only data structure.
Instead of having an efficient build operation it allows for a linear-time merge op-
eration of the data structures of two point sets. In the “combine” step of Bentley
and Saxe’s dynamization technique, we do not only reuse the lexicographic order
of the points and construct the new sorting by a merging (sorting) step, but we
actually reuse the already constructed data structures. We build a data structure
that is capable of maintaining the convex hull of two convex hulls, given that the
participating convex hulls can handle deletions correctly. This geometric merg-
ing data structure uses only O(n) total processing time for building and handling
up to n deletions. This new data structure, or the particular way of merging, re-
quires O(n log n) space when used directly. The space usage can be reduced to O(n)
by introducing a geometric buffer. In a geometric buffer we maintain the convex
hull of the set, but we eagerly delete the points that are on the convex hull from
the recursive data structure. Placing a buffer above every merging level achieves
that every point is stored in at most two data structures simultaneously. Together
with a lazy movement strategy of the lines in the interval tree, we obtain the new
result, summarized in the following theorem (this is a literal copy of the statement
in Chapter 3):

Theorem 4.12

There exists a data structure for the fully dynamic planar convex hull problem
supporting Insert and Delete in amortized O(log n) time, and Extreme point

query, Tangent query and Neighboring-point query in O(log n) time, where
n denotes the size of the stored set before the operation. The space usage is O(n).

The new deletion-only data structure, where the build operation is replaced by a
merge operation uses prominently a variant of a level-linked (2,4)-tree introduced by
Hoffmann, Mehlhorn, Rosenstiehl, and Tarjan in [HM+86], where in the amortized
sense the split operation costs O(1). We also use that this kind of tree allow for
so called finger searches. The data structure also uses (geometric) elements from
different static convex hull algorithms. Furthermore we use a variant of a B-tree
with logarithmic degree as the underlying structure for the interval tree.
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The data structure we present in this thesis improves over the general data
structure for kinetic heaps presented in [HTK01]. It also matches the performance
of the specialized data structures for arbitrary slopes. Section 4.6 gives the detail
of how to use our semidynamic solution to achieve amortized O(1) kinetic heap
queries.

Rounding off the analysis of the data structure we consider lower bounds for the
problem. Inspired by the sorting reduction for the static planar convex hull problem,
we consider (as an intermediate problem) the membership problem in the algebraic
decision tree model. We deduce the lower bound for the data structure solely by a
reduction on the real-RAM. We do not argue with the state of the data structure
at any point in time. This is in contrast to the arguments about comparison based
(linear decision tree) data structure and the cell-probe complexity approaches (as
for example by Ben-Amram and Galil [BAG01]). The following theorem is again a
literal copy, the statement belongs to Chapter 5.

Theorem 5.6

Let A be a data structure implementing the Semidynamic insertion-only con-

vex hull problem on the real-RAM. Assume A supports extreme point queries
in amortized q(n) time, and Insert in amortized I(n) time for size parameter n.
Assume that q and I are smooth functions. Then we have

q(n) = Ω(log n) and I(n) = Ω
(

log
n

q(n)

)
.

The main contribution of this thesis is hence that it establishes the amortized
asymptotic computational complexity of the dynamic planar convex hull problem
with extreme point queries.

1.6 Applications

There are several (geometric) problems where some of the algorithms proposed
in the literature use a dynamic planar convex hull data structure (or a paramet-
ric/kinetic heap) as a black-box. In several cases this black box is clearly the bot-
tleneck of the algorithm. In these cases our data structure immediately improves
these algorithms.

We consider the example of the k-level problem in the plane. The problem is
in the dual setting and is given by a set S of n non-vertical lines in the plane. For
every vertical line we are interested in the k-th lowest intersection with a line of S.
This is given by a collection of line-segments from lines of S. This generalizes the
notion of a lower envelope (k = 1) and an upper envelope (k = n). The situation is
exemplified in Figure 1.3 (p. 8).

As discussed by Chan [Cha99b] we can use two fully dynamic kinetic heaps
(dual of the dynamic planar convex hull problem) to produce the k-level of a set
of n lines. If we have m segments on the k-level (the output size), then the re-
sulting algorithm completes in O((n + m) log n) time. This improves over the
fastest deterministic algorithms, (Edelsbrunner and Welzl [EW86], using Chan’s
data structure achieving O(n log n+m log1+ε n) time). It is faster than the expected
running time O((n + m)α(n) log n) of the randomized algorithm of Har-Peled and
Sharir [HPS01]. Here α(n) is the slow growing inverse of Ackerman’s function.

1.7 Open Problems

The main problem remaining open is to achieve the same time bounds as worst-case
bounds instead of amortized bounds. The data structure we develop in this thesis
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Figure 1.3: The 2-level of 5 lines in the plane. Note that the 2-level consists of 7
segments, two lines define two separate segments.

has a worst-case performance that we can basically only bound by the amortized
analysis, that is an operation cannot take more than O(n log n) time. We have
some preliminary ideas on how to reduce this to O(n/ logc n). These ideas are by
no means close to achieving an O(log2 n) worst-case performance as Overmars and
van Leeuwen’s data structure achieves.

This thesis gives basically one single new data structure for the dynamic planar
convex hull problem. Given the size of the thesis, this naturally leaves the question
of whether there is a simpler (in terms of the description) algorithm achieving the
same performance.

In this work we consider primarily extreme point queries. This leaves the ques-
tion open, how fast one can answer other types of queries. We have preliminary
results indicating that we might be able to achieve O(log n · (log log n)1+ε) bridge
finding queries (linear programming queries in the dual). It remains open to find
other concrete examples of efficient queries (on our data structure or on a different
data structure), or an improved general framework that can achieve efficient queries.

1.8 Structure of the thesis

The second chapter contains basic definitions and considerations about the model of
computation, and recapitulate the underlying data structures we use. This chapter
contains Section 2.4 where we develop the necessary geometric framework. In the
third chapter we develop the semidynamic, deletions only merging structure. In the
fourth chapter we present the overall structure of the fully dynamic data structure
and the interval tree that allows us to perform fast extreme point queries. We also
discuss extensions to other queries there. The fifth and last chapter is devoted to
the lower bound results.



Chapter 2

Definitions

We adopt the asymptotic notation as discussed in the textbook [GKP95]. In partic-
ular we write f(n) = O(f(n)) and O(f(n)) = O(g(n)) where the = is not symmetric.
Whenever we write log x we mean the (continuous) binary logarithm of x. As we
are interested in the behavior of our algorithm for large values of n, we write terms
like log log n without explicitly stating that we require n ≥ 4 for the term to be
meaningful.

2.1 The model of computation

The concept of an algorithm is one of the most fundamental in computer science. If
we want to make precise statements about the existence and efficiency of algorithms,
we have to be precise about what an algorithm is. That is, we have to define a model
of computation. An algorithm is usually formalized as a program on some kind of
machine, for example a Turing machine or a random access machine (RAM). These
models of computation are in the standard definition only capable of discrete inputs,
expressed in a finite number of bits. This is not adequate to formalize geometric
algorithms because the input are points in the plane, naturally modeled as R

2. We
could of course restrict our attention to fractional inputs, but this moves at least the
focus of our attention away from the geometric intuition, towards the representation
of numbers.

The classical algorithms to compute the convex hull of a static finite set of points
use as geometric primitives only comparisons of coordinates, and for a line l defined
by two input points the question if a third input point is above or below l. The data
structure presented in this thesis uses also the construction of auxiliary points by
the intersection of two lines, where lines are defined by already constructed points.
We can restrict the algorithm to only construct auxiliary intersection points from
lines defined by input points. We also use the technique of delayed (lazy) deletions,
which means that the data structure uses input points even though they might
already be deleted from the set of points to be maintained. The non-geometric part
of our data structure is built entirely on search trees. All the variants of search trees
we use can be implemented entirely pointer based. The parameter management of
the data structure has to be able to count points, and determine the functions log,
log log and rounding to the next power of 2 for integers between 1 and n, the
number of input points. We assume that it is possible to compute these functions
in time O(log n). This is sufficient in our setting, as we do not need to compute
these functions more than once per update operation.

The above assumptions already give the framework for the presented algorithm
and data structure. We can implement our data structure on any model of compu-

9
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tation that allows us to implement the above primitives. The time and space bound
we give are on the level of these primitives. Space is measured in the number of
auxiliary points and number of leaves of search trees. The running times reflect the
number of geometric constructions and the (pointer and comparison) operations in
the search trees.

In the remaining of this section we consider several models of computation that
clearly satisfy the above assumptions. The real-RAM is what is usually used in
the computational geometry literature. We also present the restricted version of it,
that reflects our reduced need for geometric constructions. We also consider the
algebraic computation tree model. This is a non-uniform model of computation
that is clearly stronger than the real-RAM. We use this only for the lower bound
result.

2.1.1 The real-RAM

We use as a model of computation the unit cost (algebraic) real-RAM. This kind of
model is discussed in some detail in the textbook by Preparata and Shamos [Pre79].
We recapitulate the important details here.

The unit cost (algebraic) real-RAM consists of memory and a central processing
unit that allows the manipulation of the memory according to a goto-program.
The memory consists of two, a priori unbounded sized, arrays of cells, one storing
integers, the other storing real numbers. The integer cells can be used as addresses
into both types of memory (indirect addressing). The basic operations that can be
carried out in constant time on cells holding reals are copying, addition, subtraction,
multiplication, division and extraction of a square root. For the integer part we
have integer versions of the above algebraic operations. We do not have floor or
ceiling on the cells holding reals. Our program can branch depending on whether
a (integer or real) cell is negative, zero or positive. We can use integer constants
when manipulating real numbers. There is no automatic or implicit transformation
from an integer to a real or vice versa.

We assume that input and output (especially in the data structure setting) is
provided by storing the value in an (otherwise unused) dedicated register or part of
the memory.

The running time of a program is measured by the number of instructions carried
out, and the space usage is given by the largest address of a memory cell used during
its execution.

This model can easily carry out construction of points with ruler (and compass)
and geometric above/below decisions.

In general it is a strong assumption that the model can manipulate real numbers
in constant time. It is a research topic of its own right to investigate what a
reasonable formalism for computations over the real numbers could be, and how
different formalisms relate to each other. An introduction to this area is for example
the textbook by Weihrauch [Wei00]. He also describes (a variant) of the real-RAM
and how it relates to other models. The main problem with the definition of the
real-RAM is that a real number has arbitrary precision. Our algorithms actually
does not really depend on this behavior. We can make this statement precise by
introducing a somewhat weaker model of computation.

2.1.2 The order-k branching pointer machine

This is more a programming policy where we restrict the use of the integer part of
the real-RAM. We do not use advanced address calculations, that is, for integers
that stand for addresses we allow only dereferencing, addition and subtraction of 1.
The use of the algebraic part of the real-RAM is restricted to branch on the value
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of a constant degree polynomial of constantly many input points. This means in
particular that the real-RAM can simulate the order-k branching pointer machine
without any slow-down.

With these restrictions the unit cost assumption is somehow more realistic. If
we for example use an arbitrary precision floating point package, the performance
of the single operations only depends on the size (accuracy) of the input points, but
not on how many points constitute the input. In the same spirit we can assume
that the input consists of b-bit integer numbers (the points stem from a square
2b × 2b). As it takes time O(b) to evaluate a fixed degree polynomial over b-bit
integers, a branching decision takes O(b) time. Again assuming that the number n
of input points is reasonably large in comparison to b, our running time analysis is
meaningful.

The order-k branching pointer machine can be simulated by the BSS-model of
Blum, Shub and Smale, introduced in [BSS90], and explained in more detail in the
textbook [BC+98]. The overhead to do so is polynomial in the running time of
the pointer machine. The BSS-model itself is not suited in our context because its
program structure is very close to a Turing machine and not tuned for running times
of O(log n). This is not surprising as the BSS-model was introduced to investigate
complexity classes where a polynomial imprecision in the running times is irrelevant.

The order-k branching pointer machine is the model for which we formulate our
algorithms.

2.1.3 Algebraic computation tree

The algebraic computation tree is a standard model, for example explained in the
textbook by Blum, Cucker, Shub and Smale [BC+98]. It is a non-uniform model
of computation that can simulate the real-RAM, the order-k branching pointer
machine and the BSS-model with no slowdown. In its standard version it does not
allow for the measurement of space. As it is one of the strongest reasonable models
of algebraic computation, a lower bound in this model holds in many reasonable
models of computation (both non-uniform and uniform models), in particular the
ones we consider here. In Chapter 5 we give a precise definition of the algebraic
computation tree, following the definitions in the article by Ben-Or [BO83]. There
we also argue in detail that this model of computation can efficiently simulate the
real-RAM (in our definition).

2.2 Amortized analysis

Often we are not so much interested in the running time of a single operation, but
rather in the overall running time of a sequence of operations. To make this precise,
we consider amortized time bounds. This concept is explained in detail in an article
by Tarjan [Tar85] and in the textbook by Mehlhorn [Meh84a]. Assume for example
that we have a data structure supporting the operations I, D and Q. For a sequence
of operations consisting of i, d and q operations of the respective type. Let n be an
upper bound for the input size parameter of this data structure, for example the
number of points stored in the data structure. If we in this situation have a time
bound of the type i · I(n) + d ·D(n) + q · Q(n), we say that I(n), D(n) and Q(n)
are the respective amortized time bounds.

We usually use amortized analysis in opposition to worst-case analysis, where we
determine how long a single operation can take in the worst-case. It should be noted
that amortized analysis makes a statement about all sequences of operations, and
is therefore most interested in the sequences that make the data structure perform
worst. The amortized analysis is particularly appropriate if the data structure is to
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be used as a black box inside another algorithm. Then we are typically only inter-
ested in the overall time spent using the data structure, and not in the performance
of the single operations.

The intuition behind the amortized analysis is that we allow the data structure
to have “saved up” time from previous use of the data structure, and then use this
saved time to perform a more complicated rearrangement of the representation. We
follow this intuition when we perform the amortized analysis with the help of a
potential function φ. There we take the data structure (and sometimes the history
of it in the form of annotations) and assign a potential to it. We maintain the
invariant φ(Si) ≥ 0. Assume that the operation I on data structure Si resulting in
data structure Si+1 takes worst-case I ′(n) time. If we have I ′(n)+φ(Si+1)−φ(Si) ≤
I(n), we get that I takes amortized time I(n). If we have several operations, we
have to use the same potential function for all of them. We will see at the example
of (2,4)-trees in Section 2.3 a well known example of amortized analysis.

2.3 Data structure basics

For a finite subset S of a completely ordered universe U we say that p ∈ S is
the predecessor of u ∈ U if we have p ≤ u and there exists no q ∈ S such that
we have p < q ≤ u. We say that p is the predecessor of u in S. Note that if
we have u ∈ S, then u is its own predecessor. Let S≤u = {x ∈ S | x ≤ u}
and S>u = {x ∈ S | x > u}.

Definition 1
The Semidynamic Predecessor problem asks for a data structure implementing
the following operations, maintaining a finite set S of real numbers on the real-RAM.
Initially S = ∅:

Insert(x) For x ∈ R change the set S := S ∪ {x}.

Predecessor(y) For y ∈ R report the predecessor of y in S.

Definition 2
The Semidynamic Membership problem asks for a data structure implementing
the following operations, maintaining a finite set S of real numbers on the real-RAM.
Initially S = ∅:

Insert(x) Change the set S := S ∪ {x}

Element(y) Report whether we have y ∈ S.

We can use a data structure for the semidynamic predecessor problem to solve
the semidynamic membership problem: We have that x ∈ S if and only if x is its
own predecessor in S. We use this observation in Chapter 5 to derive a lower bound
for both problems in the algebraic branching tree model.

For upper bounds, i.e., algorithms, we actually are interested in more operations.
A level-linked (2,4)-tree is a data structure T that can maintain a finite set S of
elements from a completely ordered universe. Let size parameter be n = |S|, before
the execution of the operation. It allows the following operations:

Extend(T, p, u) Extend the set S stored in T by the element u, that is, set S :=
S ∪ {u} under the assumption that p is a pointer to the predecessor (or suc-
cessor) of u in S. Returns a pointer to the representation of u as an element
of T . This operation takes amortized O(1) time.
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Search(T, u) (u ∈ U) Returns a pointer p to the predecessor of u in the set S
stored in T . This operation takes O(log min{|S≤u|, |S>u|}) worst-case time.

Split(T, p) (p a pointer to some element u of the set S stored in T ). Split the
set T into two data structures, one for S≤u and another for S>u. The op-
eration destroys the data structure for S. This operation takes amortized
time O(log min{|S≤u|, |S>u|}).

Delete(T, p) (p a pointer to some element u of the set S stored in T ). Remove u
from S, i.e., set S := S \ {u}. This operation takes amortized O(1) time.

The operations Extend, Split, and Delete take worst-case O(log n) time.
This is a typical example where the amortized analysis shows that a data structure
actually performs better than the worst-case bounds suggest. The operations In-

sert and Element take O(log n) time, both in the worst-case and the amortized
analysis.

In the textbook by Mehlhorn [Meh84a] the general (2,4)-tree is described and
analyzed. The particular version of the (2,4)-tree that achieves the above perfor-
mance is a level-linked (2,4)-tree due to Hoffmann, Mehlhorn, Rosenstiehl, and
Tarjan [HM+86]. There the search operation is stated as a finger search in the fol-
lowing way: given any element u stored in the tree, we can find another element v of
the tree in time O(log k), where k is the size of the set S>min{u,v} ∩S≤max{u,v}. We
can use this finger search to perform the Search operation if we have a pointer to
the leftmost and rightmost element stored in the tree. We then start such a search
by comparing u with one of the keys r stored at the root of the tree. Then we can
perform a standard finger search from the leftmost or rightmost element of the tree.
So called level-links in the (2,4)-tree play in an important role for general finger
searches. Our application uses only finger searches from the leftmost or rightmost
element, for which the level links are actually not necessary.

Intuitively the good amortized performance of the Extend operation relies on
the fact that most of the rebalancing of the tree happens close to the leaves. For this
to stay true even though we might have interleaved Extend, Delete and Split

operations, it is important that balance requirements are not too strict, namely that
one node might have 2, 3 or 4 children. This is in contrast to (2,3)-trees, where
we can have the situation that alternating insert and delete operations require
(cascading) rebalancing on every level of the tree.

A B-tree T is a search tree where all leafs are on the same level, every inter-
nal node has, for some parameter B, between B and 2B − 1 children, the root
node has between 2 and 2B − 1 children. At each node of T we have a (2,4)-tree
holding the keys that separate the subtrees of the children. See the textbook by
Mehlhorn [Meh84a, page 199] for a detailed exposition of B-trees. The balance
requirements are maintained by performing (cascaded) node splittings, fusions and
sharings. If the tree is monotonic, that is, we only insert new keys, we only need the
split operation for nodes, the fuse and share operations are not needed. A search
path in T for value u is a path from the root to a leaf v in T such that the leaf v
stores the predecessor of u in T . We have that the length of a search path (the
number of visited nodes in the B-tree) is O(logB n).

2.4 Geometric preliminaries

A slab of R
2 is the set of points between and including two vertical lines. Two

points u, v ∈ R
2 of a finite set of points P are said to be neighboring if there

is no further point of P between the two vertical lines defined by u and v. For
two points u, v ∈ R

2 we denote with u, v the line segment from u to v, i.e. the
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set {p ∈ R
2 | p = λu+(1−λ)v, 0 ≤ λ ≤ 1}. A point p is above (below) a geometric

object Q ⊂ R
2 if the vertical line through p contains a point of Q and none of these

points has a y-coordinate that is equal or larger than (smaller than) that of p.

2.4.1 Convex hull

Let S ⊆ R
2, and {p1, p2, . . . , pn} a finite subset of S. Let λ1, . . . , λn ∈ R be real

numbers, λi ≥ 0 and
∑n

i=1 λi = 1. Then p =
∑

λipi is a convex combination of
points in S. The convex closure CC(S) of S is the set of points that can be written
as a convex combination of the points in S. We define the convex hull CH(S) ⊆ S
by the rule that a point p ∈ S is in CH(S) if and only if CC(S) 6= CC(S \ {p}).

Property 2.1
Let H be the set of all half planes h that contain S, i.e., h ∈ H ⇐⇒ S ⊆ h. Then
we have

CC(S) =
⋂

h∈H

h .

Instead of working with the convex hull itself we split the construction into
an upper hull UH(S) and (symmetrically) a lower hull LH(S) as described in the
following and illustrated in Figure 2.1. We define the upper closure UC(S) to be all
the points p ∈ R

2 such that there exists a point q ∈ CC(S), such that p and q are
on one vertical line and p is not above q. Symmetrically we define the lower closure
LC(S) to be all points of R

2 that are on a vertical line not below a point in CC(S).
For point p we have p ∈ UH(S) if we have UC(S) 6= UC(S \ {p}). Symmetrically
we have p ∈ LH(S) if we have LC(S) 6= LC(S \ {p}).

Figure 2.1: Splitting the convex hull of a set S into upper and lower hull; the
leftmost point of S is on both upper and lower hull; the shaded region is the upper
closure UC(S); the lines limiting the shaded region are the upper boundary Bd(S).

The upper hull and the lower hull can at most share the rightmost and leftmost
point. They do not share the leftmost point only if there are two different points
with minimal x-coordinate in the set.

Property 2.2
For a finite set S ⊆ R

2 of points in the plane we have CC(S) = UC(S) ∩ LC(S),
CH(S) = UH(S) ∪ LH(S), and |UH(S) ∩ LH(S)| ≤ 2.
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This justifies that from now on we will only work with the upper hull. The lower
hull is handled completely symmetrically.

Property 2.3
For a finite set S ⊆ R

2 and a set Q ⊆ R
2 assuming UH(S) ⊆ Q ⊆ UC(S) we

have UC(S) = UC(Q) and UH(S) = UH(Q). We also have UH(UH(S)) = UH(S)
and UH(UC(S)) = UH(S).

Property 2.4
A point p ∈ S is on the upper hull (p ∈ UH(S)) if and only if there exists a
vector d = (a, b) with a ∈ R and b > 0 such that p is the unique extreme point of S
in the direction d, i.e., 〈p, d〉 > 〈q, d〉 for all q ∈ S \ {p}.

We say a line l is a tangent of S, if l∩S 6= ∅ and all points of S are on or below l.
If l is vertical all points of S have to be on the same side of l or on l. The set of all
tangent lines on S is denoted by Tg(S).

The slope of a tangent line l is the parameter a in the representation l = {(x, y) |
y = ax + b}. If l is a vertical line, no such representation exists, and we set the
slope to be +∞ if all of S is to the right of (or on) l. Symmetrically we set the slope
to be −∞ if S is to the left of l. If for a tangent line l the set T = l ∩ UC(S) has
more than one element, then T is a segment of the upper hull of S. The endpoints
of the segment are two points in UH(S). The slope of the segment is the slope of
the tangent line l. The vertical half-line below the highest leftmost (and rightmost)
point of S are also considered segments of the upper hull of S.

Property 2.5
For a nonempty finite set S ∈ R

2 we have p ∈ UH(S) if and only if p is the
intersection of two segments of the upper hull of S.

1. The segments of S form a left to right path (with adjacency by shared points
of UH(S)), the slope of the segments decreases strictly from left to right.

2. If a tangent line l has only one point in the intersection {p} = l ∩ UC(S),
then p ∈ UH(S), and the slope of l is between the slopes of the segments
incident with p.

3. For every slope a ∈ R, there is precisely one tangent line l on S with slope a.

For a set of points S we define UC0(S) to be the topological interior of UC(S),
and the upper boundary of S to be Bd(S) = UC(S) \UC0(S).

Property 2.6
For a finite set S the point-wise union of all segments of the upper hull of S is
precisely Bd(S).

Lemma 2.7
Let l be a vertical line in the plane and S a finite set of points. Then the intersec-
tion l ∩Bd(S) is either a single point or l is a vertical tangent.

Proof: For a vertical line l we have that there is at most one intersection point c
with the segments of the upper hull. Otherwise we would have two overlapping
segments. �

Lemma 2.8
Let l be a line in the plane, S a nonempty finite set of points. Then the intersec-
tion l ∩ Bd(S) consists either of at most two points, or l is a tangent line defining
a segment.
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Proof: First we note that if a point x on l is outside of the hull of A, then all the
points to the left or to the right of x are also outside. Therefore the points inside
form an interval on l. The two endpoints of the interval (if it is nonempty) are
intersected by a tangent line or the vertical line through the leftmost or rightmost
point. �

2.4.2 Constructs with rays

We now consider properties of specific tangents on a convex hull. The monotonicity
properties we discuss here are the geometric heart of the semidynamic upper-hull
construction of Chapter 3. In the following we denote with S a finite nonempty set
of points in the plane.

Let l ∈ Tg(S) be a tangent line. If i = l∩UC(S) is a single point i = {p}, then p
is the anchor of l. If i is a segment, the anchor is the midpoint of the segment,
i.e., for {p1, p2} = i ∩UH(S), we take p = 1

2 · (p1 + p2) as the anchor of i.

Property 2.9 (Monotonicity of tangents)
Let S be a finite set in the plane, l1 and l2 two tangent lines on UH(S) with distinct
anchor points. Then the slope of l1 is smaller than the slope of l2 if and only if the
anchor of l1 is to the left of the anchor of l2.

A ray r is a subset of a tangent line l ∈ Tg(S). It consists of one of the up
to two unbounded connected regions of l \ UC(S). If the slope of l is not vertical,
it is immediately meaningful to say that r is directed to the left or to the right.
If l is vertical, the ray has to point upwards. If l is the right vertical tangent line,
then we consider r to be directed to the left, and vice versa. There is always a
point p ∈ UH(S) ∩ l such that r ∪ {p} forms a closed set. This point p is called the
root of ray r. This is illustrated in Figure 2.2.

The following lemma is formulated for a right directed ray. The symmetric
lemma for a left directed ray holds just as well.

Figure 2.2: The situation of the ray monotonicity Property 2.10; the point p is the
root of ray r; the interval Iq is depicted only for one example point; the circles
marked with 1 and 2 are the intersections of i1 and i2 with r.

Property 2.10 (Monotonicity of rays)
Let S be a finite set in the plane. Let r be a right directed ray rooted at p ∈ UH(S).
For every point q ∈ UH(S) that is to the right of p we define the subset Iq ⊆ r of
points that are an intersection of r with a left directed ray rooted at q.
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Then all sets Iq are convex (line segments) and they partition r. The left to
right order of the sets Iq is given by the order of the points q.

Specifically if q2 ∈ UH(S) is to the right of q1 ∈ UH(S) and the root p ∈ UC0(A)
for some finite set A and the intersection i1 of some ray rooted at q1 with r is
such that i1 /∈ UC0(A) then we can conclude that for any ray rooted at q2 the
intersection i2 with r we have i2 /∈ UC0(A).

Let S be a nonempty finite set of points in the plane. Let rl and rr be two rays
rooted at p ∈ UH(S), where rl is directed to the left and rr is directed to the right.
The rays rl and rr form a valid pair of rays, if the clockwise angle from rl to rr at p
is of less than 180 degrees. Equivalently we can demand that the set rl ∪ rr is a
subset of the interior of some upper half-plane, whose defining line is a tangent of S
at p. The important consequence of this geometric configuration is that for a line l
that intersects both rl and rr, the line l and the half-plane above it are disjoint
from UC(S). See Figure 2.3 for an illustration of the situation.

Figure 2.3: The geometry of a valid pair of rays

Assume there is a valid pair of rays a, b rooted at p (from now on writing the
pair this way shall imply that a is directed to the left and b is directed to the right).
Let q be the left neighbor of p and o the right neighbor on UH(S). If o is on the
same tangent as a and q on the same tangent as b, then the pair of rays a, b is called
canonical . The canonical pair of rays has the smallest possible angle between the
rays. If p is the rightmost or leftmost (or only) point of S, the corresponding ray is
vertical.

2.4.3 The geometry of merging two hulls

Now we consider the situation where we have two finite nonempty sets A and B of
points in the plane and we are interested in UH(A ∪B). We call this situation the
merging of A and B. To simplify the description, we assume that A and B are in
upper-hull position, i.e., A = UH(A) and B = UH(B).

Property 2.11
For two finite sets of points A and B in the plane we have that UH(A ∪ B) ⊆
(UH(A) ∪UH(B)) \ (UC0(A) ∪UC0(B)).

The symmetric difference SD(A, B) of two finite sets of points A and B is given
as by their upper closures, SD(A, B) =

(
UC(A)∪UC(B)

)
\

(
UC(A)∩UC(B)

)
. If p

is a point in Bd(A) ∩ Bd(B), we say that p is an equality point . A vertical line
through an equality point p does not intersect SD(A, B).

Property 2.12
Let E ⊆ R be the set of all x-coordinates of equality points of two finite sets of
points. Then E is a finite collection of closed intervals. R \ E is a finite collection
of open intervals.
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Figure 2.4: Strips and equality points of two upper hulls. The leftmost equality
point is degenerate in the sense that the polarity of the neighboring strips is the
same. Then we have an equality stretch. The second to the right strip of polarity A
over B is trivial in the sense that B consists of a single segment.

If we have non-isolated equality points, we say that we have an equality stretch,
that is we have a polyline, several consecutive segments (or parts of segments)
of Bd(A) that are also part of Bd(B).

Let W ⊆ R
2 be a maximal slab not containing an equality point in its interior.

Then W is called a strip of the merging. We refer to the topological interior of W
by W0.

Property 2.13
Let l1 and l2 be two vertical lines in the interior of one strip of the merging of A
and B. Then the intersection of l1 with Bd(A) is above the intersection of l1
with Bd(B) if and only if the intersection of l2 with Bd(A) is above the intersection
of l2 with Bd(B).

A strip therefore has a polarity, we say that Bd(A) is locally above (outside)
Bd(B) (or vice versa). It additionally has the two defining equality points, the so
called delimiter points , unless it is the rightmost or leftmost strip.



Chapter 3

Semidynamic upper hull

In this chapter we develop a data structure that maintains the upper hull of a set
of points when points can be deleted. In the constructions of [Cha99a, Cha01] the
important feature of such a data structure is that it allows a fast build operation,
that is given a set of points the data structure can be created efficiently from
scratch. In [BJ00] one of the important observations is that we can improve the
efficiency of the build operation, if we assume that the set of points is given in
lexicographical order. In the overall setting of [BJ00], it is easy to compute the
lexicographic ordering of the points, as the points stem from log n sets that are
already lexicographically ordered, we only have to perform a generalized merging
step. But apart from this ordering of the points the data structure and the geometric
information it contains is destroyed when we build a new one. Here we go a step
further, we continue to use the existing instances of the data structures and create
the new instance by maintaining a geometric merging. In some sense we swallow
the existing instances and continue to use them. We achieve overall linear time
spent in one level of merging, which yields an overall amortized cost of O(log n) for
inserting (and deleting) an element in the fully dynamic solution.

This approach (inherently) leads to an overall space usage of O(n log n). If we
want to avoid this, we can use the semidynamic upper hull data structure of [BJ00],
which yields an overall space usage of O(n), at the cost that a deletion then takes
amortized O(log n log log n) time. As this step makes the construction of this chap-
ter superfluous, we do not discuss this possibility here any further.

Instead of a completely modular point of view that would allow us to consider a
single merging data structure, we will work on the resulting complete data structure.
This makes the analysis rather direct because we do not have to consider complexity
that is hidden in the form of passing big arguments between modules. This is one
of the many choices we can take without really changing the algorithm. Here we
always choose the solution that (we think) is easiest to explain.

3.1 The interface

In the semidynamic upper hull problem we ask for a data structure with the fol-
lowing interface:

Definition 3 (Semidynamic Merging Structure)
is a data structure that supports the following operations

Create Set(p) The point p in the plane is given by its (x, y) coordinates. Creates
a set A which contains only the point p; Returns a pointer to the data structure

19
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representing A and a pointer to the representation of the point p, its base
record.

Merge(A, B) The sets A and B are given by a pointer to their merging data
structure. Creates a new merging data structure for the set C = A ∪ B and
returns a pointer to C. Through C the upper hull of the points stored in C
can be accessed in left to right order as they are stored in a doubly linked list.
The data structures representing A and B are from now on only accessible
from inside the data structure for C. We say that from now on the merging
structure C owns all the points of A ∪B.

Delete(r) The point r is given by a pointer to its base record. Removes r from
all the sets it is stored in. Determines the merging structure M that owns r.
It is assumed that r is on the upper hull of M . Returns the list L of points
that replace r on the upper hull of M . The list L is represented as a doubly
linked list between the points a and b, where a and b are the neighbors of r on
the upper hull of M before the deletion. The function returns pointers to a
and b.

Two points are considered to be different, even though they have the same
coordinates. The identity of points is solely given by the pointer to its base record.

Our semidynamic merging structure maintains a forest of rooted trees, where
the leafs are (singleton) set of points in the plane, and the root nodes allow access
to the upper hull of the union of the sets stored in the leafs. Additionally we can
delete points from the leaf sets and combine two trees by merging the root nodes
(creating a new root and make two old root nodes the children). A deletion of
a point at a leaf propagates to the root of the current tree. The binary nodes
on this paths are also referred to as merging levels . The overall time spent in the
data structure is linear in the number of points stored at the leaves for every (binary
merging) node in this forest. If we merge only data structures that contain the same
number of merging levels, all merging trees are complete perfectly balanced binary
trees. One merging operation costs amortized O(n) time, where n is the size of the
participating sets. This achieves an amortized O(log n) time bound for inserting
a point, namely O(1) for every merging level it participates in. The deletion of a
point r also costs amortized O(1) time per merging r participates in. This yields
an overall amortized cost of O(log n) per deletion.

The assumption that we can only delete points that are on the overall upper hull
of the merging tree they are stored in, is convenient for our geometric construction.
As we are only interested in amortized time bounds, this is an assumption we can
easily enforce. We merely check whether the point r is on the overall upper hull,
and if it is not we delay the deletion of r until it surfaces.

In some sense the word “semidynamic” is not completely correct for the situa-
tion. After all the sets can get bigger (by merging), even though we already deleted
some of the points. On the other hand the data structure is not directly fully
dynamic, it does not allow an arbitrary insert operation. It only creates explicit
representations of the upper hulls of the merged sets (one for each merging tree),
not for the overall set (all the points stored in the merging forest). As the data
structure replaces what is a semidynamic data structure in [Cha99a, Cha01, BJ00],
we think this small inaccuracy is not too misleading.

3.2 The static geometric algorithm

To introduce and give an intuition about the geometric concepts needed for the semi-
dynamic upper hull data structure (and their geometric properties that ultimately
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imply the correctness) we consider in this section a complicated way to compute the
upper hull UH(A ∪ B) of two finite point sets A and B where UH(A) and UH(B)
are already (recursively) computed. As a simplification of the notation we assume
that A and B are in upper convex position, i.e., A = UH(A) and B = UH(B).
The focus of this section is to define several geometric constructions that are also
used by the semidynamic data structure presented in Section 3.5 and Section 3.6.
To simplify the exposition, we first show their important properties in the static
algorithm. This static algorithm is in fact very closely related to the dynamic data
structure, as it produces a geometric situation that corresponds to a valid state of
the data structure. In this sense it can be seen as an initialization algorithm.

In the following we try to motivate why the constructs as introduced here might
ultimately be useful. Usually it suffices to point at a prominent feature of the
construct to make clear what the function of the construct in the overall construction
is. Unfortunately these one line descriptions might only make sense when looking
back, i.e., after having seen the complete construction.

We use the left to right ordering on the points of C = A ∪B, as it carries a lot
of useful geometric information, e.g., about segments and tangent lines, but we will
disregard representation and data structure issues for now.

3.2.1 Bridges

A segment of UH(A ∪ B) is called a bridge, if it has one endpoint in A and the
other in B, or if it is a segment of Bd(A) and contains a point of UH(B) (or with A
and B exchanged). This situation is illustrated in Figure 3.1.

Figure 3.1: Two distinct types of a bridge in the merging of A and B.

Property 3.1
Every bridge s of the merging of A and B contains or is above one equality point
of A and B.

Property 3.1 hints at the importance of finding the equality points. Algorithmi-
cally it will be important to have certificates that show that segments contain no
equality points. Consider a strip of polarity A below B. For a segment s of Bd(A)
such a certificate is that both endpoints of s are inside UC0(B), i.e., below the
segment formed by two points of UC(B). For a segment t of B such a certificate
can be a tangent line l of UC(A) such that t is (strictly) above l.

Property 3.2
Let A and B be two finite sets of points in the plane. Then two points a ∈ A
and b ∈ B form a segment of Bd(A ∪ B) if and only if the line l through a and b
is (simultaneously) a tangent on A and on B and the set l \ a, b contains no point
of A or B, i.e. (l \ a, b) ∩ (A ∪B) = ∅

The algorithmic consequence of this last property is that even though it might
be hard to find bridges, it is only a local condition to verify that (a, b) forms a
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bridge, if we already computed the upper hulls UH(A) and UH(B) in left to right
order. We merely have to check that the neighbors of a on UH(A) and the neighbors
of b on UH(B) are below the line defined by a and b.

Let us assume that we already know all the equality points of the two hulls,
namely the set Bd(A) ∩ Bd(B). In this section we consider the geometric and
algorithmic task of finding the overall upper hull UH(A ∪ B). In some sense this
amounts to an algorithmic version of Property 3.1 (p. 21), namely how to compute
bridges starting from singular equality points.

The following two lemmas establish that we have a one to one connection be-
tween equality points of Bd(A) and Bd(B) and bridges.

Lemma 3.3
Let A be a finite set of points with A = UH(A) and let u, v ∈ Bd(A), be two points,
u to the left of v, and l the non-vertical line defined by u and v. Then there is no
point of A above l to the left of u or to the right of v.

Proof: Assume there is a point p ∈ A to the left of u above l. Then the line
segment p, v ⊂ UC(A), implying u ∈ UC0(A), a contradiction to u ∈ Bd(A). �

Lemma 3.4
Let S be a strip of the merging of A = UH(A) and B = UH(B) into C = A ∪B of
polarity Bd(B) above Bd(A). Then we have B ∩S 6= ∅, and UH(C)∩S 6= ∅, i.e., at
least one of the points of B ∩ S is on the overall upper hull UH(C).

Proof: Let u and v be the left and right equality points of Bd(A) and Bd(B)
limiting S. Then we know that the segment u, v is subset of both UC(A) and UC(B).
If there is no point of B inside S0, then u, v is part of Bd(B), which implies that
we have Bd(B) ∩ S0 ⊂ UC(A). This contradicts the definition of S being a strip
where B is above A. So we have B ∩ S0 6= ∅.

Assume now UH(C) ∩ S0 = ∅. Then we have a segment x, y of Bd(C), such
that x is to the left of S0 and y is to the right of S0. Let p ∈ B be a point in B∩S0.
The line l defined by u and v is then below p. By Lemma 3.3 (p. 22), we get that x
and y are on or below l, implying the contradiction that p is above x, y.

If S is the leftmost (or rightmost) strip of the merging, then the leftmost (and
highest) point p ∈ C is in B. We have p ∈ UH(C). �

We say that a bridge (a, b) is a degenerate bridge if it is completely covered
by Bd(A) and Bd(B), i.e., we have a, b ∩ (Bd(A) ∪ Bd(B)) = a, b. We say that an
equality point e is a degenerate equality point if it is part of the merged upper hull,
i.e., we have e ∈ UH(A∪B). We can detect degenerate bridges and equality points
by considering constantly many neighboring points on UH(A) and UH(B).

Lemma 3.5
Let A and B be two finite sets of points, S1 and S2 two consecutive strips of the
merging of A and B, with A above B in S1 and B above A in S2. Assume that there
is a non-degenerate equality point e between S1 and S2. Then there is precisely one
bridge of UH(A ∪B) between a point of A in S1 and a point of B in S2.

Proof: As e is non-degenerate, it is not on Bd(A ∪ B). Let x, y be the segment
of Bd(A ∪ B) that is directly above e. (There cannot be a point of UH(A ∪ B)
directly above e.) W.l.o.g. we assume that S1 is to the left of S1 and x to the left
of y. By Lemma 3.4 we have x ∈ S1 and y ∈ S2. By definition of a strip we have
UH(A ∪B) ∩ S1 ⊆ UH(A) ∩ S1 and UH(A ∪B) ∩ S2 ⊆ UH(B) ∩ S2 Hence (x, y) is
a bridge of UH(A ∪B). �
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Lemma 3.6 (Bridges and equality points are one-to-one)
Under every non-degenerate bridge is precisely one non-degenerate equality point,
and above every non-degenerate equality point is precisely one non-degenerate
bridge.

Proof: By Lemma 3.4 one bridge cannot span over a strip of the merging, in
particular not over more than one equality point. By Lemma 3.5 there always
exists such a bridge. �

Considering A∩S1 and B∩S2 we look at a horizontally separated bridge finding
task, as considered in the following.

3.2.2 Bridge finding

Assume we have two finite sets of points A and B that are separated by a vertical
line l. Assume further that we already know the upper hulls of A and B, and for
simplicity that we have UH(A) = A and UH(B) = B. We are interested in finding
the bridge between A and B. This bridge is defined as the segment of Bd(A∪B). It
is also given as the only common tangent on A and B. The situation is illustrated
in Figure 3.2. This bridge finding task is at the core of the dynamic planar convex
hull data structure of Overmars and van Leeuwen [OvL81]. It is also described in
detail in the textbook by Preparata and Shamos [PS85, page 127].

A B

cB

c2

hB

c1

t2

t1

l

tB

Figure 3.2: Classical bridge finding. The vertical line l separates A and B. Given
the current candidate cB ∈ B, we can argue that c1 ∈ A is too far to the right,
whereas c2 is too far to the left.

Assume that we have a current candidate cA and cB on both upper hulls. These
candidates define a tangent tA and tB (actually they naturally define two tangents,
but this simplifying assumption does not change the picture). We focus on the
candidate cA. In the situation where cB is above the tangent tA (in Figure 3.2
cA = c1), we can conclude that all the points to the right of cA cannot be the
touchdown point of the bridge on A, because they cannot be tangents of B (they
do not have all of B on or below the tangent line).

For the other case we have to define an over-approximation of B. This is given
by the current candidate cB and its tangent tB . If the current tangent of tA of A
is such that all the points to the right of l and below tB (this includes all points
of B) are strictly below tA (cA = c2 in Figure 3.2), then all the points to the left
of cA cannot have a common tangent with B because their tangent lines cannot
pass through a point of B.
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These two geometric reasons allow us to search for the bridge. Unless both
candidate points are the endpoints of the bridge, one of the two candidates is found
to be either too far to the left, or to far too the right. The case analysis proceeds
by drawing the segment c = cA, cB and comparing it to the two tangents that
are defined by cA on A and the two tangents defined by cB on B. This yields on
each side either a reflex (c1 in Figure 3.2), concave (c2 in Figure 3.2), or supporting
(the segment c defines a tangent line on A or B) situation. Then we can consider
all combinations of cases on A and B and conclude that in all of them (but the
supporting-supporting case that identifies the bridge) at least one of the geometric
reasonings is applicable.

We can use this geometric insight to perform an interleaved binary search (or a
search given by a search tree) on A and B simultaneously. We can think of this as
suspending both searches after they produced the first candidate point, and then
advancing one of them according to the current geometric situation. The process
stops when we find the bridge.

We will use similar concepts as the building block of our data structure: we use
dangling searches (suspended searches), an over-approximation of the upper hull
(as given by tB) and an under-approximation of the upper hull (as given by cB).

When we perform bridge finding as part of our data structure, we are in a slightly
different situation. Instead of performing binary searches we perform (interleaved)
linear scans. We start at an equality point of the the boundary of S1 and S2. Then
we always see a reflex or supporting situation. In fact we end up performing a variant
of the “remove non-convex point” (Andrew’s variant of Graham’s scan, [And79,
Gra72]) algorithm to compute the upper hull of a point set that is already in left
to right order.

When considering the dynamic data structure, we will have to make sure to not
search over the same points several times. This makes it necessary to also have a
phase of the bridge finding, where we perform a linear scan towards the intersection
point (responding to a deletion on the other side of the intersection). There we will
also meet the “concave vs. reflex” and “concave vs. supporting” situations.

3.2.3 Finding equality points

Before we can use the partition of the plane into strips as in the previous section,
we have to find all the equality points of Bd(A) and Bd(B). In the static setting we
might employ the following algorithm, assuming that A = UH(A) and B = UH(B)
are accessible in left to right order. We perform a left to right sweep line algorithm.
For every point x of A∪B, we define the vertical line lx through x and determine the
intersection points of lx with Bd(A) and Bd(B). Without loss of generality (only as a
naming convention) we assume assume x ∈ A. Then it is clear that Bd(A)∩lx = {x}
and that Bd(B) ∩ lx depends only on one segment, namely from the rightmost
point of B to the left of lx and the leftmost point of B to the right of lx. There
is an equality point (intersection) of Bd(A) and Bd(B) if we have that for two
consecutive vertical lines lx and ly the above/below order of Bd(A) and Bd(B)
changes. As Bd(A) and Bd(B) are straight lines between lx and ly, we are also sure
that we find all equalities of Bd(A) and Bd(B). This algorithm identifies all strips
of the merging of A and B in linear time.

Let us state the above algorithm in the form we want to use it later as part
of our data structure. It is a modification, as we assume only that we have A
and B accessible as two (doubly) linked lists. The sweep line gets replaced by
a sweep segment a, b with a ∈ A and b ∈ B. Let a′ be the right neighbor of a
and b′ the right neighbor of b. We maintain the slab invariant that either a lies
in the slab formed by b and b′, or b lies in the slab formed by a and a′. If the
segments b, b′ and a, a′ intersect, we report an equality point. To move the sweep
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line, we determine which of a′ and b′ is further to the left, say it is a′. Then we
change the sweep segment to be (a′, b). This leaves the slab invariant intact. If
the sweep segment reaches the end of A or B, we are sure to have reported all the
equality points.

To initialize the sweep segment and the slab invariant, we place the sweep seg-
ment at the leftmost point of A and B. This segment might not fulfill the slab
invariant, say because a′ is to the left of b. But then we can safely advance to (a′, b),
as a, a′ certainly does not intersect Bd(B).

Let us reflect about the proof of correctness of the above algorithm (in the first
description), and whether we can use it in a dynamic situation as well. The vertical
lines lx and their intersection with Bd(A) and Bd(B) are the atomic observations
of our algorithm, geometric certificates that lead to its correctness. Observing that
the algorithm actually did not exploit the fact that A and B are in upper convex
position, we cannot leave out a single line lx, without risking an incorrect result. In
this sense the correctness of the algorithm depends on all these certificate lines.

A

B

Figure 3.3: The example where maintaining vertical line certificates is expensive.

Let us consider the situation depicted in Figure 3.3. There we have B =
{(−1, 1), (1, 1), (1, 0.5), (1, 0.25)}, and A is a set of size n with A = UH(A) and
all points of A are below the x-axis and their x-values are between −1 and 1. Then
the sweep line algorithm has n certificates of the above explained type. If we delete
the point (1, 1) from B, we have to update all n certificates, and we have to do this
again when we delete (1, 0.5) from B. This sequence of deletions shows that the
particular set of certificates is not easy to maintain. In the example, it would be no
problem to maintain completely different certificates, for example if we would have
separated the task and maintain that all points of A are below the x-axis and all
points of B are above the x-axis.

There is another interesting case, in which the above type of certificates is easy
to maintain, and that is if the lines lx alternate between being defined by a point
of A and a point of B. In this case every segment would be part of precisely one
certificate, and a single deletion would require only the update of two certificates.

What we actually use in the dynamic data structure does both: It does some kind
of sampling (the sampling density depending on the geometric situation) from A
and B in a way that ensures something in the spirit of alternation, and it introduces
auxiliary lines that separate the geometric situation.
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Somewhat more precisely we build two intermediate upper boundaries, one
called Â that is based upon points and segments of Bd(A) with the property
UC(A) ⊆ UC(Â). Then we have another one, B′ that is based upon points of B
(and lines defined by Â), with the property UC(B′) ⊆ UC(B). To make all this
useful we also make sure to have UC(Â) ∩ S ⊆ UC(B′) ∩ S, for a strip S.

This is the vague and imprecise outline of our construction. We present the
details in the next sections, exemplified on a complicated static algorithm to find
the intersections of Bd(A) and Bd(B). We start by presenting some of the concepts
that are fundamental for the construction.

3.2.4 Selected points

In the following we restrict our attention to one strip of polarity Bd(B) above Bd(A).
First we define what it means for a point p ∈ A to be part of the hinted at sampling.
A point p ∈ UH(A) ∩ UC0(B) can be selected. In this case there is a pair of valid
rays that are rooted at p, the so called strong rays.

Requirement 1 (Strong ray separation)
Let r and t be two different strong rays rooted at different points of UH(A), not
necessarily in the same strip. Then we require that the intersection point of r and t
is outside of UC(B).

The significance (for the dynamic setting) of strong rays is that it is sufficient to
maintain the intersection of the strong rays rooted at A with Bd(B). Over time we
will have to be able to deal with deletions of points in B. After any number of dele-
tions the current set B′ will be a subset of B, and we also have UC(B′) ⊆ UC(B),
which means that the intersection of a strong ray with the Bd(B) move monoton-
ically towards the selected points and that the strong ray separation requirement
will stay valid.

3.2.5 Finding more points to select

Even though we describe the static case, the motivation clearly is the semidynamic
setting, where we have to be prepared that the upper hulls “shrink”. In this sense
it is also meaningful to talk about the (unknown) future, meaning after some more
deletions.

Now that we have defined what a selected point on A is, we can already imagine
one approximation of A, namely the upper hull of the intersections of neighboring
strong rays, that is from two neighboring selected points p left of q we take the
intersection of the right directed strong ray rooted at p with the left directed strong
ray rooted at q. This indeed contains all of UC(A), but by the invariants we
imposed, it will be too big in the sense that every single point defining it is outside
of UC(B). On the other hand we did not even define a condition that would
enforce selected points to be close to each other, such that we can expect the
approximation to resemble UH(A) in any sense. What we can do is to try to select
as many points of UH(A) as possible without violating the strong ray separation,
Requirement 1 (p. 26). Assume that we already have selected some points, among
them p ∈ UH(A) and q ∈ UH(A), p to the left of q, where there is no further
selected point of UH(A) between them. We consider the possibility of selecting
another point x ∈ UH(A) between p and q. Let us assume that such a point x
exists and that we try to find it using a comparison based (binary/exponential)
search. Such a situation is depicted in Figure 3.4. Let us say that r is the right
directed strong ray rooted at p and s is the left directed strong ray rooted at q. We
have to be in the position to decide for a candidate point c ∈ UH(A), whether c
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is to the right or the left of x. Let us say that e is the left directed canonical ray
rooted at c, and f is the right directed one. Let a be the intersection point of r
and e, and b be the intersection point of f and s.

qp
candidates

B

strong rays

A

c

a b

rs

e f

Figure 3.4: A relaxed dangling search: The upper hull B is depicted as smooth line
(even so it is not) to stress the fact, that we do not care about the single segments
of it here. The points p and q are the only selected points in the depicted strip.
The point c is the candidate of the (relaxed) dangling search.

Now if both a and b are outside UC(B), we can select c as it fulfills the strong
ray separation requirement. Even though we did not find the particular point x
that could be selected by assumption, we found c instead, which is just as good.

If a is inside UC(B) and b is outside UC(B), we know by the monotonicity
Property 2.10 (p. 16) that all points to the left of c will not meet the strong ray
separation invariant to the left. So we should search to the right of c. In the dynamic
setting we would have to say “c does not (yet) meet the strong ray invariant, but it
might in the future.” In this form it sounds like the evaluation of c as a candidate
might be wasted effort and the branching we take can become wrong. If we instead
state that “c and all points to the left of c already meet the strong ray condition
with s,” we have a statement that remains valid even in the setting of monotonically
shrinking hulls. To be able to refer to this fact we call c the (new) left guard of this
search.

If we see the symmetrical situation, namely that a is outside and b is inside, we
know that we have to continue the search to the left of c, and make c the new right
guard of the search.

It can also happen that both a and b are inside UC(B). Then we cannot continue
the search, but instead we have c as a certificate that there cannot be any further
selected point between p and q, i.e., our assumption about the existence of x is
wrong. We call such a situation a relaxed dangling search. The point c is called the
candidate point of the search and the canonical rays e and f are weak rays . The
selected points p and q are called the anchors of the dangling search. We think of
it as a search process of a data structure that can be suspended if we cannot (yet)
decide whether we should go to the left or to the right. In the dynamic setting we
will use this, as further deletions of points in B might eventually lead to one of the
previous cases.
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Figure 3.5: A dangling search with a candidate segment: The points p and q are the
only selected points in the depicted slab. The points gl and gr are the neighboring
guards of the relaxed dangling search with the line defined by al and br as the
candidate.

As a special case it can actually happen that the search ends (there are no
further candidate points), but neither the left guard gl nor the right guard gr can
be selected. Such a situation is depicted in Figure 3.5. Here we allow the tangent
line l on A that contains both guards to act as a candidate, defining a collinear pair
of weak rays rooted at the midpoint of the segment gl, gr. As this particular pair
of rays is not valid (the angle between them is not less than 180 degrees) we have
to be ready to detect the special case that l is also a tangent line of B.

To determine the position of a and b relative to Bd(B) it is sufficient (by
Monotonicity Property 2.10 (p. 16)) to know the intersection of the strong rays
with Bd(B).

Requirement 2 (Valid guards)
Let p, q ∈ B be two neighboring selected points of B with a dangling search Q
anchored between p and q. Let e be the right directed strong ray rooted at p and f
be the left directed strong ray rooted at q. Let gl and gr be respectively the left
and right guard of Q. Let e′ be the right directed canonical ray rooted at gl and f ′

the left directed canonical ray rooted at gr. Then both intersection points f ∩ e′

and e ∩ f ′ are outside of UC0(A′) (i.e. f ∩ e′ ∩UC0(A′) = ∅).

This construction of a certificate, by selected points and dangling searches, shows
its strength when we have to maintain it under deletions. Even though we perform
searches, we do not necessarily use more than amortized constant time per ele-
ment. The data structure that makes this all work out is a splitter as presented in
Section 3.4.

3.2.6 Half open searches

In the discussion of dangling searches in the previous section, we only tried to select
more points between already selected points of one strip. But of course it can also
be the case that we can select more points toward the left or right end of that strip.
We focus on the right end of a strip of polarity B above A, the left end and the
other polarity are completely symmetrical.

We try to find a point x that can be selected, where x is to the right of the
rightmost selected point q. Let us say that t is the right directed strong ray rooted



3.2. THE STATIC GEOMETRIC ALGORITHM 29

at q, as depicted in Figure 3.6. We define the left directed weak ray w that is rooted
at the right delimiting equality point v of the strip. We choose w such that it has
the highest possible slope, which we can achieve by taking the left neighbor i of v
on the hull UH(A) and choose the direction of w such that it contains i. We call
this geometric situation a half open search, and i its endpoint .

Figure 3.6: A half open search: q is the rightmost selected point in the strip, v is
the equality point, t the relevant strong ray, and i is the point defining the direction
of the weak ray. The intersection d of t and the weak ray shows that the half open
search is relaxed

Now we determine the intersection point d of the strong ray r and the weak
ray w. If d ∈ UC(B), we can conclude that selecting i would violate the strong ray
condition with p and that therefore no point x can be selected between p and v.
We say that we have a relaxed half open search, which means that it is a certificate
of the fact that no further point can be selected.

It can easily happen that i = q, which means that the half open search is empty
and trivially relaxed.

If d /∈ UC(B), the point i meets the strong ray separation (Requirement 1, p. 26)
to the left. Additionally i is neighboring the equality point v, which implies that
the right directed canonical strong ray rooted at i leaves UC(B) at v. As v and
its right neighbor x on UH(A) are not allowed to be selected because they are not
inside UC0(B), the point i meets the strong ray separation requirement to the right.

In this situation we select the point i. This creates a new, relaxed empty half
open search between i and v, and gives rise to a new dangling search between q
and i.
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3.2.7 Shortcuts

Selecting points of A in a strip S where B is above A, we achieved some sampling
on A. Now it remains to introduce the sampling on B, which is done by creating
shortcuts. Remember that one intuitive goal of the combined sampling process is
to make sure that we have for every slab roughly as many sampled points from B as
we have from A. At this stage it is hard to say precisely why this is an advantage.
As it is usual already, the names A and B can (and have to) be interchanged to
yield the symmetric statements.

Geometrically a shortcut is defined by a line l in the plane and consists of the
line segment defined as l∩UC(B). Intuitively it is understood as a chord of Bd(B)
that “cuts away” all the points above l. An intuitive candidate for such a shortcut
is the line defined by two consecutive intersections of Bd(B) with strong rays rooted
at neighboring selected points of UH(A). Sometimes we actually use precisely this
shortcut, but we have to be a little more careful.

For a non-vertical line l we define hl to be the closed half plane below l. Now
we can define for a set of lines L the shortcut version of B with respect to L by the
extreme points of some well structured convex region in the plane,

SCL(B) = UH
(
UC(B) ∩

⋂
l∈L

hl

)
.

If the set L consists of shortcuts, we can define the under-approximation (sampled
version) B′ of B by setting B′ = SCL(B). We also define sl = l ∩ UC(B), the
segment of Bd(B′) defined by l. The points of B′ on l (the points introduced by l)
are called cutoff points . This situation is depicted in Figure 3.7.

We think of applying shortcuts once and for all times, that is, the next time we
have to find intersections of strong rays with Bd(B) we work with Bd(B′) instead.
Now the monotonicity of the shrinking of UC(B) immediately implies that UC(B′)
is also monotonically shrinking.

Property 3.7
Let B1 and B2 two finite subsets of the plane such that UC(B2) ⊆ UC(B1). Let l
be a line (a shortcut) in the plane. Then we have that the shortcut defined by l
on B2 is a subset of or equal to the shortcut defined by l on B1.

We would like to not remove shortcuts. Unfortunately this could lead to auxiliary
points whose coordinates depend on arbitrarily many input points. To avoid this
(to achieve an algorithm in the order-k-branching machine) we delete shortcuts if
they are no longer relevant for the other parts of the construction. More precisely
we will never delete shortcuts that are intersected with strong rays, which ensures
that the intersection points on strong rays still move downwards monotonously over
time.

Even though B′ is defined for all kinds of sets of lines L, it only leads to some-
thing useful if we insist on some requirements.

The first condition we have to require from a shortcut is that it does not intro-
duce intersections with A.

Requirement 3 (Conservative Shortcuts)
A shortcut l on B may not introduce an equality point with Bd(A), that is,
l ∩UC0(B) ∩UC(A) = ∅.

Lemma 3.8
Let L be a set of shortcuts where every l ∈ L satisfies Requirement 3 (p. 30). Then
we have Bd(A) ∩ Bd(B) = Bd(A) ∩ Bd(SCL(B)), i.e., there are the same equality
points between Bd(A) and Bd(B) as there are between Bd(A) and Bd(SCL(B)).
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Proof: An equality point between Bd(A) and Bd(SCL(B)) that is not an equality
point between Bd(A) and Bd(B) has to lie on a line l ∈ L and on Bd(A). This
is impossible by Requirement 3. An equality point between Bd(A) and Bd(B) is
also an equality point e between Bd(A) and Bd(B), as a line conforming with
Requirement 3 cannot cut away e. �

We do not want to carry around shortcuts that have no effect.

Requirement 4 (Effectiveness)
Let l be a shortcut of B. Then we require l ∩UC0(B) 6= ∅

If a shortcut l is no longer effective in the sense of Requirement 4 (p. 31), we remove l
from the set of shortcuts for B. This implies in particular we do not have a segment
of Bd(B) and a shortcut of B that are on one line, the intersection of a segment
and a shortcut is always a point or empty.

Requirement 5 (Shortcut Separation)
Let l and f be two shortcuts on B. Then we require that l ∩ f ∩UC0(B) = ∅.

This requirement will ensure that a single deletion can affect at most 3 different
shortcuts.

Lemma 3.9
Let l be an effective shortcut on B, i.e., l complies with Requirement 4 (p. 31).
Then the two cutoff points of l, i.e., the intersections of l with Bd(B) are on two
different segments of Bd(B).

Two consecutive segments of Bd(B) can intersect at most 3 different shortcuts.

Now we have to anticipate some problems that only occur in the dynamic setting,
when we continue to create more and more shortcuts. Even though our algorithm
will only introduce shortcuts that do not intersect strong rays, it can easily happen
that the intersection of a new strong ray with B′ lies on a shortcut.

Sampling usually implies that B′ has fewer points than B. With our definition
this is not necessarily true, but we achieve |B′| = O(|B|) by the requirements we
impose on shortcuts, in particular Requirement 5 (Separation).

It remains to make sure that the shortcuts actually simplify the locally outer
hull enough to be useful in the (accounting of) the data structure.

Requirement 6 (Aggressive shortcutting)
Let s be a consecutive sequence of segments from Bd(B′), such that s does not
intersect a strong ray rooted at A or contain an equality point. Then s consists of
at most 4 segments.

This requirement can always be achieved by placing one more shortcut between two
consecutive intersection/equality points. We only have to be careful and respect
the shortcut separation requirement, which is possible if there are sufficiently many
segments. We will discuss how to create such shortcuts in Section 3.6.15.

3.2.8 The truss

The geometric construction we used as a certificate that there are no further equality
points of Bd(A) and Bd(B) is called the truss, since it resembles (vaguely) the
appearance of an old style iron truss bridge, where iron rods are used to hold the
supporting beams apart.

More precisely the truss stands for the data structure and construction of se-
lected points, strong rays, half open and dangling searches, candidates, equality
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points and shortcuts. If we refer to the situation where all searches are relaxed (can-
not be advanced and certify that we identified all equality points), we talk about
the relaxed truss. We say that we have a relaxed truss for the merge of UH(A)
and UH(B) in the dynamic setting, if the following requirement is met. We will
augment this geometric requirement in Section 3.5.3 by some requirements about
how the geometric situation is represented in the data structure. All together this
has the flavor of an induction hypothesis: The requirements describe the state of
the data structure before we process the deletion of a point, and the state we hence
should reach after processing the deletion. Even though this usage of the require-
ments is in the dynamic setting, the requirement itself is static. In particular it is
a description of the state of the truss achieved by the static algorithm.

Requirement 7 (Relaxed truss)
Let A and B be two finite sets of points in the plane. Assume we have sets of
selected points QA ⊆ UH(A) and QB ⊆ UH(B) with the sets of strong rays RA

and RB, and the sets of shortcuts HA and HB and the set of identified equality
points E. This construction forms a relaxed truss if the following conditions are
met:

1. E ⊆ Bd(A)∩Bd(B), and every strip between two neighboring equality points
in E has a polarity.

2. RA forms valid pairs of rays on Bd(A) and these pairs of rays are rooted at
the points of QA.

3. RB forms valid pairs of rays on Bd(B) and these pairs of rays are rooted at
the points of QB.

4. HA and HB conform to Requirement 3 (p. 30) (Conservative), Requirement 4 (p. 31)
(Effectiveness), Requirement 5 (p. 31) (Separation), and Requirement 6 (p. 31)
(Aggressive shortcutting).

5. QA ⊂ UC0(B) and QB ⊂ UC0(A).

6. RA and RB and conform to the strong ray separation requirement (Requirement 1, p. 26),
with reference to A′ = SCHA(A) and B′ = SCHB (B).

For one strip of polarity A below B between the identified equality points u, v ∈
E we have:

1. Let L be the list of points of UH(A) between u and v. If L is not empty, at
least one of the points of L is selected.

2. Between two selected points there is a relaxed dangling search.

3. Between u (v) and the leftmost (rightmost) selected point p ∈ UH(A) is a
relaxed half open search.

The symmetrical conditions are valid for all strips of polarity B below A.

Lemma 3.10 (Effectiveness of the truss)
Let A, B be two finite sets of points in the plane and QA ⊆ UH(A), QB ⊆ UH(B),
RA, RB, HA, HB, and E form a relaxed truss as described in Requirement 7. Then
all equality points of A and B are identified, i.e. Bd(A) ∩ Bd(B) = E.
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Note that we only use some of the statements of Requirement 7 (p. 32) in the
proof of the lemma.
Proof: We consider the hinted at approximations of the two upper hulls that result
from the sampling. As we already introduced the under-approximation B′ of B,
we only have to define the over-approximation Â of A. More precisely we define Â
such that we have UC(A) ⊆ UC(Â) and for a strip S of polarity A below B, we
get UC(A)∩S ⊆ UC(Â)∩S ⊂ UC(B′)∩S ⊆ UC(B)∩S. The situation is depicted
in Figure 3.7.

Figure 3.7: Approximate versions of the two merged hulls.

Now we have to define the points that define Â such that Â is in upper convex
position. Every point of UH(A) \ UC0(B) (on A, outside UC0(B)) are part of Â.
These are all the points of Â that are in strips of polarity A over B. For a strip S
of polarity B over A we have one point a of Â for every left (right) directed strong
ray r rooted at a point p on A inside S. This a is given by the intersection of r
with the right (left) directed weak ray e, where e is the weak ray of the dangling or
half open search next to r. This completes the definition of Â.

Now we should argue that we indeed have UC(Â) ⊇ UC(A). Let x, y ∈ Â be
neighbors in Â. Then the lower half plane defined by the line l through x and y
contains A: If x and y are on a pair of valid rays (rooted at a selected point or
a candidate) this follows from the validity condition of the rays. If x and y are
both in UH(A) then x and y are both not selected. If x are in the same strip of
polarity A above B, and they are neighboring in UH(Â) they are also neighboring
in UH(A). If there is another strip of polarity A below B between x and y, the
upper border of A in this strip consists of only one segment and no points of UH(A)
(Requirement 7 (p. 32), first statement about strips). This segment is x, y and x
and y are neighboring on UH(A). If x is in UH(A) and y is not they are in different,
but neighboring strips, x in an equality strip or a strip of polarity A over B, and y in
a strip W of polarity A below B. Let u be the equality point between x and y (left
to right) that bounds the strip W . Now there is no point of UH(A) between x and u.
The point y is defined by a half open search, the weak ray defining y is a tangent
on x. In particular x, y is part of a tangent on A. So we conclude UC(A) ⊆ UC(Â).

As we have Â ⊂ Bd(Â), and Â∩S contains the two equality points and otherwise
only weak ray versus strong ray intersections of relaxed searches, we get Â ∩ S ⊂
UC(B′).

If a strip extends to infinity and does not contain points from one of the hulls,
we look at a trivial special case.

Note that we have for the vertical line l through an equality point UC(A) ∩ l =
UC(Â) ∩ l = UC(B′) ∩ l = UC(B) ∩ l. �

Even though Â (and B̂) can easily be extracted from the data structure we
maintain, it is in our intuition only necessary to reason about the certificate, we do
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not work with it as explicitly as with shortcuts forming the under-approximations A′

and B′.

3.3 The geometry of the dynamic algorithm

In this section we consider the geometric properties that are relevant for the semidy-
namic merging structure that implements a data structure according to the interface
defined in Section 3.1.

3.3.1 Deletions on the overall upper hull

We will impose the condition that points are only deleted, when they are on the
overall upper hull. We have to argue that this is no loss of generality. This is done
in Section 3.5. What we gain with this constraint is stability of the locally inside
upper hull of a strip. We do not have to think about what to do when a selected
point gets deleted, and how to reestablish something in its vicinity.

3.3.2 Continuous changes

Now, as we have seen the static geometric construction of our data structure, we
have to focus on how to maintain the construction when points get deleted. As
already pointed out, we assume that only points of the overall convex hull get
deleted. This section is meant to provide the intuition why the truss is a reasonable
construction, and identifies all equality points that appear. Therefore we keep the
focus on the “standard” cases, only later we will explain the data structure in all
details.

In this section our focus is still not on the data structure aspects, but on an
efficient geometric construction. In this spirit we for example make sure that we
select every point at most once. More precisely the life cycle of a point p in our
merging structure is that it becomes part of hull A (say), but is inside UC(B).
Then because of some deletions on B we choose to select p. Only when p surfaces ,
i.e., when B changes further such that p /∈ UC(B), we deselect p. Later p can
become part of UH(A ∪B) and finally it can be deleted.

Geometrically we can think of the deletion of a point r ∈ B1, leading to the
set B2 = B1 \r, as one smooth change of Bd(B). To make this precise we take some
point O inside of UC0(B2), and move r linearly towards O. This assures that r is
no longer part of UH(B) at the end of the move. More precisely we define the linear
function on [1, 2] by r(t) = (2− t) · r + (t− 1) ·O, and B(t) = B \ {r}∪ {r(t)}. This
defines also UH(B(t)), and more importantly Bd(B(t)). Now we have B1 = B(1)
and B2 = B(2). For t1 < t2 we have UC(B(t1)) ⊇ UC(B(t2)). Note that the
continuous change of the motion is restricted to two segments at a time, revealing
more and more new points of B, until finally the two moving segments level out
and become one segment. We describe how to maintain (the interesting part of) a
valid truss during this motion.

We use the truss as a certificate that all intersections between Bd(A) and Bd(B)
are identified (Lemma 3.10). The truss is only a valid certificate if all dangling and
half open searches are relaxed and the weak ray intersections (the points a and b in
Figure 3.4 and the point d in Figure 3.6) are inside the other hull. If we maintain
the intersections of Bd(B) with strong rays rooted at UH(A), we are not only in
the position to argue for the fact that these intersection points are inside UC(B),
we also get a certificate that a selected point r is inside UC(B) (or UC(A) for the
other type of half open search; in this situation it is d that is moving). As long as
the continuous change of B(t) does not result in any of the weak-ray intersections
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or a selected point to no longer be inside UC(B(t)) (the point surfaces), there is no
need to change the truss. It will continue to be a valid certificate that we identified
all equality points. In return, we have to discuss how the truss can be adjusted
in the case when one of these points changes from being inside the other upper
hull to being outside. For the simplicity of this discussion (it is for the intuition
only anyway), we assume that it never happens that two points of the truss are
affected by such a change at the same time. We will use t1 to denote a time directly
before this single change and t2 for a time directly after this change. In other words
between t1 and t2 happens precisely one change to the truss. In the following we
will discuss how to maintain the truss during these changes.

During the motion we might also see some change to a strip where Bd(B) is
(locally) below Bd(A). As Bd(B(t)) moves downwards, we know that during the
continuous motion no new equality point can arise in such a strip. In general, such a
strip increases it horizontal extent. So there is no point in continuously maintaining
the truss there. Instead we will extend or establish a new truss just like in the static
case described in Section 3.2.3 after the motion is finished. We will not consider
this type of strip in the remainder of this discussion.

Advancing searches

The easiest case is, if the intersection point a of a weak ray stemming from a dangling
search s surfaces. The names used here are taken from Figure 3.4. Assume w.l.o.g.
that a is the intersection point of the right directed strong ray of the left anchor
of s, and the left directed weak (canonical) ray of the candidate point c of s. In this
situation we advance the dangling search by making the candidate c the new right
guard of s. This complies with the valid guard requirement (Requirement 2, p. 28).
In general we might have to continue advancing the dangling search (as described
in Section 3.2.5) until it is relaxed again. If the candidate of s already was a
segment gl, gr of Bd(A) (Figure 3.5, p. 28) and hence s cannot be advanced further,
we select the left guard gl. We have to argue that this is allowed by the strong
ray separation requirement (Requirement 1, p. 26). To the left this is clear by
the event we currently react to. To the right it follows by gl being a left guard
of s (Requirement 2, p. 28). We instantiate two new dangling searches between
respectively p and gl, and gl and q. We advance these dangling searches until they
are relaxed, just like in the static setting.

A similar case is if the intersection point d of a half open search s surfaces. The
names to describe this situation are taken from Figure 3.6 (p. 29). Let q ∈ A be the
selected point of s, let t be the strong ray of s rooted at q, and w the weak ray of s,
rooted at the equality point v. We select the endpoint i of the half open search s.
As the canonical ray towards the next selected point q is the weak ray w, this is
allowed by the strong ray separation requirement (Requirement 1, p. 26) because
we now have that the ray intersection d is outside Bd(B(t2). We also instantiate
a new, empty half open search with the selected point i and the equality point v.
This half open search is trivially relaxed. We instantiate a new dangling search
between the selected points i and q. We have to advance this dangling search until
it is relaxed.

New equality points

For a selected point p ∈ A the motion of Bd(B(t)) can result in p surfacing. If none
of the neighbors of p in A are outside of UC(B(t)), this means that we look at a new
strip of polarity A over B. As argued before, we will not establish a truss of this
polarity as long as Bd(B(t)) is moving. After that we are back to the static case
that is already described. For the strip that gets split, the changes to the truss are
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just the same as if there was an equality point moving over p (one in each direction,
making the strip smaller). This case is discussed in the next paragraph.

Moving equality points

Another typical event is that a point x ∈ A surfaces, that is, x ∈ UC(B(t1))
and x /∈ UC(B(t2)), because an equality point moved over it. This means that the
strip of polarity B over A shrinks horizontally. This is easy if x is not selected.
Then we merely shrink a half open search in the following way. In the situation
and naming of Figure 3.6 (p. 29), this means that the former endpoint i (x = i)
of the half open search surfaces. Then by our definitions the left neighbor of i be-
comes the new endpoint. The new weak-ray intersection point d is by monotonicity
(Property 2.10, p. 16) closer to the selected point q. By our assumptions about the
continuous motion this new half open search is relaxed at time t2.

B(t)

p

gl
c gr

B(t)

i

A A

q

Figure 3.8: The situation of deselecting q. The dangling search was relaxed before q
surfaced. After deselecting q we are allowed and required to select gr.

If x = q is selected, we have to deselect it. This situation is exemplified in
Figure 3.8. Deselecting q, we can no longer have a dangling search s having q as the
root of one of its strong rays. Let us assume that q is the left endpoint of s, and let i
be its right neighbor on UH(A). By our assumption that the changes to the truss
happen one at a time, we have i ∈ UC(B(t2)). Now we select the right guard gr

of s. This meets the strong ray condition with the left anchor (selected point) p
of s. We instantiate a new dangling search between p and gr. We instantiate a
half open search between gr and the equality point of Bd(B(t2)) and Bd(A) which
is now between q and i. If this is should not be relaxed, we select i. Now we are
sure to have a relaxed truss again. Note that there is a slightly different situation
if Bd(B(t)) moves differently, namely such that the intersection of Bd(B(t)) moves
on the left directed strong ray rooted at q towards q and finally over q. Then we
would also have first selected gr after advancing half open searches, and then i also
as a result of advancing a dangling search.

If q is the only selected point of its strip W , we select its neighbor i inside W , if
such a point exist. Now the half open search of i in the direction of q is empty and
therefore relaxed, the other half open search is relaxed because it was with q as the
anchor point. If no such point exist, we look at what we call a trivial strip, which
is always considered relaxed.
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3.3.3 The geometry of losing a pair of equality points

A deletion of point r ∈ B can cause that we lose a strip with polarity B over A,
and have to join two strips Sl and Sr (Sl to the left of Sr) of polarity A over B.
Here the crucial observation is that the rightmost selected point p ∈ Sl ∩B and the
leftmost selected point q ∈ Sl ∩ B are far enough apart that they meet the strong
ray separation requirement. This is where we make use of the global character of
Requirement 1 (p. 26). Now we can join the half open searches of q and p into
one dangling search. Luckily the geometric properties and the requirements of
the data structure implementing dangling searches fit together nicely. We focus
here on the geometric properties. The data structure aspects of the situation are
considered in Section 3.6.7. It is crucial for the amortized analysis, that this is the
only situation where we have to join two strips. The geometry allows us to join two
half open searches (those have trivial candidates) into one dangling search with the
promise that we will eventually select one of the points between the two points that
become guards. The geometric situation (in the continuous setting) is illustrated in
Figure 3.9.

gr
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guard-rays
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ef
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Figure 3.9: Illustrating the situation of joining two strips into one dangling search.
The names are used in the proof that β is outside UC0(A′).

We have to argue that this joining of two half open searches complies with
Requirement 2 (p. 28). It will be important for the data structure (the splitter)
that we only join in this way, namely with the promise to eventually split again
between gl and gr.

Lemma 3.11 (Geometric join)
Let p, q ∈ B be two neighboring selected points of B with a dangling search Q
anchored between p and q. Assume there is a point r on Bd(A′) such that r, gl

and r, gr are tangents on Bd(B). Then gl is a valid left guard of the dangling
search Q and gr a valid right guard of Q.

Proof: By the global character of the strong ray separation Requirement 1 (p. 26)
(and because of r), we have that the intersection point of e and f is outside hull A′,
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i.e., we have e ∩ f ∩UC(A′) = ∅.
The situation is depicted in Figure 3.9. We consider the right directed ray e′′

rooted at gl with the direction toward the deleted/moving point r. This is a valid ray
(on a tangent line) as we are in the geometric situation that gl and r are neighbors
on UH(B∪{r}). As we have r 6∈ UC0(A′), we conclude that the intersection point α
of e′′ and f outside UC0(A′). Let e′ be the canonical right directed ray e′ rooted
at gl and β be the intersection point of e′ and f (the strong ray intersection). By
ray-monotonicity (Property 2.10, p. 16) the fact r ∈ Bd(A′) implies α /∈ UC0(A′).
One more application of the same lemma yields β /∈ UC0(A′), the point gl is a valid
left guard of Q. By a symmetrical reasoning we get that gr is a valid right guard
of Q. �

We stop to consider the continuous motion here, as we know that it is impossible
that more equality points come into existence. We already have seen how to relax
the newly created dangling search in Section 3.2.5.

There is actually one more aspect to this join of two strips. Not only do we
have to join data structures representing the lower hull, we also have to join those
data structures holding the upper hull. We need to store the upper hull in a data
structure that allows searches. When we select a point p ∈ A, we create strong rays,
one of them t. Now we need to be in the position to determine the intersection of t
with Bd(B). This amounts to a search on the segments of Bd(B). To avoid a
possibly expensive join operation, we use the aggressive shortcutting requirement
(Requirement 6, p. 31). It guarantees that we have to extend the search data
structure for the surfaced points of UH(A) only by a constant number of points
of A′ that are already part of the truss. With this modification the refining searches
implemented by a splitter (a data structure we will discuss in detail in Section 3.4)
cause only linear work. The precise analysis how shortcuts and splitter achieve this
goal is part of the detailed exposition of Section 3.5.

3.3.4 Geometry of a deletion

Algorithmically it would be a waste to simulate the smooth movement presented in
Section 3.3.2. Instead we investigate how much change to the truss can be necessary
because of a single deletion. This sets the stage for the algorithm of Section 3.5
that adjusts the data structure in one go to the change. This also means that
we will not necessarily find the same state of truss that would be reached by the
smooth movement. The goal of this algorithm is to establish a relaxed truss as
introduced in the previous sections and made precise in Requirement 7 (p. 32).
Again this discussion focuses on the geometry of the situation. We still ignore data
structure aspects for now, and take it for granted that we can easily find all kinds
of intersection points. We will address the data structure aspects in Section 3.5.

Lemma 3.12
Let S1 be a finite set of points in the plane, r ∈ UH(S1), and S2 = S1 \ {r}. Then
we have the following statements:

1. H1 := UH(S1) \ {r} ⊆ UH(S2) =: H2.

2. Considering H1 and H2 as left to right ordered sequences we have that the
point r is replaced by a (possibly empty) sequence of points p1, . . . , pk. The
points p1, . . . , pk are called fresh points.

3. Let l be a line in the plane. Let sl and sr be the two segments of Bd(S1)
that contain the point r. Then the shortcut defined by l on S1 can only be
different from the shortcut defined by S2, if l intersects sl or sr.
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4. Let H be a set of lines, such that the shortcuts defined on S1 are separated
by vertical lines. Then at most 3 consecutive shortcuts of H are changed
from SCH(S1) to SCH(S2).

5. Let H be a set of shortcuts that complies with the shortcut separation require-
ment (Requirement 5, p. 31) on S1 (and therefore on S2 as well). Let f be a ray
that is rooted at some point inside SCH(S1). Assume that f leaves UC(S1).
Then the intersection of f with Bd(SCH(S2)) can be different from the inter-
section of f with Bd(SCH(S1)) only if f intersects the segment sl or sr.

Proof: Statement 1 of the lemma amounts to that no other point but r is deleted
from UH(S1), i.e., UH(S1) \ {r} ⊆ UH(S2). By the characterization of points
in UH(S1) as extreme points in some direction (Property 2.4, p. 15) this is trivial.

Statement 2 follows from the observation that two points q1, q2 ∈ UH(S′) that
are consecutive in UH(S1) are also consecutive in UH(S2). This follows from the
fact that segments of UH(S1) exist also in UH(S2) as long as both endpoints are also
in S2. This is again a consequence of the extreme point lemma (Property 2.4 (p. 15)).

Statement 3 follows again from the fact that all other segments of Bd(S1) exist as
well in Bd(S2); Statement 4 is an immediate consequence of the previous statement.

For Statement 5 let a be the intersection point of f with Bd(SCH(S1)), and
assume that the intersection of f with Bd(SCH(S2)) is different from a (or does not
exist). Then we can conclude that a ∈ UC(S1) \ UC(S2), which implies that a is
inside the triangle formed by sl and sr. This immediately implies that f intersects sl

or sr. �
Additionally to these statements about the deletion of one point and its effect

on a single upper hull, we want to investigate how much change a single deletion
can cause to the truss between UH(A) and UH(B).

One of the design goals of the truss is locality. A single change at one place
should not require any global adjustments. The following lemma makes this vague
statement precise for the situation of a single deletion.

Lemma 3.13 (Limited impact of a deletion)
Let A, B1 be two finite sets of points in the plane and QA ⊆ UH(A), QB ⊆ UH(B),
RA, RB , HA, HB , and E form a relaxed truss as described in Requirement 7 (p. 32).
Let r ∈ UH(B1), and B2 = B1 \ {r}.

Then there are at most 4 consecutive rays R′ of RA that have different inter-
sections with SCH(B2) than with SCH(B1). The root points Q′ ⊆ QA of the rays
in R′ are at most 5 consecutive (selected) points in QA.

Proof: We call a point a a strong ray certificate of A if it is the intersection point
of two strong rays of opposite direction, rooted at two neighboring selected points q1

and q2. (q1, q2 ∈ QA and no point of UH(A) between q1 and q2 is selected). By
the strong ray separation requirement (Requirement 1, p. 26) we have a /∈ UC(B′

1),
where B′

1 = SCHB (B1). Let X be the set of all segments of the type q1, a or q2, a.
The segments of X form a connected polyline (across all strips) and X has a natural
left to right ordering. Let l be a tangent line on UC(B1). By the definition of a
selected point we have QA ⊂ UC0(B1). Hence we have l ∩UC0(QA) = ∅. Let h be
the tangent on UH(QA) that is parallel to l. Let q ∈ QA be the (single) touching
point of h. Let ql and qr be the left and right neighbor of q in QA. This situation
is exemplified in Figure 3.10. Let t be a right directed valid ray on qr. Now the
slope of h is higher than the slope of q, qr which in turn is higher than the slope
of r. It is therefore impossible that the ray t intersects the line l. Symmetrically no
left directed valid ray on ql can intersect l. If there is a segment of Bd(QA) that is
parallel to l, then we define qr and ql to be the endpoints of this segment. Because
selected points of A are strictly inside UC0(B1), the line l cannot be a tangent line
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Figure 3.10: An example for the situation in the proof of the limited impact lemma
(Lemma 3.13). The set X is drawn with solid segments. Bd(A) is drawn in dashed
line-segments, Bd(QA) in dotted segments. The strong rays are depicted as dotted
arrows.

of UH(QA). Again we conclude that no left directed ray of ql and no right directed
ray of qr can intersect l. By the ray monotonicity lemma (Property 2.10, p. 16) we
conclude that no right directed strong ray to the right of qr and no left directed
strong ray rooted to the left of ql can intersect l. Therefore at most two strong ray
certificates of A are above the line l.

Let sl and sr be the two segments of Bd(B1) that are incident to r. The line
segments of X that are intersected by sl and sr are consecutive: otherwise there
would be a strong ray certificate c such that c is below sl and sr which means that c
is inside UC0(B1). We conclude that only 4 consecutive strong ray certificates are
above the lines defined by sl and sr.

By Lemma 3.12 (p. 38), Statement 5 only strong rays that intersect sl or sr can
have a different intersection with Bd(B2) than with Bd(B1). We conclude that at
most 8 strong ray intersections and 5 selected points (2 with only one of their rays,
3 with both rays) can be affected by the deletion of r. �

3.3.5 Requirements on the development of the truss

Here we formalize the intuition that the truss is “moving downward” only. If there
where no shortcuts this would be a trivial as the upper hull of A, and that of B
can only move down because of deletions. Even if we have shortcuts, but we do
not delete them, this monotonicity is basically trivial. Only when we allow the
algorithm to remove shortcuts, we need the following requirement to ensure that
this non-monotonicity is invisible to the data structure.

In the following the names A and B are completely symmetrical, a statement or
requirement we formulate for A and B is also true or required for B and A.

Requirement 8 (Monotonicity on strong rays)
Let f be a strong ray that is rooted at the selected point p ∈ A. Let t1 < t2 be two
points in time. Let point i1 and i2 be the intersection of f with Bd(B′) at time t1
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and time t2 respectively. Then i2 is closer to p than i1, i.e., the boundary moves
inward on the strong ray.

Property 3.14
Let e and f be two strong rays that are part of the data structure at time t.
Assume e and f fulfill the strong ray separation Requirement 1 (p. 26) at time t.
Assume the changes to A′ and B′ fulfill Requirement 8 (p. 40). Then we have that
at all times after t the strong rays e and f fulfill Requirement 1 (p. 26).

Property 3.14 implies that it is sufficient to check for the strong ray separation
requirement when we select the point. If we make a point c a guard in a dangling
search N between the selected points p and q, it is sufficient to check the weak ray
versus strong ray intersection when we make c a guard. If we do not select further
points between p and q, the point c will stay a valid guard, as hinted at in the
outlook to the dynamic setting in Section 3.2.5.

3.4 Splitter

A splitter is a data structure that contains a list of elements from a totally ordered
universe. We assume that evaluating the order relation between two elements can
be performed in O(1) time. As the name suggests, the main purpose of a splitter is
that we can split it into two smaller splitters. The interface of the data structure
that we actually want to use is defined in detail in Section 3.4.2. Let us first get
some intuition what a splitter is and how it might be useful in our context.

Hoffmann, Mehlhorn, Rosenstiehl, and Tarjan describe in [HM+86] an algorithm
that sort Jordan sequences in linear time. One of the core components of this
algorithm is a data structure that can also be used as a splitter. To give some
impression, why such a data structure is at all feasible, we consider in the following
the implementation of a restricted version of a splitter, i.e., a data structure that
only supports the operations build and split.

We can implement the restricted splitter using a (2,4)-tree, performing “expo-
nential” searches from the first or last element of the current set. More precisely
we start the search by deciding whether the position p we are searching for is to the
left or right of the root. Then the search path starts at the leftmost (or rightmost)
leaf of the tree, and goes upward in the tree, until we look at an element e that is
to the right (left) of p. From there the search path continues to a leaf l, following
the standard rules of predecessor searching in a (2,4)-tree. Now we split the (2,4)-
tree at l. This combined search and split operation takes time proportional to the
logarithm of the smaller resulting splitters.

For the amortized analysis we charge every search and split operation entirely to
the smaller resulting splitter, distributing its cost equally over the elements. Now we
account for every single element, how much search cost accumulated for it. Between
two consecutive searches that get charged partly to an element, we know that the
size of the resulting splitter is smaller than half of what it was before. That is, if
the search costs O(i) units of time, then the splitter had size roughly 2i and we look
at the following type of expression for the total amortized cost per element:

∞∑
i=1

i

2i
≤ 2.

As the splitter we want to use is somewhat more complicated (restricted insertion
and deletion, a very special join, suspending searches) there is no point in making
this analysis more precise here.
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3.4.1 Dangling searches

As we have already seen in Section 3.2.5, it can happen that we cannot finish a search
because the geometric situation is not (yet) conclusive. We can neither afford to
finish the search immediately and perform the split (this would conflict with the
geometric requirements we want to keep) nor can we afford to forget about this
partial search (this would spoil the amortized analysis of the splitter). So we have
to really suspend the search and encapsulate the state of the partially performed
search on a splitter S. We do this by introducing the current candidate c, and
the current right guard gr and left guard gl. We used these names already in the
setting of geometric searches of Section 3.2.5. The guards mark elements that are
already excluded from being the element we search for: everything to the left of gl

and everything to the right of gr cannot be the element of S we are searching for.
For the analysis this is mainly the promise to eventually split between (including)
gl and gr, as these are the extreme outcomes of possible continuations of the search.
We can declare the current candidate c to be the new left (or right) guard of the
search. This is the only way the search can make progress. A search finishes if
there are no further elements between gl and gr that could be the next candidate.
Alternatively we can abort the search if we keep the promise of splitting between gl

and gr. We do this typically because c, gl or gr are the element (or one of the
elements) we are looking for.

To give some motivation for the definitions we give here, we shortly remind the
geometric significance of a guard when we want to achieve a dynamic version of the
algorithm from Section 3.2.5: the left guard is a point that would meet the strong
ray invariant (requirement) against the next selected point to the right, but is not
(yet) allowed to be selected because of the selected point to the left. If we later find
out that (after a deletion) the left strong ray invariant is met, we can select the left
guard without any further examination of the geometry, and fulfill the promise of
splitting S.

3.4.2 The real splitters

A splitter consists of elements drawn from a completely ordered universe, stored in
a level-linked (2,4)-tree. Additionally it has three pointers to elements, namely the
candidate and the left guard and the right guard. We think of the splitter having an
atomic operation search that can be suspended to achieve a dangling search. That
means that a splitter can be in a state, where it has no active dangling search. In
this state all three pointers (guards and candidate) are nil. If the two guards point
to neighboring elements, the candidate pointer is nil. We keep the invariant that the
left guard points to an element that is smaller or equal to the element the candidate
points to, which in turn is smaller or equal to the element the right guard points to.
Additionally the left and right guard have to point to distinct elements. The left
(right) guard can be nil, which is understood as pointing to some special element
of the universe that is smaller (bigger) than all the elements in the dictionary.

All operations we describe are destructive, the data structure is permanently
changed by the execution of the operation, the previous state of the data structure
is no longer accessible.

Build (e1, . . . , ek) Returns (a pointer to) a new splitter containing the elements
e1, . . . , ek, provided e1 < e2 < · · · < ek. There is no dangling search active on
this new splitter.

Extend (S, e) Extends the splitter S that contains the elements e1, . . . , ek to the
splitter e, e1, . . . , ek or e1, . . . , ek, e, provided that either e < e1 or ek < e, and
that there is no dangling search active on S.
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Shrink left/right (S) The splitter S is changed by deleting the leftmost/right-
most element that is stored in S, provided that there is no dangling search
active on S.

Instantiate dangling search (S) It is required that the splitter S has no active
dangling search before this procedure is called. The guard pointers remain
at value nil. The candidate pointer is set to the element c of S according
to the search algorithm of the dictionary. (one of the elements stored at the
root-node of the (2,4)-tree).

Advance dangling search left/right (S) It is required that the splitter S
has an active dangling search. The left (or right) guard is changed to point to
the element the candidate pointer is currently pointing to. A new candidate
element is determined according to the search procedure in the (2,4)-tree.
I.e., we disallow all elements to the right (or left) of c as possible outcomes of
the dangling search.

Split (S, w) The splitter S is split into two splitters S1 and S2 according to the
value of w, which is either left guard, candidate or right guard. The pointed
to element is usually not member of any of the resulting splitters. Only if the
guards point to neighboring elements and the candidate pointer is nil, every
element of S is moved to either S1 or S2. The splitters S1 and S2 have no
active dangling search.

Join (S1, (e1, . . . , ek), S2) The splitters S1 and S2 are required to not have active
dangling searches. The elements e1, . . . , ek (possibly an empty list) are or-
dered, and e1 is to the right of the rightmost element a stored in S1, and ek

is to the left of the leftmost element b stored in S2. In particular a is to the
left of b. That is, we have a < e1 < e2 < · · · < ek < b. The splitters S1

and S2 are destroyed and a new splitter S is created. The splitter S holds
all elements from S1, S2 and the new elements e1, . . . , ek. It has an active
dangling search, where the left guard points to a, the right guards points to b,
and the candidate is chosen according to a (binary) search over e1, . . . , ek. It
is allowed that S1 or S2 or both are empty. In this case the corresponding
guard pointer is nil.

This join operation seems to spoil the principle of splitters being in some sense
monotonous, which is crucial to the analysis. Therefore we do not implement this
operation literally as a join of the (2,4)-trees. We rather take it as a wrapper for a
delayed extension of S1 and S2. Remember that instantiating the dangling search
in the situation of the join has the promise built in that we will split at one of the
elements a, e1, . . . , ek, b before we perform another join operation with this splitter.
What we actually do is to place e1, . . . , ek in an auxiliary dictionary and use this to
guide the dangling search. Only when this search is settled with a split operation,
we extend S1 (and S2) with the elements left (and right) of the split point. So
we are in the position to meet the interface of the split operation. We say that
the splitter is in the forked state as opposed to the normal state. Note that
the requirement that S1 and S2 have no active dangling search immediately implies
that it is sufficient to have two types of splitters (two explicit states of a splitter)
with an active dangling search.

Note that it seems not impossible to allow for extend and shrink on splitters
that have an active dangling search. Because we do not need this functionality in
our application, we also omitted it from the interface here.
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3.4.3 Amortized analysis

Theorem 3.15
The operations of the splitter incur the following amortized execution times:

• build, extend, and join take amortized O(k) time where k is the number
of participating elements.

• instantiate dangling search takes amortized O(1) time.

• shrink and split take amortized O(1) time.

• advance dangling search takes a negative constant time in the amortized
sense, i.e., it can pay for analyzing a constant sized geometric situation.

This theorem is a variation of the construction given and analyzed in [HM+86].
For the sake of completeness, we give the parts of the amortized analysis that are
beyond the assumptions given in Section 2.3.

Before starting the proof of the theorem, we consider a function that turns out
to be helpful when defining a potential function. Consider f : N+ → R given by

f(n) = n ·
∫ lnn

0

x · e−xdx .

Lemma 3.16 (Properties of f(n))
1. f is monotonically increasing, i.e., for n′ > n we have f(n′) > f(n).

2. f is linearly bounded, i.e., f(1) = 0 and f(n) < n for all n ∈ N
+.

3. for all n ∈ N
+ we have f(n + 1)− f(n) ≤ 2.

4. for n1, n2, n ∈ N
+ where n1 + n2 ≤ n and n1 ≤ n2,

we have f(n1) + f(n2) + ln 2
2 · ln n1 ≤ f(n)

Proof: We will use several times the following estimate on the value of a definite
integral:

(b− a) · min
x∈[a,b]

g(x) ≤
∫ b

a

g(x)dx ≤ (b− a) · max
x∈[a,b]

g(x)

Statement 1 follows immediately from the formulation as an integral over a
positive function.

We define p(n) =
∫ ln n

0
x · e−xdx, and observe that P (x) = (−1 − x)e−x is an

indefinite integral of x 7→ x · e−x which means we have p(n) = (P (n) + 1). This
representation of p together with P (x) < 0 and P (0) = −1 immediately imply
Statement 2.

For Statement 3 we observe that p(n+1)−p(n) < (ln(n+1)− ln n) ln n ·e− ln n <
1/n · lnn/n < 1/n. We get f(n+1)− f(n) = (n+1) ·p(n+1)−n ·p(n) = n · (p(n+
1)− p(n)) + p(n + 1) ≤ 1 + 1 = 2. In the situation of Statement 4 we immediately
see that n1 ≤ n/2, implying ln n ≥ ln n1 + ln 2. We observe f(n) = np(n) ≥ (n1 +
n2)p(n) ≥ n1p(n) + n2p(n2) ≥ f(n2) + f(n1) + n1

∫ ln n1+ln 2

ln n1
x · e−xdx ≥ f(n1) +

f(n2) + ln 2
2 ln n1, since n1

∫ ln n1+ln 2

ln n1
x · e−xdx ≥ n1 ln 2(ln(n1) + ln 2)e− lnn1−ln 2 ≥

n1 ln 2 lnn1
1

2n1
= ln 2

2 ln n1. �
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Proof of Theorem 3.15:. We rephrase the analysis of the data structure of Hoff-
mann, Mehlhorn, Rosenstiehl, and Tarjan in [HM+86]. For the ease of writing we
approximate constants according to the inequality ln 2/2 > 1/4.

Let d′ be the constant amortized cost of an insertion into the (2,4)-tree such
that deletion are amortized for free, and c′ such that a search followed by a split
in the (2,4)-tree costs c′/4 · ln k where k is the size of the smaller subtree resulting
from the split operation. This c′ is calculated based upon the assumption that one
comparison has cost c and includes the overhead of evaluating a comparison with
a call to advance dangling search. We make sure that c′ is big enough to also
allow us to initialize a search, specifying the first element to compare with. We also
define an average internal comparison cost ĉ where we know ĉ ≥ c, one comparison
step cost in total less than ĉ and if s the number of comparisons during a search we
have that ĉ · s ≤ c′

4 · ln k.
We define the amortized insertion cost for elements as d = 2d′ + 3c′.
Let S be splitter containing n elements. Let s be the number of calls to advance

dangling search we performed after instantiating a dangling search. If there is no
active dangling search, we set s = 0. Then we define the potential of the splitter S
to be

p(S) = c′ · f(n)− ĉ · s .

If the splitter S is in the forked state with the sizes n1, n2 elements in the
former splitters and k fresh elements,

p(S) = c′(f(n1) + f(n2)) + k(d + 5c′)− ĉ · s .

Now we have to argue that with this potential function the operations indeed
have the claimed amortized costs.

For the build operation this stems from the fact that inserting the elements
into the dictionary costs amortized d′ and by Lemma 3.16, Statement 3 we need at
most c′ per element for the potential function.

The shrink is also no problem, there is no cost from the dictionary operation,
and the potential function decreases (Lemma 3.16, Statement 1).

For the extend operation we start with a splitter S of size n. We insert
the new element into the dictionary at cost d′. The difference in p(S) is given
by c′(f(n + 1)− f(n)) < 2c′ (Lemma 3.16, Statement 3). The total cost of an ex-

tend is smaller than d as it is bounded by 2c′+d′. We will need this tighter bound
later.

The instantiate dangling search operation does not change the potential.
The only action that takes place is to make the candidate pointer point to the
element that is stored at the root of the (2,4)-tree. By choice of c′ this action takes
less then c′ time, which is by definition less then d.

The operation advance dangling search can, by the definition of the poten-
tial function(s), pay an amount c. Be aware that the functionality of this operation
depends slightly on whether the splitter is in the normal or forked state.

The split operation and its analysis depends on the state of the splitter. If
we have a normal splitter, we know that the dangling search so far performed
(s steps) is bounded from above by c′ ln n1, where n1 is the size of the smaller
resulting splitter. More formally if we split S into two parts S1 of size n1 and S2 of
size n2, where we assume n1 ≤ n2, we have that ĉ · s ≤ c′

4 ln n1. By the definition
of ĉ the term ĉ · s bounds the cost of searching and splitting the (2,4)-tree. By
Lemma 3.16, Statement 4 we know that c′(f(n1)+f(n2)−f(n)) ≥ c′ ·ln n1 ·ln 2/2 >
ĉs. This immediately implies p(S1) + p(S2) + ĉ · s ≤ p(S).

If the splitter is in forked state, we observe that we have ĉ · s ≤ c′ ln k ≤ c′k.
This means we have still d′ + 2c′ potential per element left after we paid for the
search. This is sufficient to perform an extend operation for the single elements.
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The join over dangling search operation puts the k new elements into a
dictionary at cost d per element. The remaining cost of d + 3c′ per element goes
entirely into the potential function. �

3.5 The merging data structure

From now on we want to explicitly allow to have different points that happen to
have the same coordinates, we consider multisets of points instead of sets. This is
reasonable if we say that a point is no longer identified by its coordinates, but by a
pointer that we assign at creation time. Allowing degenerate cases in this way does
not make the construction significantly more complicated. It allows us to formulate
the variant of the merging data structure we need to achieve linear space as a special
case of the general merging data structure, see Section 3.7 (p. 68).

If we prefer identity by coordinates, we can maintain a (2,4)-tree of the lexico-
graphically ordered points on the level of the fully dynamic data structure. There
it does not change the asymptotic performance of the data structure.

Theorem 3.17 (Semidynamic Merging Structure)
There exists a data structure that implements the operations as described in Definition 3 (p. 19).
Let n be the number of points stored in the set C = A ∪ B (not only the size
of UH(A) ∪UH(B)).

The operation Create Set(p) takes amortized and worst case O(1) time. The
operation Merge(A, B) takes amortized and worst-case time O(n). The operation
Delete(r) takes amortized O(1) time, and worst-case O(n) time. These times do
not include time spent in the data structures storing A and B.

The space usage of the data structure is O(|UH(A)∪UH(B)|). This space usage
does not include the space used in the data structures storing A and B.

The statement about the worst-case times follows immediately from the amor-
tized statements: There is only O(n) potential in the data structure, this can in the
worst-case be used at a single deletion. The data structure has no potential before
we perform the merge operation.

As already stated, we assume that for a call to Delete(r) that r is on the
upper hull of all the merging data structure it is stored in. This is the case if it
is on the hull of the set C, where C is the set containing r that was not part of a
call to Merge (yet). This can be easily achieved without changing the amortized
performance of the data structure. If we find that point r is not on the upper hull
of the set C, which we are able to detect in our data structure, we only mark it to
be deleted and leave it in the data structure. If later in the algorithm r is part of
the point set returned as a result from a subsequent delete operation, we perform
the delayed operation Delete(r). We continue to perform such delayed calls to
Delete until all points on the overall hull are not marked deleted. All the calls
to Delete for marked points are already paid for. To not spend too much time
searching for points that are marked deleted, we scan all the returned points and
maintain a stack of marked points on the overall upper hull. Alternatively we can
think of this as recursive calls to Delete.

3.5.1 Data structure

For every set of points that was created with a Create Set or Merge operation,
we keep a set record . As a result of a C = Merge(A, B) operation, we create a
double link between A and C, and also between B and C. Every set record of a
set C has two special records holding the so called right-infinity (left-infinity) point
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of UH(C). We will now describe the data structure holding UH(C) and the truss
(as described in Section 3.2) between A and B.

For every input point p we have a record that holds the (x, y) coordinates. This
is the base record of this point. For every layer of merges where the point p is on
the upper hull, we have a record representing it in relation to the other points on
that upper hull. This record is called the local representative of the point. The
local representatives at consecutive merging levels are doubly linked. That is, the
local representative of p on hull A is doubly linked to the local representative of p
on hull C. All the local representatives of p have a pointer to the base record of p.
At the base record of p we additionally store the information whether p is part of
the overall upper hull. Remember that p identifies a leaf in the rooted forest of
semidynamic merging structures. This leaf is part of one tree that has the root
set D. By overall hull we here mean whether or not p ∈ UH(D).

Additional to the local representatives of input points, we have similar records for
introduced points, namely for cutoff points of a shortcut, ray-intersections and equal-
ity points that are not in the inner of an equality stretch. These records consist of a
constant number of pointers to base records of points that are needed to construct
the coordinates of the point. This is feasible, as we ensure that none of these points
depends on more than constantly many (here 4) input points (Section 3.6.16, p. 65).
In order to deal with degenerate cases correctly, we allow to create an introduced
point (for example an equality point) e at the position of an input point p ∈ A. The
points e and p are in the same place of the left to right ordering that is basis for
all of our doubly linked lists. We prepare for this possibility by having one “uni-
versal” type of local representative for points. If for example a point p is both an
input point and an equality point (similar situation arise for a cutoff and a strong
ray intersection point), both the fields corresponding to an equality point (layer 3)
and corresponding to an input point (layer 1) of the representation are used. All
other parts of the record are left blank, i.e. the ones corresponding to cutoff and
ray-intersection points are set to nil. Introduced points are only necessary and
meaningful for one instance of merging. They are not pointed to by other data
structures, we can delete and change them freely.

At cutoff points we have an additional entry for a double link to a record repre-
senting the shortcut. Such a record for a shortcut holds a representation of the line
defining the shortcut. This yields an explicit representation of Bd(A′) and Bd(B′).
It also identifies the points hidden by the shortcut. The points hidden by a shortcut
are additionally marked to be hidden. They do not have a pointer to the shortcut
that currently hides them (this would be too expensive to maintain).

We maintain three different doubly linked lists of points on Bd(A), the layer 1,
2 and 3 as described in the following and illustrated in Figure 3.11. We also have
the 3 layers for Bd(B), they are defined analogously. Additionally we have as the
4. layer a doubly linked list of the points of UH(C).

Layer 1 connects all the local representatives of points on UH(A). This is basi-
cally a copy of the 4. layer of recursive merging data structure.

Layer 2 connects all the local representatives of points of UH(A′), that is, points
of A and some cutoff points.

Layer 3 connects all the local representatives of points of UH(A′) and all the
strong ray intersection points (intersections of strong rays rooted at B and segments
of Bd(A′)) and explicit equality points of Bd(A′). An equality point has a twin of
local representatives, one for the layer 3 of hull A, and another for layer 3 of hull B.
A strong ray intersection point has a pointer to the root of the strong ray, the
selected point of B. We will collect subsequences of points on layer 3 into (3 types
of) splitters. These splitters are disjoint from each other. There are links from the
extreme points in the splitter to the splitter. All the points of layer 3 are referred
to as DS(A′).. The set DS(A′) is left-to-right ordered. This order coincides with
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Aselected in B
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equality
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strong rayshortcut on A

Figure 3.11: Illustration of the 4 layers points of UH(A) participate in. The crosses
mark points of layer one in A and in B, the squares are layer two of A, the circles
and encircled (in a splitter) points are layer three of A. The triangles indicate layer
four. The dotted arrows show pointers aligning A and B

the path order induced by layer 3. We identify equality strips (stretches) by having
consecutive equality points on DS(A′) and DS(B′).

Layer 4 represents the points of UH(C) (identifying bridges). If we have a
point p ∈ A and a point q ∈ B that have identical coordinates and are on UH(C),
we say that p ∈ UH(C) and q /∈ UH(C). If a point is endpoint of a bridge, it
additionally has a double link to one of the twin of equality points it is hiding. By
Lemma 3.6 (p. 22) this equality point is unique.

The local representative of a point p ∈ A can be marked as selected. Then on
layer 3 there is a double link to the splitter holding the points up to the next selected
or equality point to the right, and one to the splitter to the left. Additionally we
store the slopes of the strong rays rooted at p (literally or by reference to a defining
point), and a double link to the introduced ray-intersection point of Bd(B′). If
one of the splitters is empty, the double link goes directly to the next selected or
equality point of A.

An equality point p that marks the end of one strip has a double link to the
splitter that is part of the half open search of p. If a record is not part of one of
the above mentioned doubly linked lists, the according pointers are nil, for example
if the point is not selected. Note that we have explicit alignment between DS(A′)
and DS(B′) via selected points and strong ray intersections, and via equality points.

During the run of the algorithm some of the above mentioned connections be-
tween A and B might not yet be established. This can happen for the connection
between a twin pair of equality points and between a selected point and a strong-
ray-intersection point. Such not yet established link is called broken link. By
Lemma 3.13 (p. 39) this is always only a local problem, that is, we never miss more
than constantly many links, and the algorithm can easily keep track of the links
that are currently broken.

3.5.2 The data structure in the reestablishing phase

To control the progress of the algorithm that reestablishes the (relaxed) truss after
a deletion, we need some more concepts and constructs. Geometrically these are
not really new. As in Section 3.3 we describe the situation of the merging of A
and B. To be able to talk about the two versions of B, namely before and after the
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deletion, we say that a point r ∈ B1 gets deleted, leaving us with B2 := B1 \ {r}.
We then have to establish a new truss between A and B2. We keep the shortcuts of
the truss, which define the shortcut version of the sets A′, B′

1 and B′
2. We continue

to talk about B if the distinction between B1 and B2 is irrelevant in the situation.

Different types of splitters in the reestablishing

While the algorithm examines the geometric situation it reestablishes more and
more constructs of the truss. The novel idea in this activity is to use dangling
searches and half open searches. The points of A and B that are part of dangling and
half open searches that might no longer be valid (a strong ray intersection or equality
point became obsolete) is called the active stretch of the reestablishing phase. (One
of the first steps in the reestablishing is to determine the active stretch.) To be able
to perform these searches the points of the active stretch are stored in splitters.
Selecting a point (as a result of a completed dangling search) on B (for example)
relies on an efficient way to determine the intersections of the newly created strong
rays with Bd(A′). We use again a splitter to search for these intersection points. We
store the points of both participating stretches of the upper hulls in three different
types of splitters. The type of splitter a point p is stored in reflects the stage of
the life-cycle of p, as introduced in Section 3.3.2. The general situation in which
splitters are used is schematically depicted in Figure 3.12.

replacement splitter for fresh material from B′
2, initially all of it in one replace-

ment splitter M . Replacement splitters store points p for which p ∈ UC(A) is
not yet determined. We speculate (according to the already identified equality
points) that these points are outside UC(A), at least they replace a point out-
side UC(A) that was deleted. The search operation is never suspended, we do
not keep searches dangling on a replacement splitter. Replacement splitters
are temporary in the sense that they are destroyed when the truss is relaxed
again.

lasting splitters storing points from A′ (old lasting splitters), or B′
2 (new lasting

splitters). For an old lasting splitter we know that it covers a stretch of A
where it coincides with A′. This stems from the fact that the points of the
splitter are inside UC(B1) (before the deletion of r occurred). During the
reestablishing/relaxation phase it is fair to say that we conjecture (according
to the already identified equality points) these points to be inside. If this
conjecture is true the points stay packaged in the lasting splitter, which allows
us to efficiently work with the points. If we store points (in a new splitter)
from B′

2 (again coinciding with B2), we are already sure that the points are
currently inside UC(A). The searches of a lasting splitter can remain dangling.

surfacing splitters for freshly surfaced points of UH(A), points of A we found
out that they are outside UC(B2). As an exception we also store points of A′

that are known to be outside of UC(B) in this kind of splitter. The search
operation is never suspended, we do not keep searches dangling on a surfacing
splitter. These are also temporary in the sense that all surfacing splitters are
destroyed in the shortcut phase after the relaxed truss is reestablished.

In the following sections we move the points one by one from one type of splitter
to the other, usually doing some kind of linear scan (a geometric sweep line). For
the amortized analysis it is important that we have only 3 types of splitters, and
that the movement of points between splitters can pay for the linear scan. All types
of splitters are part of the doubly linked list that forms layer 3 of the truss.
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Figure 3.12: Schematic illustration of different types of splitters during the reestab-
lishing phase after deleting r from B. The depicted hulls A and B are by no means
convex. There is a geometric situation having this topology, only the size of the
drawing gets really big compared to the distance between the hulls. The circles de-
note equality points the algorithm already detected. There are two more undetected
equality points.

Alignment points

One of the important functions of the truss is to align UH(A) with UH(B). The
key achievement of the construction is, that this alignment is made explicit only for
a few points, just enough that the truss can still be a certificate of the fact that all
equality points of Bd(A) and Bd(B) are identified. A point p is called an alignment
point if it is

1. a selected point,

2. the endpoint of a half open search,

3. an introduced equality point,

4. a strong ray intersection point.

Fences

In the reestablishing phase we make the alignment of the two hulls explicit by so
called fences. A fence connects two alignment points a ∈ A and b ∈ B. We refer
to a also as the twin of b and vice versa. The standard fences are depicted in
Figure 3.13.

A fence has always precisely two endpoints, a ∈ DS(A′) and b ∈ DS(B′). Geo-
metrically a fence f = (a, b), drawn as a straight line segment, is always inside the
symmetric difference of UC(A) and UC(B2) (but the inner endpoint). This gives f
the direction from a to b (by belonging to the sets A and B), which we call outward
(upward) if a ∈ UC0(B2) and inward (downward) if b ∈ UC0(A). If a = b, which is
the case for an equality point, f does not have a direction.

A fence f = (a, b) can be of 4 different types. If a and b are the same equality
points, f is an equality fence. If a or b is selected, and the fence lies on a strong ray,
f is a selection fence. If a and b are on a vertical line and a or b is a selected point
we have a vertical fence. At the beginning of the reestablishing we see another type
of alignment, namely a tangent fence as further described in Section 3.6.6 (p. 58),
if an existing equality point is affected by the deletion. A situation of this type is
depicted in Figure 3.14. This is the case if a is the endpoint of a half open search
and b is an equality point that does, as a result of the deletion, no longer exist.
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Figure 3.13: After a deletion of the point r from B vertical fences are used to place
the previously selected points of A against the new part of B. The left selected
point has an outward fence and we will scan for the new intersections of the strong
rays with Bd(B). The right selected point had first an outward vertical ray (now
dotted) and we performed the scans, leading to two outward selection fences. The
middle selected point is outside UC(B), we will deselect it, explore the new strip of
opposite polarity, and build a new truss. When exploring to the right we will find
the equality point e and make it an equality fence

The algorithmic significance of the direction is that in the neighborhood of an
inward fence we have fresh material on the inside hull and freshly surfacing material
on the outside hull. So we can afford to perform a linear exploration, i.e., a linear
scan for the new relevant equality points. If we instead have an outward fence, we
cannot afford to perform a linear scan on the surrounding of the fence on UH(A), a
problem we overcome by working with dangling searches on splitters and half open
searches.

3.5.3 Data structure requirements

During the course of our algorithm, we keep several geometric invariants. Most
importantly these are invariants of a dynamic version of the static truss introduced
in Section 3.2. Additionally there are some requirements about the data structure
representing the geometry correctly.

Requirement 9 (All equality points)
All equality points of Bd(A) and Bd(B) are identified and represented as a pair of
introduced equality points in the data structure.

Requirement 10 (All strong ray intersections)
All intersections between a strong ray and Bd(A′) or Bd(B′) are represented as an
introduced point.

Requirement 11 (Representation of dangling and half open searches)
Between two selected points there is a lasting splitter with an active dangling search.
This dangling search is geometrically relaxed. The splitter might be the empty
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Figure 3.14: The situation of destroyed equality points (marked with circles). The
partitioning of the two upper hulls into splitters (and their type) is given by the two
staircase lines. The fences are depicted as thick arrows. Note the alignment of split-
ters via fences. The curly braces denote sections where the aggressive shortcutting
is crucial.

splitter which has a trivial (and trivially relaxed) dangling search.

The points of UH(A) between a selected point p and the neighboring equality
point u (a half open search) are stored in a lasting splitter that has no active
dangling search.

Requirements during the Fencing phase

As it will be important for the analysis, we note beforehand that we will only create
a constant number of fences when initializing the reestablishing after a deletion
(paid by the deletion) and a constant number of fences when selecting a node (paid
by the node, it only gets selected once). This is due to Lemma 3.13 (p. 39).

That the algorithm we present terminates is implied by the analysis that shows
that it takes amortized constant time per participating element. The key idea for
this is that every step of the algorithm moves at least one point from one of the
three classes of splitters to the next, advancing the life cycle of the point into the
next stage.

The fencing stage will establish the following requirements (Requirement 12 to
Requirement 16). This happens in the order they appear here. As soon as one of
the requirements is established the algorithm keeps it as an invariant.

Requirement 12 (Stability of A′ and B′)
After determining B′

2, the double linked lists of layer 1 and 2 do not change.

Requirement 13 (Alternation)
In the active stretch, on both hulls, layer 3 alternates between alignment points
(endpoints of fences) and splitters, and lists of points that are to be hidden by a
shortcut.
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Requirement 14 (Alignment)
In the active stretch, every alignment point p is aligned by a fence to another
alignment point q, its twin, on the other hull.

During the reestablish phase we will eventually achieve that stretches of the truss
have relaxed dangling searches and we know that there cannot be any equality points
in these stretches. We still need to create new shortcuts, such that the final truss
complies with the aggressive shortcutting policy (Requirement 6, p. 31). We will
keep a list of stretches of points that might be in conflict with Requirement 6. We
refer to such a stretch as to be shortcut.

Requirement 15 (Shortcut list)
The replacement or surfacing splitter above a relaxed dangling or half open search,
and the material between two strong rays r and t that are rooted at the same
selected point, are included in the list of to be shortcut stretches.

When we finish a dangling search on a lasting splitter and select a candidate or
guard point, we need this splitter aligned with precisely one replacement or surfacing
splitter on the other hull. Otherwise we could not efficiently select the point that
is the result of the search. On layer 3 of the data structure, splitters are always
neighbors of alignment points. We say that a splitter G is aligned to splitter H if the
left neighboring alignment point of G is aligned to the left neighboring alignment
point of H , and the two right neighboring alignment points are also aligned.

Requirement 16
Every active splitter is aligned by two fences to one other active splitter on the
other hull. One of the two splitters is a lasting splitter.

This also gives rise to a natural linear ordering of the fences from left to right.
This ordering coincides with the geometrical one. Fences do not cross each other as
geometric objects.

3.6 A deletion

The interface of the overall semi-dynamic data structure assumes for the Delete(r)
operation the the point r is on the overall convex hull. This assumption is justified
in Section 3.5.

As a naming convention we assume that the instance of merging we are consid-
ering merges the sets A and B into C = A∪B, and r ∈ B. To capture the changes
to set B in our notation, we define B1 and B2 by r ∈ B = B1, and B2 = B1 \ {r}.
To be able to report correctly the changes to C, we remember the two neighbors
of r on UH(C) until we finished processing the deletion of r on this level of the
merging. By the definition of the interface of one merging data structure, we get
from the participating merging structure a list L of fresh points on B2. As by
Lemma 3.12 (p. 38) this describes the change on the upper hull caused by the dele-
tion. L = UH(B2) \ UH(B1) is a list of points ordered from left to right, forming
a connected subsequence of UH(B2). Now we have to create the same type of list
for UH(A ∪B2) \UH(A ∪B1).

If in the following discussion we use the apparently imprecise notion of B (or B′

and alike), we implicitly state that in the particular usage there is no difference
between B1 and B2, the particular part of B we are referring to is not affected by
the deletion.

Intuitively the algorithmic task is to repair the truss. We can think of the
deletion of r as being a destructive move that our data structure has to be able to
deal with. We process a deletion just like a repair task. We start by determining
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the extent of the impact, that is, we determine all the points of our construction
that become obsolete because they are defined by one of the segments that are
incident to r. Here we crucially use that the geometry of the truss limits the size of
the impact to be constant. Before we delete the obsolete points, we have to identify
the active points of the truss that (geometrically or in the data structure) depend
on obsolete points. For the active points we create some auxiliary constructs that
we later use to place the active points into the new truss. This is prominently the
case for some of the selected points of A. A selected point p ∈ A is preselected if
for one of the strong rays f rooted at p the intersection of f with Bd(B′

1) is given
by an obsolete segment and therefore possibly different from the intersection of f
with Bd(B′

2). By Lemma 3.13 (p. 39) there are at most 5 preselected points. Then
we start to process the fresh points that replace r on UH(B2). As a first step we
apply the shortcuts we have for B1. This modifies the list of fresh points. Now we
place the fresh points into the data structure, and reestablish the pointer structure
of the truss. Finally we start to analyze the geometric position of the fresh points.
We advance dangling searches and perform linear scans over new (parts of) strips
(establishing points in a new stage of their life-cycle, so we can afford to scan).
This eventually leaves us with a relaxed truss. Finally we create new shortcuts and
adjust old and create new bridges.

The algorithm we present here takes the priority on the simplicity of the expo-
sition not on the fine scaled efficiency. Keep this in mind, some of the operations
seem to (unnecessarily) throw away information. This is purpose, it unifies to the
situation where we have the smallest amount of knowledge.

Both segments that are incident to r on Bd(B1) might be intersected once or
twice by Bd(A). This yields 5 different cases of numbers of intersections (identifying
symmetric cases): (0,0), (1,0), (1,1), (1,2), and (2,2). Our first goal is to unify this
situation without making too many cases explicit.

3.6.1 Deleting obsolete points and links

Triggered by the deletion of point r, the segments sl and sr of Bd(B) incident to r
become obsolete. This makes cutoff points located on sl and sr obsolete, which in
turn makes some shortcuts active. We additionally have to delete all equality points
and ray intersection points that are located on obsolete segments of Bd(B′

1).
To reflect the fact that the mentioned pieces of the construction are no longer

valid in the data structure, we do the following. We walk along layer 2 of B, starting
at the local representative of r until we find the next point of B itself, that is a
point of layer 1. For the cutoff points we find on this way, we create entries in the
list of active shortcuts. Then we walk along layer 3 of B, away from r or from one
of the (determined) obsolete cutoff points, until we find the next (unaffected) cutoff
point of B or a point of B itself. This determines all the (introduced) points of B1

that are obsolete. We delete all the obsolete points of B1, break the double link
to their twins and include the twin brothers into the list of active alignment points
of A′ that lost their twin.

By the geometry of the situation (Lemma 3.13, p. 39) the list of obsolete and
active points has constant length, the ordering is mere convenience. The necessary
walk-along on the data structure of B is of constant length.

As a first step we restore the doubly linked list of local representatives of UH(B2).
We create local representatives for the points of L and connect them with each other
as layer 1 of the data structure for UH(B2). We connect this representation of L
with the neighbors of r on UH(B1). This establishes the representation of layer 1
of UH(B2).
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3.6.2 Applying shortcuts

This step is going to establish layer 2 of the representation of UH(B′
1) in the data

structure. After this step we can forget about the obsolete cutoff points.

r

obsolete cutoffs

new cutoff

h1

h2
B

Figure 3.15: Applying shortcuts to B after the deletion of r. The active shortcut
defined by line h1 becomes futile and obsolete. The active shortcut defined by h2

shortens and changes one of its cutoff points.

Let H be the set of lower half-planes defining the shortcuts that are defined to
transform B1 into B′

1. Recalling the definition

SCH(B) = UH
(
UC(B) ∩

⋂
h∈H

h
)

,

we have B′
1 = SCH(B1), and want to get our hands on B′

2 = SCH(B2). By the
interface of the data structure, the change from B1 to B2 is that the point r is
replaced by a (possibly empty) list of points. The change from B′

1 to B′
2 is in

general more complicated. There we replace a list R′ of at most 4 points (r and
some cutoff points, Lemma 3.12 (p. 38), Statement 3) with a list L′ of points. More
precisely we define R′ = B′

1 \B′
2 and L′ = B′

2 \B′
1. Be aware that we in general do

not have L ⊆ L′ or L′ ⊆ L, since shortcuts remove points of L and introduce cutoff
points.

To compute L′ in our data structure, we only have to determine the new positions
of the cutoff points on active shortcuts. It can happen that a shortcut of H becomes
empty and gets deleted. We do this with a left to right sweep line over the points
of L.

The shortcuts of H are vertically separated (Requirement 5, p. 31), and because
of the deletion of r shortcuts (as segments) only shrink (Property 3.7, p. 30). Hence
the slab defined by an active shortcut h ∈ H on B1 bounds where we have to expect
the new cutoff points of h on B2, and the slabs of the active shortcuts are disjoint.
A left to right scan over the points of L allows us therefore to determine L′.

More precisely we have two modes of the scan: expecting the beginning of the
new shortcut (a left cutoff point) or expecting the end of the new shortcut (a right
cutoff point). If the left neighbor of r on B1 is cut away by shortcut h ∈ H , we
start searching for the corresponding right cutoff point. Similarly we do not have to
search for the right cutoff point of a shortcut j ∈ H that cuts away the left neighbor
of r on B1.

When we walk along L looking for a left cutoff point, we merely copy the points
to L′. If we find such a cutoff point, we include it into L′ and switch mode. In the
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other mode we do not copy points, but mark them to be hidden by some shortcut.
If we find the next right cutoff point, we include it into L′ and switch back to the
other mode. If we reach the end of the slab where the new shortcut h might be
without finding a cutoff point, we conclude that h is no longer effective. In this case
we delete h.

After this procedure we do not only have computed L′, but we also have the
data structure in a state that represents B′

2 and the points that are hidden by a
shortcut. This establishes that layer 2 of B represents correctly B′

2. We will not
change this layer before the next deletion.

3.6.3 The initial replacement splitter

As a start for the reestablishing phase of layer 3 we build a replacement splitter M
containing the elements of L′. Unfortunately an endpoint of L′ (as identified in
Section 3.6.2) is not necessarily an alignment point of B′

2. We extend the splitter M
to the left and right such that it includes all points of B′

2 up to the next alignment
point. This is only necessary if the (left or right) endpoint p of L′ is locally outside,
i.e., p /∈ UC(A). Then we extend M up to the next equality or strong ray intersection
point of B′. This extension is only by constantly many points, as the truss meets
the aggressive shortcutting Requirement 6 (p. 31). Now we have a splitter M with
(fresh) points of B′

2 that is enclosed by the active alignment points u and v.
This gets the data structure of B already in a state that conforms to Requirement 13 (p. 52).

The only thing that we really miss is the alignment with A, namely the preselected
points and lost equality point (twins), Requirement 14 (p. 52).

3.6.4 Initial Fences

The next step to achieve a valid data structure of the truss as defined in Section 3.5.1
(to establish the truss opposed to relaxing it), is to align the alignment points. To
do so, we introduced fences. The situation is symmetrical for the alignment points u
and v that enclose the replacement splitter M . Remember that by construction we
have u, v ∈ UH(B1) ∩ UH(B2). If we discuss and illustrate the situation for u the
symmetrical construction applies to v and vice versa. If u is an equality point, u has
a twin uA on DS(A′), and we create an equality fence (u, uA). If v is an intersection
of a strong ray r rooted at a selected point q ∈ A, we create the (outward) selection
fence (q, v). This situation is illustrated as part of Figure 3.14 (p. 52) and also
Figure 3.16.

If u is the endpoint of a half open search, we instantiate a tangent fence as
illustrated in Figure 3.16. Let i be the obsolete equality point, j the neighbor of i
on A′, such that j /∈ UC(B). Assume p ∈ B is the selected point, and e is the strong
ray intersection with Bd(A′) of this half open search. Then we create the tangent
fence (j, u). We delete i and remove it from layer 3 of B. We change the link of
the lasting splitter NA of A from i to j. Now we can remove the obsolete equality
point i from layer 3 of A. We create a surfacing splitter NS that we initialize with
the O(1) many points of A′ between e and j. We link NS on layer 3 between e and j.
We remember u as a potential guard (for the case that the strip that contains p has
to be joined with its right neighbor strip). We create a selection fence between p
and e. Note that the obsolete equality point i cannot be part of a trivial half open
search, as u is a point inside UC(A).

Note that there is no such thing as an outward directed tangent fence. If one of
the deleted segments contains two (now obsolete) equality points, the corresponding
initial fence is only a selection fence. We treat the obsolete equality points similar
to preselected points of UH(A), as explained in Section 3.6.8.
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Figure 3.16: The situation of creating the tangent fence (j, u). We also see two
selection fences and all the initial splitters.

The fence on the left that has as one endpoint u is called fl = (u, ?), similarly we
have on the right fr = (v, ?). With this we align the endpoints of the replacement
splitter M (that holds the fresh points). Unfortunately it might be, that on Layer
3 of A we have more than one splitter between the two fences fl and fr. Be aware
that fl is not necessarily the leftmost fence we instantiated, and fr not necessarily
the rightmost, namely if they are tangent fences.

This operations achieve the alternation Requirement 13 (p. 52) and the align-
ment Requirement 14 (p. 52) for the active stretch of B′

2.

3.6.5 Finishing dangling searches to unblock splitters

We will need the following procedure in Section 3.6.6 and Section 3.6.9. The ge-
ometry of this situation is described and illustrated in Section 3.3.2. There we
considered the situation where an equality point literally moved over a selected
point p. The similarity to the situation now is, that our linear scan moves over the
selected point p, telling our algorithm to deselect the point. The similarity is, that
we know the side of p that is outside the other hull (and this is where both the
equality point and the sweep line come from).

Assume we have a lasting splitter N that has as left neighbor the selected or
preselected point p ∈ UH(A) and as right alignment the (pre-)selected point q ∈
UH(A). A point d of UH(A) surfaces, if we have d ∈ UC(B1) and d /∈ UC(B2).
(Here B and B′ are locally equivalent.) If p or q surfaces we have to finish the
dangling search on N , which we do as described in the following.

Finishing a dangling search means, that we have to keep the promise of splitting
between the guards of the dangling search. Let gl, gr, c by the points standing
respectively for the current left guard, right guard and candidate of N .

Assume now that p has surfaced. (The case for q surfacing is symmetrical.) We
preselect gl, splitting N into Nl and Nr. This finishes the dangling search, keeping
the promise to split between the guards. The strong ray intersection property to
the left is assured as we have p /∈ UC(B2) and there are no preselected or selected
points between p and gl on UH(A). The strong ray intersection property to the
right follows from gl being the right guard of a dangling search that is delimited
by q, which currently is the next (pre)selected point of UH(A) to the right of gl.



58 CHAPTER 3. SEMIDYNAMIC UPPER HULL

We will describe in further detail how to select a point in Section 3.6.11. If we
already have established the initial set of fences, the splitter alignment requirement
is met (Requirement 16, p. 53). Then there is a splitter M on B that is aligned
to N via p and q. Then we split M at the vertical line defined by the selected point
and introduce a vertical splitter. This maintains the splitter alignment requirement.
Otherwise we are in a phase of the reestablishing that allows to have preselected
points. In this case we consider the to be selected point as preselected.

3.6.6 Extending

We have to perform the following procedure first, as we have to detect a lost pair
of equality points correctly. Additionally this is the only way to process tangent
fences. Instead of making this detection phase explicit as we do here, we could
incorporate it into the normal exploration phase as described in Section 3.6.9, and
handle it there as a special case.

Let fl be the fence as defined in Section 3.6.4, and assume it is a tangent fence,
i.e., one of the points of fl is the endpoint of a half open search (left of fl). If fr

is a tangent fence we perform the symmetric procedure. If none of them is a
tangent fence, we continue as described in Section 3.6.8. We perform the extending
procedure before we instantiate any other fences between fl and fr. If we find
that we have to join two strips, the sweep we perform here cleans up (removes
from layer 3) all alignment points of A. If there are more than two obsolete equality
points, we know that there is no joining of two strips. We still perform the extending
procedure to process tangent fences. Otherwise we instantiate vertical fences after
the sweep segment found a new equality point.

We start by investigating the geometry, ignoring Layer 3 of both hulls for a
moment. We will describe how to establish a good structure of Layer 3 later,
depending on the geometric situation we find. We instantiate a sweep segment b, a =
fl with b ∈ B2, and a ∈ Bd(A′) that we use for finding the first equality point. We
move this sweep segment as described in Section 3.2.3.

A first difficulty we face here is, that the sweep segment does not necessarily
meet the slab invariant: Let a′ be the right neighbor of a and b′ the right neighbor
of b, then the slab invariant is that either a lies in the slab formed by b and b′, or b
lies in the slab formed by a and a′. Because the segment that was just deleted had
the equality point i on the segment a, a′, we know that b is to the left of a′. So the
only problem can be that b′ is to the left of a. But we also know that all points
of UH(B′

2) to the right of b and to the left of a are below the segment b, i, which
in turn is completely inside UC(A′). Hence there can be no equality point to the
left of a, we can blindly advance the sweep segment until the slab invariant is met.
This situation is illustrated in Figure 3.17.

Now we advance the sweep segment until we either find an equality point x
of Bd(A) and Bd(B), or we find an endpoint of the other tangent fence fr. (If fr

is not a tangent fence, we cannot lose a pair of intersections. We know in advance,
that we will find an intersection.)

If we find the tangent fence fr, we know that we lose a pair of intersections.
In this case we proceed as described in Section 3.6.7. Otherwise we have to adjust
Layer 3 for both A and B to reflect the geometric situation we just discovered.

For hull A this means that we walk from the fence fl to the point x, guided
by Layer 2. As we go, we extend the surfacing splitter NS (from Section 3.6.4,
Figure 3.16 and also Figure 3.17). Let m be such a point we want to move. Then m
might currently be the leftmost point of a splitter that has no active dangling search.
In this case we shrink the splitter to free m. Or it can be a selected point. Then
we finish the dangling search on the splitter to the right of m as described in
Section 3.6.5. This preselects one of the guards of the splitter. When we arrive
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Figure 3.17: The geometric situation when detecting that two strips have to be
joined. We also see the data structure aspects of joining the strip.

at x, we create xA on Layer 3 of A and make it the left neighbor of the (shrunk)
lasting splitter, and the right neighbor of the surfacing splitter. This establish the
alternation Requirement 13 (p. 52) on A. If we find an obsolete equality point that is
not part of a tangent fence, we destroy it and continue. The aggressive shortcutting
policy (Requirement 6, p. 31) assures that we will only include constantly many
points of A′. This limits the cost that is induced by reseting (turning back) the
life-cycle of these points.

For hull B we walk from fl to x, moving points from the replacement splitter into
the lasting splitter of the half open search that defined fl. We create xB and make
it the right neighbor of the lasting splitter and the left neighbor of the replacement
splitter. We establish the twin link between xA and xB.

This establishes a fresh half open search with the same selected point and strong
ray as the half open search defining fl.

We perform the symmetric sweep starting from fr, if this is also a tangent fence.
As we did not lose a pair of equality points, we are sure to find an equality point y.
It can happen that x = y, i.e., we find the same equality point from both sides, a
degenerate case we do not have to treat separately.

This establishes alternation Requirement 13 (p. 52) on both A and B, and the
alignment Requirement 14 (p. 52) for the active stretch of B. For the swept over
points we also have the alignment of splitters (Requirement 16, p. 53).

After having taken care of extending strips as described in this section, there
are no tangent fences left in the construction. Only a next deletion can create new
tangent fences.
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3.6.7 Losing a pair of equality points

Assume that we detected the loss of a pair of equality points by the procedure in
Section 3.6.6. More precisely we have two points u, v of UH(B2) ∩ UH(B1), such
that all of the points between u and v are a list L of fresh points, as depicted in
Figure 3.17. We detected that u, v and all points of L are inside UC(A). Even
though L is already stored in the replacement splitter M , we consider it as a list
of points only. We know that we have a situation where Bd(B1) has one pair of
equality points more with Bd(A) than Bd(B2), i.e., we lose a pair of equality points
because of the deletion of r. We know that the fences fl = (i, v) and fr = (j, v) as
defined in Section 3.6.4 are both tangent fences.

In the following we use names as illustrated in Figure 3.17 (p. 59). For the half
open search that is delimited by fl, we call p be the selected point of UH(B), e the
right directed strong ray, α the intersection of e with Bd(A′), Np the lasting splitter
and u the endpoint of this half open search. Analogously, for the half open search
delimited by fr, we call q the selected point of UH(B), f the right directed strong
ray, β the intersection of f with Bd(A′), Nq the lasting splitter and j the endpoint
of this half open search. As already pointed out in Section 3.6.4 are the points u
and v remembered as potential guards.

In Section 3.3.3 we already argued that we achieve a geometrically valid (not
yet relaxed) dangling search , when joining the splitter Np and Nq over the list L
of fresh points. We perform the operation N = Join(Np, L, Nq). On layer 3 of B
we make p the left neighbor of the lasting splitter N , and q its right neighbor. We
collect all the points of A′ between α and β into a surfacing splitter S. On layer 3
of A′ we link S to the alignment points α and β (they are both part of a selection
fence). All the points between i and j are surfacing, and there are only constantly
many points between α and i (and j and β). Hence this operation is affordable.
We delete the fences fl and fr and instantiate two selection fences (p, α) and (q, β).
That is, we have one pair of a lasting and a surfacing splitter, properly aligned by
fences.

This establishes alternation Requirement 13 (p. 52) on both A and B, and the
alignment Requirement 14 (p. 52) for the active stretch of B. We continue and
advance this dangling search as described in Section 3.6.13.

3.6.8 Preselected points and obsolete equality points

In general we will now look at a situation where we have the replacement splitter M
on B between fl and fr. In contrast, on the active stretch of Bd(A′) there can still
be not aligned alignment points, i.e., alignment points that are not part of a fence
yet. By the construction of layer 3 of UH(A′) it is easy to scan over those points.

Let p be such a point. We know that p is either an equality or a preselected
point. We furthermore know that it is located between two fences f and g that are
connected on Bd(B′) with a replacement splitter M . (In the first step fl and fr.)
We take the vertical line through p and search for its intersection with M (using
the fact that M is a splitter), where we split M into Ml and Mr, introducing a
point b ∈ Bd(B′) that we link into Layer 3 of B as the neighbor of Ml and Mr. The
new splitters Ml and Mr inherit the left and right alignment (fence) from M , and
we instantiate the vertical fence (p, b).

There might still be one or two pairs of obsolete equality points on Bd(A) that
delimited a trivial strip S, i.e., a strip of polarity A over B where Bd(B) consists of
a single segment and there are no points of B within S. Between two such points
there is not yet a splitter. Let g and h be such a pair of equality points. This
situation is part of the illustration in Figure 3.14 (p. 52). Let x be the neighbor
of g on A′ (Layer 3) that is outside UC(B); if q ∈ A′ we have x = g. Similarly we
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define y as the outside neighbor of h on A′. We delete the equality points g and h,
x and y inherit the lasting splitter they delimited. Then we take the (constantly
many) points on A′ between x and y (Layer 2) and build a surfacing splitter N
out of it. We link N on Layer 3 with x and y. This achieves the the alternation
Requirement 13 (p. 52) for the active stretch of A. Now we split the replacement
splitter M at the two vertical lines defined by x and y, and introduce two auxiliary
points bx and by on layer 3 of B. We create two vertical fences (x, bx) and (y, by).
Those get processed as described in Section 3.6.9.

This achieves the alignment Requirement 14 (p. 52) for the active stretch of A
and B, the alternation Requirement 13 (p. 52) for A and B, and the splitter align-
ment Requirement 16 (p. 53) for the active stretch of both A and B. In other words
the active stretch of Bd(A) and Bd(B) is represented in splitters that are properly
aligned via fences.

3.6.9 Exploring

The process of exploring a new (part of) a strip should be regarded as part of
the relaxation phase. There it happens after a point (of A) is selected, and we
detected that it surfaced. It is very similar to the extending of a strip as described
in Section 3.6.6. As part of the reestablishing we also initiate an exploring process
because of a preselected point that surfaces, or to extend a (previously trivial) strip
where A is above B, where both defining equality points were on the two deleted
segments of Bd(B). The boundary of an exploration is always indicated by a vertical
inward fence.

As a special case we can also explore equality regions. In such a case we move
from point to point until we find that the two hulls are no longer identical. Then we
either find a new strip of polarity A over B, so we continue exploring. Otherwise we
find a strip of polarity B over A which means that we stop exploring and process
that strip by initiating and advancing dangling and half open searches.

?
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sweep line
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Figure 3.18: Exploring a new strip

Let f = (a, b) be a vertical inward (A above B) fence. This situation is schemat-
ically illustrated in Figure 3.18. Then on one side of f , say to the right (there is
the symmetrical case), we have that point a delimits a lasting splitter N holding
points of A that is aligned with the replacement splitter M holding points of B,
delimited by b. If the other side of f already has a surfacing splitter N ′ for points
of A and a lasting splitter M ′ for points of B, we will extend them. If we do this we
destroy the fence, including the auxiliary points. Otherwise we create M ′ and N ′

with empty content, and delimit it by a and b respectively. The main goal of the
process of exploring is to find the corresponding equality alignment point for M ′

and N ′.
As described in Section 3.2.3, we move a sweep segment. As we move over points

we shrink and extend splitters as described in the previous paragraph. If the sweep
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segment moves over selected points, we unblock the splitters by finishing a dangling
search. This we do as described in Section 3.6.5.

If we find another unprocessed (vertical inward) fence as we move along, we
destroy it. If it is partly processed we join the freshly created lasting and surfacing
splitters and destroy the fence. We can avoid this situation by always continuing
to explore at partly processed vertical fences.

When we find the equality point e, we create the twin representation for Layer 3
of both A and B, and connect it respectively to the splitters M ′ and N ′. We instan-
tiate an equality fence at e. This maintains the alternation Requirement 13 (p. 52)
and the alignment Requirement 14 (p. 52) for the active stretch of both A and B.
We also maintain the splitter alignment (Requirement 16, p. 53).

3.6.10 Establishing

If we cannot explore any new strips, we have to establish the truss by instantiating
and advancing dangling searches.

Assume we are in a situation where all alignment points and splitters are aligned.
Assume further that there are two neighboring equality fences f and g, i.e., there
are no further fences between f and g. If we locally at f or g have the situation
(in one direction) that Bd(A) is above Bd(B) (or they are equal), and the upper
splitter is lasting and the lower replacement, then we explore this (new) strip like
in Section 3.6.9.

If this is not the case, we know that locally at f and g the lower splitter N is
lasting and is paired up via f and g with a replacement or surfacing splitter M .
If N is empty, we know that both equality points (given by f and g) are on one
segment (of Bd(A) or Bd(B)), which means that we look at a trivial strip with
a degenerate but relaxed half open search. Otherwise we select any of the points
in the lasting splitter as described in Section 3.6.11. This eventually establishes
Requirement 11 (p. 51) that there is at least one selected point in every strip that
contains a point of the locally lower hull.

3.6.11 Selecting a point

Assume that the current truss consists of aligned splitters (Requirement 16, p. 53).
Let p be a point of a lasting splitter N such that the canonical pair of rays rooted
at p meets the strong ray separation Requirement 1 (p. 26) with all other strong
rays. This can be the case as a result of advancing a dangling or half open search or
of establishing a region between two equality points. By the fences N is paired up
with a replacement or surfacing splitter M . We know that the vertical line defined
by p as well as the canonical rays rooted at p will intersect the other boundary
(Bd(A) or Bd(B)) between the alignments of M . The situation is illustrated in
Figure 3.19.

We split N at p, which results in two splitters Nl and Nr, none of which con-
tains p. Nl inherits in Layer 3 of A the left neighbor from N , Nr the right neighbor.
The point p is the new right neighbor of Nl and the new left neighbor of Nl.
We search and split M at the intersection point y of Bd(M) with the vertical
line through p into the splitters Ml and Mr (not removing a point). This results
in a vertical fence, just as if p was preselected. This maintains the alternation
Requirement 13 (p. 52) and the alignment Requirement 14 (p. 52) for the active
stretch of both A and B

We proceed either with “Establishing strong rays” (Section 3.6.12) or “Explor-
ing” (Section 3.6.9), depending whether or not y is above x.
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Figure 3.19: Selecting the point p that meets the strong ray requirement with all
other strong rays. In this case p does not surface, and we establish the strong rays e
and f together with the strong ray intersections i and j.

3.6.12 Establishing strong rays

Assume we have a vertical fence f with the two endpoints p ∈ A and y ∈ B, where
the point p is delimiting the lasting splitters Nl and Nr, and is below the point y
delimiting the replacement splitters Ml and Mr.

We assume that the splitters Ml and Mr have no active dangling search. This
stems from the fact that only lasting splitters have dangling searches, on surfacing
and replacement splitters the searches are not suspended. There is a symmetric
case with p ∈ B and y ∈ A where Ml and Mr are surfacing splitters.

We instantiate the canonical pair of rays e, f at p as the strong rays of the
selected point p. Remember that we do not change the strong rays of p later. Now
we perform a linear scan in Ml for the intersection i of e with Bd(B′), which is
promised by the strong ray separation (Requirement 1, p. 26) to be within Ml. We
shrink Ml and insert the points into a list, that we remember to be shortcut, as
required by Requirement 15 (p. 53). The steps of the linear scan for the strong ray
intersection are straightforward, we can decide whether to move on by examining
the rightmost element of Ml. When we find the intersecting segment (or point),
we make it an introduced point of Bd(Y ). This establishes under Ml either a
dangling search (we instantiate the dangling search of the splitter) or a half open
search, depending on the fence at the left alignments of Ml and Nl. We perform
the symmetric scan over for Mr to find the intersection j of f with Bd(B′).

This maintains the alternation Requirement 13 (p. 52) and the alignment Requirement 14 (p. 52)
for the active stretch of both A and B.

3.6.13 Advancing a dangling search

We have a pair of selection fences fl and fr, with the lower, lasting splitter N on A,
and the upper replacement splitter M on B. There is also a symmetric case where
we have a new lasting splitter N on B and a surfacing splitter M on A.

If this is not already the case, we instantiate a dangling search on N . From the
candidate point (segment) c of N we consider the pair of canonical rays e, f . This
defines the intersection a of e with r and the intersection b of f with s. As described
in Section 3.2.5 we can decide upon the search by examining the relative position
of the pair of canonical rays rooted at c, fl, fr and the strong ray intersections.

If we can advance the search to the right or the left, we do this and continue
advancing the dangling search. If c is a point that meets the strong ray separation
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requirement (Requirement 1, p. 26), we select c as described in Section 3.6.11. This
fulfills the promise to split M between the guards. If c is a geometrically valid
candidate, the dangling search is relaxed, and the part of the truss between fl

and fr is reestablished. We make M part of the list of splitters to be shortcut.
This maintains the splitter alignment (Requirement 16, p. 53).

3.6.14 Advancing a half open search

We describe one case here. There are also symmetric cases (both with A and B
interchanged and with left and right interchanged), where the same names and
concepts are applicable.

Let s be a half open search, delimited by the selection fence f = q, d and the
equality fence v. Let q ∈ UH(A) be the selected point of f , and i the endpoint
of the half open search s. Let N be the splitter between (delimited by) q and v.
By examining only the geometry of q, v and i we can decide whether or not s is
relaxed as described in Section 3.2.6. If it is not relaxed, we select i as described in
Section 3.6.11.

This procedure maintains the splitter alignment (Requirement 16, p. 53).

3.6.15 Creating new shortcuts

As a result of the of the relaxation phase, the situation of the data structure is that
we have several relaxed dangling and half open searches. On the side we established
a list of replacement and surfacing splitters (or just lists of points), that have to be
shortened to comply with the aggressive shortcutting policy (Requirement 6, p. 31).
Let L be such a list of points that have to be shortcut. We know (have a certificate
for by the alignment points) that all points of L are surfaced. We destroy the
surfacing or replacement splitter that holds the points of L, reducing it to a list.

If L consists of less than 4 segments in the beginning, then there is in need to
introduce a new shortcut.

p′ = p

l′

k

q′ = b

h

p′′ l′′

q′′

q

l

Figure 3.20: The situation of creating a new shortcut. The most aggressive choice l
is forbidden by shortcut separation. The line l′ is suitable and maintains the mono-
tonicity of UC(A′) but has the disadvantage of depending on a previous shortcut.
The line l′′ provides a shortcut that results in monotonic strong ray intersections
and is defined directly by two input points.
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To meet the aggressive shortcutting Requirement 6 (p. 31), we have to create
new shortcuts (on A or B) that cuts away almost all the points of L. The situation is
illustrated in Figure 3.20. Naively we would take the line l defined by the alignment
points p and q of L. This might introduce a shortcut that is is not separated
(Requirement 5, p. 31), if p or q are themselves on shortcuts. To avoid this we
define p′ = p if p is not on a shortcut, and p′ = b if p is on a shortcut with the cutoff
points a and b, where b is the cutoff above l. Similarly we define q′. Now we define
the real shortcut line l′ by p′ and q′ and make p′ and q′ a twin pair of cutoff points
(on Layer 2), defining this new shortcut. We walk along the elements of L, marking
them as being hidden by a shortcut (and remove pairs of cutoff points, effectively
removing superseded shortcuts).

3.6.16 Avoiding high precision arithmetic

Now we might still have the problem that the points p′ and q′ that define the line l′

can themselves be defined by a shortcut. In Figure 3.20 this is the case for q′. In
this situation the parameters defining l′ can depend on all the input points the
two former shortcut lines dependent upon, plus four more points. This dependency
on many input points can in principle accumulate, we have no a priori bound on
the number of input points the parameters of l′ depends upon. As explained in
Section 2.1.2 we prefer shortcuts that are defined only by input points and not by
auxiliary, computed points. We observe that all shortcuts (as segments) that are
completely above l are irrelevant when it comes to the monotonicity of intersections
on strong rays (Requirement 8, p. 40). Ignoring this kind of shortcut we walk one
more step beyond q′ and take q′′ as the next input point, that is the first input
point in L above l. We define p′′ in analogy. We define a new shortcut s by
the line l′′ through p′′ and q′′. The shortcut s fulfills the aggressive shortcutting
Requirement 6 (p. 31), between p and q are at most 4 points, that is at most 3
consecutive segments not intersected by a strong ray.

3.6.17 Bridges

After having reestablished the truss, it remains to establish bridges. Most of
the geometric and algorithmic aspects of this are discussed in Section 3.2.1 and
Section 2.4.3, we only have to adjust the algorithm to respect our representation of
the data structure and the accounting.

A protector is a double link between the local representatives of two points of A
(or B). Its importance is that it allows us to not use the points “behind” the
protector twice for finding a bridge. The situation is depicted in Figure 3.21.

More precisely we address the situation that the deleted point r is the endpoint of
a bridge (r, a). W.l.o.g. we assume that r is to the left of a. Then we have an equality
point e of the merging that is hidden by (r, a). Now we instantiate a protector on A
between a and the right neighbor v of e on UH(A), e /∈ UC(B1) (unless v = a).
Let s be the right neighbor of r on UH(B1), i.e., s is below the bridge (r, a). Let u
the left neighbor of the equality point e on UH(B2), i.e., u /∈ UC(A). If u is to the
right of s, we instantiate a protector between u and s. We include e into a list of
fresh equality points, and remember the protector. We can think of the bridge (r, a)
as deleted. If there is another bridge (to the left of r) having r as an endpoint, we
perform the same steps.

Now we have to consider every equality point e out of the list of fresh equality
points, that is, e was either marked fresh when instantiating protectors, or was
found in the reestablishing phase reacting to the deletion of r.

We begin searching for a bridge (u, v). We set a candidate bridge (a, b) to the
neighbors of e. For the candidate bridge we can by the case analysis of Section 3.2.2
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Figure 3.21: The situation of placing protectors. When processing the deletion of
point r we have to protect parts of the upper hulls of A and B from being searched
over again, when we search for the new bridge.

decide what we should do next. We either find out that the bridge is at the correct
place, or we get the information that we have to move (at least) one of a or b in a
particular direction. Now we only have to try the points of A and B in a particular
order (of course respecting the decisions the search already took), and we are sure
to find the bridge (u, v). The order is to go along UH(A) away from e. Only if
we meet the endpoint of a protector we “jump” to the other end of it. There we
either continue (linearly) away from e or linearly back towards e. When we find
the bridge, we establish the links on layer 4 of our data structure representing it,
including the link to e.

After having considered all fresh equality points we delete all unused protectors.
By the correctness of the case analysis for the bridge finding, a point is considered
at most once while searching for the bridge (u, v). Additionally we only search
over points “under” the protector towards e. This means, that points we move
away from must now be on UH(C), they will never be searched over by a bridge
finding of this merging level again. Only the endpoints of the protectors might
be searched over already (and again later). As there are at most 4 protectors for
every deletion, the process of bridge finding is achieved in amortized O(1) time per
element participating in the merging.

3.6.18 Interface to the next merging level

Starting from the (remembered) old neighbors of r on UH(A ∪ B1), we follow the
new upper hull UH(A∪B2) on layer 1, using bridges if they are present. We update
Layer 4 while we go along. This works also for the left and right infinity points.

3.6.19 Analysis of the fencing phase

Now we have to argue, that all operations of the locating stage require only amor-
tized constant time per merge. The key ingredient to this analysis is that a single
point can basically participate in every step of the above process at most once,
and the processes like exploring, extending, establishing either happen only once or
twice per deletion or every point can initiate such a process at most once.

Here is the complete life cycle of a point p of A in the merging of A and B
into C = A ∪B.

1. (because of a deletion of r ∈ A) the point p ∈ A becomes part of UH(A). This
is the first time p is processed on this merging instance. We insert p into a
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replacement splitter.

2. During the reestablishing phase after the deletion of r we realize that we
have p ∈ UC0(B) and include p into a lasting splitter.

3. In the relaxation phase (of some later deletion on A or B), we decide to
select p. We still have p ∈ UC0(B).

4. We find that we have p ∈ Bd(B), the point p is explored as part of an equality
stretch.

5. Because of a deletion on B we realize that we now have p /∈ UC(B). We
insert p into a surfacing splitter.

6. The point p gets cut away by a shortcut.

7. During the bridge finding we realize that p is hidden by some bridge.

8. As a result of a deletion (on A or B) we realize in the bridge finding stage
that p is no longer hidden by a bridge, i.e., we have p ∈ UH(C).

9. The point p gets deleted.

Note that hiding by a shortcut (Statement 6) and a bridge (Statement 7) are inde-
pendent of each other; both can happen at most once. This linear life cycle is only
disturbed by the fact that a deletion can move constantly many points backwards in
their life cycle, namely include them into a replacement or surfacing splitter again.
This already accounts for all actions that move points from one splitter into an-
other. As the call to advance dangling search of the splitter frees a constant
amount of potential, the comparisons needed to perform this call are also paid for.

Another thing we have to account for are the operations that determine inter-
sections between strong rays and segments. These operations additionally create
introduced points. The observation is that we determine these points only once for
a selected or preselected point. So the point getting selected (and the deletion) can
pay for this. This includes the constant cost induced by determining the intersec-
tion of a vertical fence, and for setting up a dangling search that is delimited by
the new strong ray intersection.

We also have to account for the equality points we create. Realizing that we
only start to search for equality points for tangent fences and after selecting a point
(and finding it on the surface), we can charge the creation cost of the equality point
to the (pre-)selection of a point.

The linear cost for creating a shortcut and the cutoff points is paid for from the
life cycle of the cut-away points. The constant setup cost to create a shortcut is
charged to creating the strong ray intersection or equality point.

The cost for applying shortcuts is paid for by the points that are found to be
cut away by the shortcut. The setup cost is paid for by the deletion, there are
only constantly many shortcuts affected by one deletion. This constant setup cost
include paying for the life cycle of the new cutoff points.

The other important observation is about fences, namely that we only create
situations that we also know how to deal with. This process is not as linear as
the life cycle of a point. Roughly we start by introducing tangent fences, vertical
fences, selection fences and equality fences. First we eliminate the tangent fences,
then we explore and establish until we are left with unrelaxed dangling and half open
searches. When relaxing the searches we again select points, explore and establish.
As all the work we do is accounted for as described above, we are sure to eventually
find a situation where we have only relaxed dangling and half open searches.

Now we can charge all the cost induced by a point, including the deletion cost,
to the participation in the Merge operation. This cost is O(1).
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3.7 Linear space: Separators

If we use the data structure of Section 3.5 as it is described so far, we might get
a poor space efficiency. More precisely if the points are all on the upper hull,
then every point is stored on every of the log n merging levels. This totals in a
space requirement of Θ(n logn). In this section we describe an extension of the
data structure that reduces the total space usage to O(n). The general idea is to
avoid storing a point in more than two semidynamic merging structures. The data
structure used to achieve this is called a separator . We place a separator above
every instance of a semidynamic merging data structure.

The interface of the semidynamic data structure requires us to make the upper
hull of the stored set explicit in a doubly linked list. Hence we have to store the
points on the upper hull ourselves. On the other hand, the recursive data structure
gives us access to the upper hull of the set of points it stores. What we can do is
to use the ability of the recursive data structure to delete points. We can delete all
the points on the upper hull from the recursive data structure. In other words the
separator makes the first two convex layers of the set of points it stores explicit:
The points on the convex hull of the stored set are deleted from the recursive
data structure form the 1. layer, the upper hull of the remaining points (stored
recursively) form the 2. layer. We will use the notation that the separator stores
the semidynamic set C and partitions it into A and B such that B = UH(C). We
call this policy eager deletions as we delete a point as soon as we can. This achieves
that all points that might be stored in data structures using the separator are not
stored in the recursive data structure the separator owns. The space usage of a
separator is proportional to the number of points it stores explicitly, that is the
number of points of the first and second convex layer of the set it stores.

The problem we have to address is how we can support deletions of points. This
is the algorithmic task we consider in this section.

Recall (Theorem 3.17, p. 46) that the semidynamic merging structure uses space
proportional to the number of points on the recursive upper hulls. If we place a
separator above every internal node of the merging forest, every point is stored ex-
plicitly in one merging structure and in one separator. This implies an overall O(n)
space usage. Instead of thinking of separators as unary nodes in the merging forest,
we can think of the separator as augmenting the binary nodes, namely the merging
data structures.

A separator uses recursively one semidynamic merging data structure and is
itself a semidynamic merging structure, both interfaces fitting to the interface of
the semidynamic merging structure (Definition 3, p. 19) in the following sense

Init(A) Initializes a new data structure B that wraps around the existing semidy-
namic merging data structure A. Let C be the set stored in A. Then B has
the interface of a semidynamic merging structure storing set C. We delete
points from A such that no point is stored simultaneously in A and in B.

Delete(p) Delete the point p ∈ C from the set of points C stored in B. As a result
the explicit representation of the upper hull of B is correctly updated. Points
from A are deleted to guarantee that points are not stored twice.

3.7.1 Geometry with tangent oracle

Let us consider the geometry of the situation. Assume we want to provide a semi-
dynamic data structure for the set C. The task of providing a separator requires us
to partition C into two sets A and B. Let A be the set of points stored recursively,
and B the points stored at the separator. We maintain the upper hull B = UH(C)
and maintain A = C \ B. From the recursive data structure we have access
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to UH(A). The algorithmic challenge of the situation is to correctly react to a
deletion of a point r ∈ B. More precisely we have the situation C1 = A1∪B1 before
the deletion. Now we delete r ∈ B1. This defines C2 = C1 \ {r}. The algorithm has
to determine B2 = UH(C2) and A2 = C2 \B2.

Assume (unrealistically) that we have access to a tangent oracle on UH(A):
For any point x ∈ R

2 the oracle tells us in constant time the tangents on UH(A)
through x or that x ∈ UC(A). Then the task becomes easy: Let x and y be the
left and right neighbor of r on B1. The situation is exemplified in Figure 3.22.
We use the oracle to determine the (right and left) tangents on UH(A1) passing
through x and y. This allows us to distinguish two cases: If the segment x, y is
outside UC0(A1), we have UH(C2) = UH(C1) \ {r}. Setting B2 = B1 \ {r} and
A2 = A1 is sufficient to restore the separator. Otherwise the tangents through x
and y identify a list L of points on UH(A1) that replace r on the upper hull UH(C2),
i.e. L = UH(C2) \ UH(C1) and we have L ⊆ UH(A1). Setting B2 = (B1 \ {r}) ∪ L
and A2 = A1 \ L restores the separator. Note that we in both cases have A2 ⊆ A1,
we can achieve the change from A1 to A2 by deleting points, which is conforming
to the interface of the recursive data structure storing A.

r ∈ B1

A A

A2
x y

s

L

Figure 3.22: Geometric separator with a tangent oracle; The point r ∈ B1 gets
deleted. Its neighbors x and y determine the set L ⊆ UH(A1) that surfaces, and
becomes part of B2. We delete L recursively, yielding UH(A2)

This discussion showed that the task we are aiming at geometrically complies
with the definition of our interfaces. We only lack an algorithm identifying the
points of A1 that become part of the upper hull of C2.

Note that there is an apparently weaker oracle that allows us the above op-
erations: It is sufficient to know one point s of A1 that surfaces if such a point
exists. We can locally confirm whether or not s really surfaces, and we can scan
along UH(A1) to identify all the surfacing points. A point can only surface once in
the separator. This means that there is no asymptotic slowdown for the merging of
point sets, assuming we have the surfacing point oracle.

3.7.2 Using the truss

A tangent oracle would also help a lot in the setting of a semidynamic merging
structure. There we developed the truss that we can use instead. The situation of
a separator is similar, even somewhat simpler. The truss is defined between two
upper hulls that are allowed to change by deletions of points (if the point is on the
overall upper hull). We first have to argue that we can phrase the situation of a
separator in a way that conforms to this specification. We consider an algorithm
that performs the macroscopic changes to the truss, namely the changes to the sets
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of points. For the simplicity of the exposition we first describe an algorithm that
has access to a tangent oracle or a surfacing point oracle. Only later we will describe
how the same changes to the truss can be achieved even without access to an oracle.

We maintain a truss between the sets A and B, just as if we were merging A
and B. This is reasonable, the truss as a certificate allowed us to conclude for a
strip that indeed B is above A (or vice versa). We have the same situation here,
the truss is the certificates that assures that we identified the upper hull (as the
set B) and no point of A is part of the upper hull of C.

To comply with the interface to the recursive data structures for A and B we have
to pretend to have a recursive data structure for B. We do this in the following way.
After the deletion of r ∈ B1 we take the list L ⊆ UH(A1) as the replacement of r
on B2, i.e., B2 = (B1 \ {r})∪L. We reestablish the truss between B2 and A1. This
computes the new upper hull of A1 ∪B2. As we assumed that we know L already,
this computation is somewhat futile. Then we delete the points of L one after
another from A. After every step we reestablish the truss, using the information
we get from the recursive merging structure storing A. This eventually results in a
truss between A2 and B2.

We will maintain a truss between A and B that is adopted to the special geo-
metric situation. Instead of using an oracle, the truss determines surfacing points
itself.

3.7.3 Augmented dangling search

By the definition of A and B the truss consists of one strip of polarity B over A
(before processing the deletion of r, after that we might have precisely on equality
stretch in the middle). This means in particular that we cannot loose equality
points, and that the reestablishing phase only advances dangling searches to possibly
detect an equality point. As soon as we found one equality point we are in the same
situation as if we had an oracle telling one surfacing point. After that we continue
reestablishing the truss in the standard way.

Recall that the reestablishing phase after a deletion as described in Section 3.6
starts by placing initial fences and investigating (unifying) the situation around
the deletion. In our special geometric situation, the initial fences will be selection
fences, and we start to investigate the position of the surfacing points of B (the
points we do not know because we do not have an oracle) as part of a dangling
search as described in Section 3.6.13. The geometric situation of a dangling search
is explained in Section 3.2.5.

The difference to a standard dangling search is, that we can not assume to know
the new strong ray intersections. We start by considering one specific geometric
situation. After having seen how we can work in this specific situation we will
consider how to achieve it.

Assume that we have a dangling search on A with the left selected point p,
the right directed strong ray e rooted at p. The right selected point is q with the
left directed strong ray f . Assume that the deletion of r ∈ B1 affected the strong
ray intersections on e and f . Let x and y be the two neighbors on UH(B1) of r.
Then we are in the situation that the segments x, r and r, y intersect e and f . This
situation is illustrated in Figure 3.23 (p. 71). Now we are in the situation where we
have to advance the dangling search between p and q, but we do not have access to
the strong ray intersections of e and f with Bd(B2).

If we assume that no point is surfacing, i.e., B2 = B1 \ {r} and L = ∅, then
the only segment of B2 is x, y. This segment defines the intersection points with e
called x′ and with f called y′. These points are also depicted in Figure 3.23 (p. 71)
(the figure illustrates a different case where some points surface). We always have
that x′, y′ ∈ UC(B2)\UC0(A1) because x′ and y′ are located on a strong ray. In the
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standard situation and if we knew that no point is surfacing, the points x′ and y′

are the strong ray intersections, and we can advance the dangling search. As we
simultaneously have to address the case that there are surfacing points, we have
to advance the dangling search in a slightly more complicated way. We will still
use x′ and y′ in the role of strong ray intersections, which is incorrect if there are
points surfacing. It is even incorrect in the dangerous direction, the real strong ray
intersections will be further away from p and q, so we are in the danger of violating
the monotonicity requirement on strong rays (Requirement 8, p. 40). The analysis
of the situation shows that this is never the case.

We need the strong ray intersections mainly to define the right and left guard
criterion. Recall that the guard criterion allows us to advance a dangling search: if
we find out that the current guard c of the dangling search satisfies the left guard
criterion, we can advance the search to the right and make c the new left guard.
Before we formulate the modified guard criterion, we investigate the geometric
situation if there are surfacing points. We can detect surfacing points locally, as
formalized by the following lemma.

Lemma 3.18
Let t ∈ UH(A) such that t is above x, y and let e and f be the pair of canonical
rays rooted at t. If e is above x and f is above y then t surfaces, i.e. t ∈ UH(B2).

Proof: As t is above x, y, some points of UH(A) surface. If t is not surfacing there
needs to be a point s ∈ UH(A) such that t is below x, s (w.l.o.g.). But then the left
directed canonical ray of t would be below x, because all the segments of Bd(A)
between s and t are already below x, s. �

We identify the following version of the monotonicity lemma.

Property 3.19
Let x be a point in the plane, x /∈ UC(A). Let M subset of UH(A) defined by the
canonical right directed ray from the point being above x. Then M consists of all
points of UH(A) to the left of some vertical line.
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Figure 3.23: Situation of an augmented dangling search; The point r ∈ B1 gets
deleted. Its neighbors x and y determine x′ and y′. These points guide the dangling
search. Eventually a surfacing point like s will be found.

We consider a point c to be an augmented left guard if we have that the right
directed canonical ray at c is above y and above y′. Symmetrically we have an
augmented right guard if we have that the left directed canonical ray at c is above x
and above x′. This definition allows us to advance a dangling search.
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We have to argue that an augmented left guard gl is a point that meets the
strong ray separation requirement to the right, towards the selected point q. If no
point is surfacing this is given by the definition of x′. Otherwise let h be the right
directed canonical ray rooted at c, and i the intersection of the left strong ray f
and h. The situation is illustrated in Figure 3.24. Then we know that i /∈ UC(A).
We also know that i /∈ UC(B2) because i is above x, y. Assume that i ∈ UC(C2).
Then i must be below the line defined by one point a ∈ A and a point b ∈ B. By
the observations how a deletion of a point in C can change the upper hull, we know
that b = x or b = y. We also know that a /∈ UC(B). Because c is between p and q
we know that points above x, y and in UC(A) have to be inside the triangle formed
by x, y, h and f . This contradicts the assumption that i is below a, b.
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Figure 3.24: Situation of an augmented left guard; We have to argue that in any
case the intersection point i is outside UC(B2).

With this argument we can conclude that we may select a point if it is simul-
taneously augmented right and an ordinary left guard (or vice versa). If we find a
point that is simultaneously augmented right and left guard, this point surfaces and
we can continue as if we had a surfacing oracle. As we do not yet know all of B2,
we can not determine strong ray intersections. We advance the dangling searches
as augmented dangling searches. We might look at another case of an augmented
dangling search that we will consider later.

If the current candidate c is neither a left nor a right augmented guard, we
have two possible situations. If c is below x, y, it means that the dangling search
is relaxed according to the standard definition of a dangling search. In this case it
provides us with a certificate that there is no point surfacing, and we can continue
to reestablish the truss as if the oracle told us that there are no points surfacing.

If c is above x, y and not an augmented guard, we can conclude by Lemma 3.18
that c surfaces. Then we can continue reestablishing the truss as if c was the
answer of the oracle, namely we scan along UH(A) starting from c and identify all
the surfacing points of UH(A). In this case none of the guards we decided upon is
part of the truss as a guard anymore, the possible non-monotonicity on the strong
rays cannot lead to selecting a point or to a guard that would not meet the ordinary
guard criterion.

Any augmented dangling search has to have at least one of the strong rays inter-
sected by x, y. We already discussed the case when both strong rays are intersected.
This leaves us only with the case where one strong ray is intersected and the other
one is not. W.l.o.g. we assume that e is not intersected by x, y. In this case we know
the strong ray intersection of e as it is not affected by the deletion of r. Requiring
for a right guard to have the left directed ray above x is then clearly a stronger
requirement than the ordinary right guard criterion. Advancing the dangling search
as an augmented dangling search with x′ = x will therefore only select points that
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meets the strong ray separation requirement. If the search relaxes without find-
ing a surfacing point, we can conclude that there is none. Hence this asymmetric
augmented dangling search is also correctly replacing the surfacing oracle.

By the analysis of the standard truss we get that the amortized time spend
in a separator is O(1) per point. We use one separator above every semidynamic
merging structure. This new construction has precisely the same amortized time
performance. The space usage is reduced to O(n).
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Chapter 4

Fully dynamic data structure

In this chapter we develop a fully dynamic planar convex hull data structure. The
semidynamic data structure presented in Chapter 3 maintains a doubly linked list
that stores the points currently on the upper hull in left-to-right order. In contrast to
this explicit representation the fully dynamic data structure only allows for queries
to the convex hull. There are all kinds of interesting queries: the extreme point
in a certain direction, the tangent lines on the convex hull through a given point,
whether a point is inside the convex hull, given a point on the convex hull the
right (left) neighbor on the convex hull, the number of points on the convex hull
between two points on the hull, just to name a few. When we consider the dual
of the problem, the lower envelope (as defined in Section 4.1.3), we also transform
the queries. Then we ask questions like which line segment of the lower envelope
intersects a vertical line (dual to the extreme point query), which segment of the
envelope intersects an arbitrary line (tangent query) and the extreme point on the
lower envelope in a certain direction (dual to a segment intersection/bridge finding
query). We will take this point of view on the problem throughout this chapter.

When we develop the data structure we focus on the extreme point query. In
Section 4.5 we will see that we can use the data structure as it is for other queries
as well. In (most of) this chapter we will change our point of view to the dual. This
seems to be the most natural way to describe the concepts we are using.

We summarize the goal of this chapter in the following definition:

Definition 4 (Fully dynamic Merging Structure)
is a data structure that maintains a multiset S of points in R

2 (points are identified
by pointers, not by coordinates) under the operations

Insert(p) The point p in the plane is given by its (x, y) coordinates. Inserts p into
the multiset S. Returns a pointer to the representation of the point p, its base
record.

Delete(p) The point p is given by a pointer to its base record. Removes p from
the multiset S.

Query(a) (extreme point) Returns (a pointer to) a point of p ∈ S such that the
line l given by y = ax + b for some b contains p and all points of S are on or
below l.

Two points are considered to be different, even though they have the same
coordinates. The identity of points is solely given by the pointer to its base record.

75
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4.1 Overview over the data structure

The semidynamic planar convex hull data structure we developed in Chapter 3 is
particularly suited as a part of a fully dynamic data structure. It supports insertions
in the sense that it can easily be used in a standard dynamization technique. Such
a technique can turn a deletion only data structure into a fully dynamic data struc-
ture. The technique we use is attributed to Bentley and Saxe [BS80] and is suited
for decomposable search problems. We describe this technique (and the general-
ization we use) in Section 4.1.1. The key feature of the technique is to maintain a
partition of the stored set. Every subset is stored in a semidynamic (deletion-only)
data structure. Insertions are handled by merging of subsets (and reestablishing
semidynamic data structures for them).

Even though the extreme point queries on a convex hull is a decomposable
search problem, the dynamization technique alone does not achieve fast queries.
We will use a variant of an interval-tree (Section 4.1.4) to combine the queries on
the different subsets. We have to maintain the interval-tree when subsets are merged
and points are deleted. To achieve this, we use as a black box several secondary
structures, namely fully dynamic planar convex hull data structures. It is important
that the secondary structures store significantly less points at a time and therefore
do not need to be as efficient. This meta-recursion is called bootstrapping: We first
define a suitable inefficient data structure and use it as a secondary structure to
increase its efficiency. We discuss the details of the bootstrapping in Section 4.4.

To be in the position to pay for the insertions into the secondary structures and
the navigation in the interval-tree, we have to use the mentioned techniques, but
not with a constant degree (tree nodes, merging), but we have to carefully choose
parameters. We discuss the role and choice of these parameters in Section 4.1.11.

We continue this chapter with several sections on isolated solutions to problems
that we have to solve. The calculations about the overall data structure in these
sections are to be understood as motivating the technique. We show how the differ-
ent constructions and parameters fit together into the construction of the real data
structure in Section 4.2. There we will also present the analysis of the amortized
performance of the data structure.

This chapter of the thesis is based upon the already published work of the
author and Gerth Brodal [BJ00]. There are several ideas stemming from different
sources. We use the dynamization technique of Bentley and Saxe [BS80]. We
consider the situation in the dual setting. We use an interval-tree to achieve fast
queries. These basic ideas stem from Chan’s [Cha99a] data structure. We store
segments closer to the root of the interval-tree than they have to be. This idea
goes back to [BJ00]. Here we additionally perform lazy deletions (actually in the
form of lazy movements). This requires a more sophisticated analysis, namely the
annotation of the data structure with location justifiers and barriers.

4.1.1 Dynamization technique

A decomposable search problem arises in the situation where we search for an element
in a set, the global answer. The problem is decomposable if for any partition of the
set the answers for the subsets contains the global answer and we can easily identify
the global answer among the answers for the subsets. Finding the element of the set
maximizing an objective function (that is query dependent) is a typical example of
a decomposable problem: The global maximum must also be the maximum within
the set, and the maximum of the maxima of the subsets is the global maximum.
This kind of consideration is useful if the set is partitioned into a few big subsets,
that support fast searches for local maxima. Finding the global maximum among
the local maxima is easy as there are not too many of them.
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More concretely the dynamization technique stores the set S in e = O(log |S|)
different semidynamic data structures for the sets S1, . . . , Se. To answer a query
on S we perform the queries on the sets Si, and combine the answers. To be
capable of inserting points, we perform some kind of binary counting on the sets.
More precisely every set has a rank. We insert a point by creating a singleton set
of rank 0. If we have two sets of the same rank i, we merge them into one set of
rank i + 1. As an invariant we get that a set of rank i has size 2i if we assume
that there are no deletions of points. This immediately implies that every point can
participate in at most O(log n) merge operations, and at any point in time we have
at most O(log n) different sets. Using the semidynamic data structure of Chapter 3,
we already achieve that the insertion and deletion costs are amortized O(log n). The
only problem is the performance of the query operation. We query all the sets, and
every query takes O(log n), which already is O(log2 n), a log n factor slower than
what we aim at.

We can easily generalize this technique by introducing a parameter r, the merg-
ing degree. Now instead of merging as soon as we have two sets of the same rank,
we wait until we have r sets of the same rank, and merge only then. Instead of the
binary counting, this process resembles counting to the base r. Every set of rank i
then has ri elements and each element participates in at most logr n = log n

log r merge
operations. The total number of sets that we can have simultaneously is bounded
by e = r·log n

log r .
As our semidynamic data structure is only capable of binary merging, we will

choose r as a power of two. Then we can simulate merging r sets by binary merges
according to a complete binary tree.

4.1.2 Doubling Technique

It is easier to construct a data structure, if we know in advance an upper bound
on the number N of elements that will be inserted into the data structure. Assume
that the performance of the (operations of the) data structure depends on this
parameter N . In general a data structure will not have access to this kind of
information. We also have to deal with the fact that the number of insertions does
not necessarily correspond to the number of simultaneously stored elements.

As it turns out we can easily cope with all of the above problems. We can guess
the value N reasonably good, and we can afford to rebuild the whole data structure
if the number of insertions and stored elements should differ significantly. This
process is referred to as a doubling technique and was systematically investigated
by Overmars [Ove83]. The name stems from the rule to rebuild the data structure
whenever we find that our guess is off by a roughly a factor of two.

Definition 5
A function f : N → N is called smooth if we have that f is monotonic and f(2n) =
O(f(n)).

All polynomials are smooth functions, so is log n and n log n, because the product
and the sum of two smooth functions is smooth.

Lemma 4.1 (Guessing the size)
Let AN be a data structure that performs insertions in amortized time i(N), dele-
tions in amortized time d(N) and a query operations in time q(N). The parame-
ter N has to be specified at creation time of the data structure. The data structure
allows a total of at most N insert operations. The space usage of AN is s(N).
Assume that i, d, q and s are smooth functions.

Then there exists a data structure B that supports insert in time O(i(n)), dele-
tions in amortized time O(d(n)), and the query operation in time O(q(n)). The
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space usage of the data structure is O(s(n)). Here n is the number of elements
stored in the data structure before executing the operation.

Proof: We describe how to build data structure B using several instances of AN .
When initializing B set the current guess for the number of inserts to some con-
stant N = c. We initialize AN and process the first N insertions. We perform
deletions and other operations without counting them.

From then on we repeat the following process as long as necessary. We rebuild
the data structure: We set N ′ to be twice the number of elements currently stored
in AN . Then we initialize a new AN ′ and insert all the elements currently stored
in AN . We destroy the old AN . We set N = N ′ (and AN ′ takes the role of AN ).
We perform operations until we have processed N/2 insertions or N/4 deletions
(whatever happens first). Then we rebuild the data structure again.

We observe that with this strategy one data structure AN will not be required to
process more than N insertions. None of the data structures AN (but the very first)
contains less than N/4 elements (but when initializing AN ). Hence (as q and s are
smooth) the query operations take O(q(n)) time, and the space usage is O(s(n)).

We define a potential function to argue that we can achieve insertions in amor-
tized 3 · i(2N) time and deletions in amortized 3 · i(2N) + d(N) time, where the
parameter N is Θ(n). Every freshly inserted element has potential 2 · i(2N). For
every deleted element we keep 3 · i(2N) potential. With this potential we achieve
the claimed amortized time bounds. Now we have to argue that we can afford to
rebuild when we do it. After N/2 insertions we have N · i(2N) potential and at
most N elements. We initialize a new data structure with parameter N ′ ≤ 2N . The
potential can pay for the rebuild. After N/4 deletions we have at least 3

4N · i(2N)
potential and at most N

2 + N
2 − 1 − N

4 < 3
4N elements. We initialize a new data

structure with parameter N ′ ≤ 2N . Again the potential can pay for the rebuild.
This completes the proof if we have i(n) = O(d(n)). If this is not the case

we have to argue that we can pay for the O(i(n)) term in the amortized deletion
time already when inserting the element. We use this data structure as a black
box, we wrap another layer of analysis around it. Let c be a constant such that
the O(i(n)) term of the deletion is bounded by c · i(n). The choice of c depends on
the constant of the smoothness condition of i(n). We define the potential function

P (n) = c ·
n∑

i=1

i(n) .

With this potential function we get deletions in amortized O(d(n)) time and inser-
tions in O(i(n)) time. �

We can use the way of constructing a data structure that we used in the proof
of Lemma 4.1 (p. 77) also in a slightly different setting. If we have a data structure
that has an a priori known nominal size N , meaning that by our use there are
never more than N elements stored in the data structure simultaneously. We only
have to transform the data structure in a way that the performance of the data
structure depends on N and not on the number of insertions already performed.
Additionally we distinguish between two kinds of deletions from the data structure.
If we perform a lazy deletion for an element l currently stored in the data structure,
we can leave it in the data structure (and consider it for queries) as long as we
choose to. When the data structure decides to actually delete l (when rebuilding) it
might have to perform a function call with l, usually inserting l in a different data
structure. In contrast to this is a strong deletion, that requires the data structure
to immediately delete the element and not consider it in future queries.

We use basically the same technique as in Lemma 4.1, after a certain number of
insertions and deletions we rebuild the data structure. This is when we execute the
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lazy deletions, and the lazily deleted elements are no longer part of (queries on) the
data structure.

Lemma 4.2 (Periodic rebuilding)
Let AN be a data structure that performs insertions in amortized time i(N), strong
deletions in d(N), lazy deletions in l(N). It supports queries in time q(N). The
parameter N has to be specified at creation time of the data structure. The data
structure allows a total of at most N insert operations. The space usage of the data
structure is s(N). Assume that i, d, l and q are smooth functions.

Then there exists a data structure B that can store up to N elements simul-
taneously and supports insertions in time O(i(N)), forced deletions in O(d(N)),
lazy deletions in O(l(N)), and queries in O(q(N)). The space usage of the data
structure is O(s(N)). The data structure B can trigger a function call when the
lazy deletions get executed.

We use this doubling technique in two settings. On the top level we have that the
size of the interval tree we build and the merging technique dependent on the number
of insertions only. That is, after many insertion and deletions the performance of
the data structure decreases, even though the number of simultaneously stored
elements stays roughly constant. Additionally we assume that we know the number
of insertions in advance. All this is no restriction as we have Lemma 4.1. In a
somewhat different setting we have the secondary structures. There we will move
the lines between different secondary structures lazily. This is precisely the situation
of Lemma 4.2.

4.1.3 Duality transformation

For this part of the thesis we change the point of view of the exposition to the
dual problem and consider upper envelopes instead of upper hulls. This duality,
as explained, e.g., in [dBvK+97, p. 167], maps points to lines and vice versa in a
way, that preserves above/on/below relations between points and lines (relations
between points on one vertical line get inverted). We define the dual transform of
point p = (a, b) ∈ R

2 to be the line p∗ := (a·x−b = y). For a line l = (c·x−d = y)
we define the dual of the line to be the point l∗ = (c, d). The situation is exemplified
in Figure 4.1.
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Figure 4.1: An example of the duality transformation. The points d, e and c form
the upper hull in the primal, the lines c∗, e∗ and d∗ form the lower envelope in the
dual. The extreme point query for slope q transform into a vertical line query.
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Property 4.3
Let l be a non vertical line and p ∈ R

2 a point. We have

p ∈ l ⇐⇒ l∗ ∈ p∗

and
p lies above l ⇐⇒ l∗ lies above p∗

In analogy to the upper hull of a set of points we define the lower envelope
of a set of lines. We can also view a set of lines L as a collection of linear func-
tions that have as graphs the lines in L. In this setting the lower envelope is
the function m: R → R that achieves point-wise minimum of the linear functions,
i.e. minL(x) = minl∈L l(x). The vertical line query amounts to evaluating this min-
imum at q. We say that a line l is on the lower envelope l ∈ LE(L) if it contributes
with more than a single point to the minimum. This is the case if there exists
a x1 < x2 ∈ R such that l(x1) = minL(x2) and l(x2) = minL(x2) (this is in analogy
of not considering points on a segment of the upper boundary to be part of the
upper hull). For every line l ∈ LE(L) we can define its activity interval on the lower
envelope by

IL
l = {x ∈ R | l(x) = min

L
(x)} .

For a line l ∈ L \ LE(L) we set IL
l = ∅.

Property 4.4
An extreme point query in the primal setting provides a slope q and asks for the
point of the upper hull that has a tangent of slope q. By duality this query transform
into a vertical line query. Given a vertical line with x-coordinate q, report the line
of L that achieves minL(x). The interval IL

l identifies all the vertical line queries
for which l is the correct answer.

The dynamic data structure problem that is dual to the dynamic convex hull
allows to insert and delete lines. Queries ask for the minimum of the stored lines
at a given vertical line. This data structure problem is also known as parametric
heap.

We say that a set L of lines is in lower envelope position if all lines in L have a
segment on the lower envelope, i.e. L = LE(L).

Note that the dual transformation is computationally trivial. It is more a change
in the point of view.

4.1.4 Interval tree

An interval tree is a data structure that can store intervals in a way that allows
efficient containment queries. More precisely for a set J of intervals, the query
consists of x ∈ R and the answer consists of all intervals I ∈ J that contain x,
i.e. x ∈ I. This data structure is described in detail in the textbook [dBvK+97,
page 210]. It is due to Edelsbrunner [Ede80] and McCreight [McC80].

The tree structure of an interval tree T is that of a search tree (possibly with
degree greater than two, for example a B-tree). This tree stores the key values in
the leafs. To be able to search in T every node v stores keys that separate the key
values of the subtrees rooted at the children of v. The standard search procedure
for value x starts at the root. It determines the predecessor of x among the keys
stored at a node and descends to the corresponding child. The search finishes when
it reaches a leaf of the tree. The visited nodes of T form the search path for x in T .
Every internal node v of T defines an interval Iv by the elements stored at the leafs
of the subtree rooted at v. Let I ⊆ R be an arbitrary interval I. Let vI be a node
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of T such that I ⊆ Iv and for all of the children u of v we have I 6⊆ Iu. There is
precisely one such node vI , we call it the canonical node vI of I. In other words vI

is the node furthest away from the root such that I ⊆ Iv holds.

Lemma 4.5
Let T be an interval tree as defined above. Let x ∈ R with x ∈ I for an interval I.
Then the search path p for x in T contains the node vI .

Proof: Let I = [a, b]. Then vI is (or is above) the least common ancestor of the
search paths to a and b. Hence the search path to a ≤ x ≤ b has to use vI . �

For the containment queries application we use a balanced binary interval tree.
We store every interval at its canonical node. A node v defines the set of intervals Lv

stored at v. An interval I ∈ Lv contains the key stored at v. We maintain two
endpoint-lists of the elements of Lv. One list is ordered by increasing right endpoint,
the other by decreasing left endpoint. Following the search path for x we can report
the set C ⊆ J of intervals containing x in time O(log |J |+ |C|).

We will use the interval tree in a setting where higher degrees make sense. In
particular we do not report all containing intervals. The next sections explain why
this is advantageous and what precisely we do.

4.1.5 Fast queries only

The construction we present now is going to achieve fast queries. Unfortunately
it does not achieve good enough performance in the update operations. This data
structure allows us to focus on how the different queries are combined into a single
search.

Assume we do a binary merging in the dynamization technique. That is, we
have at most log n different semidynamic sets, for which we have to perform a
simultaneous query. One can also see this as performing an “on the fly merge” of
the semidynamic sets as part of the query.

As explained in Section 4.1.3 the answer to the query for u is given if we find all
the intervals Il that contain u. In this simple construction we know a priori that
we have at most log n such intervals (one interval from every envelope). To achieve
such a query we use a binary interval tree, as described in Section 4.1.4 with the
endpoints of the intervals as search keys at the leafs. For a query for x, we perform
the containment query on the interval tree for x. This produces with O(log n) work
precisely the up to log n relevant segments. We can determine the overall answer
to the query by inspecting the relevant segments one by one.

The problem of this construction is the deficiency of the updates. Consider for
example the changes in this interval tree that are necessary for one merge operation.
Deleting the segments/intervals from the tree can be easy if we maintain pointers
from the intervals to the node where it is stored. The real problem is that the
nodes, where k new segments are to be stored are at arbitrary locations in the tree.
Additionally we have to maintain the two ordered endpoint-lists of the segments
stored at one node. Using standard techniques it seems impossible to achieve all
this in the O(1) amortized time per element that the merging is allowed to take.

This section is not to be misunderstood as a statement that this or a similar
construction cannot work. It is only that we could not find techniques that would
allow a data structure as outlined above.

Our approach is to change the merging degree of the dynamization technique
to log n (as we use the semidynamic binary merging data structure of Chapter 3, this
is rounded to the next power of two, as mentioned in Section 4.1.1). The increased
merging degree will allow us to use O(log log n) time per line that is moved during a
merge operation of log n semidynamic sets. This allows us in particular to insert the
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participating line into a different secondary structure. As we will see this change
of parameter will propagate, forcing us to introduce several new concepts. The
immediate problem we have to address is that we now have O(log2 n) semidynamic
sets. A query can no longer consider all the containing intervals in the interval tree.

4.1.6 Secondary structures and queries

Instead of considering all the segments that are stored at a particular node v of the
interval tree, it is sufficient to find the segment s stored at v that has the lowest
intersection with the vertical query line q. This is correct because the query is
decomposable. To be in the position to find this segment, we store the lines at the
node in a secondary structure, that is, we take some fully dynamic lower envelope
data structure for every node of the tree. For a secondary structure we assume that
the insertion and query time to be O(log k) for k elements, i.e., we assume that the
we already have a good data structure where only the deletion is not as fast as we
wish it to be.

To perform a query we consider again the search path for q in the interval tree,
collecting the answers from the queries for q on the secondary structures, deter-
mining the overall answer as we go along. Assuming that there are only O(log2 n)
lines stored in a secondary structure, every query takes O(log(log2 n)) = O(log log n)
time. As we want to achieve O(log n) queries, we have to change the degree of the in-
terval tree to B = log n, such that the height of the interval tree is O( log n

log log n ). Then
it takes us additionally O(log log n) time to determine the next node on the search
path for q. So we achieve an overall search time of O( log n

log log n · log log n) = O(log n).
It is a crucial observation that the correctness of a query, only depends upon

the fact that all intervals that contain q are stored somewhere on the search path
of q. This allows us to store a line anywhere on the path between the root and the
canonical node of the interval. In other words we may store an interval I at any
node v of the interval tree if we have I ⊆ Iv. We can use this freedom to reduce
the work necessary for placing the lines into a secondary structure. In return it
will increase the size of the secondary structures. This increase in size is tolerable
if it is only by a factor logO(1) n as the performance of the secondary structures is
logarithmic in their size (ignoring deletions for a moment).

4.1.7 Insertions into secondary structures

We motivated the increased degree of the merging to log n, to allow every line
to be inserted into a new secondary structure as the result of a merge operation.
The O(log log n) time we charge the participating line at the merge suffices to pay
for the insertion into the secondary structure itself. Before we can insert the line
into a new secondary structure we have to find an appropriate node of the interval
tree. We will later address the problem of deleting the line from the secondary
structure it is currently stored in.

Locating the canonical node for an arbitrary interval I takes time O(log n).
Instead of locating the node for the interval for every single segment, we use one
common interval for a chunk of roughly b ≈ log n/ log log n consecutive segments of
one semidynamic envelope. This chunk size is big enough that locating the node of
the interval tree costs O(log log n) time per participating segment, which is precisely
what we can afford. By storing all segments of one chunk at the same secondary
structure we increase the size of the secondary structures by a factor b. The size
bound for the secondary structures is given by the number e of semidynamic sets,
the degree B of the B-tree and the chunk size b. We calculate it to be eBb =
O( log2 n

log log n log n log n
log log n ) = O( log4 n

log2 log n
) = O(logO(1) n). Hence the insert operation

on a secondary structure takes still O(log log n) (amortized) time.
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Dividing a lower envelope into chunks is an easy task. It is more compli-
cated to maintain the partitioning when the envelope changes because of a dele-
tion. When a segment s gets deleted, then s and its neighbors are replaced by a
list of new segments. As a result of this change we might have to change some
chunks and their interval (join or split). Hence we need to move the segments of
a chunk to a different secondary structure. Now the choice of the chunk-size is
small enough that moving a chunk in this way induces an overall amortized cost
of O(log n)+O(log log n)· log n

log log n = O(log n). Here the O(log n) term reflects finding
the appropriate node of the interval-tree, and the other term stands for inserting
the segments of one chunk into the secondary structure at that node. We can charge
the movement of constantly many chunks to the deletion. If the replacement list is
so long that we need more chunks, we charge the cost of creating the chunk to the
participating lines. This is similar to when creating chunks directly after a merge
operation. The lines were not inserted into the interval tree since they participated
in a merge of semidynamic envelopes.

Summarizing we can conclude that we could adjust the construction and the
parameters in a way that allows us to insert the segments into secondary structures
whenever their interval changes.

4.1.8 Changes to intervals

So far we only addressed the problem of inserting the lines into a different secondary
structure. We completely ignored the need to also delete a line from the secondary
structure it is currently stored in. We will perform these deletions lazily, actually
delaying the insertion of the line into the new data structure as well. We call this
concept a lazy movement . Before we consider how lazy movements work precisely,
we have to investigate how the interval (the segment on the lower envelope) of a
line changes depending on the operations on the semidynamic envelopes.

If a line l participates in a merging of semidynamic envelopes, its interval shrinks.
This is intuitive, the line l is now competing with more lines for a place on the lower
envelope. More precisely we have the following lemma.

Lemma 4.6 (Changes to intervals when merging)
Let S1, . . . , Sk be sets of lines that get merged to S = S1∪· · ·∪Sk. For a line l ∈ Si

we have IS
l ⊆ ISi

l .

Proof: Let l ∈ Si be line. Let I be the interval of the x-axis for which l is the
lowest of all lines in S. Then for all points in I the line l will also be the lowest
among the lines of Si ⊂ S. �
This means that the canonical node of the interval of a line will in general be closer
to the leafs. This means that we do not really need to move the lines, they are still
stored on the path from the root to their canonical node. Even if the line l is no
longer on the lower envelope (but is still not deleted from S, i.e. IS

l = ∅) we can
store l at any node in the interval tree without compromising the correctness of the
queries.

Assume we delete a line l ∈ S, leaving us with the semidynamic set S′ =
S \ {l}. Then the two neighboring segments on LE(S) extent, i.e., lines may need
to be moved to their ancestors in the interval tree. Additionally all the lines that
replace l on the lower envelope change their interval. More precisely for such a
line h ∈ LE(S′) \ LE(S) we have IS

l = ∅, whereas IS′
l is a nonempty interval. This

situation requires us potentially to move lines, the node a line is currently stored
at might no longer be allowed for this line.

For every line l we have three nodes in the interval tree: The canonical node vl

that is given by the current interval of the segment this line forms on a lower
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envelope in a semidynamic set. For the queries we need to store l at a node on
the path from vl to the root. Then we have the node v where l is currently stored.
Finally there is the node vc that is determined by the interval of the chunk. This is
where we insert l if it is no longer at another valid node. This is the target of the
delayed lazy moves.

Note that we are not concerned with the relative position of v and vc. It is
sufficient that both are above vl. We already investigated how Il changes over the
life-time of a line l. This in turn tells us how vl can change.

We observe one inconsistency in this: When Il = ∅ the line stored at node v
(which is fine), but we do not have Il ⊆ Iv. This is actually not only a formality,
but it tells that our definition of Il does not reflect the possibility of lazy movements
precisely enough. We overcome this in the analysis by introducing location justifiers.

4.1.9 Location justifiers

To be in the position to analyze the movement of lines in the interval tree more
precisely, we introduce the concept of a location justifier for a line that is currently
not on the lower envelope of the semidynamic set it is stored in. Let l ∈ Si be a
line that participates in a merge operation of semidynamic sets S1, . . . , Sk into S.
Assume that l ∈ LE(Si) and l /∈ LE(S), i.e., because of the merging l is no longer
on the lower envelope and we have IS

l = ∅. We will leave the line l in the secondary
structure where it is currently stored. This does certainly no harm as long as we
have IQ

l = ∅ for the semidynamic set Q that currently holds l. The set Q can be S,
or the result of further mergings where the points in S participate. If l becomes
part of the lower envelope of Q, chances are that its new activity interval is a subset
of the old one, i.e. IQ

l ⊆ ISi

l . We can argue that this is the case if both neighbors
of l on LE(Si) are also in Q (none of the neighbors is deleted).

We define a location justifier J to consist of a base line l and two anchor lines ll
and lr. The lines M = {ll, l, lr} are in lower envelope position, the resulting inter-
val IJ := IM

l is the reason for defining justifier J . It is possible that one of the
anchors is missing, in this case the interval of J is unbounded. We require that
all the defining lines of J are in the same semidynamic set. If one of the anchor
lines gets deleted from the fully dynamic data structure, we destroy the location
justifier J .

We will not make location justifiers explicit in our data structure. They are only
used as an annotation of the data structure when analyzing its performance.

4.1.10 Deletions from secondary structures

We already discussed movements of lines in the interval tree. So far we only con-
sidered how to locate appropriate secondary structures and how to account for
inserting the lines there. Now we will discuss how to delete lines from secondary
structures and what the hinted at lazy movements precisely are.

We have to distinguish two types of deletions. Assume the line l is the param-
eter of a Delete operation of the overall fully dynamic data structure. Then we
immediately have to delete l from the secondary structure it is currently stored
in. Otherwise we risk incorrect outcomes of query operations. This is not a real
problem, deleting a single line from a secondary structure is not too expensive as
the secondary structures have only size O(log4 n). We will come back to this when
we discuss the bootstrapping of the data structure in Section 4.1.11.

The other reason for deleting a line l from a secondary structure at node u is
that we decided to store it in a different secondary structure, at a different node v
of the interval tree. This happens either because of a merge operation or because
of a deletion of a line in a semidynamic set. Given that l can be stored on the path
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between its old canonical node and the root, it can very well be that u is also a fea-
sible node for the new canonical node. For a merging operation Lemma 4.6 (p. 83)
guarantees that this is the case. For lines becoming part of the lower envelope again
as a result of deleting a line, the location justifiers guarantee this.

This suggests that we can perform lazy deletions. Only when we anyway rebuild
the secondary structure (Lemma 4.2, p. 79), we actually execute the deletions. We
do not want to store lines in several secondary structures (this might cause expen-
sive deletions from the fully dynamic data structure). Therefore we adopt a lazy
movement strategy. We do not only delay the deletion of the line, but we also delay
the insertion of the line at its new location. Only when we decide to rebuild the
secondary structure and execute the lazy deletions, we also perform the delayed
insertions.

For a line l that becomes part of the lower envelope of the set it is currently
stored in, it can happen that the activity interval of l changes so much that it is
no longer stored at a feasible node of the interval tree. In this case we insert l
at its canonical node. Because we do not allow lines to be stored in more than
one secondary structure, we perform an (expensive) explicit deletion of l from the
secondary structure l is currently stored in, and insert l it at its canonical node. We
say that we perform a forced move. The location justifiers will play an important
role when analyzing how many forced moves can be necessary.

4.1.11 Parameters, bootstrapping, and analysis

Even though we mentioned the choice of suitable parameters when introducing the
corresponding concepts, we summarize the interaction of the different parameters
here.

For the dynamization technique we choose the degree parameter r = Θ(log n).
This allows us to use O(log log n) amortized time to insert the lines into a secondary
structure after every merge. We choose the degree of the interval tree to be B =
Θ(log n). This is necessary for fast queries. Remember that querying a secondary
structure takes O(log log n) time since secondary structures have size logO(1) n. We
choose the chunk-size parameter b = Θ(log n/ log log n). This is big enough that
the O(log n) cost of locating the canonical node for a chunk results in an O(log log n)
cost per element. It is small enough that locating a chunk and inserting all its
elements into new secondary structures (lazily) costs O(log n).

All this is under the assumption that we already have a data structure that
achieves insertions in amortized O(log n) time and extreme point queries in worst-
case O(log n) time. Such a data structure exist. We take Preparata’s insertion only
data structure [Pre79]. This data structure maintains a balanced search tree of the
upper hull (lower envelope) and uses it to react to insertions by finding tangents.
This takes O(log n) time. We handle deletions by rebuilding the data structure
in O(n) time, reusing that the points are already lexicographically sorted.

In the first step of the bootstrapping we use Preparata’s data structure for
secondary structures. We pay for a forced move of the base line of a location
justifier J whenever we delete an anchor line of J . The forced move of the base
of J can happen now, later or not happen at all. A line can become an anchor
line of a location justifier (we create a location justifier) only once per merging
operation. Therefore the deletion of a line destroys at most O(log n/ log log n)
location justifiers. The deletion of a location justifier requires us to pay for a forced
move. A deletion from the fully dynamic data structure costs therefore the deletion
of a point from the semidynamic data structure and O(log n/ log log n) deletion from
secondary structures. By the size of the secondary structure and the linear deletion
time of Preparata’s data structure this totals to an amortized cost of O(log5 n).
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In the second bootstrapping step we use the above achieved data structure for
the secondary structures. With the same analysis as before we see that deletions
cost no more than O(log n/ log log n) · O(log5(log4 n)) = O(log n log5 log n). The
problem is that one deletion still has to pay for one forced move from each possible
rank of the merging. This is not necessary. We can move some of the cost for
forced moves to the insertion without changing the asymptotic performance of an
insert operation. We do this by introducing barriers in the merging. More precisely
we introduce a barrier parameter P = Θ(

√
log n). Every P th level of the merging

is a barrier level. When merging the sets S1 . . . Sk into S at a barrier level, we
pay every line l ∈ S a forced move and are therefore allowed to destroy all the
location justifiers with anchors (and base lines) in S. A line can only participate
in O( log n

log log n·P ) = O(
√

log n) mergings on barrier levels. The amortized cost for
the forced moves is O(

√
log n) · O(log5 log n) = O(log n). This is asymptotically

no slow down for the insertions. Now any line can be the anchor of at most P
location justifiers at a time. The amortized cost in the interval tree for a deletion
is hence P ·O(log5 log n) = O(log n).

4.2 Real construction

As all the constructs are now introduced, we order this exposition in a way that
avoids forward references at the price of being unmotivated.

Theorem 4.7 (Speed up construction)
Let U(n) be a nondecreasing positive function, with U(n) ≥ log n. Assume there
exists a data structure for the dynamic lower envelope problem supporting Insert in
amortized O(log k) time, Delete in amortized O(U(k)) time, and Vertical Line

Query in O(log k) worst-case and amortized time, where k is the total number of
lines inserted. Assume the space usage of this data structure is O(k).

Let b(n) be a function such that b(n) · U(log4 n) = O(log n). Then there exists
a data structure for the dynamic lower envelope problem supporting Insert in

amortized O(log n) time and Delete in amortized O( log n
log log n ·

U(log4 n)
b(n) ) time, and

Vertical Line Query in worst-case and amortized O(log n) time, where n is the
total number of lines inserted. The space usage of this data structure is O(n).

The remainder of this section is devoted to prove Theorem 4.7.
Let N be an estimate on the number of points stored in the data structure

and an upper bound on the number of inserts, just as in Lemma 4.1 (p. 77). We
maintain that N ≥ 4, such that log log n is well defined and ≥ 1. Let S be the set
of lines currently stored in the data structure.

We maintain a partition of S into (semidynamic) (sub)sets S1, . . . , Se. Every Si

has a rank. We define the merging degree r = 2dlog log Ne, an upper bound on
the number of sets of equal rank. This leads to an upper bound e on the number
of sets. The choice of r guarantees e = O(log2 N). The points of a set Si are
stored in a semidynamic lower envelope data structure conforming to (the dual of)
Definition 3 (p. 19). For every line l ∈ Si we determine its activity interval ISi

l . We
say that l is inactive if ISi

l = ∅, otherwise it is active. For active lines we determine
a placement interval Pl ⊇ Il. For each Si the segments on LE(Si) are partitioned
into a sequence of chunks of size Θ(b) with b = dlog n/ log log ne. We determine
a common placement interval Pl for all lines of a chunk. The boundaries of Pl are
given by the rightmost and leftmost segments of the chunk. If LE(Si) consists of
less than b segments, all of LE(Si) forms one chunk with placement interval Pl = R

for all lines l ∈ LE(Si).



4.2. REAL CONSTRUCTION 87

We maintain an interval tree T . The leaves of T are the endpoints of the
intervals Pl. We do not delete leafs from T , i.e., T is monotonically growing. The
tree T is a monotonic B-Tree with degree parameter B = dlog Ne, as described in
Section 2.3. For every node v ∈ T we have a secondary structure Qv, that is, a
fully dynamic lower envelope data structure with the characteristics assumed in the
theorem.

For a node v of the B-Tree, we have records necessary to perform the B-Tree
operations and additionally the following information: A pointer to the secondary
structure Qv, the interval Iv, a balanced search tree for the search key values used
at v. We say that it is admissible to store l in Qv if Il ⊆ Iv.

For a secondary structure Qv we maintain a pointer to the representation of
node v, and a counter Cv, holding the number of lines inserted into Qv since the
last rebuild. We maintain globally the nominal size Ns for secondary structures,
that is, the value N in Lemma 4.2 (p. 79). We set Ns = 4·dlogNe4. We additionally
have the starting point Cv of a doubly linked list of chunks that are supposed to
store their lines in Qv. The list Cv identifies the (active) lines that should be stored
in Qv when we rebuild it.

Every active line l is stored in precisely one secondary structure Qv, where v
is on the path from the root to the canonical node of the interval Il. An inactive
line l can be stored in any (but only one) secondary structure, or it is not stored in
a secondary structure. If a line l is deleted from S, it is not stored in any secondary
structure.

For every line l ∈ S we have a record holding the following information: a pointer
to the semidynamic set Si that contains l, a pointer to the secondary structure Qv

the line is currently stored, the interval ISi

l , and pointers to the neighbors of l in Si.
This information is always up-to-date.

For a chunk c we maintain a record holding the following information: The
interval Ic that contains all the segments of the chunk (the placement interval Pl of
the lines in the chunk), a pointer to the secondary structure Qu that should store
the lines contained in this chunk, a pointer to the first and last line of the chunk,
and a counter Cc holding the current size of the chunk. We store the chunk size
parameter b = dlog n/ log log ne globally. We maintain the invariant that chunks
have sizes between b and 2b− 1, unless the lower envelope of the semidynamic set
has less then b lines. In this case we have one trivial chunk with Ic = R.

For the semidynamic sets Si, we have a pointer to the semidynamic data struc-
ture holding the elements of Si, a pointer to the leftmost line on LE(Si), and a
pointer to a rank-record. The rank-record for rank j has a counter that reflects the
number of semidynamic sets of rank j. It is the starting point of a list of the records
for the semidynamic sets of rank j. It has a pointer to the rank-record for j + 1.
This pointer is nil if j is the highest rank of a semidynamic set in this fully dynamic
data structure.

4.2.1 Vertical line query

Let S be the set of all the lines currently stored in the overall fully dynamic data
structure. A query for value x requires us to determine q(x) = minl∈S l(x).

For every node v on the search path p in T for x we perform the query with
value x at the secondary structure Qv. This gives |p| = O(log n/ log log n) answers.
We return the minimum f of these answers as the result.

By definition we get f ≥ q(x). Let l ∈ S be a line with l(x) = q(x). Let I be
the interval of l on LE(S). Let S′ be the semidynamic set with l ∈ S′, and I ′ the
interval of l on LE(S′). Then we have x ∈ I ′ and by the construction of the interval
tree, l is stored in one of its allowed secondary structures, that is, at a node v on
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path p. Therefore the result of the query of the secondary structure at v is q(x),
and the overall result is f = q(x).

We will consider other queries in Section 4.5.

4.2.2 Insert

To insert a point p into our data structure, we create a singleton set So = {p} (and
semidynamic data structure) of rank 0. We insert So into the list of semidynamic
sets of rank 0. It might be that the number of sets of rank 0 is now r, our merging
degree. In this case we merge the sets of rank 0 by applying Theorem 3.17 (p. 46)
r− 1-times in a tree-like fashion. As we create a new set of rank 1 this process can
cascade. If we create a set of a rank that is higher than the highest rank we have
so far in this fully dynamic data structure, we create a record for this rank.

Let S1, S2, . . . , Sr be semidynamic sets of the same rank that get merged into S =
S1 ∪ S2 ∪ · · · ∪ Sr. By the construction of the semidynamic sets we have access
to LE(Si) before the merge and to LE(S) after the merge. We perform the merging
along a complete binary tree of height log r, which is by our definition of r the
integer dlog log Ne.

Only for the analysis of the algorithm we create location justifier with base l for
every line l ∈ LE(Si), with the anchor lines given by the neighbors of l in LE(Si).

First we mark all lines l ∈ Si to be inactive. This is done by following the links
of LE(Si), setting the interval Il := ∅. We abandon all the chunk records, taking
them out of the doubly linked list at the secondary structures. This means that
line l is lazily deleted from the secondary structure Qv it happens to be stored in.
As soon as Qv is rebuilt, l is actually no longer in Qv. In the record of l we keep
the pointer to Qv as long as l is stored there.

We perform the merge operation of the semidynamic sets. As a result we have
access to LE(S). We walk along the set LE(S), updating the interval Il for every
line l ∈ LE(S) and counting m = |LE(S)|. If m ≤ 2b− 1 we create a single chunk.
Otherwise we create chunks of size b as long as the number of remaining lines is
greater than 2b−1. With this policy the last chunk also has size between b and 2b−1.

To create a chunk c, we instantiate a chunk record. Then we walk along the
records of the lines to be stored in c and update their chunk pointer to c. We set
the pointer to the first and last line of the chunk appropriately. We compute Ic.
We insert the endpoints of Ic as leafs into T . This might lead to restructuring of T
which we discuss below. We perform a search in T determining the canonical node v
for Ic. We set the pointer of c to Qv. We walk along the lines of c. We insert line l
into Qv if l is not stored in another secondary structure Qu. By the nature of a
merge operation and Lemma 4.6 (p. 83) the node u is an admissible location for l.

If we have to split a sequence of nodes (along a path in the interval tree) because
of the insertion of new leafs, we first perform all the split operations and update
the intervals Iv of the affected nodes. If we split the node v, we move all the lines
stored in the secondary structure Qv into a (initially empty) list Ls. We destroy
the old secondary structure. We include the chunk records stored at v into a list Lc

of affected chunks. We create a new (empty) secondary structure and an empty list
of chunks at the newly created nodes.

We walk along the list Lc and determine for a chunk d ∈ Lc the new canonical
node for Id in the interval tree. By the nature of the split operation this will be
one of the newly created nodes, but this is not important for the analysis. Then we
consider all the lines stored in Ls. We insert the lines at the secondary structure
given by the chunk they belong to. Apart from now executed lazy movements of
lines, this are the newly created secondary structures. Again this is not important
for the analysis.
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During these operations (because of executed lazy moves), it can happen that
a secondary structure reaches the size limit Ns. If this is the case, we detach the
fully dynamic data structure from the node, and create a new one. Then we walk
along all lines stored in the detached secondary structure and insert the lines l into
the secondary structure that is given by the chunk. We update the pointer of l to
the secondary structure it is stored in. If during this process another secondary
structures reaches its size limit, we include it into a list Lo, and mark it as full. We
do not perform insertions into full secondary structures, but merely insert the lines
into a list Lv. The lines in Lv are inserted into a new secondary structure as soon
as we rebuild Qv. We continue to rebuild secondary structures until the list Lo is
empty.

4.2.3 Delete

Assume we globally delete the line l that is currently stored in the semidynamic
set Si, i.e., l ∈ Si. We have to adapt T to be based on the new set S′i = Si \ {l}.

For the analysis (and only there) we delete all the location justifiers where l is
an anchor, each time paying a forced move to the base line.

We delete l from the secondary structure it is currently stored in. We perform
the deletion on the data structure representing Si. By the interface of the semidy-
namic data structure, this yields a new representation of LE(S′i), where the former
neighbors of l on LE(Si) identify the list L′ of fresh lines, i.e., lines that changed
their activity interval from LE(Si) to LE(S′i) (most of them away from ∅).

We check whether we have to determine new chunks of LE(S′). If this is not
the case because the deletion did not change the boundary of a chunk and the size
restriction is obeyed, we insert the fresh lines into the secondary structure Qu at the
node u given by the chunk. Otherwise we have to rearrange some chunks. By the
nature of deleting one line, we know that there are at most two chunks of LE(Si)
affected. If there is only one affected chunk and it is getting too small, we can take
either neighbor and consider it affected. We delete the affected two chunks just
as we deleted the chunks of sets that get merged in Section 4.2.2. We define an
extended notion of fresh lines, defining the set L′′ ⊃ L′ of all lines that currently
are not in a chunk. The lines of L′′ form a stretch on LE(S′i), and we have counted
them. We perform the steps of creating new chunks (most of them of size b) for the
lines in L′′ as described in Section 4.2.2. We also insert the new chunks into T as
described there.

For all fresh lines l ∈ L′ we check whether they are stored at admissible locations,
i.e., we have Il ⊆ Iv for the node v where l is stored. If this is not the case, we are
required to perform a forced move. We delete l from the secondary structure it is
currently stored in, and insert it into the secondary structure that is given by the
chunk l it is (now) part of.

Be aware that our choice to insist on chunks having size between b and 2b − 1
and creating many chunks of size b might induce some unnecessary work. As this
apparently has no bad influence on the asymptotic analysis, we stick to this easy
to explain scheme.

4.3 Analysis of the speed up construction

We analyze the performance of the data structure looking back in time, for an
arbitrary point in time. The total work performed up to this time has to be bounded
by the sum of the claimed amortized costs of the performed operations.
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4.3.1 Number of chunks invented

Let M denote the number of chunks ever created up to the current point in time.
Then the size of T is linear in M , as we introduce precisely two leafs in T for every
chunk we create.

We note that most of the chunks we create contain only lines that are inserted
into T the first time after participating in a merge operation (either at the merge
operation or later as part of a deletion). As every line participates only in logr N

merge operations, we can have at most N · logr N/b = N · log N/ log log N
log N/ log log N = N such

chunks.
The remaining chunks are at most 5 per every deletion: two old chunks that

are affected by the deletion, holding at most 4b− 2 lines. These lines might be (in
the worst case) distributed into chunks of size b, 3 chunks on one end and 2 on the
other end. We have in total at most 5 new chunks that contain lines that have been
part of the lower envelope on the same merging level.

This discussion leads to the following lemma:

Lemma 4.8
Let N be the limit on the number of insertions of the fully dynamic data structure.
Then the number M of leafs in T at time t is bounded by M = O(N).

Lemma 4.9
The overall amount of work for inserting chunks into T is O(M log N), that is,
amortized O(log N) per inserted line.

4.3.2 Work in splits

Now we have to bound the total work we spend in splitting nodes of T up to some
point in time.

We charge the cost for splitting a node entirely to the newly created node. That
is, if we split the node u and create a sibling v of u, we pay O(log N) to every chunk c
that is currently supposed to be stored at u (before the split). This certainly pays
for finding the new canonical node of c and also to pay for inserting all lines of c
into Qu or Qv. This is again due to the choice of b and the insertion performance
of the secondary structures.

If we split a node on the 4 levels closest to the leafs of T , we know that the
split can only have affected as many chunks as there are leafs below the node. On
level 1 we have at most N/B nodes, each having at least B leafs below it, on level
2 at most N/B2 nodes, each having at least B2 leafs below it, and so on. As we
only consider 4 levels in this way, we have O(M) many chunks affected by split
operations accounted for in these 4 levels. This gives a total of O(M log N) work.

There are at most BlogB N−4 = O(N/B4) = O(N/ log4 N) nodes in T remaining
to be accounted for. We can have at most e · B = O(log3 N) many chunks stored
at one node at a time. We pay O(log N) per affected chunk, so the total work we
have to pay for splitting nodes is O( N

log4 N
· log4 N) = O(N).

Lemma 4.10
The total amount of time used to split nodes in T is bounded by O(M log N), that
is, O(log N) amortized per inserted line.

4.3.3 Forced moves

In this section we will derive an upper bound on the number of forced moves that
we have to perform in total up to some point in time.
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The concept of a location justifier is already introduced in Section 4.1.9. Loca-
tion certificates are not part of the data structure. They are to be understood as
an annotation of the data structure. We maintain them only for the purpose of an-
alyzing running times. In this respect they are very similar to a potential function
for the amortized analysis.

In Section 4.2.2 we already stated when to instantiate a location justifier. Let
line l ∈ LE(Si) be on the lower hull of its semidynamic set Si. Assume Si gets
merged with some other semidynamic sets into S. If l is not on LE(S) we instantiate
a location justifier J with base l and the neighbors on LE(Si) as the anchors. By
the nature of merging, all lines of J are in S. The lines of J will from now on not
be in different semidynamic sets.

A location certificate J becomes unnecessary if the base line gets deleted, re-
moved from the secondary structure because of a clean-up, or it becomes part of a
lower envelope again, with an active interval that is a subset of the interval of J . In
these cases we just forget about J (remove it from our annotation of the algorithm).
A location certificate J becomes invalid, if one of the anchor lines gets deleted. In
this case we have to pay for a forced move of the base line.

Let l be a line that is inactive, but has a valid and necessary location certificate J .
Then l is stored in a secondary structure at node v of T , where v is an admissible
node of T for IJ . If l becomes active again (as a result of a deletion), we can be
assured that the new active interval Il of l is a subset of IJ , which means that l is
not part of a forced move.

It is sufficient in the amortized analysis to pay for a forced move when we make
a location certificate invalid. That is, we charge the deletion of line l with the costs
for forced moves for all location certificates where l is an anchor. The line l can be
anchor for at most two location certificates for every merge operation it participated
in.

As already hinted at in Section 4.1.9, we introduce the notion of a barrier to
account for some of the forced moves as part of the insertion. Let b(N) denote the
number of barriers we decided upon (it can easily be that we have b(N) = 1).

We distribute b(N) barriers equally over all our merging levels. That is, we
have a distance between barriers of at most O( log N

log log N ·b(N) . Whenever we perform
a merge operation with the resulting set S of a barrier rank, we invalidate (delete)
all location justifiers, and pay one forced move for the lines of S that are not
in LE(S). The induced extra cost for the insertion is b(n) ·U(log4 n) = O(log n) by
the assumption about b in the theorem.

At any point in time a line l is anchor for at most O( log N
b(N) log log N ) location

justifiers. If we delete l we have to pay for every location justifier a forced move.
Given the cost of a forced move, this totals for one deletion to O( log N ·U(log4 N)

b(N) log log N ).

Together with the doubling technique of Lemma 4.1 (p. 77), we achieve the
amortized running times claimed in Theorem 4.7 (p. 86).

4.3.4 Space usage

Now we also have to analyze the space usage of the data structure. The interval tree
and the chunks use O(N) space. In the secondary structures every line uses O(1)
space as it is stored in at most one secondary structure. This totals to a space usage
of O(N). Together with Lemma 4.1 (p. 77) this is the claim of Theorem 4.7 (p. 86).

This completes the proof of Theorem 4.7.
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4.4 Bootstrapping

Lemma 4.11
There exists a data structure for the fully dynamic lower envelope problem sup-
porting Insert in worst-case O(log n) time, Delete in O(n) worst-case time and
Vertical line query in worst-case O(log n) time. The space usage is O(n). The
parameter n denotes the size of the stored set before the operation.

Proof: We basically take Preparata’s data structure from [Pre79]. More precisely
we keep the lower envelope in a (2,4)-tree. For the insertion of line l we search for
the two intersection points u, v with the current lower envelope. If they exist, we
remove all the segments between u and v from the (2,4)-tree. We keep a second
(2,4)-tree storing the elements of the set in lexicographical order. For a deletion we
rebuild the (2,4)-tree holding the lower envelope from scratch, using Graham’s scan
in Andrew’s version. By the performance of (2,4)-trees we achieve the claimed time
bounds. �

Theorem 4.12
There exists a data structure for the fully dynamic planar convex hull problem
supporting Insert and Delete in amortized O(log n) time, and Extreme point

query, Tangent query and Neighboring-point query in O(log n) time, where
n denotes the size of the stored set before the operation. The space usage is O(n).

Proof: We take Preparata’s data structure as described in Lemma 4.11 and the
semidynamic data structure described in Theorem 3.17. We apply Theorem 4.7 (p. 86)
with b(n) = 0. This gives us a data structure with O(log n) amortized insert and
query and O(log5 n) amortized deletion time. We apply again Theorem 4.7 (p. 86)
with b(n) =

√
log n. This reduces the number of forced moves that are accounted to

one deletion. The corresponding term in the amortized cost of a deletion is reduced
to O( log n

log log n ·
log5 log4
√

log n
) = O(log n), leading to the time bounds of the theorem. The

space bounds come directly from Theorem 4.7 (p. 86). �

4.5 Tangent / arbitrary line query

If the only query we are interested in is extreme point / vertical line query, the
presented data structure is sufficient. If we are interested in different queries, it is
not obvious how useful the query data structure is.

In the primal setting we can imagine the following query: given a point p /∈
UC(S) in the plane, what are the two common tangent lines of p and S? Translating
the query into the dual setting, we ask for the two intersection points of an arbitrary
line with the lower envelope of L. Given that we may perform vertical line queries,
we can easily verify a hypothetic answer. Therefore it is sufficient to consider the
situation under the assumption that the line intersects the lower envelope twice.

Let us focus on finding the right intersection of line l with the lower enve-
lope LE(S) for a set of lines S, that is, we are in the dual setting. This is again an
optimization task, we ask for the line of S with slope strictly greater than l, that
intersects l furthest to the left.

Now we need the geometric argument that we can use such queries in the sec-
ondary structure to navigate in T in a way that leads to the correct answer.

We use the following fact about arbitrary line queries to navigate in the interval
tree of our data structure.

Lemma 4.13
Let a and b be two vertical lines, a to the left of b. Let S′ ⊆ S be two sets of lines
such that the lower envelope of S′ at a and b coincides with the lower envelope
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of S. Assume that an arbitrary line query for a line ` on S′ results in the right
intersection point t. If t lies between a and b then also the right intersection T of `
with S (if it exists) lies between a and b.

Proof: By the definition of the right intersection point as the leftmost intersection
of ` with the lines of greater slope in S′ and S we immediately have that T is not
to the right of t and hence not to the right of b.

Assume that the left intersection of ` with LE(S′) is also between a and b. If
both intersections of ` with LE(S) exist, they are between the intersections of `
with LE(S′). In this case the lemma holds.

Otherwise we know that the intersection v of ` with a is below the intersection u
of LE(S′) with a. Assume that T is to the left of a. Let h be a line of S \ S′

that contains T and has greater slope than `. Then the intersection of h with a is
below v. But then the lower envelope of S intersects a at or below v, contradicting
the statement that the two lower envelopes coincide on a. �

Using this lemma, we can process an arbitrary line query for ` in the following
way: Starting at the root, we perform the query for ` at the secondary structure Q
at the root. If we find that there are no intersections of LE(Q) with `, we know that
there is no intersection of ` with S. Otherwise let u be the found right intersection
point. We find the slab that is defined by the keys stored at the root that contains u.
This slab identifies a child c of the root. We continue the search at c in the same way,
that is, we perform another arbitrary line query to the secondary structure. Now
we take the leftmost of the two results (stemming from c and the root) and use it to
identify a child of c. This process we continue until we reach the leaf level. There
we take the leftmost of all answers we got from secondary structures, and verify
it by performing a vertical line query. It is necessary to use the currently leftmost
answer as we allow lines to be stored higher up in the tree. It is necessary to verify
the outcome, we cannot exclude the case that all queries to secondary structures
find two intersection points, whereas there is no intersection of ` and LE(S).

For the bootstrapping we have to argue that we can perform arbitrary line
queries in O(log n) time. As this kind of search is the main ingredient to perform
fast inserts, this does not require an additional algorithm.

As the arbitrary line query in T performs precisely one query to a secondary
structure at every level of T , we get an overall worst-case and amortized time bound
of O(log n).

If we run this query for a point p ∈ S, we determine whether p ∈ UH(S) and
if this is the case, we find the neighbors of p in UH(S). We also realize if p is a
point on a segment of Bd(S). Tangent queries allow us to report a stretch of k
consecutive points on the upper hull of S in time O(k · log n). This is by a O(log n)
factor slower compared to an explicit representation of the convex hull.

4.6 Kinetic heaps

By the dual transformation the dynamic planar convex hull problem with extreme
point queries transforms to the parametric heap problem, an extension of a priority
queue as explained in Section 4.1.3. We can insert and delete lines li := (y = ax+b)
into the heap and ask for time t (which of the currently stored lines achieves) the
minimum mini li(t).

A kinetic heap is a parametric heap with the additional restriction that the
sequence of find-min(t) queries has non-decreasing t-values. In other words the
time at which we are interested in the current minimum of the parametric heap is
never going backward. Sometimes the requirement that time has to progress covers
also the delete-min(t) operation. This is for example the case in the recent work
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on kinetic heaps by Kaplan, Tarjan and Tsioutsiouliklis [HTK01]. In our setting this
is not necessary as the general Delete operation already takes only O(1) amortized
time.

To not confuse the kinetic and the ordinary find-min operation, we introduce
the new name kinetic-find-min. In this section we describe a data structure that
achieves kinetic-find-min operations in amortized O(1) time. This data structure
is based on the same dynamization technique as the fully dynamic planar convex hull
(lower envelope) data structure. It can even share the semidynamic data structures
with such a fully dynamic data structure. All we do here is to describe an alternative
(addition) to the interval-tree construction that is optimized for kinetic queries.

4.6.1 Kinetic queries in the semidynamic setting

We first introduce a search algorithm that achieves O(1) amortized kinetic-find-

min operations for the semidynamic (merging) data structure as defined in Chapter 3.
We use the linear list representing the lower envelope of the semidynamic set. We
keep a pointer (finger) to the last answer to a kinetic-find-min operation. For a
new query we perform a linear scan on the segments currently forming the lower
envelope until we find the correct answer. If a deletion removes the line our finger
is pointing to, then we search the segment of the new lower envelope that achieves
the minimum for the time of the last query.

Lemma 4.14 (Bounded advancing)
The linear scans on the current lower envelope of a semidynamic merging struc-
ture S, storing n lines, advances over O(n) segments in total.

Proof: We perform the analysis backward in time. Let E ⊂ R be the set of
all endpoints of segments on the lower envelope of S. Then E is not affected by
considering the updates to the semidynamic set in inverted order. This means that
we have to consider insertions only. When inserting a line, it can introduce at most
two new endpoints of segments on the lower envelope. Hence we have |E| = O(n).

Let ti ≤ ti+1 be the times of two consecutive kinetic-find-min operations. The
number of segments scanned over when performing the query for ti+1 is bounded
by the number of points in Ei = {x ∈ E | ti < x < ti+1}. The sets Ei are disjoint
from each other. The total time spend in scans that advance over the boundary of
a segment is hence bounded by |E|. �

The O(n) time spent advancing over segments is charged to the insertion of the
point into the semidynamic data structure. This yields an amortized O(1) time
bound for the kinetic-find-min operation.

4.6.2 Combining semidynamic sets: a query structure

The approach we follow to combine the semidynamic sets is somewhat similar to
the interval tree approach for general queries, only a lot simpler. In contrast to the
interval tree we only maintain one secondary structure. Again the log n merging
degree allows us at every merging level to insert all lines into the secondary structure
once. We also perform a bootstrapping that improves only the deletion time.

We augment the query to return the segment achieving the minimum at time t,
including the right endpoint of this segment. This additional information can be
seen as an expiration time: if the set is not changed and the next query is before
this time, the answer will not be changed. In the semidynamic case we have this
information immediately available.

To combine the results of the O(log2 n) semidynamic data structures we use
one secondary structure. This secondary structure we assume to allow insertions
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in O(log k) amortized time, and kinetic queries in O(1) amortized time. For the
current time tc (the time of the last kinetic-find-min operation) the secondary
structure stores all lines that are currently answers on the semidynamic data struc-
tures. We set the nominal size of the secondary structure to Θ(log2 n), the number
of semidynamic data structures. We perform lazy deletions and rebuilding accord-
ing to Lemma 4.2 (p. 79). Additionally we keep a (2,4)-tree of the endpoints of the
segments that are currently stored in the secondary structure (not including the
lazily deleted lines). We also keep the smallest such endpoint explicit.

For a kinetic-find-min query for time t we do the following: We first check with
the smallest endpoint of a segment in the secondary structure, whether the current
secondary structure is up-to-date. If this is not the case we delete all endpoints from
the (2,4)-tree that are smaller than t. We lazily delete the corresponding lines from
the secondary structure. For all semidynamic sets that are no longer represented
in the secondary structure we perform a kinetic-find-min query for time t. We
insert the returned line into the secondary structure and insert the endpoints of the
segments into the (2,4)-tree. We update the smallest endpoint when updating the
(2,4)-tree. Now we perform the query on the secondary structure for time t. This
gives both the line and the endpoint of the current minimal segment.

For a merge operation we remove the current endpoints from the (2,4)-tree and
perform lazy deletions of the lines in the secondary structure.

For a delete operation we perform the delete on the semidynamic data structure,
and if the deleted line is currently stored in the secondary structure we delete (not
lazily) it from the secondary structure. We also delete the endpoint from the (2,4)-
tree. We delay inserting the new result of a query for the current time until the
the next query operation. Only then we perform a query in the semidynamic data
structure and insert the result into the secondary structure and the (2,4)-tree.

4.6.3 Analysis

Every line has to pay for one insertion and deletion into the (2,4)-tree and for one
insertion and lazy deletion in the secondary structure for every merging level. This
totals to O(log n) amortized time, charged to the insertion of the line.

A deletion pays for the deletion of one line in the secondary structure and for
reinserting one line into the (2,4)-tree and secondary structure. This amounts to
O(log log n + U(log2 n)) where U(k) is the amortized deletion time for a secondary
structure.

Using Preparata’s [Pre79] semidynamic insertion only data structure, we achieve
insertions in O(log n) time and O(1) kinetic heap queries. The O(n) amortized dele-
tions do not only rebuild the data structure, but also pay for advancing the kinetic
search over all segments. Bootstrapping with this we get O(log n) amortized in-
sertions, O(1) amortized queries and amortized O(log2 n) deletions. Bootstrapping
one more time reduces the amortized deletion cost to O(log n).

We summarize the above discussion into the following theorem.

Theorem 4.15
There exists a data structure for the fully dynamic kinetic heap problem supporting
insert in amortized O(log n) time, delete in amortized O(1) time and kinetic

find min in amortized O(1) time. The space usage of the data structure is O(n).
The parameter n denotes the size of the stored set before the operation.
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Chapter 5

Lower bounds

The ultimate goal when designing a data structure is to find one that is as fast as
possible. This is almost impossible to achieve in the literal sense. It is for example
very hard to rule out the possibility that treating some situations as special cases
will speed up the algorithm for some inputs. This is where an asymptotic worst case
analysis allows us to focus on the big picture. By considering running times (and
space usage) only up to a constant factor we abstract away from a lot of details
that are hard to control.

In this chapter we consider lower bounds for the data structure problems we
are concerned with. For a lower bound statement the model of computation plays
a crucial role. An algorithm is not only a program on one machine, but rather
an algorithmic idea that can be implemented in a variety of formalisms and on
different models of computation. An efficient algorithm in one setting is likely to be
an efficient algorithm in a similar setting. Or looking at things differently, we could
say that a really good algorithm is efficient for all settings. Unfortunately this kind
of quality considerations of an algorithm are not easy to capture formally.

What we can do formally is to consider one specific model of computation.
There we can have a proof that our data structure performs asymptotically optimal
in the sense that it uses only a constant factor more time than is necessary for
a particular family of input values. This statement can hold with the same time
bounds for different models of computation. If a stronger model can simulate a
weaker model without any slow-down, and we have the lower bound on the stronger
and the algorithm on the weaker model, the bounds match in both models. This
is the case here: The data structures are formulated as order-k branching pointer
programs, whereas the lower bounds are stated for the real-RAM and the algebraic
decision tree model.

5.1 Complexity of data structure problems

There is actually one more complication when considering the amortized perfor-
mance of a data structure. There we want to measure the (overall) running time of
the data structure of the sequence of operations depending on the size of the prob-
lem (like the maximal number of simultaneously stored elements) and the number
of the different operations in the sequence. Alternatively we could define the size by
the number of insertions, or consider the size parameter directly before executing
the operation. As long as the functions describing the performance are smooth, all
this does not make an asymptotic difference (Lemma 4.1, p. 77). This is yet another
indication that the asymptotic complexity is a good measure.

In the following we use the formulation with the size parameter n where we

97
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allow the data structure to store at most n elements at a time. The statement
that an insertion (query) takes amortized time I(n) then means that the total time
spend in k insertions (queries) is k · I(n). This reflects the situation that we do not
really have a bound for the running time of a single operation. What we show is
that every general upper bound for all choices of n and k has to respect the lower
bounds we give.

Another phenomenon we have to address is that the performance of the different
operations are not independent. In a data storage setting we can easily achieve
constant time insertions if we allow ourselves linear time to query. The other way
around we can sometimes achieve constant time queries if we are willing to create
and store a table with all possible answers. Both solutions are not necessarily
interesting, but they are optimal in a naive sense. It might be more interesting to
say that all data structure that achieve a certain query performance necessarily use
a certain amount of time when processing an insertion. We will consider this kind
of a trade-off between insertions and queries.

In this chapter we show that in the real-RAM our data structure for the dynamic
planar convex hull problem is asymptotically optimal in the following sense: In
any implementation on the real-RAM queries have to take time Ω(logn). Our
data structure achieves O(log n) queries and is therefore asymptotically optimal for
queries. If we restrict our attention to implementations that achieve O(log n) queries
(we can even allow O(n1−ε) queries), then we have a lower bound on the insert
operation of Ω(log n) per operation. Again our data structure matches this lower
bound with an asymptotic amortized insertion (and deletion) time of O(log n). For
the kinetic heap we show the same lower bound on the amortized insertion time as
for the dynamic planar convex hull problem. This is matched by our data structure.

As intermediate steps we show lower bounds for the membership problem and
the predecessor problem that are of interest in their own right.

5.2 Reductions

For the static case of computing the convex hull of a set of points, there is a reduction
from sorting. We have the by now classical result that sorting takes Ω(n log n) time
on the real-RAM. More precisely the approach is to define a decision problem, in
the example of sorting Element Distinctness. Then one shows a lower bound
for this decision problem for algebraic decision trees. This lower bound is also a
lower bound for a real-RAM algorithm solving Element Distinctness. Finally
we reduce Element Distinctness to sorting in linear time. Specifically we use a
(fast) sorting algorithm to solve Element Distinctness. This bounds the speed of
the sorting algorithm, as time spend in the reduction is negligible (in the asymptotic
analysis) compared to the time the overall algorithm has to take.

Our approach follows this by now classical argument. The conceptual difference
is that we are interested in a data structure problem, and not with a decision
problem or the task of computing a function. The general idea is to use calls to the
data structure (much like an oracle) as part of the reduction algorithm. Assume the
reduction algorithm executes in linear time if we count data structure operations as
taking one unit of time. Then we can conclude that any implementation of the data
structure needs to use the time that is required to solve the problem we reduced
from.

More concretely we consider data structures for the membership problem, the
predecessor problem, and for the dynamic planar convex hull problem. We define
the variation DisjointSetn,k of Element Distinctness. Instead of requiring
that there are no equal values in a multiset, we require that the values in one set
are different from the values in the other set. We show a lower bound of Ω(n log k)
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for DisjointSetn,k. We then present reductions that use one of the data structures
we are interested in to solve DisjointSetn,k. The reduction itself does only take
linear time and can therefore not substantially help in deciding DisjointSetn,k.
We conclude that the data structure has to perform the computations necessary
to decide DisjointSetn,k. We also give a lower bound for the kinetic heap. To
accommodate the situation that the queries have to advance time, we define the
variant DisjointSet

+
n,k, where we assume that one of the sets is already sorted.

The reduction we propose actually only use a very weak version of the data
structure, namely what we could call off-line variants of the data structure. In
this variant the data structure has access to the complete sequence of operations
before it starts the processing. The off-line variant of the problem can only be
easier to solve than the real data structure problem. Our reductions are almost not
interacting with the data structure, they merely convert the input into a sequence
of operations to perform. Then the data structure computes all the results of the
operations (especially queries). Finally we use these results to give a correct answer
to the original problem.

5.3 Algebraic computation trees

Our lower bound result for the algebraic computation tree model relies on a funda-
mental theorem by Ben-Or in [BO83, Theorem 3] which reads as follows:

Theorem 5.1 (Ben-Or)
Let W ⊆ R

n be any set, and let T be a computation tree that solves the membership
problem for W . If N is the number of disjoint components of W , and h is the height
of T , then

2h3n+h ≥ N.

As we want to apply this theorem, we follow the definitions of [BO83] closely. In
contrast to the real-RAM and the order-k branching pointer machine, the algebraic
computation tree is a non-uniform model of computation, that is we (have to) define
a different computation tree for every possible input size, and we do not require the
trees for different sizes to be similar in any sense, we do not even require that a tree
for an arbitrary size can be computed. As the model describes a computation that
is allowed to manipulate real numbers in constant time, it is in some sense a really
powerful model. On the other hand it is restricted to perform algebraic operations,
much in the same way as the real-RAM. This is actually why this model is useful
in our setting, namely because it can simulate the program of a real-RAM without
any slow down. We will argue for this fact after having given the definition of the
model.

An algebraic computation tree over R
n is a labeled rooted tree T with three

different types of vertices:

A simple vertex v has exactly one son and is labeled with an operational instruc-
tion of the form

fv := fv1 ◦ fv2 or fv := fv1 or fv :=
√

fv1

where v1 and v2 are other simple vertices and ancestors of v in the tree T ,
or fv1 ∈ {x1, . . . , xn, c}. We have ◦ ∈ {+,−,×, /}, and c ∈ R is a constant.

A branching vertex v has precisely two sons and is labeled with a test instruc-
tion of the form

fv1 > 0 or fv1 ≥ 0 or fv1 = 0
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where v1 is an ancestor of v, or fv1 ∈ {x1, . . . , xn}. The edges to the two sons
are labeled to identify which son is corresponding to a positive outcome of the
test.

A leaf v is labeled with YES or NO, understood as the result of the computation.

An input x ∈ R
n defines a (labeled) path P (x) in the tree T . The path P (x)

starts at the root of T . Assume that we already defined P (x) up to vertex v. If v is
a simple vertex, the value fv ∈ R is defined according to the operational instruction
forming the label of the node v. By the definition of T the values fv depends upon
are already defined as labels of P (x). If the operation is / and the second operand
is 0, or if the operation is

√
· and the operand is negative, P (x) ends and the result

of P (x) is undefined. We understand fv as the label of v. The next vertex of P (x)
is the only son of v in T . If v is a branching vertex, the next vertex of P (x) is the
son of v that corresponds to the outcome of the test on the appropriate label fv1

of P (x). If v is a leaf vertex, P (x) does not continue and the result of P (x) is the
label of the leaf.

We say that an algebraic computation tree T over R
n solves the membership

problem for W ⊆ R
n if for all x ∈ R

n the outcome of P (x) is defined, and YES if
and only if x ∈ W . The height of the tree T is the maximal length of a computation
path P (x) where x ranges over all of R

n.
Now we have to relate this definition of an algebraic computation tree to our

definition of the real-RAM in Section 2.1.1.

Lemma 5.2 (real-RAM simulation)
Let P be a program for the real-RAM solving the membership problem for a
set Wn ⊆ R

n in time t(n).
Then there exists an algebraic computation tree T over R

n of height t(n) solving
the membership problem for Wn.

Proof: We define T according to a symbolic execution of P on all possible in-
puts x ∈ R

n. We actually define an annotated version of T . Every node v of T
is also annotated with a state Sv of the integer part of the real-RAM (integer
cells and registers, program counter). To keep track of the already performed al-
gebraic branching v is annotated with a subset Qv ∈ R

n. The set Qv consists of
all input vectors that lead the computation to the node v. The real-cells of the
real-RAM are represented by an annotation Rv: Rv has for every real-cell an en-
try holding a variable xi for the input, the name fu for some predecessor u of v
in T , or the constant 0. If the cell holds fu, the annotation also contains a func-
tion gu: Rn → R. The function corresponding to the name xi is given by the
projection function (x1, . . . , xi, . . . , xn) 7→ xi.

The root r of T is annotated with Qr = R
n and Sr is the initial state of the

integer part of the real-RAM. Rr has in the first n cells the variables x1, . . . , xn and
in the remaining cells the constant 0. For a node v we create children of v depending
on the next operation q of the real-RAM when in state Sv. If q is an operation
that affects (changes) only the integer part of the real-RAM, like unconditional
jumps, integer assignments, or branching on integer values, we make v a simple
vertex with son u and the (void) definition fv := 1.0 · x1. We annotate u by
defining Qu := Qv and Ru = Rv. Su reflects the state of the integer part of the
real-RAM after executing q. If q is a positive (or negative) halt-instruction, we
declare v a leaf that is labeled YES (or NO). If q is an assignment of a real cell,
say ck := a ◦ b for ◦ ∈ {+,−,×, /,

√
·} where a and b are either a real-cell (possibly

depending on an integer register of the real-RAM) or a constant. By Rv we can
identify a variable fa that corresponds to a and fb that corresponds to b, and we
set fu = fa ◦ fb. In the annotation Rv we define gu by gu(x) := ga(x) ◦ gb(x). We
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define Ru = Rv[ck := fu], i.e., we take Rv with the cell ck overwritten with the
variable name fu. We set Qu = Qv unless the operation is / or

√
·. In this case

we set Qu to be the subset of Qv where fu is not 0 or not negative. We set Su to
the state of the real-RAM after executing q, that is, Sv with the program-counter
advanced. If q is a branching operation, say a conditional jump if ck > 0, then v
is a branching vertex with children u and w. Let fa be the function name that
is the entry of Ru in cell ck and ga the corresponding function. We set the label
(test instruction) of v to be fa > 0 with u being the son for a positive outcome of
the test. As annotation we set Qu := {x ∈ Qv | gv(x) > 0} and Qw = Qv \ Qu,
Ru := Rv and Rw := Rv. The state Su is Sv with the program-counter reflecting
that the conditional jump was performed, and Sw is the state Sv with the program
counter merely advanced, reflecting that the conditional jump was not performed.

By this procedure we define an algebraic computation tree, that is possibly
infinite, even though the program of the real-RAM has bounded running time.

The following claim follows immediately from the above definitions:
Claim: For x ∈ R

n the set of all nodes v with x ∈ Qv forms a root to leaf path
that corresponds to the execution of the real-RAM on input x.

As the height of the algebraic computation tree is defined by the deepest node v
with Qv 6= ∅, we get that the height of T is bounded by the running time of the
real-RAM, h(T ) ≤ t(n). Note that we say that a program on the real-RAM decides
a set W ⊆ R

n in time t(n) if it halts on all inputs x ∈ R
n after at most t(n) steps

with the correct answer. In particular the program does not attempt to divide by
zero or extract a root of a negative number for any input. �

In particular if we have an algorithm that is order-k branching based, the height
of the computation tree reflects the worst-case number of branchings. Hence we
focus on the algebraic computation tree for lower bounds.

5.4 Decision problems

Definition 6
The problem DisjointSetn,k ⊂ R

n+k is defined by the rule that for the vec-

tor z = (x1, . . . , xn, y1, . . . , yk) ∈ R
n+k we have z /∈ DisjointSetn,k if there ex-

ists i ∈ {1, . . . , n} and j ∈ {1, . . . k} such that xi = yj, otherwise we have z ∈
DisjointSetn,k.

Definition 7
For a vector z = (x1, . . . , xn, y1, . . . , yk) ∈ R

n+k we have z ∈ DisjointSet
+
n,k ⊂

R
n+k if and only if y1 ≤ y2 ≤ · · · ≤ yk and for all i and j we have xi 6= yj .

Lemma 5.3
For 81 < k ≤ n the depth h of an algebraic computation tree deciding the set

DisjointSetn,k or DisjointSet
+
n,k is lower bounded by h ≥ c ·n log k for some c >

0.

Proof: We exhibit a set of kn input vectors that are in different connected com-
ponents of DisjointSetn,k.

Let S = S0, . . . , Sk be a named (k + 1)-partition of {1, . . . , n}. We define the
vector zS = (x1, . . . , xn, 1, 2, . . . , k) by the rule xi = j + 1

2 for i ∈ Sj . Then we
clearly have that zS is in DisjointSetn,k and DisjointSet

+
n,k.

Claim: For two different named (k + 1)-partitions S = S0, . . . , Sk and R =
R0, . . . , Rk we have that the vectors zS and zR are in different connected com-
ponents of DisjointSetn,k and DisjointSet

+
n,k.

Let i ∈ {1, . . . , n} be such that i ∈ Sa and i ∈ Rb for a > b (w.l.o.g.),
and τ : [0, 1] → R

n+k continuous (a path) with τ(0) = zS and τ(1) = zR. Let p :
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R
n+k → R, defined by (x1, . . . , xn, y1, y2, . . . , yk) 7→ xi−ya. Then we have p(τ(0)) =

(a + 1
2 ) − a = 1

2 > 0 and p(τ(1)) = (b + 1
2 ) − a < 0. Hence there exists t ∈ [0, 1]

such that p(τ(t)) = 0 and τ(t) /∈ DisjointSetn,k, and τ(t) /∈ DisjointSet
+
n,k. As

all connected components of DisjointSetn,k and DisjointSet
+
n,k are open sets

and therefore also path-connected, we conclude that zS and zR are in different
connected components.

There are (k + 1)n different ways of distributing n elements into k + 1 sets,
that is there are (k + 1)n named (k + 1)-partitions of {1, . . . , n}, hence there are at
least (k + 1)n different connected components of DisjointSetn,k. The same lower
bound holds for the number of different connected components of DisjointSet

+
n,k.

Theorem 5.1 (p. 99) implies 2h3n+k+h ≥ (k + 1)n yielding

h log 2 + (n + k + h) log 3 ≥ n log(k + 1),

h(1 + log 3) ≥ n log k − n log 3− k log 3 ≥ n(log k − 2 log 3)

choosing c = 1
2 (1 + log 3) and assuming log k − 2 log 3 ≥ log k

2 we get

h · 2c ≥ n
log k

2
.

Transforming the condition on k we get log k
2 ≥ 2 log 3, k ≥ 24 log 3 = 34 = 81. �

5.5 Data structures with general queries

The running time functions in the following theorems are assumed to be non-
decreasing with the size of the data structure. As these functions are used as
upper bounds on running times, this is no loss of generality. Alternatively we could
define I(n) by the fact that n · I(n) is the time that is necessary to insert n objects
into an initially empty data structure.

Theorem 5.4
Let A be a data structure implementing the Semidynamic Membership problem
on the real-RAM. Assume A supports Element queries in amortized q(n) time,
and Insert in amortized I(n) time for size parameter n. Assume that q and I are
smooth functions. Then we have

I(n) = Ω
(

log
n

q(n)

)
,

and for any I(n) we have
q(n) = Ω(log n) .

Proof: For the first bound we describe a reduction from DisjointSetn,k. We
choose the parameter k = bn/q(n)c. Let the vector z = (x1, . . . , xn, y1, . . . , yk) ∈
R

n+k be an input to DisjointSetn,k. Then we first insert x1, . . . , xn into the
data structure and then query for y1, . . . , yk. If we get a negative answer for
all queries Element(yi), we conclude z ∈ DisjointSetn,k. Assuming that the
Semidynamic Membership data structure is correct, we give the right answer
to DisjointSetn,k. The time that the resulting algorithm has to take is by
Lemma 5.3 (p. 101)

I(n) · n + q(n) · k ≥ c · n · log k .

Using our choice of k we get

I(n) · n + n ≥ c · n · log(bn/q(n)c).
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Dividing by n and rearranging terms yields

I(n) ≥ c · log(bn/q(n)c)− 1 .

For the second lower bound we use again a reduction from DisjointSetn,k,
but this time with the parameters n and k interchanged. We choose the parame-
ter n = k · I(k). Now we observe that we can solve DisjointSetn,k also with k
Input operations and n Query operations. Now by Lemma 5.3 (p. 101) we get for
sufficiently large k and some constant c

k · I(k) + n · q(k) ≥ c · n · log k .

Using k · I(k) = n and dividing by n we get

q(k) = Ω(log k) .

�
Note that for q(n) = O(n1−ε), Theorem 5.4 implies I(n) = Ω(log n). Another

example is that I(n) = O(log log n) yields q(n) = Ω(n/(log n)O(1)).

Corollary 5.5
Let A be a data structure implementing the Semidynamic Predecessor Prob-

lem problem on the real-RAM. Assume A supports Predecessor queries in amor-
tized q(n) time, and Insert in amortized I(n) time for size parameter n. Assume
that q and I are smooth functions. Then we have

q(n) = Ω(log n) and I(n) = Ω
(

log
n

q(n)

)
.

Theorem 5.6
Let A be a data structure implementing the Semidynamic insertion-only con-

vex hull problem on the real-RAM. Assume A supports extreme point queries
in amortized q(n) time, and Insert in amortized I(n) time for size parameter n.
Assume that q and I are smooth functions. Then we have

q(n) = Ω(log n) and I(n) = Ω
(

log
n

q(n)

)
.

Proof: Reduction from Semidynamic Membership. For an insert(a) operation
we insert (a,−a2/2). For query(b) we ask the extreme point query for slope −b. If
and only if the query returns with the point (b,−b2/2), we return the answer b ∈ S.

Define the line l by y = −bx + b2/2. Then for all points p = (a,−a2/2) we
have that p is not above l and p is on l if and only if a = b. We calculate the
vertical position (signed distance) of p compared to l by the formula py − l(px) =
ba− b2/2− a2/2 = −(a− b)2/2. This shows the correctness of the reduction. �

5.6 Kinetic heaps

The situation for kinetic heaps is somewhat different, we have a data structure that
performs queries in amortized O(1) time. This data structure performs insertions
in amortized O(log n) time. In this section we show that this data structure is
optimal in the sense that every data structure needs to use Ω(log n) amortized time
per insertion to solve the problem. The proof is almost the same as for the general
situation of Theorem 5.6, only that the specific type of query does not immediately
allow a reduction from the semidynamic membership problem. We could have
unified the situation by considering a (somewhat unnatural) kinetic membership
problem as intermediate.
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Theorem 5.7
Let A be a data structure that implements a kinetic heap. For size parame-
ter n assume that the amortized running time of the Insert operation of A be
bounded by I(n) and the amortized running time for the kinetic-find-min query
be bounded by q(n). Then we have

I(n) = Ω
(

log
n

q(n)

)
.

Proof: Reduction from DisjointSet
+
n,k. We choose the parameter k = bn/q(n)c.

Let the vector z = (a1, . . . , an, b1, . . . , bk) ∈ R
n+k be an input to DisjointSet

+
n,k.

We check in linear time whether we have b1 ≤ b2 ≤ · · · ≤ bk. If this is not the case,
we reject.

We insert the lines lai := (y = −ai · x + a2
i /2) into the kinetic heap A. Then

we perform kinetic-find-min(bi) queries (in the natural order). If for one of the
queries kinetic-find-min(bi) the answer is the line lbi := (y = −bi · x + b2

i /2), we
reject. Otherwise we accept.

We reject precisely if we have aj = bi for some i and j: We calculate the values
of the find-min query at time bi and compare it with the value if line lbi is member
of the kinetic heap, laj (bi)− lbi(bi) = −aj · bi + a2

j/2 + bi · bi − b2
i /2 = (aj − bi)2/2.

Hence we correctly solve the DisjointSet
+
n,k problem.

The reduction takes linear time. The time that the combined algorithm has to
use is by Lemma 5.3 (p. 101)

(I(n) + d) · n + q(n) · k ≥ c · n · log k ,

for some constants c and d. Using our choice of k we get

(I(n) + d) · n + n ≥ c · n · log(bn/q(n)c) .

Dividing by n and rearranging terms yields

I(n) ≥ c · log(bn/q(n)c)− 1− d .

�

5.7 Trade-off

The above lower bounds apply for all kinds of functions q(n) and I(n). The stan-
dard data structures for membership queries on the real-RAM are balanced search
trees. This establishes a matching upper bound only for the cases where inser-
tions are required to take Ω(log n) time, namely for q(n) = O(n1−ε). We have
the same situation for the dynamic planar convex hull problem. This raises the
question, whether there are data structures that match the lower bound for other
combinations of insertion and query times as well.

There is one simple idea for a trade-off between insertion times and query times:
we simply maintain several (small) search structures and insert into one of them. In
return the query operation has to query all the search structures. The situation we
describe is valid for all decomposable search problems (as defined in Section 4.1.1)
that can be solved with O(log n) amortized insertions and queries. We will describe
the predecessor problem and use balanced search trees as the underlying data struc-
ture. We focus on the insertion only case. If we want to accommodate deletions
we have to perform global rebuilding following a doubling technique. This does not
change the (spirit of) the result, it only makes it more complicated to describe. The
argument works for worst-case and amortized complexities.
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We will choose a smooth parameter function s(n) that tells the data structure
how many elements might be stored in one search tree. We assume that s(n) is
easy to evaluate (one evaluation in O(n) time suffices) and non-decreasing. The
data structure keeps two lists of trees, one with the trees that contain precisely s(n)
elements and the other with the trees containing less elements. For an Insert(e)
operation we insert e into one of the search trees that contains less than s(n)
elements. If no such tree exists, we create a new one. When s(n) increases, we
join the two lists (all trees are now smaller than s(n)) and create an empty list of
full search trees. For a query operation we query all the search trees and combine
the result.

The (amortized) insertion time is I(n) = O(log s(n)), the query time is q(n) =
O( n

s(n) log s(n)). We consider the term

log
n

q(n)
= Ω

(
log

s(n)
log s(n)

)
= Ω

(
log s(n)− log log s(n)

)
= Ω(log s(n)) .

This means that we achieve according to Theorem 5.4 (p. 102) optimal amortized
insertions times.

If we are interested in a data structure for the membership, predecessor and
convex hull problem that allows queries in q(n) time for a smooth, easy to compute
function q, then this technique allows us to have a data structure with asymptoti-
cally optimal insertion times.
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