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Chapter 1

Introduction

This progress report describes my research during the initial two years of my PhD studies. The
work presented in this progress report was done in collaboration with the following colleagues:
Gerth Stølting Brodal, Rolf Fagerberg, Allan Grønlund Jørgensen, Kasper Dalgaard Larsen,
Alejandro López-Ortiz, and Jakob Truelsen. The work is presented in the following papers:

•

Online Sorted Range Reporting
Gerth Stølting Brodal, Rolf Fagerberg, Mark Greve and Alejandro López-Ortiz
Proc. 20th Annual International Symposium on Algorithms and Computation,
ISAAC ’09 [8]

•
Approximating the Mode and Determining Labels with Fixed Frequency
Mark Greve, Allan Grønlund Jørgensen, Kasper Dalgaard Larsen, Jakob Truelsen
Manuscript [22]

In my work I have mainly focused on the design of efficient data structures. The core
body of my work is described in the two above papers, one of which is published and the
other is a manuscript. My work deals with two distinct problems that have a common flavor.
They both involve preprocessing a static array into a data structure that efficiently supports
“range queries”.

The first part of my work focuses on a problem called sorted range selection. In this
problem we are to preprocess a static array A of n elements into a data structure that
efficiently supports range queries of the following form: Report the k smallest elements in the
subarray A[i..j] in sorted order. We study several variants of this problem in the unit-cost
RAM model.

The second part of my work focuses on the range mode problem. In this problem we must
preprocess a static array A of n labels into a data structure that efficiently supports queries
of the following form: Report the label of a most frequently occurring label in A[i..j]. In this
work we mainly focus on efficiently approximating the answer to such queries, i.e. return a
label that occurs nearly as often as that of a most frequently occurring label. We also study
this problem in the unit-cost RAM model.

Outline. Chapter 2 is about my work on the online sorted range reporting problem [8]. This
chapter consists of an extended version of the the paper that appeared at ISAAC ’09. In this
chapter the following one-dimensional range reporting problem is studied: On an array A
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2 Chapter 1. Introduction

of n elements, support queries that given two indices i ≤ j and an integer k report the k
smallest elements in the subarray A[i..j] in sorted order. A data structure in the RAM model
supporting such queries in optimal O(k) time is presented. The structure uses O(n) words
of space and can be constructed in O(n log n) time. The data structure can be extended to
solve the online version of the problem, where the elements in A[i..j] are reported one-by-one
in sorted order, in O(1) worst-case time per element.

Chapter 3 deals with my work on the range mode problem [22]. In this chapter we consider
data structures for approximate range mode and range k-frequency queries. The mode of a
multiset of labels, is a label that occurs at least as often as any other label. The input to the
range mode problem is an array A of size n. A range query [i, j] must return the mode of the
subarray A[i], A[i + 1], . . . , A[j]. A c-approximate range mode query for any constant c > 1
must return a label that occurs at least 1/c times that of the mode. We describe a linear space
data structure that supports 3-approximate range mode queries in constant time, and a data
structure that uses O(n

ε ) space and supports (1 + ε)-approximation queries in O(log 1
ε ) time.

Furthermore, we consider the related range k-frequency problem. The input is an array A of
size n. A query [i, j] must return whether there exists a label that occurs precisely k times
in the subarray A[i], A[i + 1], . . . , A[j]. We show that for any constant k > 1, this problem
is equivalent to 2D orthogonal rectangle stabbing, and that for k = 1 this is no harder than
four-sided 3D orthogonal range emptiness.

Finally in Chapter 4 the plans for the remaining time of my PhD studies are described.
This includes the discussion of several open problems.



Chapter 2

Online Sorted Range Reporting

2.1 Introduction

In information retrieval, the basic query types are exact word matches, and combinations such
as intersections of these. Besides exact word matches, search engines may also support more
advanced query types like prefix matches on words, general pattern matching on words, and
phrase matches. Many efficient solutions for these involve string tree structures such as tries
and suffix trees, with query algorithms returning nodes of the tree. The leaves in the subtree
of the returned node then represent the answer to the query, e.g. as pointers to documents.1

An important part of any search engine is the ranking of the returned documents. Often,
a significant element of this ranking is a query-independent pre-calculated rank of each docu-
ment, with PageRank [31] being the canonical example of such a query-independent rank. In
the further processing of the answer to a tree search, it is beneficial to return the answer set
ordered by the pre-calculated rank, and even better if it is possible to generate an increasing
prefix of this ordered set on demand. The reasons for this will be given below when we elab-
orate on applications. In short, we would like a functionality similar to storing at each node
in the tree a list of the leaves in its subtree sorted by their pre-calculated rank, but without
the prohibitive space cost incurred by this solution.

Motivated by the above example, we in this chapter consider the following set of problems,
listed in order of increasing generality. For each problem, an array A[0..n− 1] of n numbers
is given, and the task is to preprocess A into a space-efficient data structure that efficiently
supports the query stated.

Sorted range reporting: Given two indices i ≤ j, report the elements in A[i..j] in sorted
order.

Sorted range selection: Given two indices i ≤ j and an integer k, report the k smallest
elements in A[i..j] in sorted order.

Online sorted range reporting: Given two indices i ≤ j, report the elements in A[i..j]
one-by-one in sorted order.

1We will assume that each leaf of the tree (which for efficiency reasons must be in RAM, not on disk)
corresponds to one document in the collection. Even for the collection sizes appearing in web search engines,
this is realistic due to the massive partitioning and distribution of indices over many machines employed in
these.

3



4 Chapter 2. Online Sorted Range Reporting

Note that if the leaves of a tree are numbered during a depth-first traversal, the leaves
of any subtree form a consecutive segment of the numbering. By placing leaf number i at
entry A[i], and annotating each node of the tree by the maximal and minimal leaf number in
its subtree, we see that the three problems above generalize our problems on trees.2 The aim
of this chapter is to present linear space data structures with optimal query bounds for each
of the three problems.

We remark that the problems above also form generalizations of two well-studied problems,
namely the range minimum query (RMQ) problem and three-sided planar range reporting.

The RMQ problem is to preprocess an array A such that given two indices i ≤ j, the
minimum element in A[i..j] can be returned efficiently. This is generalized by the sorted range
selection problem above. RMQ is equivalent to the lowest common ancestor (LCA) problem
on trees, in the sense that there is a linear time transformation between the two problems [20].
The LCA problem is to preprocess a tree such that given two nodes, their lowest common
ancestor can be returned efficiently. It is a fundamental combinatorial problem, and is used as
a building block in many algorithms. It was shown to have a linear space, constant time query
solution (in the RAM model) by Harel and Tarjan [23]. Later work on the LCA problem has
focused on simplifying the solution and extending it to other models—for an overview, see [2].
Some recent algorithmic engineering work directly on the RMQ problem appears in [14] and
[13], where the focus is on reducing the amount of space required to implement a suffix array
based structure, a structure with a known optimal space bound of n + o(n) [24].

Three-sided planar range reporting is the problem of given three parameters x1, x2 and y1,
report all points (x, y) with x1 ≤ x ≤ x2 and y ≥ y1. The online sorted range reporting
problem generalizes this by returning the answer set in decreasing order of y. The classical
solution to three-sided range queries are the priority search trees of McCreight [30], which
uses linear space and O(log n + r) query time, where r is the size of the output. Versions for
other models have been given, e.g. for integer data [19] and for external memory [3].

2.1.1 Applications: Top-k queries

A standard model in data retrieval is to return all tuples that satisfy a given query. However,
with data collections growing in size, this model increasingly results in answer sets too large
to be of use. In such cases, returning a limited sample from the answer set may be preferable.
Depending on the application this can be a random subset, the first k results, or more impor-
tantly for our case, the top k results under some ranking or priority order. This is termed a
top-k query. In what follows we give details of two distinct settings in which such a subset of
results is desired. One is search engines for information retrieval, as introduced above. The
other is relational databases.

Search engines for information retrieval Usually, search engines prioritize the re-
turned documents using ranking algorithms, and return the top ten matches according to
rank score. For simplicity of exposition, we are here assuming a ranking algorithm which is
query-independent (such as PageRank).3

2For space efficiency, search engines may work with suffix arrays instead of suffix trees. In this case, the
three problems even more directly generalize the corresponding problems on suffix arrays.

3More realistically, the search engine will scan answers to the query in decreasing order of query-independent
rank, while factoring in query-dependent parts to obtain the final ranking values. It will stop when further
answers better than the current kth best in final ranking are provably impossible (or just unlikely), based on
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For exact word matches in search engines, a common data structure is inverted indices,
which for each word in the document collection stores a list containing the IDs of the doc-
uments containing that word. In inverted files, top-k queries are easily accommodated by
using ranks as IDs and storing lists sorted on ID.

In contrast, tries and their derivatives such as suffix trees, Pat trees and suffix arrays,
which are needed for more advanced query types such as efficient phrase searches and general
pattern searching, do not have a straightforward ranked variant. Baeza-Yates and Neto [4,
page 202] point out this added difficulty: “[All these] queries retrieve a subtree of the suffix
tree or an interval of the suffix array. The results have to be collected later, which may imply
sorting them in ascending text order. This is a complication of suffix trees or arrays with
respect to inverted indices.” This raises the question of how to adapt these data structures
to support top-k queries among the strings matching a given prefix, when leaves are annoted
by ranks.

A motivating factor for returning the top-k set in sorted order is that if more than a single
query term is given, then there is a set of documents associated to each query term, and the
result set normally consists of the intersection of these sets. Fast methods to compute such
intersection often are based on merging and rely on the sets being in sorted order. For example,
Kaufmann and Schek [27] observe with regards to intersections on trie-based solutions that:
“[A] negative aspect is that postings are returned unordered, i.e. not with ascending document
IDs. . . [As an] intersection can only be carried out efficiently for ordered posting lists, [this
makes] sorting (in O(n log n) steps) [of said lists] necessary, which cannot be accomplished in
user-acceptable time in the case of large posting lists.”

Note that to return the top-k result after an intersection, the merge process involved in
the intersection only needs to be run as far as to produce an output of size k, hence online
generation of the input streams may give significant savings in running time. This motivates
the online version of our problem.

In short, the data structure we propose could take the role of sorted inverted lists in search
engines, with the key difference that it now supports more queries efficiently. For still further
details on search engine techniques, we refer the reader to [4, 21, 27, 29].

Relational Database Queries In the past, the query-answer model in relational databases
was that an SQL query would return all the tuples matching the query. As databases grow in
size, research has focused on a model in which every query has an implicit or explicit top-k
qualifier attached to it, where top is defined in a query specific way. In particular the SQL
operator ”STOP AFTER” has been introduced to select the first k results from a traditional
SELECT-FROM-WHERE query [9].

If the ranking function is completely arbitrary and unknown in advance it is not difficult
to show that computing the top k results requires time at least linear on the entire set of
tuples satisfying the query. On the other hand if the sorted order is given in advance and the
aggregation function is well-behaved it is desirable to speed up the computation of the answer.
How efficiently this can be achieved is known as the braking distance of the query [10].

In its full generality, top-k queries in the context of databases refer to the top-k ranked
elements of a multidimensional dataset. A particular instance considered by Fagin et al. [12]
is the case where a candidate set has been identified and has been sorted by rank on each of

how the final ranking value is composed. This only highlights that we are interested in top-k queries for k
chosen online, as discussed below.
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the ranking coordinates. The goal is then to compute the top-k candidates out of that set
assuming a monotone ranking function. In general, the assumption in that work is that there
is a sorted index on the result set alone and on each ranking dimension allowing for sequential
access in descending order (see e.g. [36]).

In contrast, we consider the case in which producing a sorted list of the ranking dimension
is non-trivial (under space constraints) and proposes a method to achieve this efficiently.
Indeed, our algorithm can be used as a primitive by Fagin et al. in that it supports on-line
sorted access to the top-k candidates on each coordinate, with the aggregation function being
computed using Fagin et al.’s algorithm.

In more general terms, the main techniques normally used for computing top-k queries
are either inserting the result set in a heap leading to time O(k log k + n) or using range
partitioning. The algorithms are often made adaptive in that while they do not improve the
worst-case complexity, they perform various optimizations on simpler instances.

Our algorithms improve the worst-case time-space complexity by a factor of log n, and
are relevant to the case where the basic query is a range selection, and the ranks of tuples are
known in advance.

2.1.2 Contributions

We present data structures to support sorted range reporting queries in O(j − i + 1) time,
sorted range selection queries in O(k) time, and online sorted range reporting queries in worst
case O(1) time per element reported. For all problems the solutions take O(n) words of space
and can be constructed in O(n log n) time.

We assume a unit-cost RAM whose operations include addition, subtraction, bitwise AND,
OR, XOR, and left and right shifting and multiplication. Multiplication is not crucial to our
constructions and can be avoided by the use of table lookup. By w we denote the word length
in bits, and assume that w ≥ log n and that w is a power of two. We use the convention that
the least significant bit of an integer is the 0’th bit.

2.1.3 Overview of the chapter

In Section 2.2, we describe some simple constructions which are used extensively in the
solution of all three problems. In Section 2.3, we give a simple solution to the sorted range
reporting problem that illustrates some of the ideas used in our more involved solution of the
sorted range selection problem. In Section 2.4, we present the main result of this chapter
which is our solution to the sorted range selection problem. Building on the solution to
the previous problem, we give a solution to the online sorted range reporting problem in
Section 2.5.

2.2 Preliminaries

In this section, we describe three simple results used by our constructions. The main purpose
is to state the lemmas and some definitions for later use.
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2.2.1 Packing multiple items in a word

Essential for our constructions to achieve overall linear space, is the ability to pack multiple
equally sized items into a single word.

Lemma 2.1 Let X be a two-dimensional array of size s× t where each entry X[i][j] consists
of b ≤ w bits for 0 ≤ i < s and 0 ≤ j < t. We can store this using O(stb+w) bits, and access
entries of X in O(1) time.

Proof. We use an array B of dstb/we words and store the y’th bit of X[i][j] as the ((ti+ j)b+
y) mod w’th bit of B [b((ti + j)b + y)/wc]. To make a lookup of z = X[i][j] we mask out all
bits of B [b((ti + j)b)/wc] except for the ones where z is stored, and shift a number of places
to the right to retrieve z. However, if z is stored across two words, we get the remaining
bits from the next word of B also by using a bit mask and shifting, and then using bitwise
operations we concatenate the two numbers. All of these operations can be done in O(1)
time. The space bound follows from the fact that we waste at most w − 1 bits on the last
word of B, and that we need to know b to be able to access the entries. 2

Concerning the word operations needed for the above packing, we can avoid the use of
division and modulo since w is a power of two—instead we can perform this using bitwise
operations. Note that if t and b are powers of two, we can replace the use of multiplication
by shift operations in the computation of (ti + j)b. If t and b are not powers of two, we can
replace them with their nearest larger power of two. This will at most quadruple the space
usage.

In most cases we encounter, we have an array of secondary arrays, where the secondary
arrays have variable length. It is easy to extend the above construction to allow this. If the
largest secondary array has length t we pad those of length less than t with dummy elements,
so that they all effectively get length t. For our applications we also need to be able to
determine the length of a secondary array. Since a secondary array has length at most t, we
need blog tc+1 bits to represent the length. By packing the length of each secondary array as
described in Lemma 2.1, we get a total space usage of O(stb + s log t + w) = O(stb + w) bits
of space, and lookups can still be performed in O(1) time. We summarize this in a lemma.

Lemma 2.2 Let X be an array of s secondary arrays, where each secondary array X[i]
contains up to t elements, and each entry X[i][j] in a secondary array X[i] takes up b ≤ w
bits. We can store this using O(stb + w) bits of space and access an entry or length of a
secondary array in O(1) time.

2.2.2 Complete binary trees

Throughout this chapter T will denote a complete binary tree with n leaves where n is a
power of two and the leaves are numbered from n to 2n− 1. The numbering of nodes is the
one used for binary heaps [15], [38]. The root has index 1, and an internal node with index x
has left child 2x, right child 2x+1 and parent bx/2c. Below, we identify a node by its number.

We let Tu denote the subtree of T rooted at the node u, and h(Tu) the height of the
subtree Tu where the height of a leaf is defined to be 0. The height of a node h(u) is defined
to be h(Tu), and level ` of T is defined to be the set of nodes with height `. The height h(u)
of a node u can be computed in O(1) time as h(T ) − d(u), where d(u) is the depth of node
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u. The depth d(u) of a node u can be found in O(1) time by computing the index of the
most significant bit set in u (the root has depth 0). See [18] for a solution to the problem
of finding the most significant bit set in a word in O(1) time and space, assuming we can do
multiplication in O(1) time. Using a lookup table mapping every integer from 0 . . . 2n− 1 to
the index of its most significant bit set, we get an O(1) time and O(n) space solution avoiding
the use of multiplication.

To navigate efficiently in T , we explain a few additional operations that can be performed
in O(1) time. First we define anc(u, `) as the `’th ancestor of the node u, where anc(u, 0) = u
and anc(u, `) = parent(anc(u, ` − 1)). Note that anc(u, `) can be computed in O(1) time by
right shifting u ` times. Finally, we note that we can find the leftmost leaf in a subtree Tu in
O(1) time by left shifting u h(u) times. Similarly we can find the rightmost leaf in a subtree
Tu in O(1) time by left shifting u h(u) times, and setting the bits shifted to 1 using bitwise
OR.

2.2.3 LCA queries in complete binary trees

An important component in our construction is finding the lowest common ancestor (LCA) of
two nodes at the same depth in a complete binary tree in O(1) time. We will briefly describe
a standard solution to this problem. Given two nodes u 6= v at the same depth in T , we
find the index y of the most significant bit where u and v differ (i.e. y is the index of the
most significant bit set of u XOR v). This corresponds to where the two paths from the root
towards u and v diverge, and this is exactly the definition of the LCA of u and v. To find the
index of the LCA we right shift u (or v) y times. Thus, the essential part needed to compute
the LCA in O(1) time is finding the index of the most significant bit set in a word in O(1)
time.

2.2.4 Selection in sorted arrays

The following theorem due to Frederickson and Johnson [17] is essential to our construction
in Section 2.4.4.

Theorem 2.1 Given m sorted arrays, we can find the overall k smallest elements in time
O(m + k).

Proof. By Theorem 1 in [17] with p = min(m, k) we can find the k’th smallest element in
time O(m + p log(k/p)) = O(m + k) time. When we have the k’th smallest element x, we
can go through each of the m sorted arrays and select elements that are ≤ x until we have
collected k elements or exhausted all lists. This takes time O(m + k). 2

2.3 Sorted range reporting

In this section, we give a simple solution to the sorted range reporting problem with query
time O(j − i + 1). The solution introduces the concept of local rank labellings of elements,
and shows how to combine this with radix sorting to answer sorted range reporting queries.
These two basic techniques will be used in a similar way in the solution of the more general
sorted range selection problem in Section 2.4.
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We construct local rank labellings for each r in 0 . . . dlog log ne as follows (the rank of an
element x in a set X is defined as |{y ∈ X | y < x}|). For each r, the input array is divided
into dn/22re consecutive subarrays each of size 22r

(except perhaps the last subarray), and
for each element A[x] the r’th local rank labelling is defined as its rank in the subarray
A[bx/22rc22r

..(bx/22rc + 1)22r − 1]. Thus, the r’th local rank for an element A[x] consists
of 2r bits. Using Lemma 2.1 we can store all local rank labels of length 2r using space
O(n2r + w) bits. For all dlog log ne local rank labellings, the total number of bits used is
O(w log log n+n log n) = O(nw) bits. All local rank labellings can be built in O(n log n) time
using O(n) extra words of space while performing mergesort on A (carried out level-by-level).
The r’th structure is built by writing out the sorted lists, when we reach level 2r.

Given a query for k = j − i + 1 elements, we find the r for which 22r−1
< k ≤ 22r

by
making a linear search for r in O(r) = O(k) time. Since each subarray in the r’th local
rank labelling contains 22r

elements, we know that i and j are either in the same or in two
consecutive subarrays. If i and j are in consecutive subarrays, we compute the start index of
the subarray where the index j belongs, i.e. x = bj/22rc22r

. We then radix sort the elements
in A[i..x − 1] using the local rank labels of length 2r. This can be done in O(k) time using
two passes by dividing the 2r bits into two parts of 2r−1 bits each, since 22r−1

< k. Similarly
we radix sort the elements from A[x..j] using the labels of length 2r in O(k) time. Finally,
we merge these two sorted sequences in O(k) time, and return the k smallest elements. If i
and j are in the same subarray, we just radix sort A[i..j].

2.4 Sorted range selection

Before presenting our solution to the sorted range selection problem we note that if we do
not require the output of a query to be sorted, it is possible to get a conceptually simple
solution with O(k) query time using O(n) preprocessing time and space. First we build a
data structure to support range minimum queries in O(1) time using O(n) preprocessing
time and space [23, 5]. Given a query on A[i..j] with parameter k, we lazily build the
Cartesian tree [37] for the subarray A[i..j] using range minimum queries. The Cartesian tree
is defined recursively by choosing the root to be the minimum element in A[i..j], say A[x], and
recursively constructing its left subtree using A[i..x−1] and its right subtree using A[x+1..j].
By observing that the Cartesian tree is a heap-ordered binary tree storing the elements of
A[i..j], we can use the heap selection algorithm of Frederickson [16] to select the k smallest
elements in O(k) time. Thus, we can find the k smallest elements in A[i..j] in unsorted order
in O(k) time.

In the remainder of this section, we present our data structure for the sorted range selection
problem. The data structure supports queries in O(k) time, uses O(n) words of space and can
be constructed in O(n log n) time. When answering a query we choose to have our algorithm
return the indices of the elements of the output, and not the actual elements.

Our solution consists of two data structures for the cases where k ≤ ⌊ log n/(2 log log n)2
⌋

and k >
⌊

log n/(2 log log n)2
⌋
. The two data structures are described in Sections 2.4.3 and

2.4.4 respectively. In Sections 2.4.1 and 2.4.2, we present two simple techniques used heavily
by both data structures. In Section 2.4.1, we show how to decompose sorted range selection
queries into a constant number of smaller ranges, and in Section 2.4.2 we show how to answer
a subset of the queries from the decomposition by precomputing the answers. The algorithms
for constructing the data structures are described in Section 2.4.5.
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2.4.1 Decomposition of queries

For both data structures described in Sections 2.4.3 and 2.4.4, we consider a complete binary
tree T with the leaves storing the input array A. We assume without loss of generality
that the size n of A is a power of two. Given an index i for 0 ≤ i < n into A we denote
the corresponding leaf in T as leaf[i] = n + i. For a node x in T , we define the canonical
subset Cx as the leaves in Tx. For a query range A[i..j], we let u = leaf[i], v = leaf[j], and
w = LCA(u, v). On the two paths from the two leaves to their LCA w we get at most 2 log n
disjoint canonical subsets, whose union represents all elements in A[i..j], see Figure 2.1(a).

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

i j

vu

w

T

(a) The shaded parts and the leaves u and v
cover the query range.
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R(u, L)

T

(b) Decomposition of a query range into four smaller
ranges by cutting the tree at level L.

Figure 2.1: Query decomposition of a range.

For a node x we define the sets R(x, `) (and L(x, `)) as the union of the canonical subsets
of nodes rooted at the right (left for L) children of the nodes on the path from x to the
ancestor of x at level `, but excluding the canonical subsets of nodes that are on this path,
see Figure 2.1(a). Using the definition of the sets R and L, we see that the set of leaves
strictly between leaves u and v is equal to R(u, h(w)− 1) ∪ L(v, h(w)− 1). In particular, we
will decompose queries as shown in Figure 2.1(b). Assume L is a fixed level in T , and that
the LCA w is at a level > L. Define the ancestors u′ = anc(u, L) and v′ = anc(v, L) of u and
v at level L. We observe that the query range, i.e. the set of leaves strictly between leaves u
and v can be represented as R(u, L)∪R(u′, h(w)− 1)∪L(v′, h(w)− 1)∪L(v, L). In the case
that the LCA w is below or at level L, the set of leaves strictly between u and v is equal to
R(u, h(w)− 1) ∪ L(v, h(w)− 1).

Hence to answer a sorted range selection query on k elements using the decomposition,
we need only find the k smallest elements in sorted order of each of these at most four sets,
and then select the k overall smallest elements in sorted order from these O(1) sets including
the two leaves u and v. Assuming we have a sorted list over the k smallest elements for
each set, this can be done in O(k) time by merging the sorted lists (including u and v), and
extracting the k smallest of the merged list. Thus, assuming we have a procedure for finding
the k smallest elements in each set in O(k) time, we obtain a general procedure for sorted
range selection queries in O(k) time.

The above decomposition motivates the definition of bottom and top queries relative to a
fixed level L. A bottom query on k elements is the computation of the k smallest elements in
sorted order in R(x, `) (or L(x, `)) where x is a leaf and ` ≤ L. A top query on k elements
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is the computation of the k smallest elements in sorted order in R(x, `) (or L(x, `)) where x
is a node at level L. From this point on we only state the level L where we cut T , and then
discuss how to answer bottom and top queries in O(k) time, i.e. implicitly assuming that we
use the procedure described in this section to decompose the original query, and obtain the
final result from the answers to the smaller queries.

2.4.2 Precomputing answers to queries

In this section, we describe a simple solution that can be used to answer a subset of possible
queries, where a query is the computation of the k smallest elements in sorted order of R(x, `)
or L(x, `) for some node x and a level `, where ` ≥ h(x). The solution works by precomputing
answers to queries. We apply this solution later on to solve some of the cases that we split a
sorted range selection query into.

Let x be a fixed node, and let y and K be fixed integer thresholds. We now describe
how to support queries for the k smallest elements in sorted order of R(x, `) (or L(x, `))
where h(x) ≤ ` ≤ y and k ≤ K. We precompute the answer to all queries that satisfy the
constraints set forth by K and y by storing two arrays Rx and Lx for the node x. In Rx[`], we
store the indices of the K smallest leaves in sorted order of R(x, `). The array Lx is defined
symmetrically. We summarize this solution in a lemma, where we also discuss the space usage
and how to represent indices of leaves.

Lemma 2.3 For a fixed node x and fixed parameters y and K, where y ≥ h(x), we can store
Rx and Lx using O(Ky2 + w) bits of space. Queries for the k smallest elements in sorted
order in R(x, `) (or L(x, `)) can be supported in time O(k) provided k ≤ K and h(x) ≤ ` ≤ y.

Proof. By storing indices relative to the index of the rightmost leaf in Tx, we only need to
store y bits per element in Rx and Lx. We can store the two arrays Rx and Lx with a space
usage of O(Ky2 + w) bits using Lemma 2.2. When reading an entry, we can add the index of
the rightmost leaf in Tx in O(1) time. The k smallest elements in R(x, `) can be reported by
returning the k first entries in Rx[`] (and similarly for Lx[`]). 2

2.4.3 Solution for k ≤ ⌊ log n/(2 log log n)2
⌋

In this section, we show how to answer queries for k ≤ ⌊ log n/(2 log log n)2
⌋
. Having discussed

how to decompose a query into bottom and top queries in 2.4.1, and how to answer queries
by storing precomputed answers in 2.4.2, this case is now simple to explain.

Theorem 2.2 For k ≤ ⌊ log n/(2 log log n)2
⌋
, we can answer sorted range selection queries

in O(k) time using O(n) words of space.

Proof. Following the idea of decomposing queries, we cut T at level 2blog log nc. A bottom
query is solved using the construction in Lemma 2.3 with K =

⌊
log n/(2 log log n)2

⌋
and

y = 2blog log nc. The choice of parameters is justified by the fact that we cut T at level
2blog log nc, and by assumption k ≤ ⌊ log n/(2 log log n)2

⌋
. As a bottom query can be on

any of the n leaves, we must store arrays Lx and Rx for each leaf as described in Lemma
2.3. All Rx structures are stored in one single array which is indexed by a leaf x. Using
Lemma 2.3 the space usage for all Rx becomes O(n(w+

⌊
log n/(2 log log n)2

⌋
(2blog log nc)2) =

O(n(w + log n)) = O(nw) bits (and similarly for Lx).
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For the top query, we for all nodes x at level 2blog log nc use the same construction with
K =

⌊
log n/(2 log log n)2

⌋
and y = log n. As we only have n/22blog log nc = Θ(n/(log n)2) nodes

at level 2blog log nc, the space usage becomes O( n
(log n)2

(w +
⌊

log n/(2 log log n)2
⌋
(log n)2)) =

O(n(w + log n)) = O(nw) bits (as before we store all the Rx structures in one single array,
which is indexed by a node x, and similarly for Lx). For both query types the O(k) time
bound follows from Lemma 2.3. 2

2.4.4 Solution for k >
⌊
log n/(2 log log n)2

⌋
In this case, we build O(log log n) different structures each handling some range of the query
parameter k. The r’th structure is used to answer queries for 22r

< k ≤ 22r+1
. Note that no

structure is required for r satisfying 22r+1 ≤ ⌊ log n/(2 log log n)2
⌋

since this is handled by the
case k ≤ ⌊ log n/(2 log log n)2

⌋
as described in Section 2.4.3.

The r’th structure uses O(w + n(2r + w/2r)) bits of space, and supports sorted range
selection queries in O(22r

+ k) time for k ≤ 22r+1
. The total space usage of the O(log log n)

structures becomes O(w log log n + n log n + nw) bits, i.e. O(n) words, since r ≤ dlog log ne.
Given a sorted range selection query, we find the right structure by either table lookup,
computing r directly or using linear search for the right r. In all cases, finding the correct
structure can be done in o(k) time. Finally, we query the r’th structure in O(22r

+k) = O(k)
time, since 22r

< k.
In the r’th structure, we cut T at level 2r and again at level 7 · 2r. By generalizing the

idea of decomposing queries as explained in Section 2.4.1, we split the original sorted range
selection query into three types of queries, namely bottom, middle and top queries. We define
u′ as the ancestor of u at level 2r and u′′ as the ancestor of u at level 7 · 2r. We define v′ and
v′′ in the same way for v. When the level of w = LCA(u, v) is at a level > 7 · 2r, we see that
the query range (i.e. all the leaves strictly between the leaves u and v) is equal to

R(u, 2r) ∪R(u′, 7 · 2r) ∪R(u′′, h(w)− 1) ∪ L(v′′, h(w)− 1) ∪ L(v′, 7 · 2r) ∪ L(v, 2r) .

In the case that w is below or at level 7 ·2r, we can use the decomposition exactly as described
in Section 2.4.1. In the following we focus on describing how to support each type of query
in O(22r

+ k) time.

Bottom query A bottom query is a query on a leaf u for R(u, `) (or L(u, `)) where ` ≤ 2r.
For all nodes x at level 2r, we store an array Sx containing the canonical subset Cx in sorted
order. Using Lemma 2.1 we can store the Sx arrays for all x using O(n2r + w) bits as each
leaf can be indexed with 2r bits (relative to the leftmost leaf in Tx). Now, to answer a bottom
query we make a linear pass through the array Sanc(u,2r) discarding elements that are not
within the query range. We stop once we have k elements, or we have no more elements left
in the array. This takes O(22r

+ k) time.

Top query A top query is a query on a node x at level 7 · 2r for R(x, `) (or L(x, `)) where
7 · 2r < ` ≤ log n. We use the construction in Lemma 2.3 with K = 22r+1

and y = log n. We
have n

27·2r nodes at level 7 · 2r, so to store all structures at this level the total number of bits
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of space used is

O
( n

27·2r (w + 22r+1
(log n)2)

)
= O

(
n

w

2r
+

n

25·2r (log n)2
)

= O

(
n

w

2r
+

n⌊
log n/(2 log log n)2

⌋5/2
(log n)2

)
= O

(
n

w

2r

)
,

where we used that
⌊

log n/(2 log log n)2
⌋

< k ≤ 22r+1
. By Lemma 2.3 a top query takes O(k)

time.

Middle query A middle query is a query on a node z at level 2r for R(z, `) (or L(z, `))
with 2r < ` ≤ 7 · 2r. For all nodes x at level 2r, let minx = min Cx. The idea in answering
middle queries is as follows. Suppose we could find the nodes at level 2r corresponding to the
up to k smallest minx values within the query range. To answer a middle query, we would
only need to extract the k overall smallest elements from the up to k corresponding sorted
Sx arrays of the nodes, we just found. The insight is that both subproblems mentioned can
be solved using Theorem 2.1 as the key part. Once we have the k smallest elements in the
middle query range, all that remains is to sort them.

We describe a solution in line with the above idea. For each node x at levels 2r to 7 ·2r, we
have a sorted arrayMr

x of all nodes x′ at level 2r in Tx sorted with respect to the minx′ values.
To store theMr

x arrays for all x, the space required is O( n
22r ·6·2r) = O( n

2r ) words (i.e. O(n w
2r )

bits), since we have n
22r nodes at level 2r, and each such node will appear 7 · 2r − 2r = 6 · 2r

times in an Mr
x array (and to store the index of a node we use a word).

To answer a middle query for the k smallest elements in R(z, `), we walk `− 2r levels up
from z while collecting theMr

x arrays for the nodes x whose canonical subset is a part of the
query range (at most 6 · 2r arrays since we collect at most one per level). Using Theorem 2.1
we select the k smallest elements from the O(2r) sorted arrays in O(2r +k) = O(k) time (note
that there may not be k elements to select, so in reality we select up to k elements). This gives
us the k smallest minx′ values of the nodes x′1, x

′
2, . . . , x

′
k at level 2r that are within the query

range. Finally, we select the k overall smallest elements of the sorted arrays Sx′1
, Sx′2

, . . . , Sx′k
in O(k) time using Theorem 2.1. This gives us the k smallest elements of R(z, `), but not in
sorted order. We now show how to sort these elements in O(k) time.

For every leaf u, we store its local rank relative to Cu′′ , where u′′ is the the ancestor of u
at level 7 · 2r. Since each subtree Tu′′ contains 27·2r

leaves, we need 7 · 2r bits to index a leaf
(relative to the leftmost leaf in Tu′′). We store all local rank labels of length 7 · 2r in a single
array, and using Lemma 2.1 the space usage becomes O(n2r + w) bits. Given O(k) leaves
from Cx for a node x at level 7 · 2r, we can use the local rank labellings of the leaves of length
7 · 2r bits to radix sort them in O(k) time (using 7 passes, and for the analysis we use that
22r

< k). This completes how to support queries.

2.4.5 Construction

In this section, we show how to build the data structures in Sections 2.4.3 and 2.4.4 in
O(n log n) time using O(n) extra words of space during the construction.
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The structures to be created for node x are a subset of the possible structures Sx, Mr
x,

Rx[`], Lx[`] (where ` is a level above x), and the local rank labellings. In total, the structures
to be created store O(n log n

log log n) elements which is dominated by the number of elements stored
in the Rx and Lx structures for all leaves in Section 2.4.3.

The general idea in the construction is to perform mergesort bottom up on T (level-by-
level) starting at the leaves. The time spent on mergesort is O(n log n), and we use O(n)
words of space for the mergesort as we only store the sorted lists for the current and previous
level. Note that when visiting a node x during mergesort the set Cx has been sorted, i.e. we
have computed the array Sx. The structures Sx and Mr

x will be constructed while visiting x
during the traversal of T , while Rx[`] and Lx[`] will be constructed at the ancestor of x at
level `. As soon as a set has been computed, we store it in the data structure, possibly in a
packed manner.

For the structures in Section 2.4.3, when visiting a node x at level ` ≤ 2blog log nc we com-
pute for each leaf z in the right subtree of x the structure Rz[`] = Rz[`−1] (where Rz[0] = ∅),
and the structure Lz[`] containing the (up to)

⌊
log n/(2 log log n)2

⌋
smallest elements in sorted

order of Lz[`− 1] ∪ S2x. Both structures can be computed in time O(
⌊

log n/(2 log log n)2
⌋
).

Symmetrically, we compute the same structures for all leaves z in the left subtree of x.
In the case that x is at level ` > 2blog log nc, we compute for each node z at level

2blog log nc in the right subtree of x the structure Rz[`] = Rz[`− 1] (where Rz[2blog log nc] =
∅), and the structure Lz[`] containing the

⌊
log n/(2 log log n)2

⌋
smallest elements in sorted

order of Lz[`− 1] ∪ S2x. Both structures can be computed in time O(
⌊

log n/(2 log log n)2
⌋
).

Symmetrically, we compute the same structures for all nodes z at level 2blog log nc in the left
subtree of x.

For the structures in Section 2.4.4, when visiting a node x we first decide in O(log log n)
time if we need to compute any structures at x for any r.

In the case that x is a node at level 2r, we store Sx = Cx and Mr
x = min Cx. For x at

level 2r < ` ≤ 7 · 2r we store Mr
x =Mr

2x ∪Mr
2x+1. This can be computed in time linear in

the size of Mr
x. In the case that x is a node at level 7 · 2r, we store the local rank labelling

for each leaf in Tx using the sorted Cx list.
For x at level ` > 7 · 2r, we compute for each z at level 7 · 2r in the right subtree of x the

structure Rz[`] = Rz[`−1] (where Rz[7 ·2r] = ∅), and the structure Lz[`] containing the 22r+1

smallest elements in sorted order of Lz[`− 1]∪S2x. Both structures can be computed in time
O(22r+1

). Symmetrically, we compute the same structures for all nodes z at level 7 · 2r in the
left subtree of x.

Since all structures can be computed in time linear in the size and that we have O(n log n
log log n)

elements in total, the overall construction time becomes O(n log n).

2.5 Online sorted range reporting

In this section we describe how to extend the solution for the sorted range selection problem
from Section 2.4 to a solution for the online sorted range reporting problem.

We solve the problem by performing a sequence of sorted range selection queries Qy with
indices i and j and k = 2y for y = 0, 1, 2, . . .. The initial query to the range A[i..j] is Q0.
Each time we report an element from the current query Qy, we spend O(1) time building part
of the next query Qy+1 so that when we have exhausted Qy, we will have finished building
Qy+1. Since we report the 2y−1 largest elements in Qy (the 2y−1 smallest are reported for
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Q0, Q1, . . . , Qy−1), we can distribute the O(2y+1) computation time of Qy+1 over the 2y−1

reportings from Qy. Hence the query time becomes O(1) worst-case per element reported.
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Chapter 3

Approximating the Mode

3.1 Introduction

In this chapter we consider the c-approximate range mode problem, and the range k-frequency
problem. The frequency of a label l in a multiset S of labels, is the number of occurrences of
l in S. The mode, M , of S is the most frequent label in S. In case of ties, any of the most
frequent labels in S can be designated the mode.

The input to the following problems is an array A of length n containing labels. In the
range mode problem, we must preprocess A into a data structure that given indices i and j,
1 ≤ i ≤ j ≤ n, returns the mode, Mi,j , in the subarray A[i, j] = A[i], A[i + 1], . . . , A[j]. We
let Fi,j denote the frequency of Mi,j in A[i, j]. In the c-approximate range mode problem, a
query is given indices i and j, 1 ≤ i ≤ j ≤ n, and returns a label that has a frequency that is
at most a factor c from Fi,j . In the range k-frequency problem, a query is given indices i and
j, 1 ≤ i ≤ j ≤ n, and returns whether there is a label occurring precisely k times in A[i, j].

In this chapter we use the unit cost RAM, and let w = Θ(log n) denote the word size.
Furthermore, we use that 1

log (1+ε) = O(1
ε ) for any 0 < ε ≤ 1.

Previous Results. The first data structure for the range mode problem achieving constant
query time was developed in [28]. This data structure uses O(n2 log log n/ log n) words of
space. This was subsequently improved to O(n2/ log n) words of space in [34] and finally to
O(n2 log log n/ log2 n) in [35].

For non-constant query time, the first developed data structure uses O(n2−2ε) space and
answers queries in O(nε log n) time, where 0 < ε ≤ 1

2 is a query-space tradeoff constant [28].
The query time was later improved to O(nε) without changing the space bound [34].

Given the rather large space bounds for the range mode problem, the approximate variant
of the problem was considered in [7]. With constant query time, they solve 2-approximate
range mode with O(n log n) space, 3-approximate range mode with O(n log log n) space, and
4-approximate range mode with linear space. For (1 + ε)-approximate range mode, they
describe a data structure that uses O(n

ε ) space and answers queries in O(log log(1+ε) n) =
O(log log n + log 1

ε ) time. This data structure gives a linear space solution with O(log log n)
query time for c-approximate range mode when c is constant.

Our Results. In Section 3.2 we present a simple data structure for the 3-approximate
range mode problem. The data structure uses linear space and answers queries in constant

17
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time. This improves the best previous 3-approximate range mode data structures by a factor
O(log log n) either in space or query time. With linear space and constant query time, the best
previous approximation factor was 4. In Section 3.3 we use our 3-approximate range mode
data structure, to develop a data structure for (1 + ε)-approximate range mode. This data
structure uses O(n

ε ) space and answers queries in O(log 1
ε ) time. This removes the dependency

on n in the query time compared to the previously best data structure, while matching the
space bound. Thus, we have a linear space data structure with constant query time for the
c-approximate range mode problem for any constant c > 1. We note that we get the same
bound if we build on the 4-approximate range mode data structure from [7].

In Section 3.4 we consider the range k-frequency problem. To the best of our knowl-
edge, we are the first to consider this problem. Here we show that 2D rectangle stabbing
reduces to range k-frequency for any constant k > 1. This reduction gives a lower bound of
Ω(log n/ log log n) query time for any range k-frequency data structure that uses O(n logO(1) n)
space [32, 33], for any constant k > 1. Secondly, we reduce range k-frequency to 2D rectangle
stabbing. This reduction works for any k. This immediately gives a data structure for range
k-frequency that uses linear space, and answers queries in optimal O(log n/ log log n) time [26]
(we note that 2D rectangle stabbing reduces to 2D range counting).

Finally we consider the restricted case where k = 1. This problem corresponds to de-
termining whether there is a unique label in a subarray. The reduction from 2D rectangle
stabbing only applies for k > 1, thus the lower bound breaks down in this restricted case.
We show, somewhat surprisingly, that determining whether there is a label occurring exactly
twice (or k > 1 times) in a subarray, is exponentially harder than determining if there is a
label occurring exactly once. Specifically, we reduce range 1-frequency to four-sided 3D or-
thogonal range emptiness, which can be solved with O(log2 log n) query time and O(n log n)
space by a slight modification of the data structure presented in [1].

3.2 3-Approximate Range Mode

In this section, we construct a data structure that given a range [i, j] computes a 3-approximation
of Fi,j .

We use the following observation from [7]. If we can cover A[i, j] with three disjoint
subintervals A[i, x], A[x + 1, y] and A[y + 1, j] for which we know Fi,x, Fx+1,y and Fy+1,j , then

1
3Fi,j ≤ max{Fi,x, Fx+1,y, Fy+1,j} ≤ Fi,j .

First, we describe a data structure that uses O(n log log n) space, and then we show how
to reduce the space to O(n). The data structure consists of a tree T of polynomial fanout
where the i’th leaf stores A[i], for i = 1, . . . , n. For a node v let Tv denote the subtree rooted
at v and let |Tv| denote the number of leaves in Tv. The fanout of node v is fv = d√|Tv|e.
The height of T is Θ(log log n). Along with T , we store a lowest common ancestor (LCA)
data structure, which given indices i and j, finds the LCA of the leaves corresponding to i
and j in T in constant time [23, 6].

For every node v ∈ T , let Rv = A[a, b] denote the consecutive range of entries stored
in the leaves of Tv. The children c1, . . . , cfv of v partition Rv into fv disjoint subranges
Rc1 = A[ac1 , bc1 ], . . . , Rcfv

= A[acfv
, bcfv

] each of size O(
√|Tv|). For every pair of children

cr and cs where r < s − 1, we store Facr+1 ,bcs−1
. Furthermore, for every child range Rci we

store Faci ,k
and Fk,bci

for every prefix and suffix range of Rci respectively. To compute a
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3-approximation of Fi,j , we find the LCA of i and j. This is the node v in T for which i and j
lie in different child subtrees, say Tcx and Tcy with ranges Rcx = [acx , bcx ] and Rcy = [acy , bcy ].
We then lookup the frequency Facx+1 ,bcy−1

stored for the pair of children cx and cy, as well as
the suffix frequency Fi,bcx

stored for the range A[i, bcx ] and the prefix frequency Facy ,j stored
for A[acy , j], and return the max of these.

Each node v ∈ T uses O(|Tv|) space for the frequencies stored for each of the O(|Tv|)
pairs of children, and O(|Tv|) for all the prefix and suffix range frequencies. Since each node
v uses O(|Tv|) space and the LCA data structure uses O(n) space, our data structure uses
O(n log log n) space. A query makes one LCA query and computes the max of three numbers
which takes constant time.

We just need one observation to bring the space down to O(n). Consider a node v ∈ T .
The largest possible frequency that can be stored for any pair of children of v, or for any
prefix or suffix range of a child of v is |Tv|, and each such frequency can be represented by
b = 1 + blog |Tv|c bits. We divide the frequencies stored in v into chunks of size b log n

b c and
pack each of them in one word. This reduces the total space usage of the nodes on level i to
O(n/2i). We conclude that the data structure uses O(n) words space and supports queries
in constant time.

Theorem 3.2.1 There exists a data structure for the 3-approximate range mode problem that
uses O(n) words of space and supports queries in constant time.

3.3 (1 + ε)-Approximate Range Mode

In this section, we describe a data structure using O(n
ε ) space that given a range [i, j], com-

putes a (1 + ε)-approximation of Fi,j in O(log 1
ε ) time.

Our data structure consists of two parts. The first part solves all queries [i, j] where
Fi,j ≤ d1εe, and the latter solves the remaining. The first data structure also decides whether
Fi,j ≤ d1εe.

Small Frequencies For i = 1, . . . , n we store a table, Qi, of length d1εe, where the value in
Qi[k] is the largest integer j ≥ i such that Fi,j = k. To answer a query [i, j] we do a successor
search for j in Qi. If j does not have a successor in Qi then Fi,j > d1εe, and we query the
second data structure. Otherwise, let s be the index of the successor of j in Qi, then Fi,j = s.
The data structure uses O(n

ε ) space and supports queries in O(log 1
ε ) time.

Large Frequencies For every index 1 ≤ i ≤ n, define a list Ti of length t = dlog1+ε(εn)e,
with the following invariant: For all j, if Ti[k − 1] < j ≤ Ti[k] then d1ε (1 + ε)ke is a (1 + ε)-
approximation of Fi,j . The following assignment of values to the lists Ti satisfies this invariant:

Let m(i, k) be the largest integer j ≥ i such that Fi,j ≤ d1ε (1 + ε)k+1e − 1. For T1 we set
T1[k] = m(1, k) for all k = 1, . . . , t. For the remaining Ti we set

Ti[k] =
{

Ti−1[k] if Fi,Ti−1[k] ≥ d1ε (1 + ε)ke+ 1
m(i, k) otherwise

The n lists are sorted by construction. For T1, it is true since m(i, k) is increasing in k. For
Ti, it follows that Fi,Ti[k] ≤ d1ε (1 + ε)k+1e − 1 < Fi,Ti[k+1], and thus Ti[k] < Ti[k + 1] for any
k.
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Let s be the index of the successor of j in Ti. We know that Fi,Ti[s] ≤ d1ε (1 + ε)s+1e − 1,
Fi,Ti[s−1] ≥ d1ε (1 + ε)s−1e+ 1 and Ti[s− 1] < j ≤ Ti[s]. It follows that

d1ε (1 + ε)s−1e+ 1 ≤ Fi,j ≤ d1ε (1 + ε)s+1e − 1 (3.1)

and that d1ε (1 + ε)se is a (1 + ε)-approximation of Fi,j .
The second important property of the n lists, is that they only store O(n

ε ) different
indices, which allows for a space-efficient representation. If Ti−1[k] 6= Ti[k] then the following
d1ε (1 + ε)k+1e−1−d1ε (1 + ε)ke−1 ≥ b(1 + ε)kc−3 entries, Ti+a[k] for a = 1, . . . , b(1 + ε)kc−
3, are not changed, hence we store the same index at least max{1, b(1 + ε)kc − 2} times.
Therefore, the number of changes to the n lists, starting with T1, is bounded by

t∑
k=1

n

max{1, b(1 + ε)kc − 2} = O(n
ε ) .

This was observed in [7], where similar lists are maintained in a partially persistent search
tree [11]. This data structure uses O(n

ε ) space and supports queries in O(log log1+εn) time.
We maintain these lists without persistence such that we can access any entry in any list

Ti in constant time. Let I = {1, 1 + t, . . . , 1 + b(n − 1)/tct}. For every ` ∈ I we store T`

explicitly as an array S`. Secondly, for ` ∈ I and k = 1, . . . , dlog1+εte we define a bit vector
B`,k of length t and a change list C`,k, where

B`,k[a] =
{

0 if T`+a−1[k] = T`+a[k]
1 otherwise

Given a bit vector L, define sel(L, b) as the index of the b’th one in L. We set

C`,k[a] = Ti+sel(Bi,k,a)[k] .

Finally, for every ` ∈ I and for k = 1 + dlog1+εte, . . . , t we store D`[k] which is the smallest
integer z > ` such that Tz[k] 6= T`[k]. We also store E`[k] = TD`[k][k]. We store each bit
vector in a rank and select data structure [25] that uses O( n

w ) space for a bit vector of length
n, and supports rank(i) in constant time. A rank(i) query returns the number of ones in the
first i bits of the input.

Each change list, Cl,k and every D` and E` list is stored as an array. The bit vectors
indicate at which indices the contents of the first dlog1+εte entries of T`, . . . , T`+t−1 change,
and the change lists store what the entries change to. The D` and E` arrays do the same
thing for the last t − dlog1+εte entries, exploiting that these entries change at most once in
an interval of length t.

Observe that the arrays, C`,k, D`[k] and E`[k], and the bit vectors, B`,k allow us to retrieve
the contents of any entry, Ti[k] for any i, k, in constant time as follows. Let ` = bi/tct. If
k > dlog1+εte we check if D`[k] ≤ i, and if so we return E`[k], otherwise we return S`[k]. If
k ≤ dlog1+εte, we determine r = rank(i− `) in B`,k using the rank and select data structure.
We then return C`,k[r] unless r = 0 in which case we return S`[k].

We argue that this correctly returns Ti[k]. In the case where k > dlog1+εte, comparing
D`[k] to i indicates whether Ti[k] is different from T`[k]. Since Tz[k] for z = `, . . . , i can only
change once, Ti[k] = E`[k] in this case. Otherwise, S`[k] = T`[k] = Ti[k]. If k ≤ dlog1+εte, the
rank r of i− ` in B`,k, is the number of changes that has occurred in the k’th entry from list



3.3. (1 + ε)-Approximate Range Mode 21

T` to Ti. Since C`,k[r] stores the value of the k’th entry after the r’th change, C`,k[r] = Ti[k],
unless r = 0 in which case Ti[k] = S`[k].

The space used by the data structure is O(n
ε ). We store 3dnt e arrays, S`, D` and E` for

` ∈ I, each using t space, in total O(n). The total size of the change lists, C`,k, is bounded
by the number of changes across the Ti lists, which is O(n

ε ) by the arguments above. Finally,
the rank and select data structures, B`,k, each occupy O( t

w ) = O( t
log n) words, and we store

a total of dnt edlog1+εte such structures, thus the total space used by these is bounded by

O

(
t

log n

n

t
log1+εt

)
= O

(
n

log1+εt

log n

)
= O

(
n

ε

log t

log n

)
= O

(
n

ε

log log(εn)
ε

log n

)
= O

(
n

ε

log(n log(εn))
log n

)
= O

(n

ε

)
.

In the last line we used that if d1εe ≥ n then we only store the small frequency data structure.
We conclude that our data structures uses O

(
n
ε

)
space.

To answer a query [i, j], we first compute a 3-approximation of Fi,j in constant time using
the data structure from Section 3.2. Thus, we find fi,j satisfying fi,j ≤ Fi,j ≤ 3fi,j . Choose k

such that d1ε (1 + ε)ke+ 1 ≤ fi,j ≤ d1ε (1 + ε)k+1e − 1 then the successor of j in Ti must be in
one of the entries, Ti[k], . . . , Ti[k+O(log1+ε3)]. As stated earlier, the values of Ti are sorted in
increasing order, and we find the successor of j using a binary search on an interval of length
O(log1+ε3). Since each access to Ti takes constant time, we use O(log log1+ε3) = O(log 1

ε )
time.

Theorem 3.3.1 There exists a data structure for (1 + ε)-approximate range mode that uses
O(n

ε ) space and supports queries in O(log 1
ε ) time.

The careful reader may have noticed that our data structure returns a frequency, and not
a label that occurs approximately Fi,j times. We can augment our data structure to return a
label instead as follows.

We set ε′ =
√

(1 + ε) − 1, and construct our data structure from above. The small
frequency data structure is augmented such that it stores the label Mi,Qi[k] along with Qi[k],
and return this in a query. The large frequency data structure is augmented such that for
every update of Ti[k] we store the label that caused the update. Formally, let a > 0 be the
first index such that Ti+a[k] 6= Ti[k]. Next to Ti[k] we store the label Li[k] = A[i + a − 1].
In a query, [i, j], let s be the index of the successor of j in Ti computed as above. If s > 1
we return the label Li[s− 1], and if s = 1 we return Mi,Qi[d1/ε′e], which is stored in the small
frequency data structure.

In the case where s = 1 we know that d 1
ε′ e ≤ Fi,j ≤ d 1

ε′ (1 + ε′)2e − 1 = d 1
ε′ (1 + ε)e − 1

and we know that the frequency of Mi,Qi[d1/ε′e] in A[i, j] is at least d 1
ε′ e. We conclude that

the frequency of Mi,Qi[d1/ε′e] in A[i, j] is a (1 + ε)-approximation of Fi,j .
In the case where s > 1, we know that d 1

ε′ (1 + ε′)s−1e + 1 ≤ Fi,j ≤ d 1
ε′ (1 + ε′)s+1e − 1

by equation (3.1), and that the frequency, fL, of the label Li[s − 1] in A[i, j] is at least
d 1

ε′ (1 + ε′)s−1e + 1. This means that Fi,j ≤ 1
ε′ (1 + ε′)s+1 ≤ (1 + ε′)2fL = (1 + ε)fL, and we

conclude that fL is a (1 + ε)-approximation of Fi,j .
The space needed for this data structure is O( n

ε′ ) = O(n(
√

1+ε+1)
ε ) = O(n

ε ), and a query
takes O(log 1

ε′ ) = O(log 1
ε + log(

√
1 + ε + 1)) = O(log 1

ε ) time.



22 Chapter 3. Approximating the Mode

3.4 Range k-frequency

In this section, we consider the range k-frequency problem and its connection to classic geo-
metric data structure problems. We show that the range k-frequency problem is equivalent
to 2D rectangle stabbing for any fixed constant k > 1, and that for k = 1 the problem reduces
to four-sided 3D orthogonal range emptiness.

In the 2D rectangle stabbing problem the input is n axis-parallel rectangles. A query is
given a point, (x, y), and must return whether this point is contained1 in at least one of the n
rectangles in the input. A query lower bound of Ω(log n/ log log n) for data structures using
O(n logO(1) n) space is proved in [32], and a linear space static data structure with this query
time can be found in [26].

In four-sided 3D orthogonal range emptiness, we are given a set P of n points in 3D, and
must preprocess P into a data structure, such that given an open-ended four-sided rectangle
R = [−∞, x]× [y1, y2]× [z,∞], the data structure returns whether R contains a point p ∈ P .
Currently, the best solution for this problem uses O(n log n) space and supports queries in
O(log2 log n) time [1].

For simplicity, we assume that each coordinate is a unique integer between one and 2n
(rank space).

Theorem 3.4.1 The range k-frequency problem reduces to 2D rectangle stabbing.

Proof. Let A be the input to the range k-frequency problem. We translate the ranges of A
where there is a label with frequency k into O(n) rectangles as follows. Fix a label x ∈ A,
and let sx ≥ k denote the number of occurrences of x in A. If sx < k then x is irrelevant and
we discard it. Otherwise, let i1 < i2 < . . . < is be the position of x in A, and let i0 = 0 and
is+1 = n + 1. Consider the ranges of A where x has frequency k. These are the subarrays,
A[a, b], where there exists an integer ` such that i` < a ≤ i`+1 and i`+k ≤ b < i`+k+1 for
0 ≤ ` ≤ sx−k. This defines sx−k+1 two dimensional rectangles, [i`+1, i`+1]×[i`+k, i`+k+1−1]
for ` = 0, . . . , sx− k, such that x has frequency k in A[i, j] if and only if the point (i, j) stabs
one of the sx − k + 1 rectangles defined by x. By translating the ranges of A where a label
has frequency k into the corresponding rectangles for all distinct labels in A, we get a 2D
rectangle stabbing instance with O(n) rectangles. 2

This means that we get a data structure for the range k-frequency problem that uses O(n)
space and supports queries in O(log n/ log log n) time.

Theorem 3.4.2 For k = 1, the range k-frequency problem reduces to four-sided orthogonal
range emptiness queries in 3D.

Proof. For each distinct label x ∈ A, we map the ranges of A where x has frequency one (it is
unique in the range) to a 3D point. Let i1 < i2 < . . . < is be the positions of x in A, and let
i0 = 0 and is+1 = n+1. The label x has frequency one in A[a, b] if there exist an integer ` such
that i`−1 < a ≤ i` ≤ b < i`+1. We define s points, Px = {(i`−1 + 1, i`, i`+1 − 1) | 1 ≤ ` ≤ s}.
The label x has frequency one in the range A[a, b] if and only if the four-sided orthogonal
range query [−∞, a] × [a, b] × [b,∞] contains a point from Px (we say that x is inside range
[x1, x2] if x1 ≤ x ≤ x2). Therefore, we let P =

⋃
x∈A Px and get a four-sided 3D orthogonal

range emptiness instance with O(n) points. 2

1points on the border of a rectangle are contained in the rectangle



3.5. Summary and remarks 23

Thus, we get a data structure for the range 1-frequency problem that uses O(n log n) space
and supports queries in O(log2 log n) time.

Theorem 3.4.3 Let k be a constant greater than one. The 2D rectangle stabbing problem
reduces to the range k-frequency problem.

Proof. We show the reduction for k = 2 and then generalize this construction to any constant
value k > 2.

Let R1, . . . , Rn be the input to the rectangle stabbing problem. We construct a range
2-frequency instance with n distinct labels each of which is duplicated exactly 6 times. Let
R` be the rectangle [x`0 , x`1 ] × [y`0 , y`1 ]. For each rectangle, R`, we add the pairs (x`0 , `),
(x`1 , `) and (x`1 , `) to a list X. Similarly, we add the pairs (y`0 , `), (y`1 , `), and (y`1 , `) to a
list Y . We sort X in descending order and Y in ascending order by their first coordinates.
Since we assumed all coordinates are unique, the only ties are amongst pairs originating from
the same rectangle, here we break the ties arbitrarily. The concatenation of X and Y is the
range 2-frequency instance and we denote it A, i.e. the second component of each pair are
the actual entries in A, and the first component of each pair is ignored.

We translate a 2D rectangle stabbing query, (x, y), into a query for the range 2-frequency
instance as follows. Let px be the smallest index where the first coordinate of X[px] is x,
and let qy be the largest index where the first coordinate of Y [py] is y. If A[px] = A[px + 1],
two consecutive entries in A are defined by the right endpoint of the same rectangle, we set
ix = px + 2 (we move ix to the right of the two entries), otherwise we set ix = px. Similarly
for the y coordinates, if A[|X|+ qy] = A[|X|+ qy − 1] we set jy = qy − 2 (move jy left of the
two entries), otherwise we set jy = qy. Finally we translate (x, y) to the range 2-frequency
query [ix, |X| + jy] on A, see Figure 3.1. Notice that in the range 2-frequency queries that
can be considered in the reduction, the frequency of a label is either one, two, three, four or
six. The frequency of label ` in A[ix, |X|] is one if x`0 ≤ x ≤ x`1 , three if x > x`1 and zero
otherwise. Similar, the frequency of ` in A[|X| + 1, |X| + jy] is one if y`0 ≤ y ≤ y`1 , three if
y > y`1 and zero otherwise. We conclude that the point (x, y) stabs rectangle R` if and only
if the label ` has frequency two in A[ix, |X|+ jy].

Since x, y ∈ {1, . . . , 2n}, we can store a table with the translations from x to ix and y
to jy. Thus, we can translate 2D rectangle stabbing queries to range 2-frequency queries in
constant time.

For k > 2 we place k − 2 copies of each label between X and Y and translate the queries
accordingly. 2

We conclude that for data structures using O(n logO(1) n) space, the range k-frequency
problem is exponentially harder for k > 1 than for k = 1.

3.5 Summary and remarks

We have shown that using only linear space we can get any constant factor approximation
of the mode in constant time. Secondly, we considered the range k-frequency problem and
showed how this problem is strongly related to geometric data structure problems. We found
matching upper and lower bounds for any constant k > 1, and showed that for k = 1 it is
exponentially easier to solve for near linear space data structures. Unfortunately, we were not
able to exploit this in our efforts to prove anything new regarding the range mode problem.
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A = [BBCCCAABA︸ ︷︷ ︸CBABBAACC]︸ ︷︷ ︸
X=[(6,B)(6,B)(5,C)(5,C)(4,C)(3,A)(3,A)(2,B)(1,A)]
Y=[(1,C)(2,B)(3,A)(4,B)(4,B)(5,A)(5,A)(6,C)(6,C)]

6

Figure 3.1: Reduction from 2D rectangle stabbing to range 2-frequency. The × marks a
stabbing query, (5, 3). This query is mapped to the range 2-frequency query [i5, |X| + j3] in
A, which is highlighted. Notice that i5 = p5 + 2 since A[p5] = A[p5 + 1].

The range mode problem seems to be much harder than the range k-frequency problem, but
we were not able to put any structure on the range mode problem that could be used to prove
a lower bound as we did for the range k-frequency problem.



Chapter 4

Future Work

In this chapter my plans for the remaining two years of my PhD study are described.
This is mainly about a number of open problems in connection with my previous work. I am
planning on visiting a research institution abroad sometime around the middle of 2010.

4.1 Open Problems

Online Sorted Range Reporting in the I/O model

The motivation for studying this problem originated from its potential application in search
engines. For this reason we were also mainly interested in obtaining solutions for the I/O
model. While working on this problem we found it hard to develop non-trivial solutions in
the I/O model, so we turned to the RAM model, and came up with the solution which was
presented in Chapter 2.

We have recently turned our attention to this problem again in the I/O model, but so
far we have not obtained results of any particular significance, and so I will omit describing
them in detail. This is one of the problems that I plan to continue working on in my part
B studies. In particular, we are interested in both lower and upper bounds for this problem.
So far we have been looking a bit into lower bounds in terms of time-space tradeoffs. For
instance we have been investigating the minimum number of I/Os needed for a query when we
have linear space for the data structure, and the minimum space needed to get linear query
time (i.e. O(k/B) I/Os where k is the size of the output). Also note that by time I mean the
number of I/Os needed to return the answer of a query. Upper bounds, i.e. solutions in the
I/O model are also interesting for this problem, but unfortunately our solution in the RAM
model is not easy to generalize to the I/O model. For instance, one of the major problems is
that our solution in the RAM model returns the indices of the elements in the output, and
also uses indirect addressing in several other places. This means that we need to use one I/O
per output element in the worst case, which is not very appealing. In other words, we need
to look into different approaches to attacking this problem. However, currently my focus is
to work on the lower bounds, since this is the part where we have spent least time so far.
Also, we are not aware of any research on this problem in the I/O model, so essentially most
of the problems related to this are still open.

25
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Range Mode Problem

Our initial goal for this problem was to get an O(polylog(n)) query time solution with
O(npolylog(n)) words of space in the RAM model, but despite a lot of efforts this prob-
lem has yet resisted all our attacks. The current best upper bounds for the problem are
described in Section 3.1. We have also attempted to prove some (fairly weak) lower bounds
for the problem (i.e. a bound such as you need super-constant time for queries when you have
O(npolylog(n)) words of space), but also without any success. Instead we were able to prove
some lower bounds for a similar problem in Chapter 3. I plan to revisit this problem again
during my part B studies. I am not yet convinced of the impossibility of a O(npolylog(n))
solution with O(polylog(n)) words of space despite the amount of time we have been working
on this problem. I still plan to continue to look a bit into finding such a solution. Also,
it would be interesting to perhaps find some connection between the range mode problem
and the range k-frequency problem studied in Chapter 3 so that we can put a non-trivial
lower bound on the range mode problem, even if the bound we would get is nowhere near the
current best upper bound.
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