
Cache Oblivious Dynamic Dictionaries
with Insert/Query Tradeoffs
Martin Jacobsen, 20073054

Master’s Thesis, Computer Science
April 2018
Advisor: Gerth Stølting Brodal

DEPARTMENT OF COMPUTER SCIENCE

AARHUS

UNIVERSITY AU

Abstract

The field of cache-oblivious algorithms encapsulates multi level memory hier-
archies for unknown memory- and block-sizes. This offers increased portability
over cache-aware algorithms. The dictionary problem is a widespread subprob-
lem to other algorithms and data structures, including the field of databases.
Consequently a cache oblivious dictionary is of interest, and being able to set
a tradeoff between update and query operations is a highly desirable property.
The main contribution of this thesis is to implement and experimentally evalu-
ate the first optimal cache oblivious dynamic dictionary with an update/query
tradeoff [BDF+10]. We document in this thesis that for some constant ε < 1

2
the structure is bounded by O(1

ε logB(NM)/B1−ε) and O(1
ε logB N

M) I/O’s for
insertion and query respectively between two layers in the memory hierarchy.

i

ii

Resumé

Feltet af cache-oblivious algoritmer enkapsulerer multi level hukommelses hier-
arkier for ukendte hukommelses- og blok-størrelser. Dette giver øget portabilitet
over cache-aware algoritmer. Dictionary problemet er et udbredt under-problem
til andre algoritmer og datastrukturer, inklusivt database feltet. Naturligt er en
cache-oblivious dictionary dermed af interesse, og at kunne bestemme en bal-
ance mellem indættelse og søgning er en ønskværdig egenskab. Hoved bidraget
af dette speciale er at implementere og experimentielt evaluere den første cache
oblivious dynamiske dictionary med et tradeoff mellem opdateringer og søgninger
kaldet xDict [BDF+10]. Vi dokumenterer at for en konstant ε < 1

2 bruger struk-
turen O(1

ε logB(NM)/B1−ε) og O(1
ε logB N

M) I/O operationer for indsættelse og
søgning respektivt mellem to lag i hukommelses hierarkiet.

iii

iv

Acknowledgments

First and foremost I would like to thank my advisor Gerth Stølting Brodal,
for his advise and encouragement before and throughout the thesis. I first
came to Gerth with several proposals for a thesis topic. Gerth listened and
acknowledged each topic as a perfectly good thesis topic. Gerth then discarded
them all collectively. Instead he suggested I take on a challenge, and for that I
am grateful. This thesis has helped shape and develop me both as a computer
scientist, and on a personal level.

Secondly I would like to thank Jesper Asbjørn Sindahl Nielsen, for taking
me in when I had no adequate office to work in, for his warm welcome and help
settling in, and for all his help and encouragement throughout. Jesper listened
to every personal triumph and failure throughout the thesis.

I would like to thank Mathias Rav, for the discussions on computer science
in general, and my thesis in particular, and for granting me access to and setting
up the server Raleigh, on which I have performed the experiments of the thesis.
Mathias time and again gave input and encouragement when I encountered
difficulties in the thesis.

I would like to thank the lunch club of the algorithms and datastructures
research group at Aarhus University, for the many interesting conversations and
laughs we have had throughout the time of the thesis.

Finally I would like to thank my family, for their support and encouragement
throughout the years, without which I would not have been able to complete
my studies and write this thesis.

Martin Jacobsen,
Aarhus, April 5, 2018.

v

vi

Contents

Abstract i

Resumé iii

Acknowledgments v

1 Introduction 1

2 Models of Computation 3
2.1 The I/O-Model . 3
2.2 The Cache Oblivious Model . 4

3 Related Work 5
3.1 Lower Bounds . 6

4 Preliminaries 7
4.1 Amortization . 7
4.2 Dictionary . 8
4.3 B-Tree . 8
4.4 Buffer Tree . 9
4.5 Cache Oblivious Techniques . 11

5 Cache Aware Data Structures 15
5.1 Modified B-Tree . 15
5.2 Buffered B-Tree . 16
5.3 Truncated Buffer Tree . 18

6 xDict 21
6.1 The x-box . 21
6.2 Search in an x-box . 24
6.3 Batch-Insert into an x-box . 25
6.4 Building a Dictionary out of x-boxes 30
6.5 Implementation . 32

7 Experimental Evaluation 35
7.1 Modified B-Tree . 36
7.2 Buffered B-Tree . 40
7.3 Truncated Buffer Tree . 43
7.4 xDict . 46

vii

7.5 Comparison of Data Structures 50

8 Conclusion 53
8.1 Future Work . 54

Bibliography 54

A Additional Graphs 61

B Technical Information 63
B.1 Test Machine . 63
B.2 I/O Data Collection . 63

C x-box Survival Guide 65

viii

1
Introduction

The thesis is structured as follows. We first define the models of computation in
Section 2, and list related work with regards to cache oblivous algorithms, par-
ticularly cache oblivious dictionaries, in Section 3, as well as the lower bounds
for comparison based dictionaries. Section 4 outlines common definitions, meth-
ods and structures used throughout the rest of the thesis. Section 5 describes
the theory of the three cache aware data structures implemented in the thesis,
followed by a description of the main structure of the thesis in Section 6, the
cache oblivious dynamic dictionary xDict. The structures listed in Sections
5 and 6 are experimentally evaluated and compared in Section 7. Section 8
concludes on the experiments performed in the previous section.

The main contribution of the thesis is the implementation and experimental
evalutation (Section 7) of the xDict data structure (Section 6). We show that
the the xDict is bounded by O(1

αB1/(1+α) logB(NM)) and O(1
α logB N

M) I/Os for
insertion and query respectively, and the tradeoff parameter 0 < α ≤ 1. For
some constant ε < 1

2 these bounds become O(1
εB1−ε logB(NM)) and O(1

ε logB N
M)

I/O’s. The experiments evaluating the bounds were performed for two levels
of the memory hierarchy, between internal memory and the external layer of a
harddisk drive.

1

2

2
Models of Computation

The Random Access Machine (RAM) model [CR72] serves as the standard
model of computation for internal memory. It consists of a processor containing
a constant number of registers and can access a single layer of infinite memory,
see Figure 2.1. Both the registers and memory can contain indirect addresses
(pointers). The measure of performance is the number of instructions performed
by the CPU, including data transfers between memory and registers. However,
in the real world internal memory is not infinite, and, as our society has become
ever more data driven, data sets often exceeds the limits of internal memory,
increasingly forcing algorithms and data structures out onto external memory.
The difference in accessing memory located externally on a hard disk drive over
accessing internal memory is approximately a factor million slower. The RAM
model can not encapsulate this bottleneck, which has driven the development
of other models of computation, namely the I/O and Cache Oblivious models.

CPU
.
.
.∞

Figure 2.1: The RAM model

CPU M .
.
.

∞

B

Figure 2.2: The I/O model

2.1 The I/O-Model

The I/O-model created by Aggarwal and Vitter [ASV88] models the movement
of blocks of data between two layers of memory as a measure of performance,
see Figure 2.2. This movement is named an I/O operation, and dependent on
direction is denoted a read or write operation. The model defines the following
parameters.

• N = # Elements in total

• M = # Elements that can fit in internal memory

• B = # Elements in a block

3

• P = # Blocks that can be transferred concurrently

We make the assumption that N > M ≥ 2B. For the purpose of this thesis we
set P = 1 and ignore this parameter.

Familiar RAMmodel upper bounds have equivalent I/O-model upper bounds,
see Table 2.1 for a selection.

Operation RAM I/O Reference I/O
Scan n N

B
Search log2 n logB N [BM72]
Sorting n log2 n

N
B logM/B(NB) [ASV88]

Table 2.1: Upper bounds in the RAM and I/O models. The RAM bound is in
number of instructions and the I/O bound is in number of I/O operations.

2.2 The Cache Oblivious Model
The I/O-model is restricted to modeling the transfer of blocks between two lay-
ers of memory. In modern computers we have several layers in the shape of the
CPU, cache, RAM, and external memory, see Figure 2.3. Frigo et al. [FLPR99]
introduced the cache oblivious model where an algorithm or data structure is
oblivious to the parameters M and B of any layer of memory. It follows that
a cache oblivious algorithm or data structure, which is optimal between two
layers of memory, is optimal between all layers of the memory hierarchy, under
the assumptions of the ideal cache model. The ideal cache model assumes an
automatic optimal cache replacement strategy with full associativity. Frigo et
al. addresses these assumptions in Section 6 of [FLPR99], arguing the ideal
cache model can be simulated by weaker models.

CPU
RAM .

.

.

∞

L1 L2 L3

Figure 2.3: A modern computer memory hierarchy.

Algorithms in the cache oblivious model make use of the tall cache assumption
M = Ω(B2), or alternatively M = Ω(B1+ε) for some parameter ε > 0, which
influences the bounds of the algorithm.

Brodal and Fagerberg [BF03b] proved that cache oblivious sorting requires
the tall cache assumption, and that there does not exist an optimal cache obliv-
ious algorithm for permuting. Brodal et al. [BFM05] proved a tight bound for
adaptive sorting in the I/O and cache oblivious model of Θ(NB (1 + logM/B(1 +
Inv
N))) I/O’s, where Inv is the number of inversions in the input. Bender et al.
[BBF+11] proved that cache oblivious searching is bounded from above and be-
low by log2(e) logB(N) = Θ(logB(N)) I/O’s. Additional lower bounds relevant
to this thesis is outlined in Section 3.1.

4

3
Related Work

In this section we outline related work in the cache oblivious field, especially
on cache oblivious dictionaries. In Section 3.1 we describe the lower bounds on
external dictionaries outlined in [BF03a], which forms the basis for the thesis.

Study of cache oblivious algorithms was initiated by Frigo et al. [FLPR99]
who presented cache oblivious algorithms for matrix transposition, Fast Fourier
Transformation, and sorting. Prokop [Pro99] described a cache oblivious static
binary search tree, the structure of which would become known as the van
Emde Boas layout. Brodal et al. [BFJ02] turned Prokops static structure into
a dynamic search tree. Bender et al. [BDFC00] presented a cache oblivious
dynamic B-Tree. Cache oblivious priority queues were developed by Arge et
al. [ABD+02] and Brodal and Fagerberg [BF02b]. Agarwal et al. [AADHM03]
described cache oblivious data structures for orthogonal range searching.

For the comparison based external dictionary problem the aforementioned
static binary tree of [Pro99] supports queries in O(logB(N)) I/O’s, in the cache
oblivious model, and the dynamic trees of [BDFC00, BDIW02, BFJ02] sup-

port updates in O(logB(N)), O(logB(N) + log2(NB)) and O
(

log2(N)
ε·B

)
I/O’s re-

spectively, while maintaining the O(logB(N)) I/O query bound. Bender et al.
[BFCF+07] described the Shuttle Tree which supports updates in

O
(

logB(N)
BΘ(1/(log logB)2) + log2(N)

B

)
I/O’s while maintaining the O(logB(N)) I/O query

bound. An implicit cache oblivious dictionary supporting updates and query
in O(logB(N)) I/O’s was presented by Franceschini and Grossi [FG03]. Bro-
dal et al. [BKRT10, BKR12] built on Franceschinis and Grossis work to create
an implicit cache oblivious predecessor dictionary which supports updates in
O(logB(N)) I/O’s and search in O(logB min(`p(e), `e, `s(e))) I/O’s, where `e is
the number of distinct elements searched for since element e was last searched
for, and p(e) and s(e) is the predecessor and successor operations.

Brodal and Fagerberg [BF06] described a static cache oblivious string dic-
tionary supporting prefix queries in O(logB(N) + |P |

B) I/O’s, where P is the
query string.

Iacono and Pătraşcu [IP12] presented a cache aware dynamic dictionary

5

which departed from the indivisibility paradigm to achieve amortized O(λB)
I/O’s update cost and O(logλ(N)) I/O query cost, with high probability, for
max(log logN, logM/B(NB)) ≤ λ ≤ B. For λ = Bε this is a 1

B1−ε logB(N) factor
faster than a comparison based B-Tree, while maintaining its optimal query
bound. The structure was inspired by the xDict [BDF+10], the main subject
of this thesis.

Data Structure Query Update
Static Prokop [Pro99] O(logB(N)) N/A
Dynamic B-Tree [BDFC00] O(logB(N)) O(logB(N))
Flat Implicit Tree [FG03] O(logB(N)) O(logB(N))

Shuttle Tree [BFCF+07] O(logB(N)) O
(

logB(N)
BΘ(1/(log logB)2) + log2(N)

B

)
Lower Bound [BF03a] O(1

ε logB(NM)) =⇒ Ω(1
εB1−ε logB(NM))

xDict [BDF+10] O(1
ε logB(NM)) O(1

εB1−ε logB(NM))

Table 3.1: Cache Oblivious Dictionaries. Inspired by Table 1 in [BDF+10]

3.1 Lower Bounds
Brodal and Fagerberg [BF03a] determined lower bounds for external comparison
based dictionaries, summarized in the following theorem.

Theorem 3.1. If N insertions performs at most δ · NB I/O’s, then

1. There exists a query requiring at least logB+1(NM)−O(1) I/O’s.

2. There exists a query requiring at least N/(M ·(MB)O(δ)) I/O’s for N > M .

3. There exists a query requiring Ω
(

logδ·log2(N)(NM)
)
I/O’s, if δ ≤ B/ log3(N)

and N > M2.

6

4
Preliminaries

In this section I outline several common data structures and techniques used
in, or forming the basis for, the main data structures of the thesis.

4.1 Amortization

Tarjan [Tar85] defined the term "amortization" in a computational complexity
context as "to average the running times of operations in a sequence over the
sequence."

When we reason about running times summing the worst case upper bounds
of the sequence of operations can be too pessimistic, as some operations on
the data structure might benefit future operations or apply a future expense
to an operation. Conversely simply averaging the cost of all functions over
all elements might mis-estimate these benefits or expenses. We can utilize
amortized analysis technique to reason about the average running times taking
into account the shared cost of operations. Tarjan outlines two different yet
equivalent views of amortization: That of the banker and that of the physicist.

The bankers view models our machines to run on coins. We assign a fixed
amount of coins to spend on each operation in the sequence. We then either
deposit to or withdraw from an account to pay for the execution of each oper-
ation. We are allowed to temporarily indebt ourselves, but at the end of the
sequence of operations we must be debt free, in order to show that the initial
allocation of coins was sufficient.

The physicists view handles amortized analysis using potential functions.
The state of our data structure D is evaluated by a potential function Φ(D)
into a real number we call its potential. The amortized time a of an operation
then becomes t+ Φ(D)−Φ(D′) where t denotes the real time of the operation,
D the data structures state before the operation and D′ the data structures
state after the operation. The total real time of a sequence of n operations
becomes:

n∑
i=1

ti =
n∑
i=1

(ai + Φi−1 − Φi) = Φ0 − Φn +
n∑
i=1

ai

7

4.2 Dictionary
In this thesis we base the definition of a dictionary on the definition given in
[AH74]. They define a set of operations, namely insertion, deletion and mem-
ber query, and name any structure that supports these operations on a set of
data a dictionary. We extend the definition by naming a structure that sup-
ports insertion and member query a dynamic dictionary, with the contrasting
static dictionary being a data structure that merely supports member queries.
In general a data structure that supports the base operations, as well as an
additional operation, on a set of data, is named after the additional operation,
e.g. a predecessor dictionary supports the base operations and the predecessor
operation. Furthermore we define a comparison based dictionary to be a dic-
tionary that orders elements by comparison, as opposed to e.g. hashing. An
element inserted into a dictionary consists of tuples, in this thesis restricted to
{key,value} or {key,value,time}, with time being the relative order of insertion.

4.3 B-Tree
A B-Tree [BM72] is a comparison based search tree optimized for external mem-
ory. It is a specialized version of the (a,b)-tree [MH82] with a leaf parameter k.
Formally we define a B-Tree as follows.
Definition 4.1. If T is a B-Tree with branching parameter b and leaf parameter
k then
• Except for the root all nodes in T has degree between 1

4b and b.

• The root has degree between 2 and b.

• Each node stores keys that partitions the children of the node according
to the range of the elements stored below them.

• All leaves are on the same level and contain between 1
4k and k elements.

Normally when we refer to a B-Tree in an external context it is implied that
k = Θ(B), with the implication that insertion and deletion, collectively called
updates, can be performed in O(logB(NB)) I/O’s for b = Θ(B), disregarding
balancing operations.

...

Θ(B)

O(logB(NB))
Θ(B)

Figure 4.1: A B-Tree with b = Θ(B) and k = Θ(B)

8

We split a node by adding a newly created node to the parent. The new
node receives half the children of the original node. Splitting a leaf is handled
similarly. Adding a node to the parent can cause the splitting to propagate up
the height of the tree.

... ...
v v v′

Figure 4.2: Splitting node v into node v and v′

We fuse a node by merging it with its smallest neighbor, possibly followed by a
split. Fusing a leaf is handled similarly. The parent is then updated accordingly.
Fusing can propagate up the height of the tree.

......
vv v′

Figure 4.3: Fusing node v and v′ into node v

For an (a,b)-tree with b ≥ 2a the amortized cost of rebalancing operations is
O(1

a) for each time we add or remove a leaf, see Theorem 1 [MH82]. Since a
B-Tree is a specialized version of an (a,b)-tree it inherits this property, with the
cost of internal rebalancing operations becoming O(1

b). Furthermore it takes
amortized O(k) updates on a leaf to produce a split or fuse of a leaf. The
amortized cost of rebalancing is thus O(1

b·k) pr. update, and is dominated by
the cost of searching for the leaf to apply the update to, see below. Therefore
the amortized cost of an update in a B-Tree is O(logB(N)) I/O’s.

Online queries in a B-Tree with b = Θ(B) and k = Θ(B) can be performed
by a top down search in the tree in O(logb(Nk)) = O(logB(N) I/O’s.

4.4 Buffer Tree
The Buffer Tree [Arg95] augments a B-Tree with buffers, introducing a "laziness"
to updates where we sacrifice handling updates immediately in return for being
able to handle multiple updates pr. I/O, allowing us to amortize the cost of
pushing a single update down the height of the tree. Formally a Buffer Tree is
defined as follows.

9

Definition 4.2. A tree T is a Buffer Tree if

• T is a B-Tree with branching parameter M
B and leaf parameter B.

• Each node is extended with a buffer of size M .

...

Θ(B)

O(logM/B(NB))
Θ(M/B)

Θ(M)

Figure 4.4: A Buffer Tree

When we introduce a new update to the tree we timestamp it and add it to a
collection of Θ(B) updates in internal memory. Once we have gathered a full
block of updates we append it to the roots buffer.

Flushing an internal node occurs when its buffer overflows, i.e. the number
of elements exceeds M . The unsorted elements are loaded into memory and
sorted while we resolve updates with duplicate keys using the timestamps. Then
the updates are distributed to the node’s children by appending to their buffers.
Appending a non-full block to a child requires O(1) I/O’s and can happen at
most O(MB) times, resulting in a total cost of O(MB) for the entire flush. After
completing the flush any buffer overflows of its children is handled recursively,
with the exception of leaf nodes which are handled after we complete flushing
all relevant internal nodes. Thus when we handle the flushing of a leaf node
the buffers on the path to the root are empty.

Recursively flushing buffers might result in a buffer exceeding O(M) as
one node can potentially receive all the updates from its ancestors buffers.
We can handle a buffer of size X > M in O(X/B) I/O’s, noting that at most
O(M) updates in the buffer can be unsorted, since we append a buffer in sorted
order. We load in these unsorted updates, sort them while resolving duplicates,
and merge them with the remaining updates. Distributing the updates to the
children of the node is no different than above, and the process uses O(XB)
I/O’s.

Flushing a leaf node is handled differently than an internal node. We sort
a buffer of size X ≥ M using O(X/B) I/O’s as above. We then gather the
elements from the nodes leaves in a single scan, resulting in a set of new updates
and a set of existing elements, both sorted. We then write out new leaves while
merging the two sets, resolving any duplicates, using O(XB) I/O’s.

Splitting a node becomes necessary if at any point during the creation of
new leaves the node exceeds its maximum degree. We perform the split like
a normal B-Tree, noting that the buffers on the root to leaf path is empty,
continuing the creation of new leaves after the split is completed.

10

Fusing a node becomes necessary if the creation of new leaves results in the
node falling short of its minimum degree. We pad the node with dummy-leaves
and then repeatedly remove one dummy-leaf at a time, handling any resulting
fuses as we would in a normal B-Tree, with the exception that we have to flush
the neighbors of a node before performing a fuse. This is necessary as a fuse
can be followed by a split, which requires an empty buffer. Flushing a nodes
neighbors can result in additional recursive fuses. The dummy-leafs prevent
these recursive fuses from interfering with each other. We continue the process
until no dummy-leaves remains.

The choice of branching and leaf parameters ensures that the amortized
number of rebalancing operations is O(1

M) pr. update, as argued in Section 4.3.
Prior to fusing we flush the buffers of two children, which carries a cost of
O(MB) I/O’s. The cost of rebalancing is therefore dominated by the cost of
flushing an element down the height of the tree and into a leaf, namely amortized
O(1

B logM
B

(NB)) I/O’s pr. update.
To perform an online query in a Buffer Tree we scan each buffer on a root

to leaf path before scanning the leaf requiring O(MB logM
B

(NB)) I/O’s.

4.5 Cache Oblivious Techniques
To obtain the same bounds in the cache oblivious model as in the I/O model,
the technique of recursion, where you divide the sub-problem or -structure into
recursively smaller problems or structures, is generally employed. Exemplified
best by the almost pervasive van Emde Boas layout [Pro99], in this section
we explore a more complicated example, comparing a non-recursive algorithm,
external merge sort, optimal in the I/O model, to that of the cache oblivious
and recursive Funnelsort, more specifically a variant named Lazy Funnelsort.
The lower bound for sorting in both the I/O and Cache Oblivious models is
Ω(NB logM

B
(NB)), see Table 2.1. The same techniques employed in this section

will be utilized in Section 6, where the main structure of the thesis is described
and analyzed.

4.5.1 External Merge Sort

External merge sort [ASV88] splits the input into blocks of size O(M) sorted
elements and merge O(MB) lists at a time, keeping O(B) elements from each list
in memory during the merge, until only one sorted list remains. This creates
a merge tree of height O(logM/B(NM)) where at each level all the elements are
scanned at a cost of O(NB) pr. level.

4.5.2 Lazy Funnelsort

Funnelsort [FLPR99] is a cache oblivious generalization of external merge sort.
Funnelsort recursively splits the input into N1/3 arrays of size N2/3 after which
the arrays are merged using a N1/3-way merger. A k-way merger takes as input
k sorted arrays and outputs k3 elements in sorted order. A k-way merger is
recursively constructed by merging the output of

√
k-way mergers. Invoking a

11

k-way merger will recursively fill up all the output buffers in the merger. Lazy
Funnelsort [BF02a] changes the k-way merger of Funnelsort into a binary tree
with an output buffer of size kd, for d > 1. Each edge in the binary tree is a
buffer, whose size is defined recursively: Split the height of the k-way merger
in two, i.e log(k)/2, then it consists of one top tree and

√
k bottom trees of

size
√
k. The buffers connecting the trees is given size kd/2. These buffers are

only refilled when needed, hence the lazy term in the name. Lazy Funnelsort
recursively creates N1/d arrays of size N1−1/d and merges them using a N1/d-
way merger.

Figure 4.5: A 16-way merger in Lazy Funnelsort. Grey areas denote elements
in buffers. Inspired by Figure 4 in [BFV08]

To analyze the k-way merger we find the size of the structure, and determine
when it fits inside memory, i.e. any further recursion on the structure becomes
free. Finding this base tree (case) is universal in analyzing any cache oblivious
structure.

The k-way merger is structured as a van Emde Boas layout. Splitting the
k-way merger in the middle of its height we have one top tree and

√
k bottom

trees. The buffers connecting this level consists of
√
k buffers of size kd/2. The

recursion thus becomes S(k) =
√
k ·kd/2 + (

√
k+ 1) ·S(

√
k), which by the Mas-

ter Theorem [CLRS09] case 3 is dominated by the size of the buffers and has
the solution O(k(d+1)/2). Thus for k(d+1)/2 ≤ M/2c =⇒ k ≤ (M/2c)2/(d+1)

this base tree can be loaded entirely into memory. With a tall cache assump-
tion of B(d+1)/(d−1) ≤ M/2c =⇒ B ≤ (M/2c)(d−1)/(d+1) we can load in one
block from each of the inputs to the base tree because k · B ≤ (M/2c)2/(d+1) ·
(M/2c)(d−1)/(d+1) = (M/2c)(d+1)/(d+1) = M/2c. The k-way merger whose sub-
trees consists of such base trees has size (k2)(d+1)/2 = kd+1 > M/2c. The
buffers separating base trees within this merger we name large buffers. We
will analyze the cost of merging around these base trees and the large buffers
separating them.

12

Consider what happens when we invoke the merger on a base tree of size k.
The cost of reading in the base tree becomes the cost scanning in the base
tree and reading a single block from each of the k input buffers, incurring
a cost of O(k(d+1)/2

B + k). The parent merger of the base tree is larger than
memory and this implies kd+1 > M/2c =⇒ k > (M/2c)1/(d+1) =⇒ kd−1 >

(M/2c)(d−1)/(d+1) ≥ B. This in turn implies k = kd

kd−1 ≤ kd

B , and thus the
cost of loading in the base tree can be charged to the output at O(1

B)I/O pr.
element. If the operation on the base tree causes the input to run out we have
to load in the structures beneath. This may push the base tree out of memory,
and require a reload after we complete the operations on the input structures.
If this happens then we will have output kd elements already, and we simply
charge the cost to these at O(1

B)I/O pr. element.
Let F = (M/2c)1/(d+1) be the minimum number of leaves in a base tree

in a k-way merger, then we will insert each element in at most logF (k) =
O(d logM (k)) = O(logM (kd)) large buffers, for which we charge O(1

B)I/O pr.
element. Thus the cost for outputting kd elements is O(kdB logM (kd))).

Recall that Lazy Funnelsort recursively merges N1/d arrays of size N1−1/d.
If we view this as a recursion tree then one element follows a single path up the
height of the tree. This gives a pr. element cost of

O
(

1
B

∞∑
i=0

logM N (1−1/d)i
)

= O
(

1
B logM (N)

∞∑
i=0

(1− (1/d)i
)

= O
(
d
B logM (N)

)
.

Note that O
(
d·N
B logM (N)

)
= O

(
N
B logM/B(NB)

)
under the tall cache assump-

tion.
The authors utilize Lazy Funnelsort to solve several geometric problems.

While Lazy Funnelsort and the geometric problems is certainly of independent
interest, for this thesis it is the techniques used in the construction and analysis
above which is of relevance. Comparing Lazy Funnelsort to external merge sort
we notice how the basic idea of divide and conquer is used to solve the same
problem in both models, but the cache oblivious structure needs recursion to
adapt to the unknown M and B. The van Emde Boas Layout (although noted
in [BFV08] to be unnecessary) and general recursive structure is universal to
cache oblivious structures, and the analysis, where we find a base case at which
the recursive structure either fits in M or B, using a tall cache assumption, is
universal to the analysis of said cache oblivious structures.

13

14

5
Cache Aware Data Structures

In this section we describe the theory of the three cache aware dictionaries im-
plemented in the thesis. Practical considerations are described in subsections to
each structure. The data structures were first described by Brodal and Fager-
berg [BF03a] to provide upper bounds proving the lower bounds of Theorem 3.1
asymptotically tight. The data structures all use O(NB) blocks of space.

5.1 Modified B-Tree
A Modified B-Tree is a B-Tree b, k = B, with b being the branching parameter
and k the leaf parameter, where we keep the topmost O(MB) nodes in internal
memory.

Theorem 5.1. Updating a Modified B-Tree requires amortized O(logB N
M) I/O’s

pr. update.

Proof. We inherit from a normal B-Tree the property that rebalancing is amor-
tized to less than the cost of traversing the height of the tree, see Section 4.3.
The external height of the tree is O(logB N

M) by keeping the topmost nodes in
internal memory.

Theorem 5.2. An online query in a Modified B-Tree requires O(logB N
M) I/O’s.

Proof. The proof is the same as for Theorem 5.1.

5.1.1 Implementation

Internalizing and externalizing nodes is expensive and we can not afford to
perform these functions with every update by alternating between insertion
and deletion. We select a minimum and a maximum number of nodes to keep
in internal memory. The maximum number is max = O(MB) and the minimum
number is min = max

B . That is we have a range between min and max of one
level of the tree. It follows that upon reachingmax number of internal nodes we
externalize O(max−min) nodes from the bottom internal level of the tree, and
that a further O(max−min) splits in the internal part of the tree is required
before we perform the externalization again. The same logic applies to fuses

15

with regards to internalization of nodes, but not to an intermixing of splits and
fuses.

Splits and fuses are normally performed bottom up in a B-Tree. However,
handling only single updates at a time we can anticipate and perform splits and
fuses as we traverse the tree top down. If an update could result in a future
split below a node, and the node is at capacity, we split it, and likewise fuse
any node that can not accommodate a fuse below it.

Using external merge sort [ASV88] we can construct a Modified B-Tree of
size N bottom up in O(NB logM

B
(NB)) I/O’s, which is a O(B logB(MB)) factor

faster than the naive approach of inserting N elements into an initially empty
Modified B-Tree.

5.2 Buffered B-Tree
The Buffered B-Tree is a B-Tree with branching parameter b = Θ(δ/ logN)
for logN < δ ≤ B logN and leaf parameter k = B. The tree will have height
O(logδ/ logN (NB)). Similar to a Buffer Tree each node is augmented with a buffer
of size B, and similar to a Modified B-Tree the topmost O(MB) nodes, and their
buffers, can be kept in internal memory.

...

Θ(B)

O(logδ/ logN(NB))
Θ(δ/ logN)

Θ(B)

Figure 5.1: A Buffered B-Tree

When a buffer overflows there exists a child such that Ω((B logN)/δ) elements
can be moved to the child’s buffer. We push elements to all children meeting this
threshold. The remaining elements stays in the buffer. Rebalancing operations
necessary to maintain the tree structure after a buffer overflow is performed as
we would in a Buffer Tree, with the addition that buffers is not guaranteed to
be empty on the root to leaf path. However, since a buffer is of size B it is no
more costly to handle each buffer than the corresponding node.

Theorem 5.3. Updating a Buffered B-Tree requires amortized O(δ · NB) I/O’s
for N updates.

Proof. N updates will use at most O(N/((B logN)/δ)) I/O’s at each of the at
most O(logN) levels of the tree, resulting in an amortized cost of O(log(N) ·
δ ·N/(B logN)) = O(δ · NB) I/O’s.

16

We inherit from B-Trees that we cause amortized O(logN
δ·B) = O(1

B) rebal-
ancing operations at a cost of O(1) I/O pr. update, see Section 4.3, which is
dominated by the cost of handling the buffers.

Theorem 5.4. An online query in a Buffered B-Tree requires O(logδ(NM)) I/O’s
given δ ≥ log1+εN , for any constant ε > 0.

Proof. We search down the height of the tree, scanning each buffer on the root
to leaf path. Keeping the topmost O(MB) nodes in internal memory reduces the
external height to O(logδ/ logN (NM)) = O(logδ(NM)) given δ ≥ log1+εN , for any
constant ε > 0.

Note that for δ = Bε logN the tree has degree O(Bε). The height becomes
O(logBε NB) = O(logB N

B)/(logB Bε) = O(1
ε logB N

B) and the external height be-
comesO(1

ε logB N
M). InsertingB updates causes at mostO(B/((B logN)/Bε logN))

= O(BεB logN/(B logN)) = O(Bε) buffer overflows at each level of the tree
resulting in a cost of O(Bεε logB(NM)) I/O’s. Online queries costs O(1

ε logB N
M))

I/O’s. We thereby gain faster updates compared to a normal B-Tree but main-
tain a query time within a constant factor.

5.2.1 Implementation

Handling a leaf node buffer overflow, similar to a Buffer Tree, is theoretically
done by sorting the buffer and gathering the elements from the leaves. We
then merge the two sets while writing out new leaves, using dummy elements
if necessary. Rebalancing is performed when we exceed the capacity of the
node by one, or fall short of the minimum size. However, in practice we simply
update leaves directly with splits and fuses. This can theoretically result in the
node exceeding its size if all elements on a root to leaf node path was pushed
to this particular leaf node. In practice however the node is unlikely to grow
more than a constant size too big, and it is much faster to let the leaves split
and fuse than to write out new leaves one at a time. Furthermore this approach
allows us to avoid creating dummy elements.

When a query travels down the height of the tree we can carry with us any
elements in the buffer at height i to the relevant child at height i+1. This costs
us only a constant extra I/O operations. After O(N/B) queries we expect to
have visited each of the leaves and emptied all buffers. This will speed up the
following queries by a constant.

Note that if we use a stable internal sorting algorithm then for two elements
with equal keys the rightmost element takes precedence, regardless of the type
of element (insertion/deletion). For merges the elements being pushed down in
the tree always take precedence over elements already present, regardless of the
type of element. Thus we can remove timestamps, introduced in Section 4.4,
from the elements in the structure.

Similar to a Modified B-Tree we can build a Buffered B-Tree of size N in
O(NB logM

B
(NB)) I/O’s using external merge sort.

17

5.3 Truncated Buffer Tree
A Truncated Buffer Tree is a normal Buffer Tree, see Section 4.4, with a single
twist. The tree is given a maximum depth δ at which the sub-trees rooted at
the given depth is truncated into buckets. When the buffer of a node containing
such a bucket overflows it is added to the bucket as a sorted list. Each bucket
will have size O(N/(MB)δ).

...
δ

Θ(M/B)

Θ(M)

O(N/(MB)δ)

Figure 5.2: A Truncated Buffer Tree

To search the buckets we employ fractional cascading [CG86a, CG86b]. When
the sorted list Lx is added to the bucket we build a new list Fx containing the
elements of Lx and every second element of Fx−1. By induction the size of
Fx ≤ 2M . Storing two pointers, one to an elements relative position in Lx and
one to the elements relative position in Fx−1, we can search through the lists
below Lx spending O(1) for each list.

When a bucket overflows we find the median element in linear time [Sib99]
and split the elements of the bucket around it. The fractional cascading struc-
tures is then rebuilt in linear time.

Theorem 5.5. Inserting into a Truncated Buffer Tree requires amortized
O(δ · NB) I/O’s for N updates.

Proof. We spend amortized O(1
B) on each level of the tree pushing one update

down to a bucket. We insert into a bucket in linear time of the buffer size, and
if necessary split in linear time of the bucket size. Rebalancing operations can
propagate upwards in the tree, which was shown in Section 4.4 for a Buffer Tree
to be no more than the cost of pushing updates into the leafs, and even less for
a Truncated Buffer Tree with its expanded leaf parameter.

Theorem 5.6. An online query in a Truncated Buffer Tree requires
O(N/(M(MB)Ω(δ))) I/O’s for some constant c > 1 and N ≥M · (MB)c·δ.

Proof. We scan the buffers at each level of the tree spending O(δ ·MB) I/O’s. We
then search a bucket by scanning the top fractional cascading list, and search
through the remaining lists spending O(1) I/O pr. list. This gives a total cost

18

of O(δ · MB +N/(M(MB)Ω(δ))). For a large enough N scanning the buckets will
intuitively dominate searching the buffers. We can express this as the following
set of equations.

N/(M(MB)c1δ) ≥ δ · (MB) c1 > 0
N ≥ δ · (MB) ·M · (MB)c1δ

However,

M · (MB)c2δ ≥ δ · (MB) ·M · (MB)c1δ for c2 ≥ c1 + 1

Thus for some c > 1 and N ≥ M · (MB)cδ searching the buckets will dominate
the cost of the query.

Deletions can generally not be handled by a Truncated Buffer Tree in the same
time as insertions, given that searching for the element to be deleted is too
costly. Nor can we afford to sort the insertions and deletions in the given time.
Therefore we can not use the technique of global rebuilding, where we mark the
elements for deletion and rebuild the tree every time we double the number of
updates.

5.3.1 Implementation

For all practical N , M and B the height of the tree can never exceed three. As
we flush buffers on a root to leaf path all elements from the buffers on this path
may end up in a single buffer, causing it to exceed size M. Upon flushing a leaf
node buffer we do not split the buffer into potentially several lists of size M ,
knowing the buffer has size O(M).

Splitting a bucket is theoretically done by finding a median element to split
the bucket around. This can be done in linear time [Sib99]. However, using
the assumption that M ≥ N

M for practical N and M we can read the median
of each list in the bucket into memory. We then select the median of medians.
Half the medians will be smaller than the median of medians, and a quarter
of the total elements in the bucket will be guaranteed to be smaller than these
medians. The same argument can be made for medians and elements greater
than the median of medians. We can therefore guarantee a 25/75 split using
the median of medians.

A query can afford to scan the entire top fractional list of a bucket, but
performing a binary search on the list is potentially faster, depending on the
size of the list. Note that searching backwards in the list means the harddisk
physically has to revolve the disk nearly a complete turn. In practice this
doubles the cost of looking up a memory block located further back in the list.
Therefore the list has to have a large enough size for the binary search to offset
this additional cost. For M = 8MB and B = 128KB we save on average 50%
I/O’s searching the top list with binary search over doing a linear scan.

Similar to the implementation of Buffered B-Trees, see Section 5.2.1, we
can remove the timestamps under the assumption of a stable internal sorting
algorithm.

19

20

6
xDict

In this section we describe a cache oblivious dynamic dictionary with up-
date/query tradeoff known as the xDict [BDF+10]. First we describe the un-
derlying structure of the x-box in Section 6.1. Next we describe how we query
an x-box in Section 6.2, and how an x-box supports batched insertions in Sec-
tion 6.3. Using layers of x-boxes doubling exponentially in size we build an
xDict in Section 6.4, supporting insertions in O(1

ε logB(NM)/B1−ε) I/O’s pr.
element, and queries in O(1

ε logB N
M) I/O’s, for some ε > 0. Implementation

details are described in Section 6.5.

6.1 The x-box

The x-box is a recursive structure defined for a given parameter x and a
global constant 1 ≥ α > 0, with α determining the tradeoff between inser-
tion and query for the xDict, see Section 6.4. The x-box uses O(x1+α) ad-
dressing space to store up to 1

2x
1+α real elements. We Search an x-box in

O((1 + α) logB x) I/O’s and Batch-Insert 1
2x elements into an x-box using

O((1 + α) logB(x)/B1/(1+α)) I/O’s pr. element. Thus lower values of α results
in faster operations on a single x-box.

size x1+α/2

size x

size x1+α

}

}

Upper level: At most 1
4
x1/2

Lower level:
At most
1
4
x1/2+α/2

√
x-box

. . .

. . .

Figure 6.1: The layout of an x-box. The arrows indicate lookahead pointers
evenly spaced in the target buffer, but not necessarily in the source buffer. The
Figure is inspired by Figure 1 in [BDF+10].

21

The x-box structure contains three sorted buffers and two recursive layers
of
√
x-boxes1 named subboxes, see Figure 6.1. The three buffers are the input

buffer of size x, the middle buffer of size x1+α/2 and the output buffer of size
x1+α. The two layers of subboxes are referred to as the upper level, which
consists of at most 1

4x
1/2 subboxes, and the lower level which consists of at

most 1
4x

1/2+α/2 subboxes, see Table 6.1. Thus the total number of subboxes
is ≤ 1

2x
1/2+α/2. For each level of subboxes we store a boolean array indicating

whether a subbox is in use. An x-box, with associated subboxes, is laid out
recursively in memory: First the input buffer, then the upper level boolean
array, followed by the upper level subboxes, the middle buffer, the lower level
boolean array, the lower level subboxes, and finally the output buffer. Notice
that the placement of the subboxes in either level is not ordered.

The base O(1)-box consists of a single array which makes up the input and
the output buffer. There is no middle buffer and no subboxes.

The number of subboxes at the upper level contains a combined input buffer
size of 1

4x, a constant factor of the enclosing x-box’s input buffer size, and
similarly the combined size of the output buffers of the upper level subboxes
is 1

4x
1+α/2, a constant factor of the enclosing x-box’s middle buffer size. The

number of subboxes at the lower level results in equivalent combined buffer
sizes matching the middle and output buffer of the enclosing x-box to within a
constant factor.

Buffer Size per buffer Number of buffers Total size
Input Buffer x 1 x

Input Buffer
√
x 1

4x
1/2 1

4x

Middle Buffer (
√
x)1+α/2 1

4x
1/2 1

4x
1+α/4

Output Buffer (
√
x)1+α 1

4x
1/2 1

4x
1+α/2

Middle Buffer x1+α/2 1 x1+α/2

Input Buffer
√
x 1

4x
1/2+α/2 1

4x
1+α/2

Middle Buffer (
√
x)1+α/2 1

4x
1/2+α/2 1

4x
1+3α/4

Output Buffer (
√
x)1+α 1

4x
1/2+α/2 1

4x
1+α

Output Buffer x1+α 1 x1+α

Table 6.1: The size of buffers in an x-box. The table lists the size of the three
main buffers in the x-box as well as the buffers of the first recursive

√
x-boxes.

The table is inspired by Table 2 from [BDF+10].

The three buffers of the x-box contains elements in sorted order. The placement
of an element in one buffer implies no relation to elements in the other buffers.
However, each level of subboxes partition the keyspace of the enclosing buffers.
The partition of the input buffer is implemented by pointers to each subbox,
stored with the elements in the input buffer, indicating the minimum key of
the subbox. These pointers are appropriately named subbox pointers. Likewise
subbox pointers are stored in the middle buffer for the lower level subboxes. The

1In the rest of the section when referring explicitly to the size of a subbox we will use the
notation

√
x instead of x1/2 for clarity.

22

subboxes are not placed in order of the subbox pointers, their order is solely
denoted by the subbox pointers. There is no relation between the partition
imposed by the two levels of subboxes. An element contained in the x-box is
located in one of the three main buffers, or in a specific subbox at either the
upper or lower level.

Inspired by fractional cascading [CG86a, CG86b] lookahead pointers are
sampled upwards in the buffer hierarchy. For example the input buffer will
contain pointers to a constant fraction of the elements in the input buffers of
the upper level subboxes. For theoretical purposes we set this constant equal
to sampling every 16th element. Similarly to subbox pointers the lookahead
pointers are stored with the elements in the relevant buffers. See Figure 6.1
where the lookahead pointers are indicated by arrows.

Each main buffer thus contains a set of elements intermixed with subbox and
lookahead pointers. The pointers are not necessarily evenly distributed amongst
the set of elements. To enable constant time lookup of pointers we associate with
each element a pointer to the nearest subbox or lookahead pointer, backwards
and forwards, in the buffer the element is located in.

Storing the additional subbox and lookahead pointers in the buffers reduces
the space for storing real elements. We therefore consider an x-box full when
it contains 1

2x
1+α real elements.

The structure, specifically the choice of three main buffers and two recursive
layers of subboxes with the specific fanout, may seem nonintuitive, but the
structure follows naturally once three original conditions are imposed. Firstly,
we want the input to be x and the output to be x1+α. Secondly we want one
or more recursive structures of size

√
x. Lastly we require for each subbox

a subbox pointer, as well as a constant (in the size of the underlying buffer)
number of lookahead pointers to perform a query. Without a middle buffer
either the combined input layer of the subboxes would not match to within a
constant size of the input buffer, or the combined output layer of the subboxes
would not match to within a constant size of the output buffer, meaning we
would not be able to sample a constant amount of lookahead pointers. This also
specifices the fanout of the two level of subboxes to be O(x1/2) and O(x1/2+α/2)
respectively. Furthermore set α ≈ 0 and the constant for the fanout of the
subboxes follows immediately from the need for the middle buffer to be able to
contain the real elements in the input buffer (after inserting 1

2x new elements),
contain the real elements in the upper level, and contain the real elements and
subbox pointers in the middle buffer. This scenario occurs when we merge the
elements in the input buffer and upper level subboxes into the middle buffer,
during a Batch-Insert, see Section 6.3.

Having outlined the structure of an x-box we can now determine its space
usage including that of the recursive structures.

Lemma 6.1. The total space usage of an x-box is at most cx1+α for some
constant c > 0.

Proof. We prove the lemma by induction. Each x-box consists of tree main
buffers of size c′(x+x1+α/2+x1+α) ≤ 3c′x1+α, where c′ is a constant representing
the additional pointers. The boolean arrays associated with the two levels

23

of subboxes use at most 1
2x

1/2+α/2 ≤ c′x1+α space. The total space usage,
disregarding the subboxes, is therefore ≤ 4c′x1+α. By the induction assumption
the subboxes use at most c(

√
x)1+α · 1

2x
1/2+α/2 = c

2x
1+α space. For c ≥ 8c′ this

gives us a total space usage of at most cx1+α.

Thus α describes a relation between x and B, determining the base case, where
an x-box fits inside a single block of memory, to be x1+α = O(B) or conversely
x = O(B1/(1+α)). We will use this base case in the following sections to analyze
the x-box.

6.2 Search in an x-box

For an x-boxD we wish to support the operation Search(D,s,k), which returns
a pointer to an element with key k inD, or if no such element exists inD returns
the predecessor of k in D’s output buffer. We assume we are given a pointer to
the nearest lookahead pointer s preceding k in D’s input buffer.

We perform the Search by scanning the input buffer of D from s until we
find k or s′, where s′ is the first element such that s′ > k. By the definition
of lookahead pointers we scan at most O(1) elements. If we found k we can
return, otherwise we follow the nearest lookahead or subbox pointer preceding
s′ − 1. The recursive call on the upper level subbox will return either k or a
pointer into D’s middle buffer. We continue the same process for the middle
buffer, scanning a constant amount of elements, recursively call Search on a
subbox, and scanning a constant number of elements in the output buffer.

Lemma 6.2. For x > B a Search in an x-box costs O((1 + α) logB x) I/O’s.

Proof. We spend O(1) I/O’s scanning the tree main buffers, and perform two
recursive calls. The cost of a Search becomes the recurrence S(x) = 2S(

√
x)+

O(1). Solving the recursion S(x) = 2S(
√
x) + O(1) requires us to solve the

simpler recursion S(x) = S(
√
x)+O(1), which we do by modifying the equation

as follows.

y = log x =⇒ S(2y) = S(2y/2) +O(1)
T (y) = S(2y) =⇒ T (y) = T (y/2) +O(1)

By the master theorem [CLRS09] case 2 the recursion T (y) = T (y/2) + O(1)
has the solution T (y) = O(log y). It follows that S(x) = S(2y) = T (y) =
O(log y) = O(log log x).

Once x1+α = O(B), or equivalently x = O(B1/(1+α)), all further recursive
calls cause no extra I/O’s. We can express this base case as S(O(B1/(1+α))) = 0.
The height of the recursion before reaching the base case consequently becomes
O(log log x− log logB1/(1+α)).

We can now express the cost of the original recursion S(x) = 2S(
√
x)+O(1),

with its two recursive calls, as the following set of equations.

24

O
(
2log log x−log logB1/(1+α)) = O

(
2log log x

2log logB1/(1+α)

)

= O
(log x

logB1/(1+α)

)
= O

(log x
(1/(1 + α)) logB

)
= O

((1 + α) log x
logB

)
= O ((1 + α) logB x)

6.3 Batch-Insert into an x-box
For an x-boxD we wish to support the operation Batch-Insert(D,e1,e2,...,eΘ(x)),
which inserts an array of Θ(x) sorted elements into D while maintaining looka-
head pointers. As previously described we consider an x-box containing 1

2x
1+α

real elements full.
To support Batch-Insert we create two helper functions named Flush

and Sample-Up. Flush will be responsible for flushing the real elements of
the x-box and related subboxes down into the output buffer, and Sample-Up
will be responsible for maintaining the lookahead pointers.

6.3.1 Flush

After we complete Flush(D) the k real elements of D will be located in the
Θ(k) first slots of D’s output buffer. No elements will reside in D’s input
buffer, middle buffer or subboxes, including the removal of all lookahead point-
ers except in D’s output buffer. The output buffer will contain at most 1

2x
1+α

lookahead pointers into the enclosing x-box, see Section 6.3.2.
To Flush D we first Flush all D’s subboxes. The result is the placement

of each element in one of five places: The three buffers, or the output buffers
of the upper and lower level subboxes. With the partitioning of the keyspace
imposed by each level of subboxes we can consider the elements as located in
five sorted lists. Using a five way merge we can place all elements in the output
buffer. Reading from five different lists of combined size X can be done in O(XB)
I/O’s, noting that even if the scanning of one list pushes the other lists out of
memory we will have read enough elements to pay for reading into memory
the position in the remaining four lists. However, the lists contained in the
subboxes are fragmented, needing a more detailed analysis.

Lemma 6.3. For x1+α > B a Flush on an x-box costs O(x1+α/B) I/O’s.

Proof. We can perform a Flush using a five way merge on D, with an extra
cost added by the fragmented lists of the subboxes at each level. Furthermore

25

we need to recursively Flush all the subboxes. Thus we can describe Flush
by the recurrence F (x) = O(x1+α/B) +O(x1/2+α/2) + 1

2x
1/2+α/2F (

√
x), where

the first term is the merge, the second term a random access to each subbox,
and the third term a recursive call on each subbox.

The second term disappears once we can load the entire x-box into memory,
or equivalently when x1+α = O(M). Using the tall cache assumption M =
Ω(B2), of the cache oblivious model, see Section 2.2, the second term only occurs
when x1+α = Ω(B2)→ x1/2+α/2 = Ω(B). Using this expression we can reduce
the second term to x1/2+α/2 = x1+α/x1/2+α/2 = x1+α/Ω(B) = O(x1+α/B).
This is equal to the first term and the recurrence F (x) can be reduced to
F (x) ≤ c1x

1+α/B + 1
2x

1/2+α/2F (
√
x) for some constant c1 > 0.

Using induction we complete the Lemma as follows. As a base case when
y1+α fits in memory the cost becomes F (y) = cy1+α/B. Using the inductive hy-
pothesis that F (y) ≤ cy1+α/B for some constant c and y < x, the inductive step
becomes F (x) ≤ c1x

1+α/B+ 1
2x

1/2+α/2(cx1/2+α/2/B) = c1x
1+α/B+ 1

2cx
1+α/B.

For c ≥ 2c1 we now have that F (x) = O(x1+α/B).

6.3.2 Sample-Up

The function Sample-Up(D) will restore the lookahead pointers of x-box D.
We assume Sample-Up is called on an x-box with all k < x1+α elements
located in the output buffer. This includes lookahead pointers to the en-
closing x-box. Sampling a lookahead pointer for every 16th element we cre-
ate (k/16)/(x1/2+α/2/2) = k/8x1/2+α/2 < x1+α/(8x1/2+α/2) = x1/2+α/2/8 new
subboxes in the lower level, and assign to each of these subboxes x1/2+α/2/2
lookahead pointers. This fills up half the output buffer of half the subboxes
in the lower level. We then recursively call Sample-Up on the newly cre-
ated subboxes, and sample lookahead pointers from their input buffers to
the middle buffer. The same process is repeated for the upper level sub-
boxes. Note that even if we assume the input buffers of the lower level sub-
boxes are filled up by the recursive Sample-Up’s we will sample at most

1
16·8x

1/2+α/2√x = 1
128x

1+α/2 elements into the middle buffer. This will in turn
create at most 1

128x
1+α/2/(x1/2+α/2/2) = 1

64x
1/2 new upper level subboxes.

Lemma 6.4. For x1+α > B Sample-Up on an x-box costs O(x1+α/B) I/O’s.

Proof. The recursion for Sample-Up as described above becomes SU(x) ≤
O(x1+α/B)+ 1

4x
1/2+α/2SU(

√
x), noting that the upper level will create at most

the same amount of subboxes as the lower level. The recursion is nearly iden-
tical to the reduced version of F (x) which we solved to O(x1+α/B) I/O’s in
Lemma 6.3.

6.3.3 Batch-Insert

Having described the Flush and Sample-Up helper functions we can now
describe the Batch-Insert function upon x-box D.

Batch-Insert takes as input a sorted array of Θ(x) elements. For theo-
retical purposes we set this to be 1

2x elements. We merge this array into the

26

input buffer and increment the counter of total elements in D. While merging
we remove the lookahead pointers, to be restored later.

Using the subbox pointers we implicitly partition the input buffer. For
any partition of the input buffer containing at least 1

2x
1/2 elements, we repeat-

edly remove 1
2x

1/2 elements from the partition, and recursively Batch-Insert
them into the appropriate subbox, until the partition contains less than 1

2x
1/2

elements.
During the process of repeated Batch-Insert calls, into a specific sub-

boxD′, if performing the next Batch-Insert would causeD′ to exceed 1
2(
√
x)1+α

= 1
2x

1/2+α/2 real elements we "split" D′. A "split" on D′ consists of a Flush(D′)
followed by the creation of a new subbox D′′. Using a linear number of I/O’s,
in the size of D′, we move half the elements from the output buffer of D′ into
the output buffer of D′′. We then perform a Sample-Up on both subboxes
to restore the lookahead pointers, and update the relevant counters. Notice
that we place the new subbox in the first available place, not in order accord-
ing to the range of elements they store. We find the first available space for
a subbox in O(1

4x
1/2/B) or O(1

4x
1/2+α/2/B) I/O’s respectively. We cover this

cost by charging O(1
B) to all the elements inserted into the respective level of

subboxes. Then we charge one random access for each split, to mark the space
occupied, see the cost of random access below.

After completing all Batch-Insert calls into the top level subboxes the in-
put buffer of D contains at most 1

2x
1/2 · 14x

1/2 = 1
8x elements, as otherwise there

would exist a partition large enough to be Batch-Insert’ed into a subbox.
We now resample lookahead pointers from the input buffers of the at most

1
4x

1/2 subboxes resulting in a total of at most 1
16x

1/2 · 14x
1/2 lookahead pointers.

When combined with the upper bound on the number of real elements in D’s
input buffer we see that the buffer is less than half full, i.e. there is space for
another insertion into D.

When during the process of a split we allocate the last subbox in the upper
level we abort the insertion and flush the upper level subboxes. We then merge
the input buffer and the fragmented list in the output buffers of the upper
level into the middle buffer. Then we start a new process of insertion, but now
from the middle buffer into the lower level subboxes. This process can in turn
fill up the lower level, upon which we repeat the procedure from the upper
level and place all the elements into the output buffer. Dependent on which
buffer the insertion completes at we either call Sample-Up on D or perform a
partial Sample-Up from the middle buffer to the input buffer, using recursive
Sample-Up’s on the relevant levels of subboxes.

The total number of lookahead pointers in the upper level subbox’s output
buffers are at most 1

16x
1+α/2. When the elements from the input buffer and

upper level is moved into the middle buffer these lookahead pointers are the only
elements in the upper level, and distributed across at most 1

16x
1+α/2/x1/2+α/2/2

= 1
8x

1/2 subboxes, which is half the maximum amount of subboxes in the upper
level. As a consequence there must be at least 1

8x
1/2 new splits before we move

elements into the middle buffer, and since a split only occurs when each subbox
contains 1

2(
√
x)1+α real elements, each of the resulting subboxes will contain at

27

least 1
4(
√
x)1+α real elements. Thus we must insert at least 1

4(
√
x)1+α · 1

8x
1/2 =

Ω(x1+α/2) elements between moving elements into the middle buffer.
Similarly the total number of lookahead pointers in the lower level subboxs’

output buffers are most 1
16x

1+α. When all the elements are contained in the
output buffer we create at most 1

16x
1+α/x1/2+α/2/2 = 1

8x
1/2+α/2 subboxes in

the lower level. Therefore we require at least 1
4(
√
x)1+α · 1

8x
1/2+α/2 = Ω(x1+α)

insertions into D between movements into the output buffer.

Theorem 6.5. A Batch-Insert into an x-box with x > B costs an amortized
O((1 + α) logB(x)/B1/(1+α)) I/O’s pr. element.

Proof. For each element we have several sources of cost for insertion. First
we merge the element into an input array costing O(1/B) I/O’s pr. element.
Then we recursively insert each element into a subbox in the top level, during
which we pay random accesses to load the first block of each subbox. We check
this block to ensure we will not exceed capacity on insertion, and the cost is
incurred under the assumption that we do not cache the block. Then we sample
the subboxes, the cost of which is dominated by the cost to scan the elements
and that of the random accesses. Each element will have to pay a cost for a
potential split of the subbox it is inserted into. This cost can be amortized
against the Ω((

√
x)1+α) elements required to split a subbox. We have to pay

for moving elements from the output buffers of the top level into the middle
buffer. This cost can be amortized against the Ω(x1+α/2) elements in the output
buffers. There are similar costs for the movement of element from the middle
buffer, through the lower level subboxes, and into the output buffer.

The costs outlined are known, except the random accesses to subboxes.
If all the upper level subboxes fit into memory, then the cost of random ac-
cesses becomes the minimum of performing the random accesses or simply
loading in the entire upper level into memory. A random access to the up-
per level is denoted UpperRA(x). If the upper level does not fit into mem-
ory we have UpperRA(x) = O(1

4x
1/2), and the cost becomes UpperRA(x) =

O(min{1
4x

1/2, x1+α/2/B}) if the upper level fits in memory. This cost can be
amortized against the Θ(x) elements inserted. We can analyze the two cases
using the tall cache assumption M = Ω(B2) of the cache oblivious model, see
Section 2.2.

1. Consider the case when the upper level does not fit into memory, that
is x1+α/2 = Ω(M) = Ω(B2). It follows that (1+α/2)√

x1+α/2 = x =
Ω((1+α/2)√

B2) = Ω(B2/(1+α/2)), and consequently x1/2 = Ω(B2/(2+α)).
The cost of the amortized random accesses becomes UpperRA(x)/x =
O(1

4x
1/2)/x = O(1/x1/2) = O(1/B2/(2+α)).

2. Consider the case when the upper level fits into memory, that is x1+α/2 =
O(M) = O(B2). We now have two subcases, one case where we can only
load in the upper level, that is x > B2/(1+α), and one case where we can
load the entire x-box into memory, meaning x ≤ B2/(1+α). In the first sub-
case we charge a constant number of I/Os pr. upper level subbox, and it
follows that UpperRA(x)/x = O(x1/2/x) = O(1/

√
x) = O(1/B1/(1+α)).

28

The second subcase we pay for reading in all the subboxes of the up-
per level and the cost becomes UpperRA(x)/x = O(x1+α/2/(B · x)) =
O(xα/2/B) = O((B2/(1+α))α/2/B) = O((Bα/(1+α))/B) = O((Bα/(1+α))
/B(1+α)/(1+α)) = O(B(α

1+α−
1+α
1+α)) = O(B−1/(1+α)) = O(1/B1/(1+α)).

BecauseO(1/B2/(2+α)) < O(1/B1+α) the cost becomes UpperRA(x)/x = O(1/B1+α).

Using a similar analysis for the lower level we get a cost of LowerRA(x) =
O(1

4x
1/2+α/2) if the lower level does not fit into memory, and LowerRA(x) =

O(min 1
4x

1/2+α/2, x1+α/B) if the lower level fits into memory. This can be
amortized against the Θ(x1+α/2) elements moved.

1. Consider the case when the lower level does not fit into memory, that is
x1+α = Ω(M) = Ω(B2). It follows that (1+α)√

x1+α = x = Ω((1+α)√
B2) =

Ω(B2/(1+α)), and consequently x1/2 = Ω(B(2/(1+α))1/2 = Ω(B1/(1+α)).
The cost of the amortized random accesses becomes LowerRA(x)/x1+α/2 =
O(1

4x
1/2+α/2)/x1+α/2 = O(1/x1/2) = O(1/B1/(1+α)).

2. Consider the case when the lower level fits into memory, that is x1+α =
O(M) = O(B2). As was the case with the upper level we have the same
two subcases of being able to load in the lower level or the entire x-box.
In the first subcase we charge a constant number of I/Os pr. lower level
subbox, and it follows that LowerRA(x)/x1+α/2 = O(x1/2+α/2/x1+α/2) =
O(1/x1/2) = O(1/B1/(1+α)). The second subcase we pay for reading in all
the subboxes of the lower level and the cost becomes LowerRA(x)/x1+α/2 =
O(x1+α/(B · x1+α/2)) = O(xα/2/B) = O(1/B1/(1+α)).

We now have all the pieces to calculate the total cost of Batch-Insert. To
summarize we have to pay for scanning the input buffer, random accesses to up-
per level subboxes, recursively calling Batch-Insert on upper level subboxes,
splitting subboxes when necessary (which is dominated by the cost of Flush
on each of the splitting subboxes), calling Flush on all upper level subboxes
to place their elements in their output buffers, moving elements from the up-
per level subboxes to the middle buffer, and repeating the entire process for
the movement from the middle buffer through the lower level to the output
buffer. All of the operations can be amortized against the number of elements
involved, or minimum number of elements between operations. This gives us
the following equation.

29

I(x) = O
(
x/B

x

)
+O

(UpperRA(x)
x

)
+ I(
√
x)

+O
(
F (
√
x)

x1/2+α/2

)
+O

(1
4x

1/2F (
√
x)

x1+α/2

)
+O

(
x1+α/2/B

x1+α/2

)
+O

(LowerRA(x)
x1+α/2

)
+ I(
√
x)

+O
(
F (
√
x)

x1/2+α/2

)
+O

(1
4x

1/2+α/2F (
√
x)

x1+α

)
+O

(
x1+α/B

x1+α

)
= O(1/B) +O

(UpperRA(x)
x

)
+O

(LowerRA(x)
x1+α/2

)
+O

(
F (
√
x)

x1/2+α/2

)
+ 2I(

√
x)

= O(1/B) +O(1/B1/(1+α))

+O
(
x1/2+α/2/B

x1/2+α/2

)
+ 2I(

√
x)

= O(1/B1/(1+α)) + 2I(
√
x)

As a base case for the recursion we incur no further cost when the box fits inside
a single block, that is x = O(B1/(1+α)). The recursion 2I(

√
x) was shown in

Lemma 6.3 to have a height of O(log log x) and the total cost becomes
O
(

2log log x−log logB1/(1+α)

B1/(1+α)

)
= O

(
2log log x

B1/(1+α)·2log logB1/(1+α)

)
= O

((1+α) log x
B1/(1+α) logB

)
= O((1 + α) logB(x)/B1/(1+α)).

6.4 Building a Dictionary out of x-boxes

Stacking x-boxes exponentially doubling in size to create an xDict we can sup-
port insertion and queries using the functions described above. The x-boxes are
linked together by sampling the lookahead pointers from the ith box’s input
buffer into the (i− 1)st box’s output buffer. The size of the ith x-box becomes
x = 2(1+α)i , and the height of the xDict becomes log1+α log2N .

To query an xDict we perform a Search on each x-box starting from the
topmost box. A call to Search on the ith box will provide the element or a
pointer into the (i+ 1)st box, enabling a Search on this box.

Theorem 6.6. The xDict supports online queries in O(1
α logB N

M) I/O’s.

Proof. The xDict is a series of x-boxes of height log1+α log2N . From Lemma 6.2
the cost of Search on a single x-box is O((1 + α) logB x) I/O’s. We sum over
the cost of calling Search on each box in the xDict structure.

30

log1+α log2N∑
i=0

O((1 + α) logB(2(1+α)i) = O
(

1 + α

log2B

log1+α log2 N∑
i=0

(1 + α)i
)

We know the three following properties.

1. (1+α)(log1+α log2 N)−j = log2 N
(1+α)j =⇒

log1+α log2N∑
j=0

(1+α)j ≤ log2N
∞∑
j=0

1
(1+α)j

2. The geometric series
∞∑
i=0

1
(1+α)i converges to

1+α
α

3. For 0 < α ≤ 1 we have (1 + α)2 = O(1)

This leads us to the equation.

1+α
log2B

log1+α log2N∑
i=0

(1+α)i ≤ (1+α) log2N
log2 B

∞∑
i=0

1
(1+α)i = (1+α)2

α logB N = O
(1
α logB N

)
Finally we note that an x-box of size x1+α = O(M) =⇒ x = O(M1/(1+α))
will fit in memory. In fact all x-boxes above the largest x-box that fulfills
this space requirement will fit in memory, as the size increases superexpo-
nentially. Thus O(M) memory can hold O(M) elements. Assuming these
elements are buffered in memory we finish the proof noting that the first
O(1

α logBM1/(1+α)) = O(1
α logBM) memory transfers come free, reducing the

cost to O(1
α logB N

M).

To insert an element into the xDict we insert it into the topmost box i = 0
of size x = O(1). This box is size O(1) and thus supports single insertions.
When the ith box reaches its full capacity of 1

22(1+α)i+1 we Flush it, placing
its real elements in its output buffer. These elements we Batch-Insert into
the (i + 1)st box. We continue in this manner, pushing elements down into
the xDict, until we reach the jth box, where the jth box is the first box that
can accommodate the inserted elements without reaching its capacity. Note
that the recursive Flush call will leave all boxes above the jth box empty. We
rebuild the lookahead pointers by calling Sample-Up on the (j − 1)st box and
upwards in the structure.

Theorem 6.7. The xDict supports single element insertions in amortized
O(1

α logB(NM)/B1/(1+α)) I/O’s.

Proof. From Theorem 6.5 the cost of Batch-Insert is amortized
O((1 +α) logB(x)/B1/(1+α)) I/O’s pr. element. We sum over the cost of calling
Batch-Insert on each box in the xDict structure. The analysis is identical
to Theorem 6.6, except we multiply all costs by O(1/B1/(1+α)). The cost of
Batch-Insert clearly dominates the cost of the following Sample-Up’s re-
quired to restore lookahead pointers to the xDict.

31

To match the lower bounds on insertion and query from Theorem 3.1 we need
to perform one final step. Setting α = ε

1−ε for 0 < ε < 1
2 we obtain that

1
α = 1−ε

ε = O(1
ε) and B1/(1+α) = B1−ε. Since α < 1 we can apply Theorem 6.6

and 6.7 to obtain a query bound of O(1
ε logB N

M) I/O’s, and an insert bound
of O(1

ε logB(NM)/B1−ε) I/O’s, which matches the lower bounds to within a
constant factor.

Recall that the tradeoff between Batch-Insert and Search on the x-box
did not exist (lower alpha is faster for both). As shown above there exists a
tradeoff between insertion and query for the xDict. The difference lies in α
directly effecting the height of the xDict, and thus the number of Search calls
on individual x-boxes we perform, as well as the size of the x-box at height
i in the xDict. For lower values of α the i’th x-box’s size decreases, but the
maximum height increases. The size of the largest x-box in the xDict, and as a
consequence the depth of that x-box’s recursion, increases as α decreases. Thus
the total number of layers across the entire xDict, and consequently the cost
of Search, increases as α decreases. Intuitively one would expect the cost of
Batch-Insert to similarly increase with the number of layers in the xDict.
Due to random accesses this is not the case. Intuitively we amortize the cost
of random accesses over more elements for lower values of α.

Deletion in the xDict is performed using global rebuilding. Upon a delete
we insert an anti element in the xDict, and every time the number of deletions
makes up half the number of updates we flush the xDict, gathering all elements
in the output buffer of the last x-box, and rebuild the structure.

An xDict containing N elements possibly contains an N -box using O(N1+α)
address space, dominating the space of the entire xDict. The N -box will store
N elements in the upper level, allowing us to compress the structure to N space
by removing the lower level and output buffer, as each subbox will use memory
linear in the number of elements stored in the subbox. Thus the entire xDict
use optimal O(N) space.

6.5 Implementation

The xDict was implemented using mmap to map a sparse file against an array
of longs. This allows us to ignore the parameters M and B, as pr. the Cache
Oblivious model, instead relying on the operating system to handle any I/O
calls. Each x-box is laid out recursively, with a cutoff point at x = 16 where an
x-box is represented in its base case of a single array of size x1+α. Note that at
x = 16 we have exactly one upper level subbox. Instead of relying on a boolean
array to indicate the use of a subbox we use an array of pointers to facilitate
fast subbox lookups, and to keep the array in sorted order with regards to the
partition imposed by the subboxes. Notice that a split will result in the addition
of a new subbox pointer to partition the above buffer. If the sole placement of
the minimum key of the subbox is to be kept in this subbox pointer we must
immediately insert it into the buffer following a split. Rather than this costly
approach we store alongside the array of pointers to subboxes a set of minimum
keys, restoring subbox pointers after we complete all of the insertions. Subboxes

32

are deleted by setting its pointer to zero.
We use a single sparse file to contain the xDict. Sparse files only allocates

blocks we write to. In our concrete example the space of the output buffer of
the largest x-box in the xDict might be empty. In this case it will take up only
one block of space, since we write −1 to the buffer to indicate its empty. We do
this for every buffer. Thus the input buffer of an x-box will only be allocated
in the file if we pushed elements through it, which is minimum 1

2x. The same
holds for the size of the remaining buffers. When a subbox splits it contains
O((
√
x)1+α) real elements and the space is O(x1/2+α/2). This will compress the

entire xDict structure to O(N) space.

33

34

7
Experimental Evaluation

In this section we experimentally evaluate and compare the data structures
implemented in the thesis. First we evaluate the cache aware structures, and
then we evaluate the cache oblivious xDictionary.

We implemented insertion and query for all structures, as well as deletion
for Modified B-Tree, Buffered B-Tree and Buffer Tree, the latter of which acted
as a prototype for Truncated Buffer Tree. Truncated Buffer Tree, as noted in
Section 5.3 does not support deletion, and consequently we did not perform
tests for deletion on the structures. Explicit internalization and externalization
was implemented for Modified B-Tree and Buffered B-Tree, and is used in the
tests. The structures were implemented in C++, and in total the structures
and prototypes consists of approximately 23.700 lines of code.

The tests were all performed on the same machine, for details we refer the
reader to Appendix B.1. The machine was set to only use a limited amount
of RAM, and we accordingly set the internal memory size M = 8MB and the
block size B = 128KB. The actual amount of free memory on the test machine
was 16MB, i.e. Θ(M). The datastructures use M and B in units of elements,
which will vary from data structure to data structure, with some using only
a key and value for each element, others using key, value and time. For the
cache aware structures these variables where all integers, while the xDictionary
uses longs. The range of N starts at a value at least fifty times larger than M ,
forcing the structures out into external memory. For these experiments N was
limited to 800 million elements, in order to complete the experiments within
the limits of the thesis.

Each experiment was run ten times, unless otherwise noted, and the average
value used. This was in order to filter out noise from background processes run-
ning on the test machine, as well as limiting the impact of randomness. While
a dictionary is intended to have unique keys, for testing purposes the struc-
tures where modified to handle elements with identical keys, after the initial
implementation. The universe size of the keys where set to size 2 · N , which
according to the theory of Balls and Bins [RS98] gives an expected maximum
collision of at most logN

log logN (1 − o(1)) elements. The chosen universe size is a
balance between the desire for unique elements and the desire for a random
query to find an element.

35

We have three different options for measuring the I/O performance of our
structures.

1. Calls we explicitly make in the program.

2. Calls the OS makes as it bundles our explicit calls.

3. Sectors read/written to disk.

Each of these options have their pros and cons. Option one accurately measures
the program flow, but does not take caching into account, and will thus not
reflect the actual work performed, nor will it be of any use for the cache oblivious
structure where we make no explicit I/O calls. Option two weighs calls to larger
blocks the same as calls to smaller blocks, and will thus not accurately reflect
the work carried out for a long scan. Option three will accurately measure the
work of a long scan, but will not accurately reflect the seek time to access many
widely distributed small blocks. We chose option three as the measure of I/O
performance, under the assumption that seek time is at most a factor two of
read/write. For details on how the data was collected we refer the reader to
Appendix B.2.

7.1 Modified B-Tree
In order to experimentally evaluate a Modified B-Tree we build a tree bottom
up by first sorting the elements using external merge sort. The nodes will be
given a fanout between 1

2B and 2B, except for the rightmost path of the tree
which may be left deform, that is with a fanout between 1 and 2B.

Theorem 5.1 stipulates that insertions on a Modified B-Tree costs
O(logB(NM)) = c · logB(NM). We divide the time and number of I/O’s with the
expected cost to see if they converge to a constant. Note that the measurements
is over one million insertions, which follows an initial one million insertions. In
the buffered structures we fill up buffers with the initial insertions and thus
pre-load the structure. To make the measurements on the Modified B-Tree
consistent with the buffered structure we therefore also pre-load the tree with
insertions before measuring.

Figure 7.1: Time pr. insertion di-
vided by expected logB(NM).

Figure 7.2: I/O’s pr. insertion di-
vided by expected logB(NM) I/O’s.

36

Figure 7.3: Continuous height of a
Modified B-Tree. Real height is the
ceiling of the continuous value.

Figure 7.4: Time pr. I/O operation.

Figure 7.1 shows that insertion time does not converge to a constant, and Figure
7.2 shows the same result for the number of I/O operations. The two graphs
do not follow the same curve, contrary to the assumption that the structure is
I/O bound.

From Figure 7.1 and 7.3 it is clear that the increase in insertion time follows
an increase in the external height of the tree.

The observation that Figures 7.1 and 7.2 do not follow the same curve, and
that the time pr. insertion increases more than we expect in practice, led me
to graph the time pr. I/O operation in Figure 7.4. The graph shows that
as the height increases so does the cost of each I/O operation. Notice that for
x = 28.5 the structure achieved an increase in height for one out of the ten runs,
hence the slight increase in time pr. I/O operation. Figure A.1 and A.2 does
not show the same increase in time pr. I/O for queries. The main difference
between insertion and query is that upon inserting we create, read and write to
files, whereas a query merely reads the present files. The filesystem ext4 indexes
the files with an Extent Tree [ext], a special B-Tree, of height O(log340(NB)). We
investigated the impact of this tree on the performance of creating and writing
to files.

Figure 7.5: Time pr. I/O writing
out files.

Figure 7.6: Time pr. I/O writing
out files.

37

For the given range of N we expect less than one hundred thousand files, which
is graphed in Figure 7.5. The time pr. I/O operation remains constant. The
graph in Figure 7.6 seems to be increasing, but note that it is merely increasing
to the same constant as in Figure 7.5. We thus conclude that the number of
files, and the Extent Tree used to index them, does not have an impact upon
the time pr. I/O operation.

Further inspection of the structure revealed that an optimization, where
upon insertion only nodes whose keys had changed would be written to disk,
had created a memory leak in the structure. The code responsible for cleaning
up the memory used to read in the node was placed in the function that wrote
the node back to disk. We changed the code to remove the memory leak and
reran the tests for a single run on each value of N .

Figure 7.7: Time pr. insertion di-
vided by expected logB(NM).

Figure 7.8: I/O’s pr. insertion di-
vided by expected logB(NM) I/O’s.

We observe in Figures 7.7 and 7.8 that insertion time now follows the number
of I/O operations more closely, but the insertion cost does not converge to a
constant.

We note that we only explicitly keep the root of the tree in internal memory,
since our parameters forM and B is such thatM < B2. Therefore we divide the
measured performance with expectedO(logB(NB)) = O(logB(N)), to investigate
if the failure to converge to a constant for expected O(logB(NM)) is due to not
utilizing the internal memory as a cache.

Figure 7.9: Time pr. insertion di-
vided by expected logB(N).

Figure 7.10: I/O’s pr. insertion di-
vided by expected logB(N) I/O’s.

38

Figures 7.9 and 7.10 shows that neither time nor number of I/O operations
converge to the new expected value. We observe that the curve in Figure 7.7
is declining and the curve in Figure 7.9 is inclining, and that consequently the
real time cost of insertion lies in between the two expected functions. Figure
7.8 and 7.10 are both declining, and consequently the real cost for I/O does not
lie in between the two expected costs, meaning the structure is not I/O bound,
contrary to theory.

Theorem 5.2 stipulates that an online query on a Modified B-Tree costs
O(logB(NM)) = c · logB(NM). We divide the measurements with the expected
cost to determine if they converge to a constant. Due to running these tests
after fixing the memory leak these tests were only run once.

Figure 7.11: Time pr. Query di-
vided with expected logB(NM)

Figure 7.12: I/O’s pr. query di-
vided with expected logB(NM)

Figures 7.7 and 7.12 shows that the query cost does not converge to a con-
stant. As we did with insertion we investigate if query cost follows expected
O(logB(N)) more closely.

Figure 7.13: Time pr. Query di-
vided with expected logB(NB)

Figure 7.14: I/O’s pr. query di-
vided with expected logB(NB)

Figures 7.13 and 7.14 shows that the query cost does not converge to expected
O(logB(N)) either.

39

Figure 7.15: Query time pr. ele-
ment.

Figure 7.16: Query I/O pr. ele-
ment.

Figures 7.15 and 7.16 shows that when we look at the raw data the query time
remains more or less constant, while the number of I/O operations increases.
This suggests that the query is not I/O bound, contrary to theory.

7.2 Buffered B-Tree

To evaluate the Buffered B-Tree we first measure the tradeoff between insertion
and query determined by the value δ, for logN < δ ≤ B logN , which for this
structure determines the fanout of the nodes. We set N = 800 million elements
and vary δ over the range for five evenly distributed values. We construct a
tree of size N minus one million bottom up using external merge sort to order
the elements. For each node we select a random fanout between δ

4 logN and
δ

logN , except for the rightmost path of the tree, where the fanout is between 1
and δ

logN . We then insert an additional one million elements to populate the
buffers in the tree and achieve the desired size of N elements. This forces the
insertions out into external memory and also caches random parts of the tree
in memory before measurements begin.

Figure 7.17: Insertion time pr. ele-
ment.

Figure 7.18: Insertion I/O pr. ele-
ment.

40

Figure 7.19: Query time pr. ele-
ment.

Figure 7.20: Query I/O pr. ele-
ment.

Figure 7.17 to 7.20 shows that the tree flattens out for any but the smallest
value of δ. Note an implementation detail for which all fanouts below two is
changed to a fanout between two and eight. For δ = logN = 29, which would
give a fanout of one, this special rule is applied, i.e. δ > logN . For such a low
fanout we keep several layers of nodes in internal memory, reducing the external
height. The external height of the tree for the remaining values of δ is two, with
only the root being kept in internal memory. To properly evaluate δ we would
have to measure the structure for much larger values ofN . We therefore proceed
with a fanout between two and eight, as it is the only interesting value within
the scope of our experiments.

Theorem 5.3 stipulates that the insertion cost for a Buffered B-Tree is
O(δ · NB) = c ·δ · NB . We divide the measured time and number of I/O operations
with the expected cost to determine if they converge to a constant.

Figure 7.21: Total time for one mil-
lion insertions divided by expected
δ · 1mil

B .

Figure 7.22: Total I/O’s for one mil-
lion insertions divided by expected
δ · 1mil

B I/O’s.

Figures 7.21 and 7.22 shows that while the insertion time and number of I/O’s
fluctuate they are not dependent on the height of the tree. This is consistent
with theory. The fluctuation can be caused by the randomness of the con-
struction and subsequent insertions. Further testing is needed to conclusively
remove noise and prove that the insertion cost converges to a constant.

41

Theorem 5.4 stipulates that the query cost of a Buffered B-Tree is
O(logδ/ logN (NM)), or with our specific parameters c · log8(NM). We divide the
measurements with the expected time to determine if the query cost converges
to a constant.

Figure 7.23: Time pr. query di-
vided by expected log8(NM). Figure 7.24: I/O’s pr. query di-

vided by expected log8(NM) I/O’s.

We observe in Figures 7.23 and 7.24 that the query does not converge to a
constant.

During insertion we placed two million elements in the buffers of the tree.
A subsequent query for any of these elements will return faster than a query
for a non existing element. If the inserted elements can not fill out the external
buffers then lower values for N will have proportionally more elements residing
in the buffers, and will consequently query faster. The minimum number of
elements to fill out the buffers of the tree for the lowest value of N is 5.6
million elements. The non-proportionally full buffers creates a lot of noise in
the measurements.

The query does not converge to N , log8(NB), log2
8(NB) or

√
N . The conclusion

is that there is too much noise from the buffers on the relatively few queries to
determine the real cost of queries.

Figure 7.25: Time pr. special query
divided by expected log8(NM).

Figure 7.26: I/O’s pr. special query
divided by log8(NM) I/O’s.

The special query described in Section 5.2.1 where we "soft"-flush the buffers as

42

we traverse down the tree, to speed up future queries, does not converge to a
constant. Nor do we see a decrease in query time when comparing Figures 7.23
and 7.25. Figures 7.24 and 7.26 confirms that the "soft"-flush does not decrease
the I/O’s pr. query either. The curve of the two graphs suggests that the special
query is I/O bound. Performing only 10.000 queries is a sufficient amount of
queries to flush the entire tree for low N (#leafs = N

B = 4578 for N = 50mil),
and too few queries to flush the entire tree for high N (#leafs = N

B = 73247 for
N = 800mil). We conclude that we perform too few queries to subsequently
take advantage of the speedup in query, as both time and number of I/O’s
increases with the special query compared to the regular query for all N .

7.3 Truncated Buffer Tree

In order to experimentally evaluate Truncated Buffer Tree we build a tree by
direct insertions and measure the tradeoff between insertion and query deter-
mined by the value of δ. For this structure δ is the height of the tree. We set
N = 800 million elements and vary δ from one to four. In the following sub-
section δ = 1 is a tree consisting of a single buffered node with a single bucket
beneath it.

Figure 7.27: Insertion time pr. ele-
ment.

Figure 7.28: Insertion I/O’s pr. el-
ement.

Figure 7.29: Query time pr. ele-
ment

Figure 7.30: Query I/O pr. element

43

Figures 7.27 to 7.30 shows that as δ increases the cost of insertion goes up and
the cost of query goes down. This is consistent with theory. Note that there is
no difference between δ = 3 and δ = 4, as the tree never achieves the required
height.

There seems to be no direct correlation between time and number of I/O’s
for both insertion and query, suggesting the structure is not I/O bound. Several
factors might contribute to this result. When δ = 1, the top of the single bucket
will be cached for queries. Furthermore theM elements contained in each buffer
results in a faster query for these elements. Higher δ results in more buffers and
thus more "cheap" elements. This will obfuscate the measurements of queries.
For insertions lower values of δ results in larger buckets and fewer splits, but
a split will carry a larger cost. The way we count I/O operations we consider
a larger split equal to several smaller splits, as long as the same amount of
elements are involved, but this fails to take into account the increased seek
time of the smaller splits.

Excluding δ = 1, because it is merely fractional cascading with a buffer, we
pick δ = 4 to proceed with, being of interest as it will in practice be expected
to behave similar to a Buffered B-Tree, with a different leaf structure.

Theorem 5.5 stipulates that insertion into a Truncated Buffer Tree costs
O(δ · NB) = c · δ · NB . We divide the measured time with the expected time to
determine if it converges to a constant.

Figure 7.31: Insertion time divided
by expected δ · NB .

Figure 7.32: Insertion I/O’s divided
by expected δ · NB .

From Figure 7.31 and 7.32 we conclude that the cost of insertion does not
converge to a constant. The two graphs do not follow the same curve to a
degree where we can conclude insertion to be I/O bound.

The structure with the given value for δ will in practice behave like a Buffer
Tree, i.e. we do not cut insertions off before reaching size O(M) of a bucket. We
therefore divide the data with the expected insertion time of O(NB logM/B(NB))
from a Buffer Tree.

44

Figure 7.33: Insertion time divided
by expected N

B logM/B(NB).
Figure 7.34: Insertion I/O’s divided
by expected N

B logM/B(NB).

Figure 7.34 is possibly converging to a constant for the number of I/O oper-
ations, but we need more runs on larger sets of data to remove the noise and
make any conclusions. Figure 7.33 does not seem to converge to a constant.

Theorem 5.6 stipulates the query cost of Truncated Buffer Tree to be
O(N/(M(MB)Ω(δ))) = c ·N/(M(MB)δ−1). Notice that we use δ−1 since we want
δ = 1 to give a bucket size of N . The maximum bucket size is N/(M(MB)δ−1) <
1. The bucket size is obviously rounded up. We divide the measured cost with
the expected cost to determine if it converges to a constant.

Figure 7.35: Time pr. query di-
vided by expected N/(M(MB)3).

Figure 7.36: I/O’s pr. query di-
vided by expected N/(M(MB)3).

Figures 7.35 and 7.36 does not converge to a constant This is not surprising, as
we showed in Theorem 5.6 that we need N ≥M · (MB)cδ, for c > 1, in order for
the buckets to dominate the scanning of the buffers in the tree. For our specific
parameters, and c = 1, we require N ≥ 183, 251, 937, 963 elements before the
buckets dominates the buffers.

45

Figure 7.37: Time pr. query di-
vided by expected M

B logM/B(NB).
Figure 7.38: I/O’s pr. divided by
expected M

B logM/B(NB) I/O’s.

We investigate whether the query cost converges to a constant for scanning the
buffers in the tree. Figures 7.37 and 7.38 shows the that query cost does not
converge to a constant.

Like in Buffered B-Trees any elements contained in the buffers will return
quickly. This creates noise for the query measurements. Unlike Buffered B-
Trees all the buffers contain elements, and the number of elements contained
in the buffers is proportional to the size of the tree, due to construction being
direct insertions on the structure. The low number of queries combined with the
elements in the buffers still creates too much noise to determine the true cost of
the queries. However, we observe that Figure 7.35 is declining and Figure 7.37
is inclining, thus the true cost of query lies in between the two expectations.
The same observation holds for Figures 7.36 and 7.38.

7.4 xDict

In order to experimentally evaluate the xDict data structure we first measure
the tradeoff between insertion and query determined by the value of 0 < α ≤ 1.
We build up the xDict by direct insertion. We perform this initial test at only
N = 10 million elements to verify the structures correctness.

Figure 7.39: Insertion time pr. ele-
ment.

Figure 7.40: Insertion I/O’s pr. el-
ement.

46

Figure 7.41: Query time pr. ele-
ment.

Figure 7.42: Query I/O’s pr. ele-
ment

Notice that Figure 7.39 to 7.42 cuts α of at 0.3. The file system limits the
virtual address space to 16TB, which we exceed for N = 10 million and
α = 0.4. We observe that the insertion cost flattens out in Figure 7.39 and
7.40. This is due to the structure quickly constructing an x-box capable of
containing all of the insertions. For α = 0.1 the xDict pushes the elements
through 33 x-boxes before it settles the elements in a single x-box. For α =
0.2 the height is 18, and α = 0.3 the height is 12. Consistent with theory we
observe in Figure 7.41 that the query time goes down as α goes up. Figure 7.42
shows that the query I/O’s does not correspond to the query time. A possible
explanation is the low value of N we conduct the test at, meaning large parts
of the structure is cached.

Mindful of the restriction imposed on the virtual address space by the file
system we proceed the testing of the xDict data structure with α = 0.2, since
this value offers the best tradeoff between insertion time and virtual space usage.
For N = 800 million elements we will expect a virtual address space of roughly
136GB, all constants included.

This is where the experiment ran into trouble. Memory mapping will utilize
all of the available memory. When a background task, such as the kernel will
continuously run, requires memory, the logical step is to wait for the memory
mapping to release memory, by writing to the mapped file. This logical solution
is the outcome the majority of the time, but the system might falsely determine
itself out of memory and run a check on each process instead. This check will
observe the memory mapping utilizing most of the non-kernel memory, as well
as our doubly exponential virtual space, which equates to a high kill priority,
and accordingly kill the process. Stack traces of the system at the point in time
where the process was killed confirmed it was the kernel request for memory,
most often a fork, leading to the OOM killer procedure being run. To quote
[mem] directly "Unfortunately, it is possible that the system is not out memory
and simply needs to wait for IO to complete or for pages to be swapped to
backing storage." We attempted to rectify the issue by giving the system 16MB
additional free memory, which allowed us to complete tests with N = 100
million elements. To reach N = 200 million elements, and thus a longer running
time in which it could experience the issue, the server needed 256MB of memory,
with 93MB available to the process. Still, upon checking whether the tests

47

completed via. SSH we would kill the process with the memory request needed
to handle the login. Four attempts at N = 400 million elements thus failed,
each being given a day to complete, and we abandoned this line of experiments.

The experiments so far have been exploratory experiments where we increase
N exponentially. We switched to linear experiments where we document the
data structure across a linear range of N . This type of experiment is better
at documenting the behavior of a structure, at the price of a narrow range of
coverage. We conducted two types of experiments: With the server restricted to
128MB (16MB free) of memory we linearly explored the range of N = 1 million
elements to N = 50 million elements, in steps of one million elements, and with
the server restricted to 256MB (93MB free) of memory we linearly explored the
range of N = 10 million elements to N = 200 million elements, in steps of ten
million elements.

Theorem 6.7 stipulates the amortized insertion cost of the xDict to be
O(1

α logB(NM)/B1/(1+α)). We divide by the expected cost to determine if it
converges to a constant.

Figure 7.43: Insertion time pr.
element divided by expected
1
α logB(NM)/B1/(1+α) on an xDict
with 128MB system memory.

Figure 7.44: Insertion I/O’s pr.
element divided by expected
1
α logB(NM)/B1/(1+α) on an xDict
with 128MB system memory.

Figure 7.45: Insertion time pr.
element divided by expected
1
α logB(NM)/B1/(1+α) on an xDict
with 256MB system memory.

Figure 7.46: Insertion I/O’s pr.
element divided by expected
1
α logB(NM)/B1/(1+α) on an xDict
with 256MB system memory.

48

Figures 7.43 to 7.46 shows that the structure behaves exactly as we would
expect. The insertion cost moves in waves, the peaks of which are when we
create a new x-box in the xDict. The lows that follows such peaks is due to the
top x-boxes of the xDict being empty, thus allowing for cheap insertions. The
noise in between the peaks are the elements being pushed down the height of the
xDict in steps. Notice that our granularity of measurements does not capture
the exact time of peaks and lows, creating a variance in the lows particularly.

The insertion time does not follow the insertion I/O perfectly. When we
insert elements into the top of the xDict they will be free in terms of I/O
operations, but will still incur a cost in time. Generally we can see the time
and I/O cost peak at the same intervals, and the structure is thus I/O bound.

Theorem 6.6 stipulates the query cost of the xDict to be O(1
α logB(NM)).

We divide by the expected cost to determine if it converges to a constant.

Figure 7.47: Query time pr.
element divided by expected
1
α logB(NM)/B1/(1+α) on an xDict
with 128MB system memory.

Figure 7.48: Query I/O’s pr.
element divided by expected
1
α logB(NM)/B1/(1+α) on an xDict
with 128MB system memory.

Figure 7.49: Query time pr.
element divided by expected
1
α logB(NM)/B1/(1+α) on an xDict
with 256MB system memory.

Figure 7.50: Query I/O’s pr.
element divided by expected
1
α logB(NM)/B1/(1+α) on an xDict
with 256MB system memory.

Figures 7.47 to 7.50 shows a seemingly random cost of queries. However, we
can reason that the query cost follows the underlying structure of the xDict

49

closely. When the elements in the xDict is pushed down into the last x-box
the query will effectively follow a single path down to the last x-box. The path
might diverge slightly from the single path, but in practice only to a constant.
This path we cache in memory, and thus we arrive, for free I/O wise, at the
last x-box, with a pointer into it that allows for an almost direct lookup into
the correct subbox. Any additional elements inserted into the topmost part of
the xDict we also query for free, I/O wise. Thus we, generally speaking, have
two cases. One case where the elements of the xDict are located at the top
and bottom, allowing for cheap queries, and another case where the elements
are distributed throughout the xDict, meaning we can not utilize the cached
memory of one query in the next query to the same effect. The Figures 7.48
and 7.50 shows this almost binary behavior. The time measured in Figures 7.47
and 7.49 do not show the same behavior as clearly as the measurements of I/O,
as traversing the height of the structure in cached memory still requires time.

The structure is I/O bound for the query, as the peaks of time and I/O
occurs at the same points of measurement. This is more evident in Figures 7.49
and 7.50 than in Figures 7.47 and 7.48. The cause is the increased size of M
for the former query. The increase in depth of the structure containing N =200
million elements over the structure containing N = 50 million elements is less
than the increase in M , thus allowing for additional caching of query paths
down the height of the structure.

7.5 Comparison of Data Structures

We compare the time for insertions and query on the three cache aware data
structures directly.

Figure 7.51: Direct comparison of
insertion time for the cache aware
structures.

Figure 7.52: Direct comparison of
query time for the cache aware
structures.

Figure 7.51 shows, as expected, that insertions on the Modified B-Tree are
more costly than insertion on the other structures, consistent with theory. The
insertion time of the Buffered B-Tree is slower in theory than insertions on the
Truncated Buffertree. However, in practice we inserted too few elements in
the Buffered B-Tree for the true cost to be properly measured, as the inserted

50

elements never filled out the trees buffers.
Figure 7.52 shows the ordering of query time in practice follows the theo-

retical ordering between the three cache aware structures.

Figure 7.53: Direct comparison of
insertion I/O for the cache aware
structures.

Figure 7.54: Direct comparison of
query I/O for the cache aware struc-
tures.

Figure 7.53 shows the same trend as in Figure 7.51, that as expected insertions
on the Modified B-Tree are more costly than insertion on the other structures,
consistent with theory. Unlike Figure 7.51 we see in Figure 7.53 Truncated
Buffer Tree being less costly than Buffered B-Tree. Consequently we spend
more time pr. I/O performing calculations on the fetched data in a Truncated
Buffer Tree than we do in a Buffered B-Tree.

In Figure 7.54 we observe that the relative query I/O cost amongst the
three data structures is not consistent with theory. However, we also observe
that the increasing tendency in Buffered B-Tree looks to correct this for larger
N . Relative to Figure 7.52 we observe that Buffered B-Tree is inefficient with
regards to time spent pr. I/O operation compared to Modified B-Tree. This
suggests that the buffers of the Buffered B-Tree are expensive to process time
wise, the buffers being the main difference between the two structures.

Next we compare the cache oblivious xDict to the cache aware Modified
B-Tree. The test did not complete before the end of the thesis, and thus we
only provide partial data.

Figure 7.55: Direct comparison of
insertion time.

Figure 7.56: Direction comparison
of insertion I/O.

51

Figures 7.55 and 7.56 shows the insertions on the xDict to be less costly than
on the Modified B-Tree. The tradeoff parameter α = 0.2 tuned the xDict for
faster updates, and the result is as expected.

Figure 7.57: Direct comparison of
query time.

Figure 7.58: Direct comparison of
query I/O.

Figure 7.57 shows a faster query time for the xDict over the Modified B-Tree.
This result is contrary to theory. To explain the result we turn to Figure 7.58
which shows the I/O cost to be roughly equal once the Modified B-Tree goes into
external memory. The cache oblivious structure remains external throughout
the graphs, due to an increased element size. The cache oblivious structure is
theoretically optimal for all layers of the memory hierarchy, not just the two
layers we are observing. Thus it will perform less work pr. I/O in the lower
levels of the memory hierarchy. This results in a faster query time.

Figure 7.57 allows us to draw direct comparisons to Figure 7.52. Granted
the range of N does not overlap, however, we can make the conjecture that it
is likely that xDict queries faster than all the cache aware data structures.

52

8
Conclusion

In this thesis we described the theory of the data structures from [BF03a] and
[BDF+10] in Sections 5 and 6 respectively. We implemented the structures and
experimentally evaluated and compared them in Section 7.

The main result of the thesis was documenting that the measured time and
I/O operations for insertion and query on the xDict follows the expected cost
described by the theory, which is O(1

α logB(NM)/B1/(1+α)) and O(1
α logB N

M)
respectively. This is not a given, as the Cache Oblivious Model makes several
assumptions that may not hold true in practice, see Section 2.2. We were not
able to properly evaluate the tradeoff constant α for large N , as the underlying
file system did not support the virtual space required.

Secondary results was the experimental evaluation of the Modified B-Tree,
the Buffered B-Tree, and the Truncated Buffer Tree, and subsequent comparison
between the cache aware structures, and the incomplete comparison between
the cache oblivious xDict and the cache aware Modified B-Tree.

The direct comparison between the xDict and Modified B-Tree, although
incomplete, showed that the cache oblivious structure is competitive. The cache
oblivious structure performed less work (time) pr. I/O in our test, suggesting
it is more efficient in the lower layers of the memory hierarchy.

The otherwise thorough testing of Modified B-Tree contained a memory
leak, and subsequently the time schedule only left room for a single test.
This single test showed insertion cost to converge to between O(logB(NM)) and
O(logB(N)) pr. insertion. The same test showed query cost to remain nearly
constant. Further testing is needed to properly evaluate the Modified B-Tree.

The Buffered B-Tree evaluation showed that insertion cost converges to
O(δ · 1

B) pr. insertion, as described in theory. We did however not perform
enough insertions to fill out the buffers of the tree, which created noise on the
query cost. Consequently the query cost did not converge to the expected time,
nor did the implemented special query speed up our query time. For the tradeoff
parameter δ the tradeoff showed insertion cost go up for larger values of δ, and
the query cost need testing on larger values of N to be properly evaluated.

The Truncated Buffer Tree evaluation showed the need to test on larger val-
ues of N to properly evaluate the tradeoff parameter δ. We therefore proceeded
with δ = 4, to evaluate the structure as a Buffer Tree with extended leafs. The

53

insertion cost is possibly converging to the expected O(1
B logM/B(NB)) pr. inser-

tion. Further testing is needed to conclusively remove noise. The evalutation
of the query cost showed that the extended leaf size influenced query cost such
that they did not converge to expected O(MB logM/B(NB)) pr. query, nor did we
reach a number of insertions sufficient for the fractional cascading in the leafs to
dominate the cost of the query, which is consistent with theory as this requires
N ≥M · (MB)cδ for c > 1, a value we never reached.

Comparing the three cache aware structures directly we noted that the
relative insertion and query time for Modified B-Tree to the other structures
behaved as the theory describes. The relative query cost between Buffered B-
Tree and Truncated Buffer Tree was likewise consistent with theory, however,
their insertion cost remained almost identical. This is due to too few insertions
in the test setup for Buffered B-Tree. Further testing is thus needed to properly
compare the insertion costs of the two structures directly.

Comparing the query I/O cost of the three cache aware structures the evalu-
ation showed we did not reach a large enough value of N . The insertion I/O cost
showed that contrary to theory the Buffered B-Tree required fewer I/O’s than
the Truncated Buffer Tree. This is due to an insufficient number of insertions
in the test setup for the Buffered B-Tree.

8.1 Future Work
Outlined in the above conclusion is the need for additional testing on several
structures to remove noise or expand the evaluation to larger values of N ,
particularly to properly evaluate the tradeoff parameters.

It would be of interest to measure the performance of the xDict structure
on other levels in the memory hierarchy than the movement of data between
internal memory and harddisk drives.

Similarly it would be of interest to confirm the conjecture that the wave
like behavior of insertion of an xDict observed in Section 7 is caused by an
increase in the number of x-boxes in the structure, and likewise confirm that
the "binary" behavior of the query on an xDict is caused by the allocation of
elements to the top and bottom of the xDict.

54

Bibliography

[AADHM03] Pankaj K. Agarwal, Lars Arge, Andrew Danner, and Bryan
Holland-Minkley. Cache-oblivious Data Structures for Orthogonal
Range Searching. In Proceedings of the Nineteenth Annual Sympo-
sium on Computational Geometry, SCG ’03, pages 237–245, New
York, NY, USA, 2003. ACM. doi:10.1145/777792.777828.

[ABD+02] Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-
Minkley, and James I. Munro. Cache-oblivious Priority Queue
and Graph Algorithm Applications. In Proceedings of the Thiry-
fourth Annual ACM Symposium on Theory of Computing, STOC
’02, pages 268–276, New York, NY, USA, 2002. ACM. doi:10.
1145/509907.509950.

[AH74] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of
Computer Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1974.

[Arg95] Lars Arge. The Buffer Tree: A New Technique for Optimal I/O-
Algorithms (Extended Abstract). In Proceedings of the 4th In-
ternational Workshop on Algorithms and Data Structures, WADS
’95, pages 334–345, London, UK, 1995. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=645930.672850.

[ASV88] Alok Aggarwal and Jeffrey S. Vitter. The Input/Output Complex-
ity of Sorting and Related Problems. Commun. ACM, 31(9):1116–
1127, 1988. doi:10.1145/48529.48535.

[BBF+11] Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg,
Dongdong Ge, Simai He, Haodong Hu, John Iacono, and Ale-
jandro López-Ortiz. The Cost of Cache-Oblivious Search-
ing. Algorithmica, 61(2):463–505, Oct 2011. doi:10.1007/
s00453-010-9394-0.

[BDF+10] Gerth S. Brodal, Erik D. Demaine, Jeremy T. Fineman, John Ia-
cono, Stefan Langerman, and James I. Munro. Cache-oblivious
Dynamic Dictionaries with Update/Query Tradeoffs. In Pro-
ceedings of the Twenty-first Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’10, pages 1448–1456, Philadelphia,
PA, USA, 2010. Society for Industrial and Applied Mathe-
matics. URL: http://dl.acm.org/citation.cfm?id=1873601.
1873718.

55

http://dx.doi.org/10.1145/777792.777828
http://dx.doi.org/10.1145/509907.509950
http://dx.doi.org/10.1145/509907.509950
http://dl.acm.org/citation.cfm?id=645930.672850
http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1007/s00453-010-9394-0
http://dx.doi.org/10.1007/s00453-010-9394-0
http://dl.acm.org/citation.cfm?id=1873601.1873718
http://dl.acm.org/citation.cfm?id=1873601.1873718

[BDFC00] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton.
Cache-oblivious B-trees. In Proceedings 41st Annual Symposium
on Foundations of Computer Science, pages 399–409, 2000. doi:
10.1109/SFCS.2000.892128.

[BDIW02] Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu.
A Locality-preserving Cache-oblivious Dynamic Dictionary. In
Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’02, pages 29–38, Philadelphia,
PA, USA, 2002. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=545381.545385.

[BF02a] Gerth S. Brodal and Rolf Fagerberg. Cache Oblivious Distribution
Sweeping. In Proceedings of the 29th International Colloquium
on Automata, Languages and Programming, ICALP ’02, pages
426–438, London, UK, UK, 2002. Springer-Verlag. doi:10.1007/
3-540-45465-9_37.

[BF02b] Gerth S. Brodal and Rolf Fagerberg. Funnel Heap - A Cache
Oblivious Priority Queue. In Proceedings of the 13th International
Symposium on Algorithms and Computation, ISAAC ’02, pages
219–228, London, UK, UK, 2002. Springer-Verlag. doi:10.1007/
3-540-36136-7_20.

[BF03a] Gerth S. Brodal and Rolf Fagerberg. Lower Bounds for Exter-
nal Memory Dictionaries. In Proceedings of the Fourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03,
pages 546–554, Philadelphia, PA, USA, 2003. Society for Indus-
trial and Applied Mathematics. URL: http:/doi.acm.org/10.
1145/644108.644201.

[BF03b] Gerth S. Brodal and Rolf Fagerberg. On the Limits of Cache-
obliviousness. In Proceedings of the Thirty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’03, pages 307–315,
New York, NY, USA, 2003. ACM. doi:10.1145/780542.780589.

[BF06] Gerth S. Brodal and Rolf Fagerberg. Cache-oblivious String Dic-
tionaries. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, pages 581–590,
Philadelphia, PA, USA, 2006. Society for Industrial and Ap-
plied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=1109557.1109621.

[BFCF+07] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman,
Yonatan R. Fogel, Bradley C. Kuszmaul, and Jelani Nelson.
Cache-oblivious Streaming B-trees. In Proceedings of the Nine-
teenth Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, SPAA ’07, pages 81–92, New York, NY, USA, 2007.
ACM. doi:10.1145/1248377.1248393.

56

http://dx.doi.org/10.1109/SFCS.2000.892128
http://dx.doi.org/10.1109/SFCS.2000.892128
http://dl.acm.org/citation.cfm?id=545381.545385
http://dx.doi.org/10.1007/3-540-45465-9_37
http://dx.doi.org/10.1007/3-540-45465-9_37
http://dx.doi.org/10.1007/3-540-36136-7_20
http://dx.doi.org/10.1007/3-540-36136-7_20
http:/doi.acm.org/10.1145/644108.644201
http:/doi.acm.org/10.1145/644108.644201
http://dx.doi.org/10.1145/780542.780589
http://dl.acm.org/citation.cfm?id=1109557.1109621
http://dl.acm.org/citation.cfm?id=1109557.1109621
http://dx.doi.org/10.1145/1248377.1248393

[BFJ02] Gerth S. Brodal, Rolf Fagerberg, and Riko Jacob. Cache Obliv-
ious Search Trees via Binary Trees of Small Height. In Proceed-
ings of the Thirteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’02, pages 39–48, Philadelphia, PA, USA,
2002. Society for Industrial and Applied Mathematics. URL:
https://dl.acm.org/citation.cfm?id=545386.

[BFM05] Gerth S. Brodal, Rolf Fagerberg, and Gabriel Moruz. Cache-
Aware and Cache-Oblivious Adaptive Sorting. In Automata,
Languages and Programming, pages 576–588, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. doi:10.1007/11523468_47.

[BFV08] Gerth S. Brodal, Rolf Fagerberg, and Kristoffer Vinther. En-
gineering a Cache-oblivious Sorting Algorithm. J. Exp. Algo-
rithmics, 12:2.2:1–2.2:23, June 2008. doi:10.1145/1227161.
1227164.

[BKR12] Gerth S. Brodal and Casper Kejlberg-Rasmussen. Cache-
Oblivious Implicit Predecessor Dictionaries with the Working-
Set Property. In 29th International Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2012), volume 14 of
Leibniz International Proceedings in Informatics (LIPIcs), pages
112–123, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2012.
112.

[BKRT10] Gerth S. Brodal, Casper Kejlberg-Rasmussen, and Jakob Tru-
elsen. A Cache-Oblivious Implicit Dictionary with the Work-
ing Set Property. In Algorithms and Computation, pages 37–
48, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-17514-5_4.

[BM72] Rudolf Bayer and Edward M. McCreight. Organization and Main-
tenance of Large Ordered Indexes. Acta Informatica, 1(3):173–
189, 1972. doi:10.1007/BF00288683.

[CG86a] Bernard. Chazelle and Leonidas J. Guibas. Fractional cascading:
I. A data structuring technique. Algorithmica, 1:133–162, 1986.
doi:10.1007/BF01840440.

[CG86b] Bernard. Chazelle and Leonidas J. Guibas. Fractional cascading:
II. Applications. Algorithmica, 1:163–191, 1986. doi:10.1007/
BF01840441.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Third Edition. The
MIT Press, 3rd edition, 2009.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded Ran-
dom Access Machines. In Proceedings of the Fourth Annual ACM

57

https://dl.acm.org/citation.cfm?id=545386
http://dx.doi.org/10.1007/11523468_47
http://dx.doi.org/10.1145/1227161.1227164
http://dx.doi.org/10.1145/1227161.1227164
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.112
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.112
http://dx.doi.org/10.1007/978-3-642-17514-5_4
http://dx.doi.org/10.1007/978-3-642-17514-5_4
http://dx.doi.org/10.1007/BF00288683
http://dx.doi.org/10.1007/BF01840440
http://dx.doi.org/10.1007/BF01840441
http://dx.doi.org/10.1007/BF01840441

Symposium on Theory of Computing, STOC ’72, pages 73–80,
New York, NY, USA, 1972. ACM. doi:10.1145/800152.804898.

[ext] ext4 Extent Tree. URL: https://ext4.wiki.kernel.org/
index.php/Ext4_Disk_Layout#Extent_Tree.

[FG03] Gianni Franceschini and Roberto Grossi. Optimal Worst-
Case Operations for Implicit Cache-Oblivious Search Trees.
In Algorithms and Data Structures, pages 114–126, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. doi:10.1007/
978-3-540-45078-8_11.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. Cache-Oblivious Algorithms. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’99, pages 285–288, Washington, DC, USA, 1999.
IEEE Computer Society. URL: http://dl.acm.org/citation.
cfm?id=795665.796479.

[IP12] John Iacono and Mihai Pătraşcu. Using Hashing to Solve the
Dictionary Problem. In Proceedings of the Twenty-third An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12,
pages 570–582, Philadelphia, PA, USA, 2012. Society for In-
dustrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=2095116.2095164.

[mem] Memory Rules of the Linux Kernel. URL: https://www.kernel.
org/doc/gorman/html/understand/understand016.html.

[MH82] Kurt Melhorn and Scott Huddleston. A New Data Structure for
Representing Sorted Lists. Acta Informatica, 17:157–184, 1982.
doi:10.1007/BF00288968.

[pro] proc/diskstats on Linux. URL: https://www.kernel.org/doc/
Documentation/ABI/testing/procfs-diskstats.

[Pro99] Harald Prokop. Cache-Oblivious Algorithms. Master’s The-
sis, Massachusetts Institute of Technology, 1999. URL: http:
//supertech.csail.mit.edu/papers/Prokop99.pdf.

[RS98] Martin Raab and Angelika Steger. "Balls into Bins" - A Simple
and Tight Analysis. In Proceedings of the Second International
Workshop on Randomization and Approximation Techniques in
Computer Science, RANDOM ’98, pages 159–170, London, UK,
UK, 1998. Springer-Verlag. doi:10.1007/3-540-49543-6_13.

[Sib99] Jop F. Sibeyn. External Selection. In Proceedings of the 16th
Annual Conference on Theoretical Aspects of Computer Science,
STACS’99, pages 291–301, Berlin, Heidelberg, 1999. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=1764891.
1764929.

58

http://dx.doi.org/10.1145/800152.804898
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Extent_Tree
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Extent_Tree
http://dx.doi.org/10.1007/978-3-540-45078-8_11
http://dx.doi.org/10.1007/978-3-540-45078-8_11
http://dl.acm.org/citation.cfm?id=795665.796479
http://dl.acm.org/citation.cfm?id=795665.796479
http://dl.acm.org/citation.cfm?id=2095116.2095164
http://dl.acm.org/citation.cfm?id=2095116.2095164
https://www.kernel.org/doc/gorman/html/understand/understand016.html
https://www.kernel.org/doc/gorman/html/understand/understand016.html
http://dx.doi.org/10.1007/BF00288968
https://www.kernel.org/doc/Documentation/ABI/testing/procfs-diskstats
https://www.kernel.org/doc/Documentation/ABI/testing/procfs-diskstats
http://supertech.csail.mit.edu/papers/Prokop99.pdf
http://supertech.csail.mit.edu/papers/Prokop99.pdf
http://dx.doi.org/10.1007/3-540-49543-6_13
http://dl.acm.org/citation.cfm?id=1764891.1764929
http://dl.acm.org/citation.cfm?id=1764891.1764929

[Tar85] Robert E. Tarjan. Amortized Computational Complexity. SIAM
Journal on Algebraic and Discrete Methods, 6(2):306–318, 1985.
doi:10.1137/0606031.

59

http://dx.doi.org/10.1137/0606031

60

A
Additional Graphs

Figure A.1: Time pr. Query di-
vided with expected c · log2B(NM),
for Modified B-Trees before fixing
the memory leak.

Figure A.2: I/O’s pr. query divided
with expected c·log2B(NM) I/O’s, for
Modified B-Trees before fixing the
memory leak.

61

62

B
Technical Information

B.1 Test Machine

The test machine used in the thesis is named Raleigh and is located in the
MADALGO server room.

The software installed on Raleigh is Linux Kernel 3.16.0-31 and Ubuntu
14.04.1. The relevant hardware is as follows. CPU - Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz - 4 physical and 8 logical cores. L1 32KB, L2 256KB, L3 8MB.
The machine contains several hard disk drives. The harddisk drive utilized in
the thesis has a minimum block size of 4096 bytes.

The machine was booted in recovery mode with the memory restricted,
typically 128MB, of which 16MB is available to the user. There is no swap
space available to the operating system, granting us more control of the memory
utilized.

The programs where compiled on a separate x86_64 machine running Ubuntu
16.04.9, using GCC version 5.4.0 and CMAKE version 3.8. The libraries (stan-
dard only) where statically compiled with the program.

B.2 I/O Data Collection

I/O data is collected from the "file" /proc/diskstats. The kernel conveniently
allows access to disk I/O data through this file like API. The data is represented
with a line for each disk containing the following data [pro]:

1. major number

2. minor mumber

3. device name

4. reads completed successfully

5. reads merged

6. sectors read

63

7. time spent reading (ms)

8. writes completed

9. writes merged

10. sectors written

11. time spent writing (ms)

12. I/Os currently in progress

13. time spent doing I/Os (ms)

14. weighted time spent doing I/Os (ms)

Highlighted is the parameters we use to measure I/O performance.

64

C
x-box Survival Guide

This appendix includes an overview of the x-box structure for easy reference.

size x1+α/2

size x

size x1+α

}

}

Upper level: At most 1
4
x1/2

Lower level:
At most
1
4
x1/2+α/2

√
x-box

. . .

. . .

Buffer Size per buffer Number of buffers Total size
Input Buffer x 1 x

Input Buffer
√
x 1

4x
1/2 1

4x

Middle Buffer (
√
x)1+α/2 1

4x
1/2 1

4x
1+α/4

Output Buffer (
√
x)1+α 1

4x
1/2 1

4x
1+α/2

Middle Buffer x1+α/2 1 x1+α/2

Input Buffer
√
x 1

4x
1/2+α/2 1

4x
1+α/2

Middle Buffer (
√
x)1+α/2 1

4x
1/2+α/2 1

4x
1+3α/4

Output Buffer (
√
x)1+α 1

4x
1/2+α/2 1

4x
1+α

Output Buffer x1+α 1 x1+α

Size of x-box buffers and first recursive layer.

Space: The total space usage of an x-box is at most cx1+α for some constant
c > 0. Consequently x1+α = O(B) =⇒ x = O(B1/(1+α))
Search: For x > B a Search in an x-box costs O((1 + α) logB x) I/O’s.
Flush: For x1+α > B a Flush on an x-box costs O(x1+α/B) I/O’s.
Sample-Up: For x1+α > B Sample-Up on an x-box costs O(x1+α/B) I/O’s.
Batch-Insert: A Batch-Insert into an x-box with x > B costs an amortized
O((1 + α) logB(x)/B1/(1+α)) I/O’s pr. element.

65

	Abstract
	Resumé
	Acknowledgments
	Introduction
	Models of Computation
	The I/O-Model
	The Cache Oblivious Model

	Related Work
	Lower Bounds

	Preliminaries
	Amortization
	Dictionary
	B-Tree
	Buffer Tree
	Cache Oblivious Techniques

	Cache Aware Data Structures
	Modified B-Tree
	Buffered B-Tree
	Truncated Buffer Tree

	xDict
	The x-box
	Search in an x-box
	Batch-Insert into an x-box
	Building a Dictionary out of x-boxes
	Implementation

	Experimental Evaluation
	Modified B-Tree
	Buffered B-Tree
	Truncated Buffer Tree
	xDict
	Comparison of Data Structures

	Conclusion
	Future Work

	Bibliography
	Additional Graphs
	Technical Information
	Test Machine
	I/O Data Collection

	x-box Survival Guide

