
Master Thesis

Selection in a Heap

Kenn Daniel
20118457

kenn daniel@hotmail.com

Casper Færgemand
20118354

shorttail@hotmail.com

Advisor: Gerth Stølting Brodal

June 13, 2016

1



Abstract

We test the algorithms presented by Frederickson [5] and investigate if they
follow the theoretical bounds, with a focus on whether the theoretical linear
time algorithm can be used in practice. We do this by implementing the
algorithms (link in Table 0.1), and then measuring and comparing them on
several parameters. Additionally we also reproduce the theoretical results to a
higher degree of detail.

In Danish

Vi tester algoritmerne præsenteret af Frederickson [5] og undersøger om de følger
de teoretiske grænser, med fokus p̊a om algoritmen med teoretisk lineærtids
kompleksitet kan bruges i praksis. Dette gjorde vi ved at implementere
algoritmerne (link i Table 0.1), og derefter m̊ale og sammenlige dem p̊a adskillige
parametre. Derudover efterprøver vi de teoretiske resultater med en højere
grad af detalje.

github.com/HeapSelection/Heap-Selection

Table 0.1: Link to implementations
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Chapter 1

Introduction

Given a binary min-heap of size n � k, we want to select the k smallest
elements. Since n� k we will view this binary min-heap as being infinitely
large. Here a binary min-heap is a heap ordered binary tree, where every node
contains a value, and has two children. The children of a node have values
higher than or equal to that of their parent. The min-heap was introduced by
Williams [6]. An example of our problem is seen in Figure 1.1, where we have
selected the five smallest elements.

Frederickson [5] describes four algorithms with increasingly better upper
bounds, with the final algorithm SEL4 having the optimal theoretical bound of

Figure 1.1: An infinitely large heap with the 5 smallest elements colored.
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7

O(k). In this thesis we have investigated the practicalities of these algorithms
and assessed whether or not, especially the final optimal bound, works in
practice. This we have done by implementing all the algorithms mentioned,
and then measure their behaviours on different parameters such as, but not
limited to: comparisons, accesses to the original heap and last level data cache
misses.

Furthermore, because of how advanced some of the algorithms described
by Frederickson in [5] are, another issue can be the understanding of them.
Frederickson does provide some intuition by constructing the next algorithm
through the addition of one or more paradigms to the previous. Thus building
the algorithms iteratively. Despite Frederickson’s efforts, understanding of
the algorithms is not achieved without difficulty. We therefore try to give
additional explanations, intuition and show how the algorithms work through
examples.

Throughout this thesis we have also proven several unproven claims pro-
posed by Frederickson [5], some claims we have not managed to prove, but for
these we have tried to give some intuition into why they could hold.

Selection in a min-heap has 62 citations at the time of writing. Eppstein
[4] uses it in an algorithm that finds the k shortest paths. Brodal [2] uses it in
an algorithm that selects the k largest sums of subarrays in an array.



Chapter 2

Notation

Table 2.1: Table of Notation

T Our original infinitely large min-heap.
H0 The root of T .
k The number of small elements we are selecting.
r Natural number, we use for representing subroutine sizes.
B Clan size.
C A clan.
Ci Clan number i.

os(C) The off-spring of clan C.
pr(C) The poor-relation of clan C.
H A set of nodes from our infinite min-heap.

PQ A priority queue.

8
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Table 2.2: Table of Function Definitions

na = aa
··
a︸︷︷︸

n

log∗(r) =

{
1 if r ≤ 2

1 + log∗(dlog(r)e) otherwise

f(r) =

⌊
(
dlog(r)e
log∗(r)

)2
⌋

h3(r) =

{
1 if r ≤ 1

h3(blog(r)c) ·
⌈

r
h3(blog(r)c)

⌉
otherwise

h4(r) =

{
1 if r ≤ 1

h4(f(r)) ·
⌈

r
h4(f(r))

⌉
otherwise

A(r) =

2·log∗(r)∏
i=1

(1 +
4

i2
)

B(r) =
r

3log
∗(r) · (r ·A(r)−

⌈
r

blog(r)c

⌉
· blog(r)c ·A(blog(r)c))

C(r) =
(log∗(r))2((2 log∗(r)− 1)2 + 4)

4dlog∗(r)e
2 log∗(r)∏

i=1
(1 + 4

i2
)



Chapter 3

Naive Algorithm O(k · log k)

3.1 Introduction

The first and simplest algorithm for selecting the k smallest elements in a min
heap uses a minimum priority queue holding heap nodes. It takes an integer k
and a heap node H0 as arguments and returns the k smallest elements found
in the tree rooted in H0. It is only briefly described in Frederickson’s paper
[5], but it is fairly easy to come up with. An example of how it works can be
seen in Chapter 12. In algorithm SEL1, which improve the bound O(k · log k)
to O(k · log log k) and will be presented later, the Naive algorithm is used and
is required to find the k smallest elements from a list of trees, represented by
their roots. The single tree version simply calls the multiple tree version. In
the multiple tree version we call the set of trees Hn. It works as follows:

1. Initialize priority queue PQ with all elements from Hn

2. Initialize result list R

3. k times do:

a) Ei := extractMin(PQ)

b) Add Ei to R

c) Insert left and right child of Ei into PQ

4. Return R

3.2 The algorithm

We begin by initializing a priority queue PQ, where smaller elements have
higher priority, and add the elements in Hn to PQ. Hn will only contain one
element, namely H0 when called as the single tree version, but will maximally
hold O(k) elements when called through SEL1. Then we perform extractMin

10



3.3. TERMINATION 11

operations on PQ k times, and for each of these times we store the element
we extracted as a part of the result. For every node extracted we then insert
its children into the PQ. When k elements have been extracted we are done.

3.3 Termination

In order to argue that the algorithm terminates we first note that we make
the assumption that we pick a priority queue for which the operations all
terminate, given that the priority queue has a finite size. With this established
our algorithm clearly terminates since we specifically call the extract-min
operation k times. Since we only ever extract k elements, and every element
has at most two children, the size of the priority queue will never exceed O(k)
elements, which means the size of the priority queue is indeed finite.

More precisely, if Hn holds s elements, then the maximum size of the
priority queue will be s + k, because we k times extract one element and add
two, effectively raising the queue size by one. Since s = O(k), we have that
the maximum priority queue size is O(k).

3.4 Correctness

To achieve correctness the important invariant is that everything that will be
inserted into our priority queue in the future has an ancestor in the priority
queue, and every element extracted is smaller than all the elements we have
not extracted. Since we start with root(s) of trees, it is easy to see that since
we always insert both children of an extracted element we will not miss any
nodes in the trees we are looking for minimum elements in. Additionally since
we are working on a minimum priority queue it is clear that when we extract
an element this element is the smallest in the priority queue at the time of
extraction. Since we are selecting the smallest elements from a minimum heap,
and we add the children of any extracted element, every time we extract an
element this element will be the minimum element that was left. Which is why
when he have extracted k elements we will have extracted the k smallest.

3.5 Theoretical bound

By the argument in Section 3.3 the priority queue will have size O(k). This
means the extractMin operation will achieve a bound of O(log(k)) for a suitable
choice of data structure to represent the priority queue (a minimum heap).
Since we call extractMin k times we achieve a total bound of O(k · log(k)).



Chapter 4

Framework

4.1 Introduction

The four algorithms for finding the k smallest elements a min heap presented
by Frederickson in [5] gradually improve upon the naive algorithm presented in
Chapter 3. The paper presents multiple ideas that when used together provide
the algorithm SEL4, which has an optimal linear theoretical bound.

These ideas also provide entry points for tweaking a practical implementa-
tion of several of the algorithms. In this chapter the ideas will be presented in
the order they appear in [5], and some will be supplemented with a discussion
of how the runtime is affected by changing parameters in the implementation.

4.2 Partitioning

Instead of directly finding the elements requested, we search for an element x
with a rank that is greater than or equal to the rank of k’th smallest element.
We then traverse the heap, adding all elements less than or equal to x to a list.
This can result in more than k elements. To fix this the list can be partitioned
using a standard partition algorithm, so that the k smallest elements are at
the beginning of the list and the rest of the elements in the list are discarded.

See Chapter 5 for details. All four algorithms described by Frederickson in
[5] use this technique, see Chapters 7, 8, 10, and 11.

4.3 Clans

An element of appropriate rank can be used to find the k smallest elements,
see above section. This gives some freedom as to how elements are handled.

The four algorithms, SEL1, SEL2, SEL4, and SEL4, still use priority queues
internally to keep track of which elements have been found. To reduce the
time used by the priority queue we group elements into clans, and instead put
the clans into the priority queues. For instance, if we let a clan contain

√
k

12



4.4. RECURSION 13

elements, we can reduce the number of extractMin and insert operations by a
factor

√
k and still obtain k elements.

The value of a clan is called a representative, which is used in the priority
queue for ordering, and it is the largest member of the clan. Thus if the
algorithm runs extractMin k

clansize times, a total of k elements will have been
extracted through the clans. Since the clans are ordered by representative and
the lowest ranked clans are extracted first, the representative of the last clan
must be larger than or equal to all other elements in extracted clans, and thus
have a rank of at least k.

When a clan is extracted from the priority queue, we create new clans.
The way this is done is relevant to the time bounds, but not to correctness. In
regard to time bounds, if a clan is to be made with elements from a very large
set of elements it follows that the smallest elements cannot be found fast: If
we are to find the k smallest among 2k unordered elements, we cannot hope to
do so in O(k) time. Therefore the four algorithms supply ways to split the sets
of possible clan members into smaller sets. The method presented by SEL1
and SEL2 is considerably more complicated than the one presented by SEL3
and SEL4, but they both achieve the exact same thing: Splitting the set into
a smaller size.

See Chapter 6 for details on clans and Chapters 7, 8, 10, and 11 for their
use.

Tweaking

Clan size is relevant to time bounds, but not to correctness (within reasonable
limits). If the clan size is set to 1, the algorithm essentially degenerates to
the naive algorithm, with some overhead. Conversely, if the clan size is set
to k, meaning we only need a single clan to get an element of at least rank
k, we simply push the entire problem to whatever subroutine we’re calling.
For SEL1, this means simply asking the naive algorithm to solve the entire
problem. For the recursive algorithms, continuously requesting clans of size k
obviously breaks the termination proof (see reasonable limits above).

4.4 Recursion

We have changed the problem of finding the k smallest elements in H0 to
finding the r smallest in some subset of H0 multiple times. If the time bounds
can be improved by solving subproblems in the main algorithm, and the
problem solved by the subroutine is very similar to the main problem, the next
logical step is to apply our subroutine recursively: If the top layer is asked
for k elements and it runs the subroutine asking for f(k) elements for some
definition of f , the next layer can call itself asking for f(f(k)) elements. We
refer to the rank of the element requested at any level as r, with r = k at the
top level, and r = 1 as the base case for the recursion.
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See SEL2, SEL3, and SEL4 in Chapters 8, 10, and 11 respectively for usage
of recursion.

Tweaking

The recursion depth is an obvious place to tweak the algorithms. Essentially, the
naive algorithm, SEL1, and SEL2 behave the same way. The naive algorithm
has a recursion depth of 0, solving all of its work up front. SEL1 has a recursion
depth of 1, cutting its work up once and then letting the naive algorithm solve
it. SEL2 recurses until it reaches its base case of r = 1. Changing the base
case to something larger than 1 could be a way to improve SEL2.

Unfortunately, in the case of SEL1 and SEL2, neither perform better than
the naive algorithm in our runtime tests, so having a recursion depth of 0 is
best. With a lot of extrapolation, SEL1 could possibly beat the naive algorithm
if used on more data than we were able to generate. See Chapter 16 for details.

SEL4 has a chapter dedicated to tweaking the base case and will not be
discussed here. See Chapter 13. SEL3 might benefit from some of the same
optimizations, but since SEL4 is better than SEL3 in all measurements, it has
not been examined.

4.5 Priority queue preservation

In the introduced recursion, elements are considered multiple times. For
instance, if we are at layer ` and extract a clan from our priority queue, that
clan was created at layer ` + 1. When we return a clan from our level, we
throw away our priority queue, and thus work done at this and lower levels
will have to be redone if needed at a later time: The same elements that were
already found previously might be found in subsequent calls.

The idea is then to try to reuse information from lower levels of the recursion.
We want a guarantee that any element is extracted at most once per level.

This is done by adding the priority queue used at level ` + 1 to the clan
returned to level `. When level ` later calls the subroutine for ` + 1, it passes
along the priority queue. This means work already done is essentially preserved
between calls to the same level. An important property is that we need to
split a priority queue in sublinear time to stay within time bounds.

See Chapter 9 for details on priority queue splitting.

4.6 Category

When we extract a clan from a priority queue, we create two new clans (see
Chapters 6, and 9). In a rather obscure way of improving the time bounds, the
last algorithm, SEL4, presents the idea of sometimes not splitting. It works
as follows: When a clan C is first inserted into the priority queue, give it a
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category of 1. When C is extracted, if the category is below some threshold
(based on r in SEL4), do not split its priority queue, but simply recurse on it.
The resulting clan C ′ is given the category cat(C) + 1 and then inserted into
our priority queue. If cat(C) > threshold, we split and recurse on both. The
resulting clans are both given a category of 1. Since the threshold for splitting
is proportional to r, deeper in the recursion we split more often.

Tweaking

Splitting threshold is relevant to time bounds, but not to correctness: Setting
the threshold to 1, meaning we always split, we are no different from SEL3.
The other extreme of never splitting also loses the time bound, but is also still
correct: Never splitting means all layers of recursion will only ever have one
clan in their priority queues, except the the layer where r = 1, where we get
O(k) clans, essentially the naive algorithm.

In our tests we found that changing the threshold had some effect, but
changing the base case had a much greater effect, see Chapter 13.



Chapter 5

Select

5.1 Introduction

The four algorithms presented by Frederickson in [5] all use a selection algorithm
for finding the k smallest elements in a list.

Blum presents an algorithm called PICK in [1], which finds the i’th smallest
number in a list. In Chapter 9.3 in Corman [3], SELECT is described. SELECT
builds on PICK and additionally partitions the list such that all elements
before the k’th are less than or equal, and all later elements are greater than
or equal. Select presented here is a variation of SELECT.

5.2 The algorithm

Select takes arguments k and A, k being the number of elements desired, A
being the list of elements. It then looks at A in its entirety and calls the
subroutine findMedian on A. It partitions A around the median. If the median
is at a position different to k, repeat on a subset of A. The partitioning is
done in place. It looks as follows:

1. low := 0

2. high := length(A)

3. While (low < high) do:

a) index := low

b) findMedian(A, low, high)

c) swap(A[low], A[high− 1])

d) i := low − 1

e) j := low

f) While (j < high− 1) do:

16
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i. If (value(A[j]) ≤ value(A[high− 1]):

A. i := i + 1

B. swap(A[i], A[j])

ii. j := j + 1

g) swap(A[i + 1), A[high− 1]

h) index := i + 1

i) If (index < k):

i. low := index + 1

j) Else if (k < index):

i. high := index

k) Else:

i. Return

The findMedian subroutine takes A, a list of elements, and low and high, the
range in which a median is to be found. It works by finding exact medians of
fixed sized subsets of A, and combining these medians to create approximate
medians of large parts of A, until eventually it condenses to a single value.
This final value is not the exact median, but a good approximation, see [3].

In the following example the fixed size for exact medians is 9. The median
it finds will be swapped to the beginning on the part of A it operates on. It
looks as follows:

1. remaining := high− low

2. While (remaining > 0) do:

a) index := low

b) extra := remaining%9

c) i := 0

d) While (i < remaining)

i. If (i + 9 < remainder):

A. sort(A[i + low], A[i + low + 9])

B. swap(A[index], A[low + i + 4])

ii. Else:

A. sort(A[i + low], A[low + remaining])

B. swap(A[index], A[low + i + extra−1
2 ])

iii. i := i + 9

iv. index := index + 1

e) remaining := remaining
9
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f) If (extra 6= 0):

i. remaining := remaining + 1

Note that our pseudo code finds the median of 9 elements, which is what the
implementation uses. The algorithm described by Cormen in [3] finds the
median of 5 elements, but is otherwise the same.

5.3 Further reading

The details of Select are not relevant to SEL1, SEL2, SEL3, and SEL4, and
will not be discussed. The particular Select used in the implementation could
be replaced by any other Select, so long as it runs in linear time. For a detailed
overview of Select, see Chapter 9.3 in Cormen [3].



Chapter 6

Clans

6.1 Clan

For the algorithm in the next chapters we will use something Frederickson [5]
calls clans. A clan C contains some amount of nodes from the original heap T ,
a representative of the clan rep(C), a set of nodes called the off-spring os(C),
and a set of nodes called the poor-relation pr(C).

When we construct a clan C, we construct it from some forest A. Here
the off-spring is then defined as the children of the nodes in C which are not
themselves in C. The poor-relation is defined as the set of nodes in A, which
are not in C. Lastly the representative of the clan C is defined as the largest
value of any node in C.

The members of C are found from the roots in A, with each algorithm
specifying its own way of doing so.

Off-spring and poor-relation are found in the following way, with the
function createClan taking C and A:

1. All nodes in C and A start uncolored. Color all nodes in C.

2. For each node in children of nodes in C, if the node is uncolored, add it
to os(C).

3. For each node in A, if the node is uncolored, add it to pr(C).

4. Remove color from nodes in C.

This ensures all nodes are uncolored when the algorithm terminates. Because
all nodes in C are colored first, nodes in C cannot appear in os(C) or pr(C).

The construction of a clan given A and C is linear in the size of A and
C, since the four sets are each iterated a constant number of times. This is
asymptotically optimal.

19



20 CHAPTER 6. CLANS

6.2 Clan-3

Clan-3, used by SEL3, is a simpler construct than the previously defined clan.
Clan-3 contains a representative and a heap as defined in chapter 9. The
members of the clan are implicit in that they are smaller than or equal to the
representative, and not included in the heap. The heap is a substitute for the
previously used off-spring and poor-relation: the heap itself can be split into
two, removing the need for a distinction between the different kinds of nodes
not included in the clan.

6.3 Clan-4

Clan-4, used by SEL4, is identical to clan-3 defined above, except that it
contains an additional integer value called category, which SEL4 uses.



Chapter 7

SEL1 O(k · log log k)

7.1 Introduction

For our second algorithm we have implemented the first described algorithm
by Frederickson [5]. We have illustrated how this algorithm works in Chapter
12.

7.2 The algorithm

SEL1 is an algorithm that uses clans of blog(k)c size to find an element with
rank between k and 2k. The problem of finding the clans in subtrees from
H0 is solved by the naive algorithm. SEL1 takes two arguments, an integer k
and H0, then calls Select (See Chapter 5) on the last representative found. It
works as follows:

1. clanSize := blog(k)c

2. C0 := createClan(naive(clanSize,H0))

3. Initialize heap PQ with C0

4. highest := − inf

5. limit :=
⌈

k
clanSize

⌉
6. limit times do:

a) Ci := extractMin(PQ)

b) highest := rep(Ci)

c) If size(os(Ci)) > 0:

i. Insert createClan(naive(clanSize, os(Ci))) into PQ

d) If size(pr(Ci)) > 0:
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i. Insert createClan(naive(clanSize, pr(Ci))) into PQ

7. Do a breadth first search and Select (See 5) using highest according to
chapter 5

7.3 Termination

This algorithm clearly terminates since we have already established that the
Naive algorithm terminates, and we only do a fixed number of iterations. Like
for the Naive algorithm the size of the priority queue PQ is finite, because
we first add one clan made from the element the algorithm is called with.
Then we limit times call extract and two clans made from the off-spring and
poor-relation of the extracted clan. This means we limit times at most grow
the size of the priority queue by one.

7.4 Correctness

For proof of correctness we first note that every clan is disjoint. Additionally

since we extract
⌈

k
blog(k)c

⌉
clans from our priority queue, we have that the

representative for the last extracted clan is larger than the values for all nodes

in all our previously extracted clans, and since we have extracted
⌈

k
blog(k)c

⌉
clans of size blog(k)c we have that this last representative must be at least as
large as the kth smallest element, and also it must be no larger than the 2 · kth
smallest element, because for every clan we extract we make at most two new

clans. Since we extract
⌈

k
blog(k)c

⌉
clans we make at most:

2 · (
⌈

k

blog(k)c

⌉
) ≤ 2 · ( k

blog(k)c
+ 1) (7.1)

clans, and since every clan has size blog(k)c, we have at most:

2 · ( k

blog(k)c
+ 1) · blog(k)c = 2 · k + 2 · blog(k)c (7.2)

elements in all of these clans in total. Since our last extracted clan has a
representative larger than or equal to all other elements in previously extracted
clans we have that there can be at most 2 · k of these elements less than or
equal to our last representative. We remove the 2 · blog(k)c term because these
are the elements created by our last extracted clan.

7.5 Theoretical bound

The bottleneck in our algorithm is the part where we call our Naive algorithm

for every one of our
⌈

k
blog(k)c

⌉
iterations. Since our Naive algorithm runs in
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c′ · r · log(r), where r is the number of smallest elements we want to find and
c′ is some constant, we get in total. We will assume that k > 1, since for k = 1
the problem is easy, we get:

c′ · blog(k)c · log(blog(k)c) ·
⌈

k

blog(k)c

⌉
≤ c′ · blog(k)c · log(blog(k)c) · ( k

blog(k)c
+ 1)

≤ c′ · log(blog(k)c) · k + c′ · log(blog(k)c) · blog(k)c
≤ 2c′ · log(blog(k)c) · k
≤ 2c′ · log(log(k)) · k
= O(k · log(log(k)))

which is our asymptotic bound. Furthermore we need to show that we do not
use too long in our last step of the algorithm where we call a k-select algorithm
on lists. Referring to Chapter 5 we can see that this step will only take O(k)
time on a list of size maximum 2 · k. We get the asymptotic bound we were
looking for.
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SEL2 O(k · 3log∗(k))

8.1 Introduction

We have implemented the second algorithm described by Frederickson [5] called
SEL2. We have illustrated how this algorithm works in Chapter 12.

8.2 The algorithm

SEL2 is a recursive algorithm that uses clans of blog(k)c size to find an element
with rank between k and 2k. In SEL1 the problem of finding the members of
each clan was solved using the naive algorithm, while here we use SEL2 itself.
SEL2 takes two arguments, r and H.

Note that Frederickson [5] also mentions RSEL2, but since that and SEL2
do virtually the same, RSEL2 was ignored.

We’ve changed the name of k to r, as it also refers to the elements needed
to solve sub problems. It works as follows:

1. If r = 1, return the smallest element in H.

2. Partition H into subsets H1,H2, . . . ,Hs with |Hi| ≤ 2blog(r)c.

3. Let Ci := createClan(SEL2(Hi, blog(r)c),Hi).

4. Initialize heap PQ with every Ci.

5. Let limit :=
⌈

r
blog(r)c

⌉
.

6. limit times do:

a) Let Cj := PQ.extractMin().

b) Let Ci := createClan(RSEL2(os(Cj), blog(r)c), Cj).

c) Let Ci+1 := createClan(RSEL2(pr(Cj), blog(r)c), Cj).
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d) PQ.insert(Ci).

e) PQ.insert(Ci+1).

7. Let Cj be the last extracted element from step 6.a.

8. Add the elements in H less than or equal to rep(Cj) to list L.

9. Select the r smallest elements in L and return them.

8.3 Termination

The recursive call in 3, 6.b, and 6.c each happen a bounded number of times,
and each recursive call has a smaller r with a base case of r = 1, so the
algorithm terminates. Additionally by argumentation very similar to that of
the Naive algorithm and SEL1, the priority queue is finite in size.

8.4 Correctness

The proof of correctness is an induction proof and we note that every clan is
disjoint.

The base case is r = 1 in which the algorithm returns the smallest node in
H. This is trivially correct.

For the induction case we assume that the algorithm works for r′ < r,
which means that all the recursive calls are correct. The steps 7, 8, 9 require
the rank of r ≤ rep(Cj), so the algorithm is correct if this is true.

Each clan extracted from PQ has size blog(r)c and in total
⌈

r
blog(r)c

⌉
clans

are extracted. That means a minimum of

blog(r)c ·
⌈

r

blog(r)c

⌉
≥ blog(r)c · r

blog(r)c
= r

nodes have been extracted, and the representative of the last clan extracted is
greater than or equal to the nodes found in all the extracted clans. Thus the
last representative has a rank of at least r.

The above requires that no clans have nodes in common. To prove that this
is the case, we note that the clans give two sets of nodes from which new clans
can be made, namely off-spring and poor-relation. Off-spring specifically does
not include nodes also included in the clan it belongs to, and poor-relation
is nodes in H not included in the clan. Neither off-spring nor poor-relation
contain nodes that are ancestors of each other. This means that once a clan is
created, its nodes will never be included in another clan.
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8.5 Theoretical bound

First we note for a call to SEL2 with parameters r and H, H will maximum
have size 2 · r. This means we will maximally create 2·r

2·blog(r)c = r
blog(r)c clans

in step 3. Furthermore we will at most create 2 ·
⌈

r
blog(r)c

⌉
clans inside step

6, since we
⌈

r
blog(r)c

⌉
times may create up to two clans. Which means we

create at most 3 ·
⌈

r
blog(r)c

⌉
clans. Performing

⌈
r

blog(r)c

⌉
extract-min operations

and 2 ·
⌈

r
blog(r)c

⌉
insert operations will take O(r) time since the size of the

priority queue is O(r). Additionally step 8 and 9, where we find and select the
r smallest elements in L and return them, also runs in time O(r). This we can
show by making an upper bound on the rank of the last extracted element.

Since we maximally create 3 ·
⌈

r
blog(r)c

⌉
clans as discussed earlier, the rank of

the representative of our last extracted clan from the priority queue in step
6.a must be less than or equal to:

3 ·
⌈

r

blog(r)c

⌉
· blog(r)c ≤ 3 · r + 3 · blog(r)c

Since we create two clans of size blog(r)c from the clan we have extracted as
the last we can subtract 2 · blog(r)c from the result, and get that the maximum
possible rank of our element is 3 · r + blog(r)c = O(r). Which means that step
9 can be solved in O(r) time by [1]. All this together gives us the recursion:

T (1) ≤ c

T (r) ≤ cr + 3 ·
⌈

r

blog(r)c

⌉
· T (blog(r)c)

(8.1)

We would now like to prove that T (r) ≤ c′·r·3log∗(r)·A(r) using induction, where

we let A(r) =
2·log∗(r)∏

i=1
(1 + 4

i2
). The choice of A(r) is inspired by Frederickson’s

[5] proof of SEL4. Our base cases here are r = 1 and r = 2. For r = 1 we get:

c ≤ c′ · 1 · 3log
∗(1) ·

2·log∗(1)∏
i=1

(1 +
1

i2
)

≤ c′ · 1 · 3 · 5 · 2
≤ 30 · c′
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So for the base case r = 1 we should set c′ ≥ 1
30 · c. Now for r = 2. We start

out by calculating the left side:

T (2) ≤ 2c + 3 ·
⌈

2

blog(2)c

⌉
· T (blog(2)c)

≤ 2c + 3 ·
⌈

2

1

⌉
· c

= 8c

Now for the right side:

c′ · 2 · 3log
∗(2) ·

2·log∗(2)∏
i=1

(1 +
4

i2
)

= c′ · 2 · 3 · 10

= 60c′

Which means we need 8c ≤ 60c′, which gives us that we should set 8
60c = 2

15c ≤
c′ for the second base case to hold. Now that we have the two base cases we
want to show the case r > 2 using induction. For the inductive case assume
the claim is true for r′ < r. We will here use A(r), rather than substituting it
with what it equals. We show:

T (r) ≤ cr + 3

⌈
r

blog(r)c

⌉
· T (blog(r)c) (Eq. 8.1)

≤ cr + 3

⌈
r

blog(r)c

⌉
· c′blog(r)c3log

∗(blog(r)c) ·A(blog(r)c) (Ind. hypo.)

≤ cr +

⌈
r

blog(r)c

⌉
· c′blog(r)c3log

∗(blog(r)c)+1 ·A(blog(r)c)

≤ cr +

⌈
r

blog(r)c

⌉
· c′blog(r)c3log

∗(r) ·A(blog(r)c) (Def. log∗)

We then need:

cr +

⌈
r

blog(r)c

⌉
· c′blog(r)c3log

∗(r) ·A(blog(r)c) ≤ c′ · r · 3log
∗(r) ·A(r)

Moving around we get:

cr ≤ c′ · 3log
∗(r) · (r ·A(r)−

⌈
r

blog(r)c

⌉
· blog(r)c ·A(blog(r)c))

Isolating c′ we obtain:

r

3log
∗(r) · (r ·A(r)−

⌈
r

blog(r)c

⌉
· blog(r)c ·A(blog(r)c))

· c ≤ c′
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Figure 8.1: B(r) over r. With r ∈ [3, 200].

If the expression r

3log
∗(r)·(r·A(r)−

⌈
r

blog(r)c

⌉
·blog(r)c)

converges we can pick c′ such

that our proof by induction holds. Which would mean we have shown that
T (r) is O(r · 3log∗(r) ·A(r)), which for the A(r) we have chosen is O(r · 3log∗(r)),
because our choice of A(r) converges, which can be seen using Theorem 19.0.1
and Theorem 19.0.2. If we call our long expression for B(r) we get:

B(r) =
r

3log
∗(r) · (r ·A(r)−

⌈
r

blog(r)c

⌉
· blog(r)c ·A(blog(r)c))

And what remains is to show that this expression converges. We have tried for
long to show this, but have been unable to. We should note that Frederickson
refrains from showing this in [5], and just states that the recursion is bounded
by O(r ·3log∗(r)) on page 204. Looking at Figure 8.1 and Figure 8.2 there seems
to be an indication that B(r) does converge, and it looks like the value never
exceeds 0.025 = 1

40 . So if it does converge as indicated by the two figures, we
could set 1

40 · c ≤ c′.
Lastly as argued earlier the representative of the last extracted clan will be

O(r), which means that given convergence of B(r), we obtain an asymptotic
bound of O(r · 3log∗(r)).



8.5. THEORETICAL BOUND 29

Figure 8.2: B(r) over r. With r ∈ [3, 10000000].



Chapter 9

Priority queues

9.1 Introduction

In this chapter we describe the splittable priority queue used in SEL3 and SEL4.
We will also prove they work and have a theoretical bound of O(log n) on
insert and extract minimum, and O(1) on split, which are the only operations
we need to support for SEL3 and SEL4.

9.2 The data structure

The splittable priority queue has two priority queues internally, a and b, which
are array based priority queues. The implementation uses std::priority_queue
on top of std::vector from the Standard Template Library (STL).

Insert

Insert puts the element in the smallest of a and b. When the queue is initially
empty, the balance between a and b can only be made at most one worse when
they are the same size, and better in the case where one is smaller than the
other.

Extract minimum

Extract minimum returns the minimum element between a and b. If one
is empty then the minimum element of the other is returned. Since we can
potentially have all the smallest elements a, calling extract minimum repeatedly
can skew the balance between the priority queues.

Split

Split works by simply replacing b with an empty priority queue, and returning
a new splittable priority queue containing the old b and an empty priority
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queue. After a split, both priority queues will have one empty internal priority
queue.

9.3 Termination

Insert

Insert compares the size between a and b and inserts into the smallest of
the two. Both operations are guaranteed to terminate in the implementation
provided by the STL, so insert on the splittable priority queue terminate as
well.

Extract minimum

Extract minimum looks at the smallest element in a and b and extracts the
smallest between the two. Both looking at the smallest and extracting it are
guaranteed to terminate in the STL.

Split

Split simply creates a new splittable priority queue and moves b to the new
priority queue. It clearly terminates.

9.4 Correctness

To prove that the splittable priority queue functions correctly as a priority
queue we’ll look at the state of the priority queue before and after each
operation. We’ll show that if the priority queue is in a correct state before an
operation, it will always be in a correct state after an operation.

Insert

Insert simply puts the element in one of the internal priority queues. Before
insert the sum of the size of a and b is n. After we insert, one of the priority
queues will be one larger, giving the sum the size of n + 1. a and b, being
priority queues, will still have their smallest element at the top.

Extract minimum

Since we check which of the priority queues has the smallest element, we
guarantee to return the smallest. When we extract the minimum element from
the priority queue that has the smallest element, that priority queue will be
one smaller, and still maintain heap order.
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Split

The success criteria for split is that we end up with two splittable queues
which don’t contain the same elements. This is trivial, since we keep a in the
splitting priority queue and give b to the new priority queue. No elements
appear in both priority queues, since insert only ever inserts in one of a or b.
There is no guarantee that one of the resulting priority queues won’t contain
all the elements.

9.5 Theoretical bounds

Before we show the complexity we note that the balance between a and b is
irrelevant. For each operation we will also show why.

Insert

The worst case time complexity of insert into the internal priority queues is
O(log n) with n being the size of the specific priority queue. The size of the
priority queue can be checked in O(1), so checking which of the two is smallest
is also O(1) and inserting into the smallest is O(log n), with n being the size
of the smallest priority queue. So insert into the splittable priority queue is
dominated by O(log n).

Extract minimum

Extract minimum includes looking at the top element of a and b, which is O(1)
and extracting the top element from the one containing the smallest, which is
O(log n), with n being the size of that particular priority queue.

Note that one priority queue may contain all elements. However, this does
not change the complexity, since in a splittable priority queue with m elements,
if a and b are the same size, they will each contain m

2 elements. On the other
hand, if one contains all elements, it will have m elements. Since the extract
minimum takes logarithmic time, we find that the real difference between them
is

log(m)− log(
m

2
) = log(m)− (log(m)− 1) = 1

1 is insignificant and thus extract minimum is dominated by O(logm).

Split

Split is trivially O(1), as we just move the priority queue b from one splittable
priority queue to another.
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9.6 Consequences of splitting

Suppose we have a splittable priority queue SPQ with n elements in even
portions in a and b. If we split it, we end up with two SPQ and SPQ′, each
with one internal priority queue containing n

2 elements. If we split SPQ again
and obtain SPQ′′, we’ll get a splittable priority queue with 0 elements.

In the practical use of the splittable priority queue in SEL3 and SEL4, this
is not a problem. In SEL3, when a priority queue with n elements is split,
it is given to a subroutine that calls extract minimum n

2 times and insert n
times. This pushes the size back up to n, and ensures that the internal priority
queues are balanced and ready to be split again.

In SEL4, when an element is extracted, either one or two elements are
inserted. This still pushes back the balance, however. If n

2 elements are in the
queue to begin with, all of them in a, then extracting n

2 and inserting n
2 will

give both a and b the size of n
4 . When two elements are inserted, it looks the

same way as for SEL3.
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SEL3 O(k · 2log∗(k))

10.1 Introduction

For our fourth algorithm we have implemented the third discussed algorithm
in [5]. We have illustrated how this algorithm works in Chapter 12.

10.2 The algorithm

We make use of clan-3 (referred to simply as clan in this chapter) described
in chapter 6.2, as well as the priority queues described in chapter 9.

SEL3 defines the recursive subroutine RSEL3, which takes H and r and
returns C. H is a heap of clans, r is size of C, and C is the clan returned.
Initially SEL3 calls RSEL3 with arguments nil and k. When RSEL3 returns a
clan C, SEL3 extracts the representative of C and uses a breadth first search
and the partition algorithm described in chapter 5 to find the k smallest
elements.

RSEL3 works as follows:

1. If r = 1 :

a) If H = nil :

i. root := min(H0)

ii. Let H be a priority queue containing
leftChild(root), rightChild(root)

iii. return createClan(root,H)

b) x := extractMin(H)

c) Add children of x to H

d) return createClan(rep(x),H)

2. if H = nil :
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a) C := RSEL3(H, blog(r)c)

b) Let H be a priority queue containing C

3. limit :=
⌈

r
h3(blog(r)c)

⌉
4. limit times do:

a) C := extractMin(H)

b) Split heap(C) into H1 and H2

c) C1 := RSEL3(H1, blog(r)c)

d) C2 := RSEL3(H2, blog(r)c)

e) Add C1 and C2 to H

5. return last C extracted from H

We should note that at step 3, [5] page 206 says we should set:

limit :=
h3(r)

h3(blog(r)c)
(10.1)

But since we are in the case r > 1 and h3(r) is as it is in Table 2.2 we can use
this to simplify the expression:

h3(r)

h3(blog(r)c)
=

h3(blog(r)c) ·
⌈

r
h3(blog(r)c)

⌉
h3(blog(r)c)

=

⌈
r

h3(blog(r)c)

⌉

So instead of setting limit to h3(r)
h(blog(r)c) as stated in [5] page 206, we set

limit :=

⌈
r

h3(blog(r)c)

⌉
which is a simpler equivalent in step 3. Additionally this also reassures us that
limit ∈ N, where N is the set of natural numbers.

10.3 Termination

Having that extractMin and Insert terminates, it holds trivially that SEL3
terminates because we always work on smaller sizes in our recursive calls, and
we run the for loop a fixed number of times.
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10.4 Correctness

In order to argue the correctness of SEL3 it is easy to see that we just need
to argue that the final element returned from RSEL3 needs to have a rank
higher than or equal to the k we called it with. This is because the breadth
first search and Select algorithm mentioned earlier (See Chapter 5) will then
be able to find the kth smallest element.

First we note that any element extracted from a heap at level ` of our
recursion is extracted at most once. This means each clan generated at level `
contains distinct elements, meaning any pair of clans at level ` are disjoint.

In order to argue correctness we will show that the rank of the returned
element is h3(k). We do this using an inductive argument. For our base case
we assume r = 1, which clearly holds. We then make the induction hypothesis
that for r′ < r it holds that the returned element has rank h3(r

′). We now
consider the case where r > 1. Since every clan created and extracted at this
level of our recursion has size h3(blog(r)c) due to the induction hypothesis,
and that additionally these clans are all disjoint per the earlier argument and
adding the fact that the rank of our last extracted clan Clast is higher than
the rank of all the ranks of all the previous extracted clans at this level of our
recursion we get the result:

rank(Clast) = limit · h3(blog(r)c)

If we here use the definition of limit for RSEL3 from [5], which we see in
equation 10.1 we then obtain:

rank(Clast) =
h3(r)

h3(blog(r)c)
· h3(blog(r)c) = h3(r)

This shows that the rank of the clan we return is h3(r). Then since we have
for r > 1:

h3(r) =

⌈
r

h3(blog(r)c)

⌉
·h3(blog(r)c) ≥ r

h3(blog(r)c)
·h3(blog(r)c) = r (10.2)

We obtain that the rank of our returned element from RSEL3 to SEL3 is
h3(k) ≥ k, which is what we wanted.

10.5 Theoretical bound

In order to prove the theoretical bound of O(k · 2log∗(k)) we will write up a
recursion and solve it. Additionally we will argue that the rank of the last
returned element will be that of the desired bound. Should the rank of the
last returned element be O(k · 2log∗(k)) then the last breadth first search and
Select part will take O(k · 2log∗(k)) time.
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In order to analyze the asymptotic bound on time of SEL3, we will follow
Frederickson’s paper [5] losely, and include details which were omitted in the
paper. Now consider a call to SEL3 with parameter r > 1. Here we perform:

limit :=
h3(r)

h3(blog(r)c)

extractMin operations and 2 · limit insert operations. Note that for the analysis
we use the papers definition of the limit, and not how we changed it. Assuming
the priority queue we use these operations on has size O(r) (shown later), this
will in total take O(r) time. This means the operations will take O(log(r)),
and since r ≤ h3(r) for r > 1 and by raising the constant slightly, we can say
the operations take O(h3(blog(r)c)) yielding in total:

h3(r)

h3(blog(r)c)
· c′ · h3(blog(r)c) = O(h3(r))

This means we spend O(h3(r)) time on one level of our recursion. Additionally
since we make one recursive call for each insert operation, we get the recursion
to describe our running time as:

T (1) ≤ c

T (r) ≤ ch3(r) + 2 · h3(r)

h3(blog(r)c)
· T (blog(r)c)

(10.3)

for some suitable constant c. Now that we have this we would like to show that

T (r) ≤ c′ · h3(r) · 2log∗(r) ·
2·log∗(r)∏

i=1
(1 + 4

i2
). The reason for multiplying by this

product, is because it is bounded by a constant, and we got the inspiration
for it from Frederickson [5] proving the bound of SEL4. Now we will prove
the bound by induction. Here it is trivial to see that the base r = 1 holds,
additionally we will show the base case r = 2.

c · h3(2) + 2 · h3(2)

h3(blog(2)c)
· T (blog(2)c) = 2c + 2 · 2

1
· c = 6c

This needs to be smaller than or equal to:

c′ · h3(2) · 2log
∗(2) ·

2·log∗(2)∏
i=1

(1 +
4

i2
) = 2c′ · 2 · (1 + 4) · (1 + 1) = 40c′

Which means this holds if c′ ≥ 6
40 · c

Now we would like to show the induction step, here we have the induction
hypothesis that for some r′ < r it holds that T (r′) ≤ c′ · h3(r′) · 2log

∗(r′) ·
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2·log∗(r′)∏
i=1

(1 + 4
i2

). We show:

T (r) ≤ ch3(r) + 2 · h3(r)

h3(blog(r)c)
· T (blog(r)c) (Recursion)

≤ ch3(r) + 2 · h3(r) · c′ · 2log
∗(blog(r)c) ·

2·log∗(blog(r)c)∏
i=1

(1 +
4

i2
) (Ind. hypo.)

= ch3(r) + c′ · h3(r) · 21+log∗(blog(r)c) ·
2·log∗(blog(r)c)∏

i=1

(1 +
4

i2
)

≤ ch3(r) + c′ · h3(r) · 21+log∗(dlog(r)e) ·
2·log∗(blog(r)c)∏

i=1

(1 +
4

i2
)

= ch3(r) + c′ · h3(r) · 2log
∗(r) ·

2·log∗(blog(r)c)∏
i=1

(1 +
4

i2
) (Def. log∗ )

This expression needs to be smaller than or equal to what we are trying to
prove, which means we need to select c′ such that:

ch3(r) + c′ · h3(r) · 2log
∗(r) ·

2·log∗(blog(r)c)∏
i=1

(1 +
4

i2
) ≤ c′ · h3(r) · 2log

∗(r) ·
2·log∗(r)∏

i=1

(1 +
4

i2
)

We divide on both sides by h3(r) and obtain:

c + c′ · 2log
∗(r) ·

2·log∗(blog(r)c)∏
i=1

(1 +
4

i2
) ≤ c′ · 2log

∗(r) ·
2·log∗(r)∏

i=1

(1 +
4

i2
)

If we move over the part containing c′ on the left side, to the right side we
obtain:

c ≤ c′ · 2log
∗(r) · (

2·log∗(r)∏
i=1

(1 +
4

i2
)−

2·log∗(blog(r)c)∏
i=1

(1 +
4

i2
))

Isolating c′ we can see how we need to set c′:

1

2log
∗(r) · (

2·log∗(r)∏
i=1

(1 + 4
i2

)−
2·log∗(blog(r)c)∏

i=1
(1 + 4

i2
))

· c ≤ c′ (10.4)

We note here that for r > 2, we have log∗(r) > log∗(blog(r)c) since:

log∗(r) = 1 + log∗(dlog(r)e) (Def. log∗ )

≥ 1 + log∗(blog(r)c)
> log∗(blog(r)c)
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Which means we will never get a 0 in the denominator of equation 10.4. The
left side of equation 10.4 takes on its maximum when the denominator takes
on its minimum. Since the denominator is a growing function it takes on its
minimum when r is as small as possible, which in this case is when r = 3. For
r = 3 we get equation 10.4 to be:

9

290
· c ≤ c′

The claim then follows by induction with c′ chosen to be larger than or equal

to 9
290 · c. Lastly we note that

∞∏
i=1

(1 + 4
i2

) is bounded by a constant by Theorem

19.0.1 and because:
∞∑
i=1

4

i2
= 4 ·

∞∑
i=1

1

i2

converges by Theorem 19.0.2, and because for r > 1 we have:

h3(r) = h3(blog(r)c) ·
⌈

r

h3(blog(r)c)

⌉
≤ h3(blog(r)c) · ( r

h3(blog(r)c)
+ 1)

= r + h3(blog(r)c)

we obtain that:

T (r) ≤ c′ · h3(r) · 2log
∗(r) ·

2·log∗(r)∏
i=1

= O(r · 2log
∗(r))

Which is what we wanted to show.
Before we show that the rank of our final returned element is O(k · 2log∗(k))

we will argue our assumption about the size of priority queues at our recursive
levels.

We’ll show that the priority queue H will get a size of at most 2 · limit
provided it is at most size limit to begin with. First, let’s look at the case where
H = nil: We add a single element, then proceed to extract limit elements and
insert 2 · limit elements. This nets us a size of limit + 1.

If initially the size of H is limit, we extract limit elements and insert
2 · limit elements. This gives us a final size of 2 · limit.

When we return a clan C containing H at the end of the recursive call,
subsequent recursive calls starting from C will have H split in two even sized
priority queues, H1 and H2. These will thus be at most size limit, meaning
the recursive call will never get a priority queue of a larger size.

This means H will be at most size O(r) like we wanted.
Now what remains is to show that the rank of the returned element from

RSEL3 to SEL3 is O(k · 2log∗(k)). This follows [5], page 207 exactly. Note that
when [5] references the function h we called this h3:
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To complete the analysis, we show that the rank of the element
returned by procedure RSEL3 to algorithm SEL3 is O(k · 2log∗(k)).
Clearly this is true if k = 1, so consider k > 1. First observe that
any representative of a clan is smaller than the elements in the
associated heap for the clan. Next, observe that any element x in
H0 that is not in any clan created by RSEL3 has an ancestor y
that is not in a clan but whose parent z comprises a clan of size
1. Element z will be the representative of its clan, and thus be in
an associated heap. A recursive application of the first observation
establishes that z is larger than the element returned to algorithm
SEL3. But z is smaller than x, which implies that any element
not in a clan created by RSEL3 is larger than the element returned
to algorithm SEL3. The number of elements placed in clans at all
levels while finding a clan of size h(r) is at most T (r).

From this quote and from our knowledge on the bound of T (r) we can then
see that the element returned to SEL3 has rank O(k · 2log∗(k)). Which is what
we wanted.



Chapter 11

SEL4 O(k)

11.1 Introduction

For our fifth algorithm we have implemented the fourth discussed algorithm
in Frederickson’s paper [5]. We have illustrated how this algorithm works in
Chapter 12.

11.2 The algorithm

We make use of clan-4 (referred to simply as clan in this chapter) described
in chapter 6.3, as well as the priority queues described in chapter 9. The
algorithm is almost identical to SEL3, but will be fully described regardless.

SEL4 defines the recursive subroutine RSEL4, which takes H and r and
returns C. H is a priority queue of clans, r is the size of C, and C is the
clan returned. RSEL4 also has access to H0. Initially SEL4 calls RSEL4
with arguments nil and k. When RSEL4 returns a clan C, SEL4 extracts the
representative of C and uses a breadth first search and the Select algorithm
described in chapter 5 to find the k smallest elements.

RSEL4 works as follows:

1. If r = 1 :

a) If H = nil :

i. root := min(H0)

ii. Let H be a priority queue containing
leftChild(root), rightChild(root)

iii. return createClan(root,H, 1)

b) x := extractMin(H)

c) Insert children of x into H
d) Return createClan(rep(x),H, 1)

41
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2. If H = nil :

a) C := RSEL4(H, f(r))

b) cat(C) := 1

c) Let H be a priority queue containing C

3. limit :=
⌈

r
h4(f(r))

⌉
4. catLimit := log∗(r)2

5. limit times do:

a) C := extractMin(H)

b) If cat(C) < catLimit:

i. C1 := RSEL4(priorityQueue(C), f(r))

ii. cat(C1) := cat(C) + 1

iii. Insert C1 into H
c) Else:

i. Split priorityQueue(C) into H1 and H2

ii. C1 := RSEL4(H1, f(r))

iii. C2 := RSEL4(H2, f(r))

iv. cat(C1) := cat(C2) := 1

v. Insert C1 and C2 into H

6. Return last C extracted from H

Just like in RSEL3 we can for RSEL4 assign limit in step 3 to something
simpler than stated in [5]. Since we, like in RSEL3, are in the case where r > 1,
we can apply the definition of our function h4 here. Note that the definition of
h is different for SEL3 and SEL4, though quite similar:

h4(r) =

{
1 if r = 1

h4(f(r)) ·
⌈

r
h4(f(r))

⌉
otherwise

We substitute h4(r) in h4(r)
h4(f(r))

, which is what limit would be assigned to in

Frederickson’s paper [5], with the right side of the definition for h4(f(r)) and,
similarly to RSEL3, we obtain:

limit := h4(f(r)) ·
⌈

r

h4(f(r))

⌉
· 1

h4(f(r))
=

⌈
r

h4(f(r))

⌉
This is the reason we have set limit :=

⌈
r

h4(f(r))

⌉
in step 3.
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In comparison to RSEL3, RSEL4 differs in the number of clans retrieved
from H as well when a clan is split. The former is pretty simple, while the
latter is illustrated with these examples:

If r = 82570 then catLimit = 25 and limit = 7507. That means when the
first clan is created and put into H, it must be extracted and reinserted 24
times before it is split the first time. Since the clans made from the split heap
get a category of 1, they again must be extracted 24 times individually before
one is split. If we always extract the clan with the highest category, we get
the maximum number of splits. We’ll increase H with a size of roughly 312
after 7507 + 7507

24 inserts and 7507 extractions. If instead we always extract the
clan with the smallest category, we can bank a category of 23 before forcing a
split. This means we’ll get a new clan every 47’th extraction (after creating
two clans, extract one 23 time and the other 24 times) and we’ll insert roughly
159 clans into the heap after 7507 + 7507

47 inserts and 7507 extractions.

If r = 1024 then catLimit = 16 and limit = 171. Every 15’th extraction of
a single clan forces a split of its heap. With maximum splits we increase the
size of H with roughly 11 after 171 + 171

15 inserts and 171 extractions. With
minimum splits we increase the size with roughly 5 after 171 + 171

29 inserts and
171 extractions.

At the base case the heap grows on every extraction, since every element
must have its two children accounted for.

11.3 Termination

Since our extractMin and Insert operations terminate, we can easily see that
SEL4 terminates because we always work on smaller sizes in our recursive calls,
and we run the for loop a fixed number of times. This means by an argument
similar to the earlier algorithms that our priority queues will all have a finite
size.

11.4 Correctness

For future references we would like to show that f(r) is positive, that is
f(r) ≥ 1, when r > 1. To show this we need to show that dlog(r)e ≥ log∗(r).
Since these are both integers, this would mean f(r) ≥ 1. First we show it
holds for the case where r = 2:

log∗(2) = 1

dlog(2)e = 1
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Which clearly shows that dlog(r)e ≥ log∗(r), when r = 2, now we assume
r > 2, note that this means dlog(r)e > 1:

log∗(r) = 1 + log∗(dlog(r)e) (Def. log∗)

≤ 1 + dlog(r)e − 1 (log∗(a) < a)

= dlog(r)e

Which concludes showing that dlog(r)e ≥ log∗(r) for r > 1, and thus we have:

f(r) ≥ 1 (11.1)

Just like for the previous algorithms, in order to argue correctness for SEL4,
we just need to show that the element returned from RSEL4 to SEL4 has a
rank greater than or equal to k.

Like for RSEL3 we first note that any element extracted from a priority
queue at level ` of our recursion, is extracted at most once, this means each
clan generated at level ` contains distinct elements, meaning any pair of clans
at level ` are disjoint.

In order to then argue correctness we would like to show that a call to
RSEL4 with argument f(r) returns the h4(f(r)) smallest elements. We argue
this using induction: First consider the case where r = 1, which trivially holds.
Then we make the induction hypothesis that for r′ < r it holds that RSEL4
with argument f(r′) returns the h4(f(r′)) smallest elements. In order to show
this we use the paper version of the limit:

limit :=
h4(r)

h4(f(r))

Since this is the number of clans we extract and every clan contains distinct
elements by the earlier argument, we have from our induction hypothesis that
these clans have size h4(f(r)) giving us that the representative of the last
extracted clan, Clast which will be larger than all previous representatives,
since it was extracted last, and thereby the largest element of all the extracted
clans. This gives us that the rank of this element will be:

rank(Clast) = limit · h4(f(r)) = h4(r)

Since for r > 1 we have:

h4(r) = h4(f(r)) ·
⌈

r

h4(f(r))

⌉
≥ h4(f(r)) · r

h4(f(r))
= r (11.2)

We see that the rank of the element returned from RSEL4 to SEL4 is h4(k) ≥ k,
which is what we needed.
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11.5 Theoretical bound

Looking at the pseudo code it is easy to see that for r = 1, our algorithm spends
constant time. Then for the case r > 1 we spend limit · dlog(r)e multiplied by
some constant, since we have in the order of limit insertions and extractMin
operations. The argument for the time of one of these operations being a
constant times dlog(r)e will follow later. We will use limit = h4(r)

h4(f(r))
like in

[5]. Additionally we will have c1 to be the constant it is multiplied by:

c1 · limit · dlog(r)e = c1 ·
h4(r)

h4(f(r))
· dlog(r)e (Def. limit)

≤ c1 ·
h4(r)

f(r)
· dlog(r)e (Eq. 11.2)

= c1 · h4(r) · 1⌊
( dlog(r)elog∗(r) )2

⌋ · dlog(r)e (Def. f)

≤ c1 · h4(r) · 2 · (log∗(r))2

dlog(r)e
(Eq. 11.1)

= 2 · c1 · h4(r) · (log∗(r))2

dlog(r)e

= O(h4(r) · (log∗(r))2

dlog(r)e
)

Additionally we make one recursive call every iteration except for the 1
(log∗(r))2

time where we make two. Thus we get the recursion:

T (1) ≤ c

T (r) ≤ ch4(r) · (log∗(r))2

dlog(r)e
+ (1 +

1

(log∗(r))2
) · limit · T (f(r))

(11.3)

We would now like to show that T (r) ≤ c′ · h4(r) ·
2·log∗(r)∏

i=1
(1 + 4

i2
). We will here

follow Frederickson’s work on page 211 in [5] very closely for the induction
part. Frederickson [5] refrains from showing a lot of the inequalities needed
to make the induction work. To show this we use induction on r. Here
the basis is for r ≤ 2. For r = 1, T (1) ≤ c, so the claim is satisfied if
6c ≤ c′ · 2(1 + 4

1)(1 + 4
4) = 20 · c′. For r = 2, T (2) ≤ c · 2 · 11 + (1 + 1

1) · 21 · c = 6c,
so our claim is satisfied if 6c ≤ c′2 · (1 + 4

1)(1 + 4
4) = 20 · c′. For r > 2,

we assume that the claim is true for r′ < r. Before we start we show that
log∗(r) > log∗(f(r)), when r > 2. First we will show that r grows faster than
f(r). If we know that r > f(r) and that r grows faster than f(r), then the
difference between log∗(r) and log∗(f(r)) will only grow as r grows. Since we
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Table 11.1: r vs. f(r)

r 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

f(r) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

have:

f(r) =

⌊
dlog(r)e2

(log∗(r))2

⌋

≤ dlog(r)e2

(log∗(r))2

≤ dlog(r)e2

≤ (1 + log(r))2

The growth of f is smaller than or equal to the growth of (1 + log(r))2. To get
how fast (1 + log(r))2 grows, we take the derivative:

d

dr
((1 + log(r))2) = 2 · (log(r) + 1) · 1

r · ln(2)

We also take the derivative of r, but this is simple and we get d
dr (r) = 1. In

order for it to hold that:

2 · (log(r) + 1) · 1

r · ln(2)
≤ 1

We need to have r ≥ 12. That means for r ≥ 12, r grows faster than
f(r). What is missing then to show that r also grows faster than f(r) for
r ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11}. We show them all in Table 11.1. We can see from
Table 11.1 that r also grows faster than f(r) below 12. Since we have established
that r grows faster than f(r) we only remain to show that for the smallest
possible difference between r and f(r), it holds that log∗(r) > log∗(f(r)). This
smallest possible value is for r = 3, since we are only dealing with the case
where r > 2. We obtain:

log∗(3) = 1 + log∗(2) = 2

log∗(f(3)) = log∗(1) = 1

Since 2 > 1, we obtain:

log∗(r) > log∗(f(r)) (11.4)
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Note that this result means that log∗(f(r)) ≤ log∗(r)− 1. Now we will do the
induction case of our proof. We have:

T (r) ≤ ch4(r) · (log∗(r))2

dlog(r)e
+ (1 +

1

(log∗(r))2
) · h4(r)

h4(f(r))
(Eq. 11.3)

≤ ch4(r)
(log∗(r))2

dlog(r)e

+ (1 +
4

(2 log∗(r))2
)

h4(r)

h4(f(r))
c′h4(f(r))

2 log∗(f(r))∏
i=1

(1 +
4

i2
) (Ind. Hypo.)

≤ ch4(r)
(log∗(r))2

dlog(r)e
+ (1 +

4

(2 log∗(r))2
)c′h4(r)

2 log∗(r)−2∏
i=1

(1 +
4

i2
) (Eq. 11.4)

= ch4(r)
(log∗(r))2

dlog(r)e
+

c′h4(r)
2 log∗(r)∏

i=1
(1 + 4

i2
)

(1 + 4
(2 log∗(r)−1)2 )

Using the last equation, we can see that it will hold if:

ch4(r)
(log∗(r))2

dlog(r)e
+

c′h4(r)
2 log∗(r)∏

i=1
(1 + 4

i2
)

(1 + 4
(2 log∗(r)−1)2 )

≤ c′ · h4(r) ·
2 log∗(r)∏

i=1

(1 +
4

i2
)

Multiplying by (1 + 4
(2 log∗(r)−1)2 ) we obtain:

ch4(r)
(log∗(r))2

dlog(r)e
(1 +

4

(2 log∗(r)− 1)2
) + c′h4(r)

2 log∗(r)∏
i=1

(1 +
4

i2
)

≤ (1 +
4

(2 log∗(r)− 1)2
)c′h4(r)

2 log∗(r)∏
i=1

(1 +
4

i2
)

The plus one on the right side multiplied with the c′h4(r)
2 log∗(r)∏

i=1
(1 + 4

i2
) on

the right side, eats that same expression on the left side, giving us:

ch4(r)
(log∗(r))2

dlog(r)e
(1 +

4

(2 log∗(r)− 1)2
) ≤ (

4

(2 log∗(r)− 1)2
)c′h4(r)

2 log∗(r)∏
i=1

(1 +
4

i2
)

Which finally gives us:

(log∗(r))2

dlog(r)e (1 + 4
(2 log∗(r)−1)2 )

( 4
(2 log∗(r)−1)2 )

2 log∗(r)∏
i=1

(1 + 4
i2

)

· c ≤ c′
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Figure 11.1: C(r) over r.

Which simplifies to:

(log∗(r))2((2 log∗(r)− 1)2 + 4)

4dlog∗(r)e
2 log∗(r)∏

i=1
(1 + 4

i2
)

· c ≤ c′

If we call the expression on the left side C(r), that is:

C(r) =
(log∗(r))2((2 log∗(r)− 1)2 + 4)

4dlog∗(r)e
2 log∗(r)∏

i=1
(1 + 4

i2
)

Just like Frederickson says in [5], this function takes on its maximum in the
range r = 17 to r = 32, as illustrated in Figure 11.1. We have attempted to
prove that this is the case, but have been unable to do so, Frederickson also
does not prove this in [5], but on page 212 just states that this is the case.

At the maximum in Figure 11.1 the value is 1.585, which means we get:

1.585 · c ≤ c′
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The claim then follows by induction, with c′ chosen to be 1.585 · c. From the
claim it then follows that T (r) = O(r), since for r > 1 we have:

h4(r) = h4(f(r)) ·
⌈

r

h4(f(r))

⌉
≤ h4(f(r)) · (1 +

1

h4(f(r))
)

≤ r + h4(f(r))

≤ r + h4(f(r))

= 2r

and additionally we have from Theorem 19.0.1 and the fact that:

∞∑
i=1

4

i2
= 4 ·

∞∑
i=1

1

i2

converges by Theorem 19.0.2, that
∞∏
i=1

(1+ 4
i2

) converges, and is thereby bounded

by a constant.
What now remains to be shown is that the rank of the representative of our

final extracted clan is O(k). We argue this much like the earlier algorithms:
Since we argued earlier that a call to RSEL4 with argument k returns the
h4(k) smallest elements in a clan, represented by the representative of the clan,
and since the representative is the largest element among them and also since
we extract these from a priority queue, the rank of the representative of the
last extracted clan will be:

h4(k)

h4(f(k))
· h4(f(k)) = h4(k)

Since we have, as argued earlier, that h4(k) ≤ 2 · k, our algorithm runs in total
in O(k) time.

Priority queue size

To give some intuition about how large a priority queue PQ can get at any
level, assume we start off with an empty PQ. We add t elements and then
return PQ to the level above. The level above may choose to split or not to
split PQ. Suppose we can at most choose not to split it b times. This means
we can add a total of bt elements to PQ before splitting.

After a split PQ will still retain bt
2 elements. If we use the now split PQ

another b times, it will have a total of bt
2 + bt elements. After another split

and b uses, it will end up with
bt
2
+bt

2 + bt = bt
4 + bt

2 + bt elements.
The number of elements in PQ before a split is bounded by the sum

∞∑
i=0

bt
2i

= 2bt.
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If we then use the fact that we will at most add h4(f(r))
h4(f(f(r)))

· 1
log∗(f(r))2

elements at the level beneath level r, and we will at most add additional
elements corresponding to how often we split during our limit = h4(f(r))

h4(f(f(r)))

iterations. Which means we can maximally choose to not split it log∗(r)2 times
we obtain the sum:

∞∑
i=0

(
1

2i
· h4(f(r))

h4(f(f(r)))
· 1

log∗(f(r))2
· log∗(r)2)

Since everything except the 1
2i

does not contain i, we get:

h4(f(r))

h4(f(f(r)))
· 1

log∗(f(r))2
· log∗(r)2 ·

∞∑
i=0

1

2i

= 2 · h4(f(r))

h4(f(f(r)))
· 1

log∗(f(r))2
· log∗(r)2

≤ 4 · f(r)

h4(f(f(r)))
· log∗(r)2 · 1

log∗(f(r))2
(h4(r) ≤ 2r)

≤ 4 · f(r)

f(f(r))
· log∗(r)2 · 1

log∗(f(r))2
(h4(r) ≥ r)

= 4 · f(r)⌊
dlog(f(r))e2
log∗(f(r))2

⌋ · log∗(r)2 · 1

log∗(f(r))2
(Def. f)

≤ 4 · f(r)

( dlog(f(r))e
2

log∗(f(r))2 )− 1
· log∗(r)2 · 1

log∗(f(r))2

= 4 · log∗(r)2

(( dlog(f(r))e
2

log∗(f(r))2 )− 1) · log∗(f(r))2
· f(r)

= 4 · log∗(r)2

dlog(f(r))e2)− log∗(f(r))2
· f(r)

For this last expression we will look at the expression:

log∗(r)2

dlog(f(r))e2 − log∗(f(r))2

In this expression when r →∞ log(f(r))2 will dominate the other functions
since log∗ is such a slow growing one. This means the fraction will eventually
converge. Which means we can replace it with some constant c (possibly large)
and for the numbers until dlog(f()r)e2 > log∗(f(r))2 we can just take the
maximum value we would obtain from the original expression as a constant.
We then get:

4 · c · f(r) = O(f(r))
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Which means the size of our priority queue at the level below has size O(f(r))
which means it is linear in size. Since we did this for any random level it
follows that our priority queue will never exceed linear size.



Chapter 12

Examples

12.1 Naive

The left side shows the heap and the right side the priority queue.

Figure 12.1 shows T on the left and the empty priority queue PQ on the
right. Only discovered nodes are shown.

Figure 12.2 shows the first step in the naive algorithm. The root of T has
been added to the priority queue.

Figure 12.3 shows node 1 having been extracted from PQ. Its children 2
and 4 have been inserted.

Figure 12.4 shows node 2 having been extracted from PQ. Its children 7
and 3 have been inserted.

Figure 12.5 shows node 3 having been extracted from PQ. Its children 10

Figure 12.1: Naive step 0.

Figure 12.2: Naive step 1.

52



12.1. NAIVE 53

Figure 12.3: Naive step 2.

Figure 12.4: Naive step 3.
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Figure 12.5: Naive step 4.

Figure 12.6: SEL1 step 0.

and 12 have been inserted.

The algorithm follows trivially from here, with 4, then 5 being the next
nodes to be extracted.

12.2 SEL1 and SEL2

The left side shows the heap and the right side the priority queue.

Figure 12.6 shows T on the left and the empty priority queue PQ on the
right. Only discovered nodes are shown.

Figure 12.7 shows the first clan consisting of the yellow nodes. The clan is
found by a subroutine (naive for SEL1 and SEL2 itself for SEL2), which is not
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Figure 12.7: SEL1 step 1.
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Figure 12.8: SEL1 step 2.

shown. The priority queue on the right side contains a single clan with the
representative 3, members 1, 2, and 3, offspring 7, 10, 11, and 4, and no poor
relation.

Figure 12.8 shows the first clan extracted from PQ, its nodes colored green
in T . From its offspring we’ve created a new clan represented by 6. This clan
does have a poor relation, consisting of 7, 10, and 12.

Note that every node colored white in the heap to the left can be found in
either offspring or poor relation to some clan in the priority queue to the right.

Figure 12.9 shows T after the clan represented by 6 has been extracted
from PQ. Two new clans have been created, represented by 13 and 10.

Figure 12.10 shows T on the left and the empty priority queue PQ on the
right. Only discovered nodes are shown.
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Figure 12.9: SEL1 step 3.

12.3 SEL3 and SEL4

The image shows the same two structures for SEL3 and SEL4, but PQ is
changed to reflect its recursive structure. For the example we let k = 8, such
that for SEL3, log k = 3 and log(log k) = 1. While only SEL3 is depicted, the
general idea is the same for SEL4, with the only difference being how large r
is at the different levels, how many iterations are made, and when a priority
queue is split.

The images are colored and may be harder to follow in gray scale. First,
to the right we will see three layers of priority queues. We’ll name them after
the r they’re given, thus from top to bottom, the gray nodes represent PQ8,
PQ3 and PQ1. To the left, a white node has been added to a PQ1. A yellow
(darker in gray scale) node has been extracted from a PQ1. A green node
(darker than the yellow) has been extracted from PQ3. A beige node (bright
in gray scale) has been extracted from PQ8.

Figure 12.11 shows T on the left and the empty priority queue PQ on the
right.

Figure 12.12 shows a blank PQ8. The recursive call has not returned yet,
and there are no clans in it. For PQ3 a clan represented by 1 has been added
to the queue. 1’s children, 2 and 4, are found in the PQ1 belonging to 1. Since
1 has been extracted from a PQ1, it has been colored yellow to the left.

Figure 12.13 shows the clan represented by 1 having been extracted from
PQ3. The PQ1 the clan contained has been split into two and recursed on,
leaving two new clans in PQ3, represented by 2 and 4. To the left, 1 has been
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Figure 12.10: SEL1 step 4.

Figure 12.11: SEL3 step 0.
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Figure 12.12: SEL3 step 1.
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Figure 12.13: SEL3 step 2.
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Figure 12.14: SEL3 step 3.

colored green after having been extracted from PQ3 and 2 and 4 have been
colored yellow after extraction from PQ1.

Figure 12.14 shows 2 having been extracted from PQ3 and its PQ1 split
into 7 and 3 and recursed on. This colors 2 green and 7 and 3 yellow.

Figure 12.15 shows 3 having been extracted from PQ3 and its PQ1 split
into 10 and 12 and recursed on. This colors 2 green and 7 and 3 yellow. This
also concludes the work done in the r = 3 layer, finally adding a clan to PQ8

represented by 3.

Figure 12.16 shows 3 having been extracted from PQ8 and its PQ3 split
into 7 and 4 on the left and 10 and 12 on the right. We color 3 beige in T , to
denote its extraction from PQ8. Node that that level never sees the nodes 1
and 2, which are implicitly contained in the clan, thus we leave them green.

To the right, we now have two incomplete clans in PQ8. The exact split of
PQ3 in the implementation might be different. We recurse on the incomplete
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Figure 12.15: SEL3 step 4.

Figure 12.16: SEL3 step 5.
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Figure 12.17: SEL3 step 6.

Figure 12.18: SEL3 step 7.

left clan in the next steps.

Figure 12.17 shows recursion on the left incomplete clan in PQ8 (the right
clan has been omitted to save space). This follows the same procedure as
above, extracting 4 from PQ3 and adding 8 and 5. This colors 4 green and 8
and 5 yellow.

Figure 12.18 shows 5 having been extracted from PQ3 and 8 and 5 having
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Figure 12.19: SEL3 step 8.

been added. This colors 5 green and 11 and 6 yellow.
Figure 12.19 shows 6 having been extracted from PQ3 and 17 and 19

having been added. This colors 6 green and 17 and 19 yellow. This concludes
the work done at level r = 3, adding a clan represented by 6 to PQ8.

The rest of the example follows straight forward from here, with the right
clan being completed next, followed by two more extractions from and insertions
into PQ8, after which the final representative is returned. This will not be
shown.
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SEL4 parameter optimization

13.1 Introduction

In the algorithm SEL4 we have the boundary for when we enter the base
case and the boundary for when we split our priority queues and make two
recursive calls. These two boundaries are 1 and log∗(r)2 respectively from
the theory. We might improve the running time of our algorithm by slightly
changing these. To do this we have tried out a number of different choices for
the boundary of the base case, we call this value baseCase and the same we
have tried for the other boundary which we call catFactor. Since the choice
for catFactor that optimizes our algorithm might not optimize if we change
our choice of baseCase we have run a cross evaluation with different values for
both our boundaries. We have here chosen to focus on optimality in respect to
the running time of the algorithm. We chose this because we do not know the
ratio of significance between comparisons and accesses, and the optimal values
might differ for these two.

13.2 Choice of Parameters

From Figure 13.1 we can see that around 16 and around 32 our values look
to be minimal. Inspecting the data at these places in Table 13.1 we can see
that our values are in fact minimal with baseCase = 16, catFactor = 0.9 and
baseCase = 32, catFactor = 1.0. Since from Figure 13.1 the region around
baseCase = 32 and catFactor = 1.0 looks less rapidly changing than around
the other region, we have chosen these as the parameters for SEL4 in our
experiments.

65



66 CHAPTER 13. SEL4 PARAMETER OPTIMIZATION

Figure 13.1: Graphical representation of the data in Table 13.1. Time is in
microseconds.

Table 13.1: SEL4 parameter optimization data

0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0

1 1948111 1333077 941053 857049 859050 770044 722041 706040 700040 698040
2 980056 921053 887051 857049 855049 837048 840048 847048 752043 702040
4 985057 932053 894051 859049 855049 768044 724041 718041 699040 694039
8 990057 994057 1051060 1002057 865050 758043 732042 1338076 1392080 813047
12 1013057 942054 893051 948055 1004057 898051 736043 713040 700040 691040
16 460026 466027 460026 455026 460027 461026 467027 468026 476028 483027
20 462027 470027 461026 534031 530030 539031 557032 549031 552032 561032
24 533030 534031 534030 535031 520030 461026 468027 469027 473027 481027
28 463027 461026 460026 460027 457026 460026 465027 475027 469027 481027
32 460027 458026 465026 456026 455026 460027 469027 483027 550032 564032
36 535031 535030 535031 530030 531031 549031 543031 547031 551032 560032
40 533030 539031 540031 533031 531030 540031 543031 546031 550032 560032
50 534030 537031 535030 532031 532030 539031 544031 549032 549031 562032
60 533031 536030 533031 531030 529031 538030 553032 548031 548032 559032

The numbers on the top are the numbers we multiplied our theoretical
category with, and the numbers on the far left are the numbers that define
our base case. Entries are runtime in microseconds on data size 1000000.
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Figure 13.2: Graphical representation of the data in Table. Time is in mi-
croseconds. 13.1

Table 13.2: SEL4 parameter optimization data

0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0

1 1001057 993057 989056 995057 990057 991057 1001057 1005057 1011058 1027059
2 1009058 1009057 999057 1001058 990056 995057 1001058 1001057 1008057 1027059
4 994057 996057 996057 989057 989056 994057 1015058 1024059 1022058 1036059
8 999058 997057 989056 997057 988057 991056 1004058 1014058 1010058 1025058
12 995057 999057 1000058 995057 997057 1006057 1014058 1015058 1016058 1028059
16 996057 1000057 991057 992057 996057 993057 1002057 1011058 1012058 1026058
20 995057 999057 1008058 1004057 1014058 997058 1008057 1006058 1016058 1025059
24 992056 1000058 996056 1001058 988056 996057 1007058 1010058 1020058 1035059
28 1002058 1009057 1002058 995057 988056 1000057 1006058 1006057 1014058 1028059
32 997057 998057 998057 999057 996057 999058 1018058 1021058 1021059 1039059
36 1005058 995056 1001058 1002057 992057 996057 1005057 1014058 1017058 1026059
40 997057 996057 996057 994057 1004057 1003058 1011058 1025058 1013058 1045060
50 997057 997057 994057 995057 994057 1004057 1009058 1010058 1015058 1024058
60 996057 1003058 1006057 1006058 997057 1015058 1007058 1007057 1020059 1027058

The numbers on the top are the numbers we multiplied our theoretical
category with, and the numbers on the far left are the numbers that define
our base case. Entries are runtime in microseconds on data size 1000000.
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Experiment heaps

14.1 Worst case

Image 14.1 shows the worst case test heap. The k smallest elements will form
a right spine down the tree, and the left child of a node with a value of 1 will
have a high value. The first left child will have a value higher than k (100 in
the example), and its subtree will have the same value. The next left child of
a 1 node will have one lower than the previous. This affects how the naive
algorithm’s internal priority queue shuffles around the nodes.

Looking at the tree, in the naive algorithm the first node we add to the
priority queue PQ is the root. After we extract it, 100 and 1 are added. 1 is
smaller than all other elements, so it is forced to traverse PQ all the way from
the bottom to the top, swapping place with 100 in the internal array.

Next we extract 1, leaving only 100. We add 99, which is smaller than 100,
and is thus moved to the front of the array. Then 1 is added, which again has
to be moved all the way to the front.

Once we extract 1 again, we are left with 100 and 99. We first add 98 and
then 1, both of which have to the moved all the way from the back to the front.
This continues until k elements have been extracted and 2 ·k elements inserted,
each insertion taking the worst case number of operations to complete.

14.2 Random case

The random case tree is an infinite tree where every node has a value equal to
the value of their parent plus a random number in the range [1, 100]. These
random numbers were generated using std::uniform int distribution from
the Standard Template Library.

We expect the Random Case to be a slightly worse case than the Best
Case, but not by a lot. The reason we have this expectation is because
inserting random elements into a priority queue will by expectation not move
the elements around a lot.
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Figure 14.1: Worst case heap.

For our testing of the Random Case we should note that we have left out
algorithm SEL2, because we disabled the Selection part of the algorithms, and
without this SEL2 does not work at all. The reason for this is that since we
are using random numbers the Selection part will vary by a lot on how much
time it spends on this part, and therefore our results would be hard to explain.
Additionally our experimental testing of the Selection algorithm indicated that
we could not necessarily trust that it was linear time.

14.3 Best case

The best case tree is one where all nodes have the same value. Insertion and
extraction of nodes never cause any swapping of nodes. In the implementation
all nodes have the value 1.
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This makes the naive algorithm linear, as insertions and extractions are
now constant time operations.

It did not work as expected, see Chapter 15.
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Priority Queue Trouble

In our priority queues we have relied on std::priority queue as mentioned
earlier. We expected this implementation on insertions to insert the inserted
element into the bottom right most part of the tree, and then bubble the element
up through the tree until it has found its correct position. For extractMin
(called pop), we expected it to remove the root, then insert the bottom right
most element into the root and bubble that element down until it found its
correct position.

It is with this in mind we created our test cases. That is why when inserting
only elements with the same value we would expect the insert operation to
be constant time, since we will not need to bubble any elements around. We
expected the same for extraction. Essentially, the bubble up and bubble down
procedures should be constant time.

Looking at Figure 15.1 we see no indication that the insert operation is not
constant as expected. We get two jumps, one at k = 213 and one at k = 220.
The machine that ran the test had 32 KB L1 data cache. The elements inserted
in the test each take up 4 B, leaving room for:

32 · 1024

4
= 213

The machine also had 4 MB L3 data cache, leaving room for:

4 · 1024 · 1024

4
= 220

Incidentally, the two most noticeable jumps are at k = 213 and k = 220

in Figure 15.1. Before, between, and after these peaks it looks reasonably
constant.

If we look at Figure 15.2, the extractMin operation does not look very
constant. Outside of the k = 220 L3 data cache jump, it looks like a growing
linear function. This could be an indication of a O(n · log n) bound, where n
is the number of elements in the priority queue.

71



72 CHAPTER 15. PRIORITY QUEUE TROUBLE

Figure 15.1: Insertions into std::priority queue divided by k over log k.
Every element inserted had value 1.

Figure 15.2: Pops from std::priority queue divided by k over log k. Every
popped element had value 1.
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This seem to indicate that the pop operation does not work as expected. Ad-
ditionally we had a look into the GCC (GNU Compiler Collection, gcc.gnu.org)
implementation, which is the one we use, and while we do not fully understand
how it works, it definitely does not work according to our original expectation.

This insight came late during the project, and unfortunately we did not
have the time to write our own version, insert it everywhere, and rerun all the
tests.
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Experimental results

16.1 System specification

The system used to run the tests was rented on Amazon Web Services
(aws.amazon.com) where it was named m4.xlarge. It had the following specs:

• Architecture: x86 64

• Clock speed: 2394 MHz

• CPUs: 8

• RAM: 16 GB

• L1 instruction cache: 32KB

• L1 data cache: 32KB

• L2 data cache: 256KB

• L3 data cache: 30 MB

• Operating system: Ubuntu 14.04 LTS

16.2 Runtime

Runtime was measured in microseconds using std::chrono::high resolution

clock from the Standard Template Library. Runtimes that measured below
100,000 microseconds were run again as follows:

1. begin := now()

2. rounds := 1

3. completed := 0
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4. time := 0

5. Loop:

a) Run algorithm.

b) completed := completed + rounds

c) rounds := rounds ∗ 2

d) time := now()− begin

e) If time > 100000:

i. time := time
completed

ii. Break.

Essentially, the benchmark continuously doubled the number of times an
algorithm was run until it took at least 100,000 microseconds, then divided the
total time by the total number of runs. This was done to scale up the fastest
benchmarks and make them measurable.

The number of extra runs grows exponentially, to reduce the overhead of
checking if enough time had passed.

For the runtime tests, the fastest of five runs was kept. The rationale is
that many things can contribute noise to the runtime result, but almost none
of that noise make the runtime faster. The ticking clock can have a significant
effect, if for instance the start and end measurements happen to be the same,
the total time is 0. However, this affects the shorter runtimes the most and
was mitigated with the extra runs described above.

Worst case

Figure 16.1 shows the runtime of all five algorithms in microseconds divided
by k over log k. Just like before, SEL2 and partly SEL3 are the slowest. A
jump is visible in both at 216, where an extra layer of recursion is added.
Both are otherwise horizontal, which implies a linear growth, aside from when
log∗ changes value. This is because a time complexity of O(k · 3log∗ k) is
practically linear. log∗ increases in increments of one at the values 22 = 22 = 4,
32 = 24 = 16, and 42 = 216 = 65536. The next increment will be at 52 = 265536,
which is way outside of practical reach.

Figure 16.2 shows the runtime of the three fastest algorithms in microsec-
onds divided by k over log k. With the noise of the slower algorithms cut out,
we can see both SEL1 and SEL4 become horizontal as k grows. SEL1’s time
complexity is O(k · log log k), which is practically indistinguishable from O(k):
For input size below 232, log log k never exceeds 5. If we increase the input
size to 264, we only increase log log k to 6.

Naive is not horizontal due to log k not being insignificant in the data sizes
we’re able to test. The test design ensures that the internal priority queue
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Figure 16.1: Runtime in microseconds divided by k over log k. Worst case tree.

Figure 16.2: Runtime in microseconds divided by k over log k. Worst case tree.
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Figure 16.3: Runtime in microseconds divided by k · log k over log k. Worst
case tree.

used by the naive algorithm always exhibits its worst case time complexity,
see chapter 14. At k = 220 SEL4, with its linear complexity, starts beating the
naive algorithm in execution time.

Figure 16.3 shows the naive algorithm with runtime in microseconds divided
by the theoretical bound of O(k · log k). It does not form a horizontal line.
Figure 17.10 shows the L3 data cache misses for the naive algorithm, which
stabilizes at around k = 220. The runtime graph also stabilizes at that point,
and it is likely that cache misses are to blame for the increase in runtime before
k = 220. This supports that the theoretical bound holds for the implementation.

Random case

As mentioned in 14, SEL2 is not run in any of the tests with the random case
graph.

Figure 16.4 shows the runtime of the four algorithms in microseconds
divided by k over log k. Like the worst case tree, SEL3 is the slowest, but
otherwise appears linear outside of k = 216.

Figure 16.5 shows the runtime of the three fastest algorithms in microsec-
onds divided by k over log k. In comparison to the worst case tree in Figure
16.2, SEL4 climbs from 216 to 224. Some of this can be explained by more L3
data cache misses, which can be seen in Figure 17.21. The test worst case tree
has fewer L3 data cache misses, while the random tree has more. The naive
algorithm also performs better on random data compared to a tree that was
created to get worst case performance on all operations the naive algorithm
relies on.
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Figure 16.4: Runtime in microseconds divided by k over log k. Random tree.

Figure 16.5: Runtime in microseconds divided by k over log k. Random tree.
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Figure 16.6: Runtime in microseconds divided by k · log k over log k. Random
tree.

Figure 16.6 shows the naive algorithm with runtime in microseconds divided
by the theoretical bound of O(k · log k). Like the worst case graph, it does not
form a horizontal line before k = 221. Figure 17.21 shows the L3 data cache
misses for the naive algorithm, which starts to flatten at k = 222. From this
we can attribute some of the growth before k = 221 to increasing L1 and L3
data cache misses.

Best case

Figure 16.7 shows the runtime of all five algorithms in microseconds divided
by k over log k. Like the worst case tree, SEL2 and SEL3 are the slowest, and
appear otherwise linear outside of k = 216.

Figure 16.8 shows the runtime of the three fastest algorithms in microsec-
onds divided by k over log k. In comparison to the worst case tree in Figure
16.2, SEL4 has some climb from 215 to 217, but remains constant otherwise.

SEL1 climbs from 215 to 219 and again climbs around 222. Outside of those
regions it remains mostly constant.

The naive algorithm does not appear constant. An array based priority
queue can be inserted into and extracted from in constant time when all
elements are equal. Something affects the runtime, but unfortunately we do
not know what.

The naive algorithm is faster than SEL4 for all data points we collected.
The missing data points for SEL1 and SEL4 are due to the machine running
out of memory on the best case tree earlier than on the worst case tree.
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Figure 16.7: Runtime in microseconds divided by k over log k. Worst case tree.

Figure 16.8: Runtime in microseconds divided by k over log k. Best case tree.
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Figure 16.9: Runtime in microseconds divided by k · log k over log k. Best case
tree.

Figure 16.9 shows the naive algorithm with runtime in microseconds divided
by the theoretical bound of O(k · log k). Like the worst case graph, it does not
form a horizontal line. Figure 17.32 shows the L3 data cache misses for the
naive algorithm, but it does not help explain the growth.

16.3 Comparisons

Comparisons were measured only in a single run, since any random numbers
were created from a fixed seed and the algorithms are otherwise deterministic.

Worst case

Figure 16.10 shows horizontal lines for SEL2 and SEL3, except for k = 216.

Figure 16.11 shows SEL1 and SEL4 are less horizontal than SEL2 and
SEL3. It’s hard to say if they converge. Naive clearly does not converge on
the graph, which supports its O(k · log k) bound.

Random case

Figure 16.12 shows horizontal line for SEL3, except for k = 216.

Figure 16.13 shows SEL1 and SEL4 are very close to horizontal lines.
Compared to Figure 16.11, all three algorithms appear to have a lower overhead.
This is likely caused by the operation of inserting a random element into a
priority queue not always being log of the size of the queue.
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Figure 16.10: Comparisons divided by k over log k. Worst case tree.

Figure 16.11: Comparisons divided by k over log k. Worst case tree.
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Figure 16.12: Comparisons divided by k over log k. Random tree.

Figure 16.13: Comparisons divided by k over log k. Random tree.
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Figure 16.14: Comparisons divided by k over log k. Best case tree.

Figure 16.15: Comparisons divided by k over log k. Best case tree.

Best case

Figure 16.14 shows horizontal lines for SEL2 and SEL3, except for k = 216.

Figure 16.15 shows SEL1 and SEL4 are considerably closer to horizontal
lines than in Figure 16.11. The naive algorithm is still not horizontal, but
it has much smaller values than in the worst case tree. SEL4 makes more
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Figure 16.16: Accesses divided by k over log k. Worst case tree.

comparisons than in the worst case tree, while SEL1 remains the same.

16.4 Accesses

Accesses were measured only in a single run, since any random numbers were
created from a fixed seed and the algorithms are otherwise deterministic.

Worst case

Figure 16.16 shows SEL2 being close to linear with respect to the number of
accesses, again except for k = 216.

Figure 16.17 shows the number of accesses done by the naive algorithm,
SEL1, SEL3, and SEL4 divided by k. SEL3 is horizontal outside of k = 216

and SEL4 is horizontal all the way. It’s hard to say if SEL1 converges, while
the naive clearly does not.

Figure 16.18 shows the naive algorithm with accesses and comparisons
divided by the theoretical bound of O(k · log k). Both comparisons and accesses
seem to be constant, supporting the theoretical bound.

Random case

Figure 16.19 shows horizontal lines for SEL3, except for k = 216. SEL1 and
SEL4 also seem mostly horizontal. Note that compared to Figure 16.17, the
overhead of all but SEL4 are much lower. This is likely part of the reason the
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Figure 16.17: Accesses divided by k over log k. Worst case tree.

Figure 16.18: Accesses and comparisons divided by k · log k over log k. Worst
case tree.
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Figure 16.19: Accesses divided by k over log k. Random tree.

Figure 16.20: Accesses and comparisons divided by k · log k over log k. Random
tree.

SEL4 does not get faster than the naive algorithm in the tests. See Figure
16.5.

Figure 16.20 shows the naive algorithm with accesses and comparisons
divided by the theoretical bound of O(k · log k). Like the worst case graph,
both comparisons and accesses seem to be constant, supporting the theoretical
bound.
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Figure 16.21: Accesses divided by k over log k. Best case tree.

Figure 16.22: Accesses divided by k over log k. Best case tree.

See Figure 16.6 for the timing.

Best case

Figure 16.21 shows horizontal lines for SEL2 and SEL3, except for k = 216.
Figure 16.22 shows a horizontal line for SEL4, and a near horizontal line

for SEL1. The naive algorithm appears to do more than a linear number of
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Figure 16.23: Accesses and comparisons divided by k · log k over log k. Best
case tree.

accesses, despite the shape of the best case tree. We can not give a reasonable
cause for that, however.

Compared to Figure 16.17, SEL4 does almost three times as many accesses
and the naive algorithm does starts lower and grows at a slower pace.

Figure 16.23 shows the naive algorithm with accesses and comparisons
divided by the theoretical bound of O(k · log k). Like the worst case graph,
both comparisons and accesses seem to be constant, supporting the theoretical
bound.

16.5 Conclusion

Worst case

SEL4 is the fastest algorithm when k gets large enough. It also has the lowest
number of accesses and comparisons. The naive algorithm is the second fastest,
with SEL1 following closely behind.

SEL2 and SEL3 both seem to follow their theoretical time complexity very
closely: SEL2 with the bound of O(k · 3log∗(k)) seem to increase its number of
accesses, comparisons, and its runtime by a factor of 3 at k = 216, which is
where log∗ jumps from 4 to 5. Similarly SEL3, with its theoretical bound of
O(k · 2log∗(k)) seem to double its accesses, comparisons, and runtime at the
same point.
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Random case

SEL4 gets performs poorly and never catches up to SEL1 or the naive algorithm.
Some of the issues can be attributed to data cache misses being more frequent
than in the worst case tree tests.

The naive algorithm performs well on random data. SEL1 starts off worse,
climbs with its L3 data cache misses, and ends up being as fast as the naive
algorithm at the end.

Best case

The naive algorithm is the fastest, though it looks like if more data points
existed for SEL4, they might have been on par at k = 225. This was expected,
though the naive algorithm was also expected to be linear, which it is not on
the runtime graphs. This is explained in Chapter 15.

SEL1, SEL2, SEL3, and SEL4 behave largely the same way as in the worst
case.



Chapter 17

Valgrind Results

The Linux tool Valgrind was used to profile the implementations in terms of the
number of instructions used, the number of memory lookups, and the number
of L1 and L3 data cache misses. Valgrind is also able to profile branches
and branch mispredicts. However, due to time constraints the tests have not
been instrumented with a branch simulator. Branch simulation is very time
consuming, and without it some tests already ran for over 20 hours.

Valgrind is available at valgrind.org

Figure 17.1: Instruction references divided by k over log k. Worst case tree.
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Figure 17.2: Data references divided by k over log k. Worst case tree.

Figure 17.3: Instruction references divided by k over log k. Worst case tree.

17.1 Worst case

Figure 17.1 shows instruction references over log k. Figure 17.2 shows data
references over log k. Both are very similar graphs to Figure 16.1 and show
that runtime of SEL2 and SEL3 are mostly determined by the number of
instruction they use and the number of data references they make.
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Figure 17.4: Data references divided by k over log k. Worst case tree.

Figure 17.5: Instructions and data references divided by k · log k over log k.
Worst case tree.

Figure 17.3 shows instruction references over log k for the fastest three
algorithms. Figure 17.4 shows data references over log k for the same algorithms.
Both are similar. SEL1 and SEL4 appear mostly constant in both graphs.
The naive algorithm appears to climb, though it is uses less instructions and
references memory less than SEL4 does for all data points.
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Figure 17.6: L1 data cache misses divided by k over log k. Worst case tree.

Figure 17.7: L1 data cache misses divided by k over log k. Worst case tree.

Figure 17.5 shows the number of instructions and data references used
by the naive algorithm divided by k · log k. They both seem to converge and
support that the implementation follows the theoretical bound.

Figure 17.6 shows L1 data cache misses divided by k for all five algorithms.
SEL3 appears mostly constant after it settles after k = 216. SEL2 does not
have enough data points to support any conclusions.

Figure 17.7 shows the same for the naive algorithm, SEL1, and SEL4. All
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Figure 17.8: L1 data cache missrate over log k. Worst case tree.

three appear mostly constant, and again the naive algorithm has less L1 data
cache misses than SEL4.

Figure 17.8 shows the L1 data cache missrate for all five algorithms. SEL2
has a noteworthy small missrate. This can be explained by SEL2 computing
the same clans many times over, where the cache is already filled with the
data needed for the next calculations.

At the top of the graph, SEL3 has the highest L1 missrate. SEL3 guarantees
clans are returned at most once from any level of RSEL3, making it less likely
for data it needs to be in the L1 cache. Still the missrate is below 3% for all
five algorithms.

The naive algorithm seems to steadily drop its missrate from 2.5% at
k = 210 to below 1.5% at k = 225. This can be explained by the worst case
tree forcing the array based priority queue of the naive algorithm to perform
the maximum number of swaps for every insertion and extraction. In an
array based priority queue, most of these swaps will involve nodes at the top,
meaning at the front of the array, which will be in cache. Early in the data
set, where k is small, the O(k · log k) operations performed by the priority
queue is not much larger than the O(k) lookups into the tree H0. Later, as
the log k factor starts to set in, more time will be spent in the priority queue
than getting elements from H0.

SEL1 and SEL4 appear mostly constant.

Figure 17.9 shows L3 data cache misses divided by k for all five algorithms.
SEL2 and SEL3 around k = 214 and k = 216. After that SEL3 appears constant,
while SEL2 does not have enough data points to support any conclusions.

Figure 17.10 shows the same for the naive algorithm, SEL1, and SEL4. All
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Figure 17.9: L3 data cache misses divided by k over log k. Worst case tree.

Figure 17.10: L3 data cache misses divided by k over log k. Worst case tree.
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Figure 17.11: L3 data cache missrate over log k. Worst case tree.

three appear mostly constant, and again the naive algorithm has less L3 data
cache misses than SEL4, just like it did with L1 data cache misses.

Figure 17.11 shows the L3 data cache missrate over log k for all five algo-
rithms. Like for L1 misses, SEL3 is the highest and starts spiking at k = 214.
This conforms with the high memory use of SEL3, making it fill up the L3
cache earlier than the other algorithms.

SEL2 is barely visible at the bottom. The naive algorithm, SEL1, and
SEL4 seem to converge. The naive algorithm again has a lower missrate than
SEL4.

17.2 Random case

As mentioned in 14, SEL2 is not run in any of the tests with the random case
graph.

Figure 17.12 shows instruction references over log k. Figure 17.13 shows
data references over log k. Both are very similar graphs to Figure 16.1 and
show that runtime of SEL3 is likely determined by the number of instruction
it uses use and the number of data references it makes.

Figure 17.14 shows instruction references over log k for the fastest three
algorithms. Figure 17.15 shows data references over log k for the same algo-
rithms. They are similar. SEL4 appears mostly constant in both graphs, while
SEL1 appears to converge. The naive algorithm climbs, though at a much
slower rate than seen in Figure 17.3. Random numbers inserted into an array
based priority queue is expected to be better than the worst case, and it shows
in the slower climb.
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Figure 17.12: Instruction references divided by k over log k. Random tree.

Figure 17.13: Data references divided by k over log k. Random tree.
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Figure 17.14: Instruction references divided by k over log k. Random tree.

Figure 17.15: Data references divided by k over log k. Random tree.
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Figure 17.16: Instructions and data references divided by k · log k over log k.
Random tree.

Figure 17.17: L1 data cache misses divided by k over log k. Random tree.

Figure 17.16 shows the number of instructions and data references used by
the naive algorithm divided by k · log k. Like the worst case graph, they both
seem to converge and support that the implementation follows the theoretical
bound.

Figure 17.17 shows L1 data cache misses divided by k for all five algorithms.
SEL3 appears mostly constant after it settles after k = 216.
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Figure 17.18: L1 data cache misses divided by k over log k. Random tree.

Figure 17.19: L1 data cache missrate over log k. Random tree.

Figure 17.18 shows the same for the naive algorithm, SEL1, and SEL4. All
three appear to converge, with SEL4 having about 50% more L1 data cache
misses than the naive algorithm and SEL1.

Figure 17.17 shows the L1 data cache missrate of the four algorithms. The
naive algorithm tops at around k = 215 and then declines. The other three
remain constant throughout.

Note that while the naive algorithm has a higher L1 data cache missrate
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Figure 17.20: L3 data cache misses divided by k over log k. Random tree.

Figure 17.21: L3 data cache misses divided by k over log k. Random tree.

than SEL4, SEL4 has more misses since it has more data references. Similarly
SEL1 has the lowest missrate, but the highest number of data references
amongst the three.

Figure 17.20 shows the L3 data cache misses divided by k of the four
algorithms. SEL3 converges after the jump.

Figure 17.21 shows the L3 data cache misses divided by k of the three
fastest algorithms. All three perform similar climbs, but SEL4 ends up having
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Figure 17.22: L3 data cache missrate over log k. Random tree.

around one third more L3 data cache misses than the naive algorithm and
SEL1.

Figure 17.22 shows the L3 data cache missrate for all four algorithms. SEL3
spikes much earlier than the other three due to its higher memory usage. The
naive algorithm has the highest misrate at 8%, but since SEL4 has many more
data references, it also has more L3 data cache misses, as seen in Figure 17.21.

In general, the naive algorithm’s superior performance can be attributed
to its priority queue performing much better at random data than worst case
data. The worst case tree also had an L3 data cache missrate that converged
much earlier, beginning at k = 218, see Figure 17.11. In comparison, the same
test on the random tree doesn’t begin to converge before k = 223, giving us
very little data to work with.

17.3 Best case

Figure 17.23 shows instruction references over log k. Figure 17.24 shows data
references over log k. Both are very similar graphs to Figure 16.1 and show
that runtime of SEL2 and SEL3 are mostly determined by the number of
instruction they use and the number of data references they make.

Figure 17.25 shows instruction references over log k for the fastest three al-
gorithms. Figure 17.26 shows data references over log k for the same algorithms.
They are similar. SEL1 and SEL4 appear mostly constant in both graphs.
Interestingly, the naive algorithm does not appear constant in instruction
count, likely because the priority queue it uses does not behave as expected.
This is discussed further in Chapter 15.
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Figure 17.23: Instruction references divided by k over log k. Best case tree.

Figure 17.24: Data references divided by k over log k. Best case tree.
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Figure 17.25: Instruction references divided by k over log k. Best case tree.

Figure 17.26: Data references divided by k over log k. Best case tree.
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Figure 17.27: Instructions and data references divided by k · log k over log k.
Best case tree.

Figure 17.28: L1 data cache misses divided by k over log k. Best case tree.

Figure 17.27 shows the number of instructions and data references used by
the naive algorithm divided by k · log k. Like the worst case graph, they both
seem to converge and support that the implementation follows the theoretical
bound.

Figure 17.28 shows L1 data cache misses divided by k for all five algorithms.
SEL3 appears mostly constant after it settles after k = 216. SEL2 is too hard
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Figure 17.29: L1 data cache misses divided by k over log k. Best case tree.

Figure 17.30: L1 data cache missrate over log k. Best case tree.

to make sense of with the data available.

Figure 17.29 shows the same for the naive algorithm, SEL1, and SEL4.
SEL1 and SEL4 appear mostly constant, while the naive algorithm climbs
after k = 216. See Chapter 15 for an explanation.

Figure 17.28 shows the L1 data cache missrate of the five algorithms. Unlike
the worst case results from Figure 17.28, the naive algorithm deviates from a
constant around k = 216, and climbs to a 18% L1 missrate. SEL4 jumps from
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Figure 17.31: L3 data cache misses divided by k over log k. Best case tree.

Figure 17.32: L3 data cache misses divided by k over log k. Best case tree.

2% in the worst case graph to 5% here. The remaining algorithms perform as
before.

Both the naive algorithm and SEL4 performing unexpected is explained in
Chapter 15.

Figure 17.31 shows a constant SEL3 after the jump and a SEL2 that does
not come with enough data for analysis.

Figure 17.32 shows SEL1 being close to the same as in Figure 17.32, in
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Figure 17.33: L3 data cache missrate over log k. Best case tree.

the worst case graph. SEL4 has more L3 cache misses than in the worst case
graph, and the naive algorithm has much fewer.

Figure 17.33 shows the L3 data cache missrate for all five algorithms, the
same as Figure 17.11 shows for the worst case graph. The only difference is
that SEL4 have a much higher missrate. See Chapter 15.

17.4 Conclusion

Worst case

Runtime results for all five algorithms from Chapter 16 largely correlate with
instruction, data reference, and cache data found with Valgrind. SEL2 and
SEL3 show linear number of used instructions, data references, and L1 and L3
data cache misses, outside of their jump at k = 216, which is where an extra
layer of recursion is added.

SEL1 and SEL4 are largely linear in most in most graphs. The naive
algorithm shows linear tendencies in cache related measures, and superlinear
tendencies in terms of instructions used and data references made.

Random case

The random case tree favors the naive algorithm to the extend that it is the
fastest in the tests. It is possible it would eventually lose due to its higher
complexity, but that is speculation.
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Best case

The best case graphs shows mostly the same as the worst case graphs, due to
issues explained in Chapter 15. Some algorithms have switched positions in
comparison to one another, with especially SEL4 performing worse. SEL2 is
mostly unaccounted for due to lack of data.



Chapter 18

Conclusion

The optimal O(k) algorithm SEL4 presented by Frederickson [5] and described
in Chapter 11 can be faster than the simpler naive algorithm described in
Chapter 3. SEL2 and SEL3 generally have terrible performance, while SEL1
has comparable performance to SEL4 and the naive algorithm.

For the test heap created to give the naive algorithm the worst case
performance, SEL4 hinted at a practical linear complexity, becoming faster
than the naive algorithm for k ≥ 220. SEL1 is slower than both SEL4 and the
naive algorithm.

When tested with a random heap, the naive algorithm performed better
than SEL4. SEL4 was mostly slowed down by cache misses, which only started
to stabilize at k = 223. The machine running the tests could not handle much
larger than k = 225, so data showing a possible linear performance of SEL4
could not be obtained. SEL1 managed to tie with the naive algorithm at the
last data points.

For the best case heap the naive algorithm was faster than SEL4, though
the naive algorithm was not linear as expected. The reason for that is explained
in Chapter 15. Judging by the time graph, it is likely SEL4 would be as fast
as the naive with a few more data points. SEL1 performed on par with SEL4
for some time, then got slower at k ≥ 222.
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Chapter 19

Theorems

Theorem 19.0.1 (Product convergence) Let an be a sequence of positive
numbers for which an → 0 for n→∞, then the product:

∞∏
n=1

(1 + an)

converges if and only if, the sum:

∞∑
n=1

an

converges.
Proof:
For this section whenever we write log we use the natural logarithm. First we
show that:

lim
x→0

log(1 + x)

x
= 1

Since when x = 0, we have log(1) = 0 the fraction will be 0
0 which is indeter-

minate, we can use L’Hôpital’s rule:

lim
x→0

log(1 + x)

x
= lim

x→0

d
dx(log(1 + x))

d
dx(x)

= lim
x→0

1
1+x

1

= lim
x→0

1

1 + x

= 1

Now we have this we apply the natural logarithm to our product:

log(
∞∏
n=1

(1 + an)) =
∞∑
n=1

log(1 + an)
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Remember we have an → 0 for n→∞, we obtain:

lim
an→∞

log(1 + an)

an
= 1

By the limit comparison test we obtain, that
∞∑
n=1

log(1 + an) converges if and

only if
∞∑
n=1

an converges.

Theorem 19.0.2 (Sum convergence) The sum:

∞∑
i=1

1

i2
(19.1)

converges.
Proof:
If instead of starting the sum of Equation 19.1 in 1 we start it in 2 we obtain:∑

i = 2∞
1

i2

Which clearly will also converge if Equation 19.1 does. We then make the
observation that 0 ≤ 1

i2
≤ 1

i2−i , since subtracting below from the denominator
will make the expression bigger. Additionally we show that, for i ≥ 2:

1

i− 1
− 1

i
=

i− (i− 1)

i · (i− 1)
=

1

i2 − i

Using this we can now look at the sum:

∞∑
i=2

(
1

i− 1
− 1

i
)

First we will look at the function if rather than going to infinity it goes to some
N :

N∑
i=2

(
1

i− 1
− 1

i
) = (

1

1
− 1

2
) + (

1

2
− 1

3
) + (

1

3
− 1

4
) + . . . + (

1

N − 2
− 1

N − 1
) + (

1

N − 1
− 1

N
)

=
1

1
− 1

N

We get this because for every part except the first and last there is both a
positive and negative occurrence, and these cancel out. If we now let N →∞
and look at the limit we get:

lim
N→∞

N∑
i=2

(
1

i− 1
− 1

i
) = lim

N→∞
(1− 1

N
) = 1

Which means it converges, and thus our original expression of Equation 19.1
converges.
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