
Experimental Study of

Kinetic Geometric t-Spanner

Algorithms

Master thesis by

Jonas Suhr Christensen, 20032491

jsc@umbraculum.org

Supervised by
Gerth Stølting Brodal

Department of Computer Science
Aarhus University
Denmark
31 August, 2010

Abstract

In this thesis we describe, implements and experiments with two algorithms
that constructs and maintains geometric t-spanners. The algorithms are the
Kinetic Spanner in R

d by Abam et al. and the Deformable Spanner by Gao
et al. The implementations has only been done in R

2.
The experiments are focused on two different aspects of the algorithms

namely the qualities of the spanners constructed by the algorithms and
the kinetic qualities of the algorithms. The results of the experiments are
compared with other known non-kinetic spanner algorithms and a kinetic
Delaunay triangulation.

The results shows that the qualities of the spanners in general is worse
than the spanners constructed by the non-kinetic algorithms. However on
input with specific characteristics properties of the constructed spanners are
on level with spanners of the non-kinetic algorithms.

The experiments on the kinetic qualities can be summed up to that
the kinetic spanner in R

d is a lot more expensive to maintain than the
kinetic Delaunay triangulation. The deformable spanner is not a part of
experiments on the kinetic properties and the experiments do not consider
the responsiveness of the kinetic spanner in R

d.

1

Acknowledgements

I would like to thank Mohammad Ali Abam for guidance on implementing
and understanding the kinetic algorithms. Furthermore I would like to thank
Gerth Stølthing Brodal for advises doing the process of writing the thesis.

2

Contents

1 Introduction 5

1.1 Overview of the Thesis . 6

I Fundamental Theory 8

2 Geometric t-Spanners 9

2.1 Geometric t-Spanners . 9
2.2 Properties of Spanners . 9
2.3 Geometric t-Spanners in Historical View 10

3 Kinetic Data Structures 12

3.1 Static And Mobile Data . 12
3.2 Basics of Kinetic Data Structures 13
3.3 Kinetic Properties . 15
3.4 Kinetic Data Structures and Spanners in Historical View . . . 16

II Kinetic Geometric t-Spanners 18

4 Kinetic Spanner in R
d 19

4.1 Θ-Graphs and Spanners . 19
4.2 A Kinetic Spanner in R

d . 20
4.3 Constructing a Spanner From the Theory 22
4.4 Maintaining the Spanner . 26

5 Kinetic Deformable Spanner 29

5.1 Deformable Spanner . 29
5.2 Construction of the Deformable Spanner 34
5.3 Maintaining the Spanner . 36

6 Implementation 40

6.1 CGAL . 40
6.2 Testing . 42

3

6.3 Kinetic Spanner in R
d . 42

6.4 Deformable Spanner . 44

III Experiments 46

7 Experimental Results on Spanner Properties 47

7.1 Data Sets . 47
7.2 Theoretical Bounds on Properties 48
7.3 Notes About the Experiments 48
7.4 Experimental Results . 49

8 Experimental Results on Kinetic Properties 53

8.1 Notes About the Experiments 53
8.2 Experimental Results . 53

IV Summary 56

9 Future Work 57

10 Conclusion 58

Bibliography 59

Index 61

V Appendix 63

A Experiments on Spanner Qualities 64

B Experiments on Kinetic Qualitites 80

4

Chapter 1

Introduction

A general problem in graph theory is to optimize a solution with respect to
some property. E.g. to create a systems of roads such that it is possible to
get to and from selected cities in an area or create a network of routers such
that every router is connected. In the road example a economic property is
that the total length of the roads are minimized, a property of convenience
is that the roads has as few intersections as possible or in the router example
it is important to minimize the number of routers a package has to pass to
avoid high latency.

A straightforward property for graph problem of this nature is to put
an upper limit on the length between two elements in the graph representa-
tion of the problem. E.g. when driving between two cities one will at most
accept some penalty on the extra length of the trip compared to the bee-
line between the start and end location. In the graph representation this is
equal to that the sum of the length of the edges connecting the two vertices
that represents the cities has an upper limit. Problems with an upper limit
defined like this can be solved by constructing k-spanners. If the length
of the edges corresponds to the length between points in Euclidean space
the spanners are called geometric t-spanners. Algorithms that constructs
geometric t-spanners has been researched since the eighties and there ex-
ists many different approaches each with its own characteristics in form of
properties such as those mentioned above.

However a new challenge came around. What do we do if we want to
solve these problems when they are defined on things that does not stay
constant but moves around? This could be that we want to keep a roaming
mobile phone connected to some home base. It is easier on the battery to
communicate over a short distance so we prefer to communicate with bases
that are in a short distance of the phone. However communicating through
other bases introduces some delay and it is preferable that communication
is not delayed to much. As long as it is possible to send a message through
other bases without exceeding some maximum delay time we do that. But

5

if the delay time is exceeded we just send it directly to the home base or
finds another base to communicate through. In this example a solution has
to be updated continuously as the mobile phone roams around between the
bases.

There exists algorithms to effectively handle the problem of maintaining
solutions in such continuously changing environment. These algorithms are
called Kinetic Data Structure and in the case of spanners kinetic spanners.
This is algorithms that focus on how to detect when the structure needs to
be updated and how handle updates in an efficient way.

1.1 Overview of the Thesis

This thesis will consider two different kinetic spanners; A Kinetic Spanner
in R

d by Abam and Berg [2] and the Deformable Spanner by Gao et al. [14]
both are valid in R

d.
The two kinetic spanners will be implemented in R

2 and experimented
with on data with different characteristics. The experiments will be struc-
tured into two parts; a part that experiments with the properties of the
spanner constructed by the algorithms and a part that experiments with
the kinetic properties of the algorithms. The results of the experiments
will be compared to the theoretical bounds of the algorithms and will be
compared to other spanners from the literature.

The thesis is organized as follows:

• Chapter 2 gives a formal definition of geometric t-spanners, proper-
ties of geometric t-spanners and a brief history of geometric t-spanners.

• Chapter 3 considers kinetic data structures in general, properties of
Kinetic Data Structures and a brief history of kinetic data structures
with focus on kinetic spanners.

• Chapter 4 defines the Kinetic Spanner in Rd, concerns some prop-
erties of the constructed spanner, explains how to maintain it and
considers its kinetic properties.

• Chapter 5 defines the Deformable Spanner, concerns some properties
of the constructed spanner, explains how to maintain it and considers
its kinetic properties.

• Chapter 6 explains and considers the implementation of the kinetic
spanners.

• Chapter 7 presents the experiments and results on spanner proper-
ties.

• Chapter 8 presents the experiments and results on kinetic properties.

6

• Chapter 9 and 10 considers what can be further improved and ex-
plored and concludes the thesis.

The source code can be found at:
http://www.umbraculum.org/esox/esox.tgz

The data for the experiments can be found at:
http://www.umbraculum.org/esox/experiments.tgz

The source code and data can also be found on the enclosed DVD.

7

Part I

Fundamental Theory

8

Chapter 2

Geometric t-Spanners

This chapter will consider geometric t-spanners. Section 2.1 defines a ge-
ometric t-spanner. Section 2.2 introduces a set of properties that can be
used to measure the quality of geometric t-spanners and finally Section 2.3
gives a brief view of the development of geometric t-spanner algorithms with
focus on the properties of the spanners constructed by these algorithms.

2.1 Geometric t-Spanners

Given a set of points P ′ in Euclidean space. A geometric spanner is a graph
S = (P,E) consisting of a set of vertices P and edges E such that every point
p ∈ P ′ corresponds to a vertex v ∈ P and for every pair of vertices (u, v)
there is at least one path in S between the two points. An edge (u, v) ∈ E

has weight corresponding to the Euclidean distance |uv| between the points.
A path between two points u, v ∈ P has a cost equal to the sum of the
weight of the edges contained in the path.

It is possible to find the minimal k such that every pair of points in S

are connected by some path with cost at most k · |uv|. This k is called the
stretch-factor or dilation of S represented by t. The graph that contains an
edge (u, v) ∈ E for every pair of points has t = 1 and is called a complete
graph. If t > 1 then the graph S may be a sub-graph of the complete graph.
A geometric t-spanner or geometric (1 + ε)-spanner is a spanner St such
that the stretch-factor of St is at most t.

2.2 Properties of Spanners

The quality of a spanner can be measured by looking at different properties
and is normally a trade-off between properties. Due to this, defining a ”best”
spanner depends on the purpose of the spanner. In some applications it is
important to minimize the total number of edges but it is still appreciated to
have paths of few edges or low cost between the nodes. This is an example of

9

a trade-off between properties as adding more edges will lower the distance
of the paths and vice-versa.

Some common properties for measuring the quality of a spanner are the
number of edges, the degree of the nodes in the spanner, the weight of the
edges and the diameter of the graph. This thesis will use the same definitions
of spanner properties as Farshi and Gudmundsson in Experimental Study of
Geometric t-Spanners [13]:

• Size — The size of a spanner is the number of edges in the spanner
graph.

• Degree — The degree of the spanner is the maximum number of edges
incident to a point in the spanner.

• Weight — The weight of a spanner is the sum of the weight of the
edges in the spanner graph. In the context of Euclidean spanners
the weight of an edge between two points u, v ∈ S is defined as the
Euclidean distance |uv| between the points.

• Diameter — The diameter dp,q between two points p, q is the smallest
number of edges one has to follow to get from p to q, ie. the number
of edges in the path consisting of fewest edges between p and q. The
diameter d of a spanner S is the minimal number such that every pair
of points p, q ∈ S are connected by a path consisting of at most d

edges.

2.3 Geometric t-Spanners in Historical View

Geometric spanners were first introduced into the field of computational
geometry by Chew [9] in the middle eighties. In this paper Chew inves-
tigated the stretch-factor for triangulations with different convex distance
functions and showed that there exists a geometric 2-spanner for any input
in R

2. Dobkin et al. [12] later showed that the stretch-factor for a standard
Delaunay triangulation is less than t ≈ 5.08. Later it was showed that the
stretch-factor of a standard Delaunay triangulation is t ≈ 2.42 [19]. The
Delaunay triangulation has O(n) edges and maximum degree O(n).

Algorithms for constructing t-spanners have since been developed such
that the stretch-factor is a parameter to the algorithm. In 1989 Althöfer [4]
and Bern introduced an algorithm independently that constructs spanners
with O(n) edges, constant maximum degree and weight depending on the
weight of the minimum spanning tree wt(MST). This algorithm is referred
to as the greedy algorithm.

Clarkson [10] and Keil [18] independently introduced the concept of Θ-
graphs in the last half of the eighties. However their algorithms only worked

10

in two and three dimension respectively. The approach were later gener-
alized into higher dimensions by Altöfer et al. [4] and Ruppert and Sei-
del [21] in the beginning of the nineties. The Θ-graph algorithm produces
a t-spanner for t = 1

cos θ−sin θ
with O(n

θ
) edges, maximum degree Θ(n) and

weight Θ(n·wt(MST)). For more information about Θ-graphs see Section
4.1.

A variant of the Θ-graph is the ordered Θ-graph introduced by Bose et
al [7] around ten years later. An ordered Θ-graph has stretch-factor similar
to the ”normal” Θ-graph. It has Θ(n

θ
) edges, maximum degree O(1

θ
· log n)

and weight O(n·wt(MST)).
Callahan and Kosaraju [8] showed in the mid-nineties that by computing

the well-separated pair decomposition of the input set and adding an edge
between each well-separated pair in the decomposition one has a geometric
t-spanner. The WSPD-graph is a t-Spanners that have Θ((t

(t−1))
2 ·n) edges,

maximum degree Θ(n) and weight Θ(log n·wt(MST)).
Farshi and Gudmundsson [13] experimented with the above algorithms

showing properties and trade-offs for the constructed spanners on input sets
with different characteristic. This paper is the fundamental basis of the
experiments in Section 7 and will be used as comparison for the qualities
of the spanners constructed by the kinetic spanner algorithms. Table 7.1 in
Section 7 summarize the properties of the different algorithms.

11

Chapter 3

Kinetic Data Structures

This chapter is about kinetic data structures. Section 3.1 presents the differ-
ence between handling static data and mobile data. Section 3.2 introduces
the basic concepts and terminology of kinetic data structures. Section 3.3
presents the four properties that are used to analyze kinetic data structures.
Section 3.4 gives a brief historical view of kinetic data structures and kinetic
spanners.

3.1 Static And Mobile Data

In the previous chapter all points were defined as fixed points in Euclidean
space. This type of data will be referred to as static data. In a kinetic setting
points are not fixed instead they move along trajectories in the space. By
evaluating trajectories with a parameter referred to as time the positions of
the points in an instant moment can be found. This type of data will be
referred to as mobile data.

A data structure that works in this continuously changing environment
needs to be able to do fast updates when its attribute becomes invalid due
changes in the topology. The attribute of a structure is in this thesis the
problem that the structure solves e.g. a Delaunay triangulation, the convex
hull or a t-spanner. When data structures working on static data becomes
invalid they either has to be reconstructed or if they are dynamic update
the part of the structure that failed by deleting or reinserting the point(s)
that caused the invalidation.

A difficult thing is to know when the data structure becomes invalid and
find the point(s) that cause(s) the invalidation. A straightforward solution
is to check the structure every time it is used. However this solution has the
tedious effect that potentially a lot of work has to be done exactly when the
structure is needed — at the very moment where it is supposed to be fast.

Another approach is to fix intervals in advance, this can be at some
fixed frequency or some clever pre-calculated intervals. However the fixed

12

frequency updating approach is clearly broken, it does not guarantee that
the data structure is valid in all moment of time. E.g. if a structure turns
invalid at time i and the structure is first updated at time i+j the structure is
invalid in the interval [i; j[. If it is assumed that the pre-calculated intervals
are exactly when there are changes in the topology, this approach seems
well but lacks the ability to handle the dynamic of a ”real” environment e.g.
when trajectories are changed due to an event in the environment.

Kinetic data structures encapsulates an effective way of detecting when
the data structure becomes invalid in an continuously changing environment
and considers a way to handle this knowledge so that the structure can be
efficiently updated exactly when it becomes invalid.

3.2 Basics of Kinetic Data Structures

Basch [6] proposed a model for analyzing and handling data structures work-
ing on mobile data or as it is written in his thesis ”keeping track of discrete
attributes of moving data” [6, page 15] called Kinetic Data Structures.

The basic thought is to have a set of proofs that ensures that the attribute
of a data structure is valid. A proof is build around the position of the mobile
data and can be evaluated as a function of time. It is possible by evaluating
the proof set to find the correct time of when the data structure changes to
an invalid state. By defining data structures such that it is easy to define
and update proofs the data structures can be constructed such that it can
handle continuously changing environments.

In short a kinetic data structure is a structure that maintains some
attribute on an input set, contains a proof set that ensures that this attribute
stays valid and has a system that updates the structure when proofs are
failing.

Below are the terminology and concepts of kinetic data structures ex-
plained in more details.

3.2.1 Mobile Data

Before it make sence to talk about data structures working on mobile data
it is necessary to explain what mobile data is.

Static data are fixed by some positions in a space e.g. a point repre-
sented by a vector. Mobile data is represented by a trajectory function f

evaluated over time t. The function f(t) maps some data to a position in
space depending on the time t e.g. a mobile point could be the point mov-
ing at the trajectory specified by the linear function f(t) = 2x + 2. It is
not given that a trajectory stays constant through the whole lifespan of a
data structure. If trajectories changes it implies that the structure has to be
updated according to the new trajectories this is called motion plan update.

13

3.2.2 Certificates and Events

An important part of a kinetic data structure is to generate proofs, called
certificates, that ensure that the structure is valid with respect to some
attribute. A certificate is a function of time that fails or expires when
the sign of its outcome change. E.g. consider a kinetic data structure
maintaining a priority queue based on a sorted list where the input objects
p ∈ P are sorted after a value vp (from high to low). The certificate set for
this structure consists of n − 1 certificates of the type vi(t) − vi+1(t) > 0
where 0 ≤ i < n− 1.

When a certificate fails an event corresponding to the type of the failed
certificate are triggered. A failure of a certificate implies not only updating
the structure maintaining the attribute but also requires changes to the
certificate set. In the example above the event would be to update the
structure by swapping the two points in the list, change the certificates that
involved the swapped objects, so that they corresponds to the new order of
the list, and finally update the registered failure times of the changed events.

There are two kinds of events internal and external events. External
events are triggered by topological changes in the input set and are common
for all data structures maintaining this attribute. In the priority queue
example external events are when the head of the queue is updated. Internal
events are related to the kinetic data structure itself. These events are part of
the kinetic data structure and are not specific for maintaining the attribute.
In the priority queue example internal events are when two objects that are
not in the head of the queue are swapped. These events do not change the
attribute of the data structure but are necessary due to the way that the
priority queue works.

3.2.3 Event Queue

Another part of a kinetic data structure is to generate an event system
that keeps track of failing certificates. As the trajectories of the elements
are partially known in advance the failing time of each certificate can be
calculated.

A common approach is to use a priority queue (sorting from low to high)
for storing events with a key corresponding to the failure time of certificate
that triggers the event. This is called an event queue. By doing this events
can be triggered one by one as the time increase and the problem of detecting
when the data structure changes into a invalid state is reduced to popping
events from the event queue.

14

3.3 Kinetic Properties

When working with kinetic data structures there are two obvious proper-
ties to measure the quality by; the number of certificate failures and the
complexity to restore the data structure into a valid state when a certificate
fails. In addition it is also desirable that each object is involved in a minimal
number of certificates so certificate updates and motion plan updates can
be handled effectively.

The kinetic quality of a kinetic data structure can be described by the fol-
lowing four properties; responsiveness, compactness, locality and efficiency.
If a kinetic data structure performs well with respect to all four properties
it will be referred to as ”good”.

3.3.1 Responsiveness

When a certificate fails the data structure is invalid and a number of update
operations are needed to restore it. The certificate set have to change by
adding, changing and/or deleting certificates. Furthermore when changes
happens to the certificate set the event queue also has to be updated.

The responsiveness is the complexity of handling this — from when
a certificates fails to when the kinetic data structure is fully restored. A
kinetic data structure is called responsive if the complexity is asymptotic
poly-logarithmic.

3.3.2 Compactness

The certificate set of a kinetic data structure should be small. It is desirable
that a kinetic data structure do not require many more certificates compared
to the input set.

The compactness of a kinetic data structure is the maximum number of
certificates that a structure needs at any a given time. If the size of the
certificate set of a kinetic data structure is always near-linear in the number
of input objects it is called compact .

3.3.3 Locality

When objects are inserted into kinetic data structures they will be be part
of a number of certificates. If objects are later removed or undergoes motion
plan updates all these certificates have to be either removed from the kinetic
data structure or updated according to the new trajectory.

The locality of a kinetic data structure is the maximum number of cer-
tificate changes a single object can trigger i.e. the maximum number of
certificates that depends on the object. If this number is asymptotic poly-
logarithmic the kinetic data structure is called local .

15

3.3.4 Efficiency

As certificates in a kinetic data structure fail events are triggered. Some of
these are internal events others are external events. The external events are
the minimum number of events the kinetic data structure has to trigger to
keep its attribute valid — the number of topological changes. The internal
events are the additional events added by the kinetic data structure to keep
its state intact.

The efficiency is the relation between the number of the two types of
events. A kinetic data structure is called efficient if the total number of
processed events are small compared to number of topological changes. More
precisely a kinetic data structure are efficient if the ratio between the worst
case number of internal events and the worst case number of external events
is poly-logarithmic.

3.4 Kinetic Data Structures and Spanners in His-

torical View

A lot of study on how to maintain a certain attribute on moving data was
done in the early eighties. In the mid-eighties Atallah [5] introduced a
framework for handling moving ”dynamic” data. However he assumed a
constant environment with constant trajectories which is insufficient when
simulating a ”real” dynamic environment.

Basch and Guibas [16, 17, 6] introduced the concept of kinetic data struc-
tures in the last half of the nineties. A framework suited for analyzing and
developing data structures and algorithms on mobile data in a compared to
Atallahs framework more dynamic environment. By letting data structures
be on-line and robust to missing trajectory information and motion plan
updates the framework is designed to handle simulation of ”real” dynamic
environments.

Besides introducing the model they also introduced a number of ki-
netic data structures concerning maximum maintenance. But also two-
dimensional problems such as a kinetic data structure maintaining the con-
vex hull and the closest pair for a set of points.

Spanners working in this framework are called kinetic spanners. They
were first (According to [2]) studied by Gao et. al [14]. They studied the
problem of maintaining spanners on moving objects that has a high degree
of influence on each others trajectories e.g. by collision. They showed how
to construct ”good” kinetic (1+ε)-spanners in R

d under certain assumption
on the input set (see aspect ratio Section 5.1). The spanner has O(n

εd) edges
and a maximum degree O(log2

n
εd).

Abam et al. introduced the simple and efficient spanner [3] that only
works in R

2. This spanner is responsive, effective and compact, but not

16

local. They use the property that the the Delaunay triangulation of the
input set has a linear number of edges in R

2. This property however is only
valid in R

2 thus the spanner is restricted to two dimensions. The spanner
has O(n

ε2) edges but as it is based on Delaunay triangulation the maximum
degree is O(n).

Abam and Berg [2] later introduced another spanner algorithm which was
capable of being generalized into Rd. The spanner is ”good” in kinetic sence
and has size O(n

εd−1) and a maximum degree on O(logd n). This spanner is
the first (According to [2]) known ”good” kinetic spanner maintaining points
in Rd that do not depend on assumption on the input points (as it is the
case with the spanner proposed by Gao et al. [14]).

The kinetic spanner in R
d by Abam and Berg [2] and the spanner by

Gao et al. [14] is implemented as a part of this thesis. More details about
these two spanners can be found in chapter 4 and 5.

17

Part II

Kinetic Geometric

t-Spanners

18

Chapter 4

Kinetic Spanner in R
d

In [2] Abam and Berg presents a kinetic (1+ε)-spanner working in R
d called

Kinetic Spanner in R
d. It is ”good” in kinetic sence; it is responsive handling

events in O(logd+1 n) time. It has locality of O(1
εd−1) certificates per point

and the total number of events is O(n2

εd−1)1. The spanner has size O(n
εd−1)

and maximum degree O(logd n).
This chapter presents the theory of the kinetic spanner with focus on R

2

but keeps the results in R
d. As the spanner is based on Θ-graphs theory

[10, 18, 20] Section 4.1 briefly explains the idea behind Θ-graphs. Section
4.2 introduces the theory of the spanner. Section 4.3 explains how the
theory can be used to construct a kinetic spanner and Section 4.4 explain
the certificates and events required to maintain the spanner.

4.1 Θ-Graphs and Spanners

The Θ-graph approach is a way to connect a point set P by adding edges
from every p ∈ P to another point q ∈ P such that q is the nearest point to
p in a subset that contains all points that are inside a cone emanating from
p.

The cones in a Θ-graph are are called θ-cones and can be defined as
follows in R

2. Define an angle θ and draw O(1
θ
) cones emanating from

Origin. The cones can at most span over an angle θ, none of the cones can
overlap and together they cover the whole space. A translation of a cone σ

to a point p such that σ emanates from p is denoted σ(p) and is called a
range. The range that σ(p) defines contain the points that are inside σ(p).

From a set C containing θ-cones created as described above for some θ

and a point set P we can construct a spanner containing at most O(|C| · n)
edges. This can be done by for every range σ(p) connecting p to a point
q ∈ σ(p) such that q is the point nearest to p. If θ are chosen such that

1Assuming that trajectories are bounded-degree polynomials.

19

cos θ− sin θ ≥ 1
1+ε

this spanner is a (1+ε)-spanner. For further information
on Θ-graphs see [20].

4.2 A Kinetic Spanner in R
d

A basic concept of the kinetic spanner in R
d is to avoid using the Euclidean

distance function by measuring the distance by a faster and easier maintain-
able function. This section will define this distance function and show that
it is possible to create a variant of Θ-graphs using the distance function such
that the constructed graph is a (1 + ε)-spanner.

4.2.1 A Maintainable Distance Function

As described above the edges of a Θ-graph are created by locating the closest
points to a point p for each subset created by the cones emanating from p.
However locating the Euclidean nearest point for every combination of points
and cones is costly and hard to maintain in a kinetic environment [2, page
44]. We will therefore define and use another distance function distσ(p, q)
with the property that it fits into the Θ-graph approach and is easily main-
tained.

When locating the closest point to p in a point set of a range we know
that the set has been created with respect to a θ-cone that emanates from p

i.e. we always measure the distance between points in relation to a θ-cone.
This observation can be used and we can define a distance function that
depends on the θ-cones it is used with.

For every σ ∈ C one of the lines defining the cone are chosen and is
called the representative line of σ. The distance between two points p, q can
then be measured as the distance between the projection of the two points
onto the representative line. The distance function is denoted distσ(p, q).

By using this distance function finding closest points is reduced to a
matter of keeping track of the positions of the points projection onto the
representative edge for every cone σ ∈ C. This can easily be done by storing
the position of the points projections in a kinetic sorted list (see Section
4.4.1 for more information about kinetic sorted lists). Hence we have a easy
maintainable structure from which it is easy to find the closest points (the
neighbors in the list).

4.2.2 The Fundamental Lemma

The fundamental property of the spanner is lemma 2.1 from [2]. The lemma
says that it is possible to construct (1 − ε)-spanners from the θ-graphs ap-
proach using distσ(p, q).

Lemma 1. For a set C of θ-cones chosen such that cos 2θ − sin 2θ ≥ 1
1+ǫ

and a point set P . If there for a point p ∈ P and a cone σ ∈ C exists two

20

p

σ̄(p)

σ(p)

a0a1

b0
b1

b2
b3

representative edge

Figure 4.1: Showing pair (Ai, Bi) = ({a1, a0}, {b0, b1, b2, b3}) of Ψσ separated
by a point p.

points q, r in σ(p) such that distσ(p, r) ≤ distσ(p, q) then the path from p to
q going through r has cost at most (1 + ε) · |pq|.

With a structure preserving lemma 1 we can construct a (1+ ε)-spanner
by replacing a direct edge between two points p and q with a path going
through r.

4.2.3 Cone-Separated Pairs of Decomposition

To construct a structure that preserves lemma 1 we use a decomposition
of the input points called cone-separated pair decomposition (CSPD). This
decomposition is based on a cone σ and its opposite cone denoted σ̄. In R

2

the opposite cone σ̄ is created from mirroring σ by following its lines after
the crossing in Origin. Figure 4.1 shows a cone σ and its opposite cone σ̄ in
R

2.

Definition. A CSPD with respect to a cone σ denoted Ψσ is a set
Ψσ = {(A1, B1), ..., (Am, Bm)} of pairs of subsets of the point set P such
that for every pair of points (p, q) ∈ P if q ∈ σ(p) then there is a pair
(Ai, Bi) ∈ Ψσ such that p ∈ Ai and q ∈ Bi. Furthermore Ψσ may only
contain pair such that if p ∈ Ai and q ∈ Bi then q ∈ σ(p) and p ∈ σ̄(q).

By this definition a collection of CSPDs for a cone set C and a point set
P contains |C| (one for each σ ∈ C) CSPDs each having a number of pairs
depending on the topology of P . Figure 4.1 shows a pair in a CSPD.

A collection of CSPDs can be constructed by using a rank based range
tree as explained in Section 4.3.

21

4.2.4 Well-Connected Pair of Points

It remains to explain how to construct a spanner from a collection of CSPDs
such that lemma 1 are satisfied. To do this we connect the points of the
pairs of a CSPD such that they are well-connected .

Definition. For a spanner S = (E,P) and a CSPD Ψσ.
A pair (Ai, Bi) ∈ Ψσ is well-connected in S if for every pair of points p ∈ Ai

and q ∈ Bi there exists a point r ∈ σ(p) such that distσ(p, r) ≤ distσ(p, q)
and a corresponding edge (p, r) ∈ E or there exists a point r ∈ σ̄(q) and
distσ̄(q, r) ≤ distσ̄(q, p) and a edge (q, r) ∈ E.

As two points are always connected either directly via an edge or through
a path going through one or more points it is easy to see that the edges from
a well-connected collection of CSPDs forms a spanner. From lemma 2.4 in [2]
we have that this is a (1 + ε)-spanner.

Lemma 2. For a collection of CSPDs of a point set P and a graph S =
(P,E) such that the E is the edges from the CSPDs. If every pair in each
Ψσ is well-connected then S is a (1 + ε)-spanner on P .

Section 4.3.3 explains how to connect a pair in a CSPD such that it is
well-connected.

4.3 Constructing a Spanner From the Theory

From the previous section it follows that we have a spanner if we can con-
struct a well-connected collection of CSPDs from a point set P . Furthermore
if the set of θ-cones satisfies that cos 2θ − sin 2θ ≥ 1

1+ǫ
then by lemma 2 it

is a (1 + ε)-spanner.
It remains to show how to construct a collection of CSPDs from P and

how to make the pairs of a CSPD well-connected such that it is easy to
maintain. This section will explain how this can be done.

4.3.1 Rank Based Range Trees

A collection of CSPDs can be obtained in a fairly easy manner using a
modified range tree. A range tree [11] is a data structure that in O(logd n+k)
time can return the subset of points that are inside a given range. Range
trees can easily be generalized to k-dimensions but this section will focus
on the two-dimensional version. The algorithm uses a variant of the range
tree called a rank based rank tree (RBRT) which will be explained below.
Normally a tree has a dynamic size but in the following we assume that the
size is fixed such that it can contain every input point.

22

Rank Based Range Tree

A two-dimensional RBRT consists of two types of balanced binary search
trees. The first tree called the first-level tree store points in its leafs and a
pointer to a tree of the second type. The second type of tree called second-
level tree is like the first-level tree except that it do not store a pointer
to another tree in its internal nodes but instead stores the canonical subset
containing the points in the subtree rooted at the internal node (by definition
the point stored in a leaf is also a canonical subset). A RBRT contains one
first-level tree and a set of second-level tree such that every internal node in
the first-level tree points to its own instance of a second-level tree.

Points are inserted into the trees using as key the rank of a point in
a dimension. The ranki(p) of a point p is the position of p in a set that
contains all the points and are sorted according to the i’th dimension, e.g.
if the dimensions are x and y we sort the sets according to the order of the
points projections onto the x-line and y-line.

A point p is first inserted into the first-level tree using rank1(p) as key
finding a path to a leaf where the point is stored. When an internal node
is visited the point is inserted into the second-level tree pointed to by the
internal node. Inserting p into a second-level tree works as insertion into
the first-level tree except that the rank2(p) is used as key and that visiting
an internal node does not trigger an insertion into another level. Instead
the point is added to the canonical subset of the internal node 2. Deleting
a point is done in the same way only removing from the canonical subset
instead of adding to it.

This construction can be used to make an open range query by defining
the two ranks r1 and r2 that limits the range. All points inside that range
are located by searching from the root in the first-level tree with r1 until a
leaf is reached. Whenever we branch left in a internal node the second-level
tree that the right sibling points at is searched in using r2. When searching
in a second-level tree we report the points of the canonical set of an visited
internal node every time we branch left. The reported points are the set of
points inside the range.

CSPD and RBRT

To be able to construct a CSPD from a RBRT we need to store some further
informations. In every internal node or leaf of the second-level trees we store
all the ranges that selects that internal node or leaf. This is all the ranges
that contains the points of the canonical subset. By construction of the
RBRT all possible ranges in a RBRT has a unique point that the range

2In a k-dimensional range tree the second-level would trigger an insertion into a third-
level tree using the third dimensional coordinate of the point. This continues until the
last level k is reached.

23

a0a1

b0 b1 b2 b3

Figure 4.2: The pair (Ai, Bi) from Figure 4.1 packed into logarithmic number
of groups and connected as described in Section 4.3.3.

emanates from such that there emanates a range from every point p in the
RBRT. The set we store contains the points defining the ranges and is called
a range set .

The ranges selecting an internal node or leaf can be found by doing a
range query for every point p ∈ P . The range sets are constructed by adding
p to the range set of visited internal nodes or leafs instead of reporting the
canonical subset.

4.3.2 Constructing Cone-Separated Pair Decompositions

To construct a Ψσ from a RBRT we do not use the normal dimensions of
the Euclidean space in the RBRT. Instead we use the lines that defines and
limits σ. These lines are called the the directions of σ.

To get a collection of CSPDs we create a RBRT for every σ ∈ C denoted
RBRTσ. In RBRTσ the points are sorted according to the rank of the
projection onto the orthogonal of the two directions of σ. This specifies a
range σ(p) for a point p as every point that has a lower rank on one of the
projection onto the orthogonal of a direction is outside the range σ(p).

To construct Ψσ every point p ∈ P are inserted into RBRTσ as described
above. This constructs the canonical subsets and range sets of the second-
level trees. For every node v in a second-level tree containing non-empty
canonical subset and range set we create a pair (Av , Bv) such that Av is the
range set of v and Bv is the canonical subset of v. From the definition of
CSPD the set of such pairs from a RBRTσ forms Ψσ.

By constructing a CSPD in this way we know that each point can at
most be in O(logd n) canonical subsets and each range σ(p) can at most be
in O(logd n) range sets. From this we can state lemma 3.

Lemma 3. For a cone set C and a set of points P . There exist for every
cone σ ∈ C a CSPD Ψσ such that for every point p ∈ P it is at most in
O(logd n) pairs in Ψσ.

24

4.3.3 Connecting Points In a Pair of a CSPD

It remains to show how to connect the pairs in a CSPD such that they are
well-connected.

To do this we sorts the points in every pair of Ψσ according to the
representative edge of σ. The canonical subset is sorted such that the rank
of the points are increasing with the direction of the representative edge i.e.
for three points p, q, r ∈ P such that q, r ∈ σ(p) the point p or r closest to p

is the one with the lowest rank. The points in the range set are also sorted
according to the representative edge just in reverse order such that a low
rank implies lesser distance to the points in the canonical subset.

A sorted pair (Ai, Bi) is easy to make well-connected. We only need to
connect the every point p ∈ A with a point q ∈ B such that p and q has the
same rank (if such to points exists). From the definition of well-connected
pair of points this is clearly well-connected. However this way of connecting
a pair in a CSPD may require linear time to maintain e.g. when a point
with rank i is added to a subset all points with rank j | j > i has to change
and all the connections of these points has to be updated.

To overcome this we pack the sets of a pair (Ai, Bi) into a logarithmic
number of groups. A set Si = S0

i , ..., S
j
i is then grouped such that each

group contains 2j points and S0
i = s0 and S

j
i = s2j

−1, ..., s2j+1
−2. For every

group j in Ai we connected each point p ∈ A
j
i to two points q, r ∈ B

j+1
i

such that no points in B
j+1
i are connected to more than one point in A

j
i .

We do the same for every group B
j
i ∈ Bi. Besides this we also connect the

two points in A0
i and B0

i . From this way of connecting the groups we get
lemma 4.

Lemma 4. A pair (Ai, Bi) ∈ Ψσ is well-connected and every point p ∈ Ai

is at most connected to three points in Bi and every point q ∈ Bi is at most
connected to three points in Ai.

Proof. That each pair is at most connected to three other points follows
from the construction. Every pair is well-connected as for any p ∈ A

j
i and

q ∈ B
j′

i either p is connected to a point r ∈ B
j−1
i and then distσ(p, r) ≤

distsigma(p, q) or q is connected to a point r ∈ A
j′−1
i and then distσ̄(q, r) ≤

distσ̄(q, p) or p ∈ A0
i ∨ q ∈ B0

i and then p or q is directly connected to the
closest point in the other set.

4.3.4 Linear Sized Spanner From a CSPD

A spanner S = (P,E) constructed from the algorithm above is by lemma 2
a (1 + ǫ)-spanner but the size of E is O(n logd n

ǫd−1) [2, page 47].
To get a pruned spanner S∗ = (P,ES∗) with a linear number of edges

we only add edges from E to ES∗ for any cone σ ∈ C and two points p, q

25

where q ∈ σ(p) or p ∈ σ̄(q). If for all edges (p, q) the point q is the point in
σ(p) that are closest to p or p is the point in σ̄(q) that is closest to q.

The pruned spanner S∗ is a (1 + ε)-spanner as the CSPDs are still well-
connected (we always keep the edge (p, q) of the closest point q for any range
σ(p) or σ̄(p)) and it has O(n

εd) edges ([2] states that it has O(n
εd−1) edges)

as the number connections between points depends on the number of cones
and points.

We can now summarize the properties of the spanner in lemma 5.

Lemma 5. A spanner S∗ has O(n
εd) edges and has maximum degree O(logd

ε
).

Proof. As the number of edges is bounded by the number of points and
cones (see above) the number of edges is O(n

εd) ([2] states O(n
εd−1)).

By lemma 3 a point can at most participate in O(logd n) pairs in a CSPD
and by lemma 4 each point can at most be connected to three other points in

a pair. So the maximum degree of S∗ is O(logd n
ε

) ([2] states O(logd n)).

4.4 Maintaining the Spanner

To keep the spanner valid we need to maintain the set of RBRTs, the edges
created from the CSPDs and the edges in the pruned spanner.

4.4.1 Maintaining Rank Based Range Trees

Recall that a RBRT is stored for each cone such that the directions defining
a cone corresponds to the dimensions in the RBRT. A RBRT is valid as
long as the order - with respect to each direction - are unchanged thus to
maintain a RBRT we just need to maintain a one-dimensional sorted list for
each directions of the corresponding cone.

Kinetic sorted Lists

A one-dimensional sorted list can be maintained by swapping two points if
the order of two points changes. This requires a certificate for each pair of
points that are neighbors in the list. Each certificate compares the position
of the two points and expires when the unequality pos(pi−1) − pos(pi) > 0
(inverted if the sorting is done in reverse order) is not satisfied. This leads
to n− 1 certificates per list.

The number of lists is bounded by the dimension of the RBRTs and the
number of cones thus the total number certificates maintaining points in a
list is O(n

ed) and the maximum number of certificates a point can be involved

in is O(1
ed).

The event generated when a certificate expires only has to swap the two
points in the list and update the two other certificates that depends on the
points. Handling a event thus has constant complexity.

26

Updating RBRT

When two points change order in a sorted list we need to update the related
RBRT. This implies updating the canonical subsets and range sets that
contains the points. This can easily be done by deleting the two points
that have changed order from the RBRT and re-inserting them back into
the RBRT with their new rank. Updating a RBRT thus takes the time of
deleting and inserting two points which is O(logd n).

4.4.2 Updating Cone-Separated Pair Decompositions

We need to update a Ψσ when there is a change in a pair (Ai, Bi) ∈ Ψσ

due to a rank change in the directions of σ. But as the connection between
points in a set of a pair depends on the points position on the representative
edge we also when need to update when the order on the representative edge
changes. Thus besides maintaining the order in the directions of a cone we
also need to maintain a sorted list for the order in the representative edge.
Maintaining another list do not imply a change to the asymptotic bound of
the number of certificates or certificates a point can be involved in.

Updating With Respect to a Direction

When two points swaps rank in a direction the points are deleted and rein-
serted into the corresponding RBRT. This implies that points can be inserted
or removed from a pair (Ai, Bi). When this happens we have to update the
connections between the points in Ai and Bi.

When a new point p enters a subset Ai of a pair we first have to determine
which group A

j
i p belongs to. We can do this by keeping the points in Ai

sorted according to the representative edge such that we know how many
points in Ai that have a lower rank than p e.g. by using a one-dimensional
RBRT and looking at the canonical subsets of the nodes that is visited doing
the insertion. When the group A

j
i that p belongs to is located we can insert

p into the group. If A
j
i is full i.e. already contains 2j elements. Then the

point q in the group with the highest rank has to move to the next group
A

j+1
i and p can take over the connections of q. Then we have to insert q

recursively into A
j+1
i and thus continuing until all points are placed into a

group. If A
j
i is non-full we can insert p into it and locate the groups B

j+1
i

and B
j−1
i such that we can connect p to points in these groups as explained

above in Section 4.3.3.
Before the above procedure works we need to store a group structure

such that each group A
j
i stores a pointer to the point with the highest rank

placed in the group, a pointer to the next group A
j+1
i , a pointer to the

previous group A
j−1
i and a boolean telling if the group is full. Every group

27

also stores two lists of points that are still missing connections so that these
points can be located efficiently.

Updating a pair in a CSPD requires locating the group that a point
belongs to taking (log n) time, updating at most O(log n) groups and for
every updated group connect at most O(1) number of points.

The procedure can be used to update both the canonical subset and the
range set of a pair with the difference that when updating a range set the
points are sorted according to the reverse order on the representative edge.

Removing a point from a set of a pair is handled in a similar way.

Updating With Respect to the Representative Edge

When a change happens in the order in the representative edge the CSPD
also has to be updated. We locate the canonical subsets and range sets that
contains the points p, q that have swapped rank. If a set contains both p and
q we update the one-dimensional RBRT that is based on the points rank in
the representative edge and swaps the connections of p and q.

Locating the canonical subsets and range sets takes O(logd n) time, up-
dating one-dimensional RBRTs takes O(log n) time and swapping connec-
tions takes O(1) time.

Furthermore the pruned spanner may have to be updated. This is only
the case if one of the connections being updated by the swap is an edge in
the pruned spanner and that one of the changed connection was selected
as the closest point by a cone σ(p) or σ̄(q). If this is the case we check to
see if the edge has to be exchanged with another edge from the non-pruned
spanner.

4.4.3 Kinetic Quality

Each point is only involved in a constant number of certificates for each list.
As the number of lists depends on the number of cones and thus by the
stretch-factor we have that the locality of the spanner is O(1

εd) ([2] states

O(1
εd−1)) making the spanner local. The total number of certificates depends

on the size of the input points and is O(n
ε
) thus the spanner is compact.

The responsiveness of the spanner is O(logd+1 n) as we may have to search
through all levels of a RBRT and for each visited node use O(log n) time
to update the connections between the canonical subset and the range set.
This makes the spanner responsive. From theorem in 2.8 [2] the spanner is

also efficient as the total number of events is O(n2

εd−1) if the trajectories are
bounded-degree polynomials.

28

Chapter 5

Kinetic Deformable Spanner

The deformable spanner [14] is a (1 + ε)-spanner working in R
d. When a

aspect ratio of the points (see below) is bounded by the size of the input
the spanner is ”good” in kinetic sence; it is responsive thus handling events
in O(log n

εd) time and can handle motion plan updates in O(log n
εd). It has

a locality of O(log n
εd) certificates per point and the total number of events

is O(n2 log n). The spanner has a size of O(n
εd) and a maximum degree of

O(log n
εd).

This chapter presents the theory of the deformable spanner. The span-
ner is defined in section 5.1. This section also introduces and shows chosen
properties of the spanner. Section 5.2.1 explains how to construct a de-
formable spanner and section 5.3 explains and analyse the certificates and
events required to maintain the spanner.

As in the previous chapter we will focus on the two dimensional version
of the spanner.

5.1 Deformable Spanner

The deformable spanner depends on a ratio α called the aspect ratio. The
aspect ratio of a point set P is the ratio between the two points u, v ∈ P

with the maximum Euclidean distance |uv|max and the two points u′, v′ ∈ P

with the minimum Euclidean distance |u′v′|min.
In the remaining of the chapter it is assumed that |u′v′|min = 1 so that

|u, v|max = α. This assumption can be made without any loss of generality.

5.1.1 Definition of the Deformable Spanner

A set of discrete centers is the maximum subset P ′ of a point set P such that
for a constant r every p ∈ P is inside a circle (n-ball in higher dimension)
with radius r centered at one point p′ ∈ P ′ such that the Euclidean distance
between every pair of points p, q ∈ P ′ is |pq| ≥ r.

29

p2

p1

p3

p4

p5

p6

p7

Figure 5.1: A hierarchy of discrete centers with four levels;
S0 = {p1, p2, p3, p4, p5, p6, p7}, S1 = {p1, p2, p4, p5, p6}, S2 = {p2, p4, p5}
and S3 = {p4}.

A hierarchy of discrete centers is a collection of of discrete centers Pi.
The set of discrete centers P0 is the original point set P and Pi is a subset
of Pi−1 such that the distance between every pair of point in Pi is greater
than 2i. The hierarchy stops when |Pi| = 1 such that Pi+1 = ∅. It is worth
to notice that a hierarchy of discrete centers of P is not unique. A hierarchy
of discrete centers always exists and P = P0 due to our assumption on the
minimum distance between any two points.

The deformable spanner S = (P,E) is constructed from the hierarchy of
discrete centers. For every Pi in the hierarchy E contains an edge for any
two points p, q ∈ Pi if |pq| ≤ c · 2i where c = 4 + 16

ε
.

5.1.2 Terminology

We call the set Pi of the hierarchy of discrete centers for the i’th level. A
point p on a given level i is denoted p(i).

At some level i in the hierarchy the distance between two points p ∈ Pi

and q ∈ Pi−1 may be lesser than 2i such that q 6∈ Pi. The point p is then
said to cover q. A point p ∈ Pi may cover many points in Pi−1 and likewise
a point q ∈ Pi−1 may be covered by many points in Pi. When a point p ∈ Pi

are covered by one or more points it is called a child and one of the covering
points are chosen as p’s parent denoted P (p). For a point p the maximum
level i such that p ∈ Pi and p 6∈ Pi+1 (or Pi+1 does not exists) is denoted
pM .

A point p ∈ Pi has a set of children in Pi−1 denoted Ci−1(p). This set

30

p1 p2 p3 p4 p5 p6 p7

p1 p2 p4 p5 p6

p2 p4 p5

p4

Figure 5.2: A tree like structure of the hierarchy from Figure 5.1. The
dotted lines show parent-child relations and the solid lines shows the edges
between points.

contains p itself and every point q ∈ Pi−1 such that P (q) = p.
We use P i(p) to denote the ancestor of p in level i. The ancestor of p

in level i is

P i(p) =







p if p ∈ Pi

P (P i−1(p)) if i− 1 = P i−1(p)M
P i(P i−1(p)) else

For a point p ∈ Pi and every point q ∈ Pi such that |pq| ≤ c ·2i and p 6= q

the point q is called a neighbor to p on level i. The set of neighbors for a
point p on level i is denoted Ni(p). The children of Ni(p) are called cousins
to the children of p. A point p may stop having neighbors from some level
i. The level i with the highest number such that Ni(p) = ∅ and Ni+1(p) 6= ∅
is denoted Pm.

The level i where the size |Pi| = 1 and Pi+1 = ∅ is called the top level
of the hierarchy denoted M . The single point in the top level is called the
root of the hierarchy. The level containing every point in P and allowing
the shortest distance between the points is called the bottom level of the
hierarchy and is denoted m

Using this terminology a hierarchy is a tree-like structure where each
level of the hierarchy has parent-child relations to the level above it and the
level under it. See figure 5.2 for an illustration.

5.1.3 Properties

This section will show some properties of the deformable spanner. The main
purpose is to show that it is a (1 + ε)-spanner and to give a basis for the
analyse of the kinetic properties in section 5.3.

31

Some Basic Properties

This section shows some basic properties of the deformable spanner.

Lemma 6. 1. Pi ⊆ Pi−1.

2. For every pair of points p, q ∈ Pi the distance between the points is
|pq| ≥ 2i.

3. A point q is always neighbor with its parent p on level i such that q ∈ Pi

and q 6∈ Pi+1.

4. The hierarchy of discrete centers has at most ⌈log α⌉ levels.

5. For any point p and any ancestor P i(p) the distance |pP i(p)| ≤ 2i+1.

Proof. 1. This is obvious from the definition.

2. Obvious from the definition.

3. We know that |pq| ≤ 2i. Neighbors on level i − 1 are at most c · 2i−1

distance away from each other. 2i = 2 · 2i−1 ≤ c · 2i−1 as c ≥ 2.

4. At level α the radius is at least equal to the aspect ratio of the input
such that the points in Pα−1 cover each other in level α. From this we
know that |Pα| = 1 and it is the top level of the hierarchy.

5. An ancestor P i(p) is by definition at most distance
∑i

0 2i ≤ 2i+1 away
from each other.

From section 3.3 in [14] we can state the following properties of the
spanner.

Lemma 7. 1. Each point in Pi covers at most 5d points in Pi−1.

2. Any point p ∈ Pi can at most have (1 + 2 · c)d − 1 neighbors in Pi

(O(1
εd).

3. The maximum degree of a point is O(log α
εd).

4. The total number of edges in S is O(n
εd).

Finally we show a property that the algorithm for constructing the span-
ner in section 5.2 will utilize.

Lemma 8. If q ∈ Ni(p) then P i(q) ∈ Ni+1(P
i(p)).

32

Proof. By definition we have that |P (p)P (q)| ≤ |pP (p)| + |pq| + |qP (q)|.
From lemma 6 we have

|pP (p)|+ |pq|+ |qP (q)| ≤ 2i+1 + c · 2i + 2i+1

We can derivate that

2i+1 + c · 2i + 2i+1 = 2 · 2i + c · 2i + 2 · 2i = (c + 4) · 2i

and conclude

(c + 4) · 2i ≤ c · 2i+1

A (1 + ε)-Spanner

From the properties above we can summarize and show that the deformable
spanner is a (1 + ε)-spanner.

Theorem 1. The deformable spanner S = (P,E) is a (1 + ε)-spanner if
α is bounded by the size of the input. Furthermore it has O(n

εd) number of
edges and a maximum degree of O(log α

εd).

Proof. The size and maximum degree of the spanner is given from lemma 7.
It remains to show that the spanner is a (1 + ε)-spanner. For two points

p, q ∈ P we find the lowest level i such that the the ancestors P i(p) and
P i(q) are neighbors. From this way of choosing i we have that

|P i(p)P i(q)| ≤ c · 2i

and
P i−1(p)P i−1(q) > c · 2i−1

From lemma 6 we know that

|pP i−1(p)| < 2i and |qP i−1(q)| < 2i

We obtain a lower bound on the distance |pq| by subtracting the distance
from each point to its ancestor from the distance between the ancestors.

|pq| ≥ |P i−1(p)P i−1(q)| − |pP i−1(p)| − |qP i−1(q)|

Which can be rewritten as follows.

|P i−1(p)P i−1(q)| − |pP i−1(p)| − |qP i−1(q)| > c · 2i−1 − 2 · 2i

> c · 2i−1 − 4 · 2i−1 > (c− 4) · 2i−1

33

Now we can show that there exists a path connecting p and q via P i(p)
and P i(q) with a length lower than (1 + ε) · |pq|.

We know that the length of the path from p to q via P i(p) and P i(q)
is 2i+1 + |P i(p)P i(q)| + 2i+1 (or |P i(p)P i(q)| if i = 0). From the proof of
theorem 3.2 in [14] we get a upper bound

2i+1 + |P i(p)P i(q)|+ 2i+1 ≤ 8 · 2i + |pq|

and

8 · 2i + |pq| ≤
1 + 16

c− 4
|pq| = (1 + ε)|pq|

As such a path can be found for every pair of points in P the deformable
spanner is a (1 + ε)-spanner.

5.2 Construction of the Deformable Spanner

The construction of the deformable spanner works in an online way inserting
every point one by one. As a consequence of this we don not know the aspect
ratio in advance so the algorithm has to be able to dynamic extend the
hierarchy of discrete centers. If two points comes within distance |pq| ≤ 2m

the hierarchy has to be extended with another level m − 1. Likewise if
two points in the top level do not cover each other the hierarchy has to be
extended with a level M + 1.

5.2.1 Constructing the Spanner

The insertion of a point is is done in two phases; the first iteration that
locates the neighbors of p and the second iteration that locates a parent to
p. The algorithm assumes that the hierarchy has a root and that there exist
at least one level so that m and M are set. We get around this by evade
the algorithm when the first point is inserted. Instead this point is chosen
as root and just inserted into the single initial level of the hierarchy.

The First Iteration

The first iteration works from the top level to the bottom level locating
neighbors. We know from lemma 8 that when a point p has an empty
neighbor set Ni(p), then all sets Nj(p) where j < i are also empty. So when
the first empty neighbor set is found the iteration terminates. The first
iteration is sketched as pseudo code in algorithm 1.

If the iteration reaches the bottom level Pm the hierarchy is extended
with a new level Pm−1. Any neighbor Nm(p) are added to Pm−1 and we
look in Pm−1 to see if p still has neighbors. If p has neighbors the hierarchy
is extended with another level Pm−2 and so in continue until p at some

34

Algorithm 1 First Iteration when inserting p

Insert p into all levels Pm to PM .
lvl←M {Begin from top level of the hierarchy}
pM ←M

repeat

if in top level of hierarchy then

if dist(p, root) ≤ c · 2lvl then

add p and root as neighbors in lvl.
end if

else

for all cousins in lvl do

if dist(p, cousin) ≤ c · 2lvl then

add p and cousin as neighbors in lvl.
end if

end for

end if

pm ← lvl

lvl← (lvl − 1)
until Nlvl(p) = ∅ or bottom level is reached.

new level Pi has no neighbors. This level is the new bottom level and m is
updated accordingly.

The Second Iteration

The second iteration works from the bottom level to the top level locating
a parent to p. It finds the first set of discrete centers Pi where a neighbor q

covers p. By definition p and q cannot both be in Pi and every Pj such that
j > i. So p is added as child to q on level i− 1 and the algorithm removes
p from level i and every level above. The second iteration is sketched as
pseudo code in algorithm 2.

If the top level of the hierarchy is reached before any parent is found the
hierarchy is extended with another level. This is done by adding a new level
PM+1 to the hierarchy. We know that there is only one root point in PM .
This point and p are added to the new level. If the root point covers p in
PM+1, p is deleted from the level and M is updated such that M corresponds
to the new top level. If the points are not covering each other in PM+1 the
hierarchy is updated with another level PM+2 and so it continues until the
root covers p and M is updated according to the new top level.

35

Algorithm 2 Second Iteration when inserting p

lvl← m {Begin from bottom of the hierarchy}
cleaning ← false

repeat

if not cleaning then

for all neighbors to p on lvl do

if dist(p, neighbor) ≤ 2lvl then

pparent ← neighbor

pM ← (lvl − 1)
remove p from lvl.
cleaning ← true

end if

end for

else

remove p from lvl

end if

lvl← (lvl + 1)
until top level M of the hierarchy is reached.

5.3 Maintaining the Spanner

To maintain the spanner we need to keep the hierarchy of discrete centers
valid.

To do this we need to remove points from a level if they are not the
fixed distance away from each other and on the other hand add points to
levels if they are no longer covered by points in the lower levels. For this we
have to kinds of certificates; a parent-child certificate certifying that that a
parent covers a child and a separation certificate that certifies that points is
far enough away from each others.

Besides keeping the hierarchy valid we also need to maintain the edges
of the spanner. We need to certify that neighbors in a level is within the
proper distance of each other. We also need to ensure that if two points
comes within a certain distance they are added as neighbors. For this we
have two kinds of certificates; a potential edge certificate that add points
as neighbors when needed and a edge certificate that removes points as
neighbors if they are to far away from each others.

It may seem like the combination of edge certificates and separation
certificates implies that points are involved in a linear number of certificates
as we can have levels that contains all the points from the input set. This
however is not the case as explained below.

The following sections explains the certificates and the corresponding
events in more details. The sections analyses the kinetic quality of each
certificate and event and the final section summarizes the overall quality of

36

the kinetic structure.

5.3.1 Potential Edge Certificate

A potential edge certificate is a certificate that ensures that if two points
p, q ∈ Pi comes within distance c · 2i of each other they are added as neigh-
bors.

From lemma 8 we know that two points p, q in level i can only be neigh-
bors if their ancestors are neighbors in level i + 1. This observation implies
that we only create potential edge certificates for every point p and q in
a level if they are cousins and thus avoiding that points are involved in a
linear number of certificates.

By lemma 7 a point can have at most O(1
εd) neighbors in a level and can

be parent to 5d children in each Pi. So the total number of potential edge
certificates a point can be involved in in a level is O(1

εd).
When a potential edge certificate expires an add edge event are triggered.

This event adds an edge between the certified points p, q on the certified level
i . When two points becomes neighbors the children of the points gets new
cousins. For every pair of children of p and q on level i− 1 we thus create a
new potential edge certificate.

Handling an add edge event can be done in constant time as adding the
edge takes constant time and each point can at most have a constant number
of children in a level.

5.3.2 Edge Certificate

A edge certificate is a certificate that maintains that two neighbors p, q in
level i stays within distance |pq| ≤ 2i.

We have an edge certificate for every two points that are neighbors in
a level. By lemma 7 we have at most O(n

εd) edges that are needed to be

certified and each point can at most be involved in O(1
εd) edge certificates

in a level.
When an edge certificate fails a delete edge event is triggered. This event

removes the edge from the certified level i. When two points are no longer
neighbors in level i the children of p and q in level i−1 may lose cousins. For
every pair of children of p and q we remove the potential edge certificates
that certifies the distance between them.

A delete edge event can be handled in constant time. The analyse is
similar to handling an add edge event as described above.

5.3.3 Parent-child certificate

A parent-child certificate is a certificate that maintains that for any point
q ∈ Pi its parent p ∈ Pi+1 are within distance |pq| ≤ 2i+1.

37

We have a parent-child certificate for every parent-child relation in the
hierarchy. As every point (except the root) has exactly one parent the total
number of parent-child certificates is O(n) and each point is involved in
O(1) parent-child certificates in a level as a point can only have a constant
number of children (by lemma 7).

When a parent-child certificate expires a promote node event are trig-
gered. This event locates a new parent to the child in the level i of the
parent. If a new parent cannot be found the child is added to Pi and a new
parent is located on level i + 1. So it continues increasing i until a parent is
found. If the top level is reached we extend the hierarchy with another level
as explained in section 5.2.1.

Adding a point p to new levels implies locating neighbors and creating
edge and potential edge certificates. First we insert p into all levels from the
old pM +1 to the new pM . Then we locate neighbors as in the first iteration
of inserting a point. When the point is inserted into all relevant levels and
all new neighbors are found we iterate through the levels creating new edge
and potential edge certificates.

As described above adding two points as neighbors takes O(1) time. By
lemma 7 there can at most be O(1

εd) neighbors in a level each having a
constant number of children. The hierarchy has at most O(log α) levels,
thus handling a promote node event takes O(log α

εd) time.

5.3.4 Separation certificate

A separation certificate is a certificate that maintains that two neighbors
p, q in level i stays at least distance |pq| > 2i away from each other.

We have a separation certificate for every pair of points that are neigh-
bors in a level, so the locality analyse is the same as for the edge certificate.

When a separation certificate expires we need to remove a point from a
level and a demote node event event is triggered. This event removes one of
the two neighbors and makes it a child of the other point.

When p is added as a child of q in level i − 1 we may have to add p to
that level. This is done as described above except that we do not iterate
over multiple level but only work on level i−1. Making p a child of q implies
that p gets new cousins on level i− 1. For each new cousin a potential edge
certificate is created.

To remove a point p from level i − 1 we need to remove p as neighbor
for all q ∈ Ni−1(p) and remove the edge certificate and separation certificate
certifying p, q on that level. Furthermore we need to remove all potential
edge certificate certifying p, q for every cousin q of p in level i− 1.

If p had any children in level i − 1 they are now without a parent. For
each child we locate a new parent as explained when handling a promote
node event.

38

It takes constant time to remove a point from a level. The children of
the point are handled as when handling a promote node event so it takes
O(log α

εd) time to handle a child. As any point has a constant number of
children it takes O(log α

εd) time to handle a demote node event.

5.3.5 Kinetic Quality

From the analyse of each type of certificate we see that each point at most
participates in O(1

εd) certificates in any level and thus the the spanner is
local. It also shows that the total number of each type of certificate is at
most O(n

ed) making the spanner compact.
The analyse of the handling time for each type of event shows that if

α is bounded by the input size the worst case time of handling an event is
O(log n

εd) making the spanner responsive.
By lemma 5.1 in [14] we know that the lower bound of topological up-

dates is Ω(n2

(1+ε)d). As the total number of event that the spanner is bounded

by is O(n2 log α) when trajectories are bounded-degree polynomials (see
page 195 in [14]) the deformable spanner is efficient.

39

Chapter 6

Implementation

This chapter concerns the implementation of the kinetic spanners. The im-
plementations are based on a framework called CGAL which is introduced in
Section 6.1. Section 6.2 explains how the implementations are tested. Sec-
tion 6.3 and 6.4 describes and summarizes the status of the implementations
of the two kinetic spanners.

6.1 CGAL

The Computational Geometry Algorithms Library (CGAL) is a open source
library providing a wide variety of computational geometric algorithms and
data structures. It also offers a framework for developing that includes
geometric objects and predicates with exact precision.

Since version 3.2 (http://www.cgal.org/releases.html) of CGAL the
framework has contained a kinetic package. This package provides kinetic
algorithms and data structures but also a framework for developing kinetic
data structures. The kinetic package was developed by Daniel Russel as a
part of his Ph.D. Thesis [22] and details about the package can be found in
the thesis.

The implementation of the kinetic spanners is based on the kinetic pack-
age of the CGAL. More precisely version 3.5.1 of the CGAL framework.

6.1.1 The Kinetic Package of CGAL

To understand the implementation a little knowledge of the kinetic package
in CGAL is required. In the following the basic components and concepts
are explained.

• Active Object Table (AOT) — This table is a global table contain-
ing all the primitives of a kinetic data structure i.e. the input points.
Each point that is inserted into the active object table is mapped with
a key such that a point can be extracted from the table. Changes such

40

as insertion, deletion or motion plan updates in the input set are han-
dled through the active object table such that when changes happens
the kinetic data structure will receive a notification from the active
object table.

• Simulator — The simulator handles the aspect of time in a simula-
tion and triggers events from certificates that expires. To do this the
simulator maintains an event queue sorted after the expiration time of
the certificates. Thus as time progress events are triggered from this
queue. A notable win by having a global event queue is that it is pos-
sible to find intervals in the simulation where no certificates expires.
Such intervals can be used by the kinetic structure to safely verify its
internal structure. This is called auditing .

• Kinetic Kernel — The kinetic kernel handles kinetic primitives and
certificates. It provides a certificate generator that can generate cer-
tificates from predicates and trajectories of the primitives.

• Instantaneous Kernel — The instantaneous kernel is the mapping
between the kinetic model and a static model. An instance of the in-
stantaneous kernel is fixed at some time in the simulation and provides
methods for evaluate kinetic primitives in this instant of time and thus
makes kinetic objects usable in a static context.

• Function Kernel — A function kernel handles computations in the
kinetic model e.g. it handle computations based on polynomials. This
includes finding and comparing roots of the polynomials. It also pro-
vides computation for the instantaneous kernel so that primitives can
be evaluated at a specific point in time.

• Traits — A traits is a common concept in CGAL not particular related
to the kinetic package. A traits specifies data types, kernel types,
table types etc. and stores global objects. It has the function of being
a global mediator such that all part of a program can access central
components and specifications.

6.1.2 Using CGAL To Run a Simulation

When using a kinetic data structure in CGAL one first sets up the base
environment through a Traits-class. The kinetic data structure can then be
instantiated using this traits and it will be registered by the components of
the traits thus receiving notifications from the framework.

The point set can then be created e.g. from a file. The active object
table will store the points and notify the kinetic data structure about the
new points.

41

Then the simulation can begin. As the simulation progress events will
be handled one by one and when the time of the simulation is in an interval
suitable for auditing the kinetic data structure is notified. The simulation
ends when no more certificates will expire.

6.2 Testing

The implementation is tested extensively using the audit functionality. Each
time the kinetic spanner is allowed to audit it is tested for violation of
definitions and properties but also combinatorial errors. E.g. the deformable
spanner is tested to see if lemma 8 in Section 5.1.3 is satisfied but it is also
checked that two points on a level only has one edge between them on that
level.

Using the audit functionality in combination with assertions from the
C++ language gives dynamic error detection such that an error is reported
as soon as it occur (if it is tested for) thus making debugging a bit less
cumbersome.

Besides running the spanner on auto generated point sets the implemen-
tations has also been tested on a few handmade sets. This has mainly been
used to follow an implementation when it is running from start to the end
thus verifying the internal structures by hand.

6.3 Kinetic Spanner in R
d

The implementation of the kinetic spanner in R
d is based on the theory of

Chapter 4. However as explained in Section 6.3.2 below certain things are
done differently.

6.3.1 Overview of the Code

The implementation of the kinetic spanner in R
d is structured into the fol-

lowing components.

• SortedList — The SortedList is a wrapper to the kinetic sorted list
from CGAL. It wraps the kinetic sorted list so that only selected one-
dimensional points are inserted into the list. Namely the points that
are projections onto the direction the list represents. This has to be
done as whenever a new one-dimensional point is created it is inserted
into the active object table and then all kinetic data structures are
notified about the point. But we only want to add the relevant points
to the kinetic sorted list so the wrapper is a filter sorting all non-
relevant points away.

42

Besides handling insertion into the kinetic sorted list the wrapper also
notifies the cone it is related to whenever two points swaps rank in the
wrapped kinetic sorted list.

• ConePoint — A ConePoint is a wrapper to a point. Each point has
a ConePoint for every cone the point is inserted into such that there
exists a number of ConePoints for each point.

A ConePoint stores the key to the original two-dimensional point, the
key to the one-dimensional point projected onto the representative
edge and the keys for each of the one-dimensional points projected
onto the orthogonal of a cones directions.

Besides keys a ConePoint stores the ranks of the point in the two
directions and the representative edge.

A ConePoint also has a list of edge ref t pointers that stores informa-
tion about connections in the well-connected pairs of the CSPD. How
this is implemented is explained below.

• RBRT — The RBRT structure is the implementation of the rank
based range tree. The implementation is based on vectors as explained
below. Each node in a RBRT stores a canonical subset and a range
set.

• Cone — The Cone structure represents a cone.

Besides containing a RBRT a Cone contains three SortedLists. One
that sorts the points by the order of the cones representative edge
and two that sorts the points by the order of the projection onto the
orthogonal of the two directions that defines the cone.

Each cone stores a pointer to the next and previous cone in the circle
of cones (see Section 4.1 for a example of how to construct the cone
set in R

d). By this a cone only stores one direction which is used as
its representative edge and the first direction. The second direction is
the representative direction of the next cone. This ensures that the
set of cones covers the whole space.

When events are triggered in one of the SortedLists stored in the cone
the cone is given control and handles the update its RBRT.

6.3.2 Notes About the Implementation

The implementation of the rank based rank tree is based on a vector im-
plementation of binary trees as described in [15]. Each RBRT is a skeleton
capable of storing 2i points such that 2i ≥ n > 2i−1. As the the input set in
this thesis never changes doing a simulation the RBRT is always ”full” (as
close as it gets) and no space is wasted by using a vector implementation.

43

To keep things simple the edge set has also been implemented as vectors.
An edge is represented on a point with an edge ref t that stores all informa-
tion relevant for locating the exact internal node and set in a pair (Ai, Bi)
from where this edge occurs. From this information it is easy to located the
points in the opposite set that the current point is connected to. Namely
the points with index 2 · i + 1 and 2 · i + 2 (and index 0 if the point is the
first in the set) if they exists. This however requires linear processing time
as it assumes that points are always completely ordered by the order on the
representative edge and does thus not use logarithmic grouping.

The status of the implementation is that both the initialization and the
kinetic structure is working. However as the size complexity of the span-
ner has been ignored from the beginning the spanner consumes asymptotic
polynomial memory with a high constant factor.

Due to problems implementing the deformable spanner (see Section 6.4.2)
there were no time to implement the kinetic spanner fully as described in [2].
So the development stopped when the implementation had the same span-
ner properties and partially kinetic properties (compactness, locality and
efficiency) as the theoretical kinetic spanner.

The implementation thus lacks RBRTs maintaining the canonical subset
and range set of a node and completely misses the edge set (this is computed
dynamically as explained above). As a consequence of this the implemented
kinetic spanner is not responsive.

6.4 Deformable Spanner

The implementation of the deformable spanner is based on the theory of
Chapter 5. But as explained below in Section 6.4.2 certain things are done
in a different way.

6.4.1 Overview of the Code

The implementation of the deformable spanner is structured into the follow-
ing components.

• PointNode — A PointNode wraps every input point. It contains a
key to extract the point from the active object table and two integers m

and M storing the lowest and highest level in the hierarchy of discrete
centers that the point is in.

• Edge, PotentialEdge and ParentEdge — Represents the four
types of relations between points and stores the certificate for a re-
lation. As separation certificates do not exists unless an edge exists
between two points the Edge class contains both a separation certifi-
cate and an edge certificate. It is worth to note that Parent-edge
relation are stored in the level of the child (see below).

44

• DiscreteCentersHierarchy — A DiscreteCentersHierarchy stores
the levels of the hierarchy of discrete centers. For each level a list
of edges, of potential edges and of parent-edges are stored. In contrast
to the theory this implementation does not have a dynamic lower level
m but always has 0 as its lowest level (see below for more information
about this).

• Spanner — This is the kinetic data structure receiving notifications
from the CGAL framework. It handles insertions of points and events
as explained in Section 5.2 and 5.3. It has a first in first out queue of
expired certificate events so that that events are first processes when
the kinetic data structure are ready to handle them. The queue en-
sures that events are first processed (in the correct order) when the
time of the simulation can be represented as a rational number — a
requirement by the calculation done in the distance predicate.

• AddEdgeEvent, DeleteEdgeEvent, PromoteNodeEvent and

DemoteNodeEvent — Implementations of the event types explained
in section 5.3. Each type of event calls a relevant method on the
Spanner class that handles the update of the spanner.

6.4.2 Notes About the Implementation

The implementation only operates down to S0. Such a limit on the lowest
level in the hierarchy has to be set to avoid the hierarchy to extend downward
infinitely. E.g. when two points approaches each other as the trajectories
intersects the distance between the points continuously gets lesser and lesser.
The consequences of this is that the upper bound on the maximum degree
and number of edges does not hold when points are under the distance
|uv| ≤ 1 of each other.

There is an error in the implementation of the kinetic structure and
the exact cause of the error has not been found. The error is related to
handling a DemoteNodeEvent which either (presumably) do not remove all
the relevant certificates or creates wrong certificates thus planting an error
that will be triggered at a later time.

In an attempt to locate the error by doing things simpler the Discrete-
CentersHierachy class and PointNode class were re-coded moving the im-
plementation away from the theory. Instead of storing neighbor, child and
parent information on each point it has been moved to the relevant level in
the hierarchy. This have the consequence that each level stores at worst a
linear size of information in a list thus adding a linear factor to the response
time. Hence the responsiveness is changed from O(log n

ε2) to O(n log n
ε2).

The status of the implementation is that the initialization works but
the error in the kinetic part makes the spanner incapable of completing a
simulation.

45

Part III

Experiments

46

Chapter 7

Experimental Results on

Spanner Properties

This chapter presents the experimental results on the spanner properties.
Section 7.1 introduces the different distribution used for the data sets of the
experiments. Section 7.2 gives a brief overview of the theoretical bounds on
the properties of the spanners mentioned in the previous chapters. Section
7.3 contains a few notes relevant for the experiments and finally in Section
7.4 the results of the experiments are presented and analyzed.

7.1 Data Sets

The data for the experiments has been chosen similar to that of [13]. The
input size of each data set has been chosen so that the number of points
increases steadily. For every input size there exists 10 versions of the data
set e.g. there are ten instances of 100 uniform distributed points. The
measurements are be based on the average of the output from all ten sets
thus minimizing the impact of an atypical data set. All data sets contains
points in two dimensions and are defined as first degree polynomials with
coefficients in the range [0;1000] for both axes.

The points of the data sets are distributed in three different ways:

• Uniformly distributed points.

• Uniformly distributed points inside uniformly distributed unit squares
such that a unit has size 10 and each square contains 10 points.

• Multivariate normal distributed points in two dimensions with a mean
on 500 for both dimensions and a covariance matrix:

cov =

[

200 0
200 0

]

47

Algorithm edges max. degree weight diameter

Greedy Algorithm [4] O(n) O(1) O(wt(MST)) Θ(n)
Θ-Graph [21] O(n

θ
) Θ(n) Θ(n·wt(MST)) Θ(n)

Ordered Θ-Graph [7] Θ(n
θ
) O(1

θ
· log n) O(n·wt(MST)) Θ(n)

WSPD-Graph [8] O((t
t−1

)2 · n) Θ(n) O(log n·wt(MST)) Θ(n)

Delaunay triangulation O(n) O(n) - -

Kinetic Spanner in R
d [2] O(n

εd
) O(logdn

ε
) - Θ(n)

Deformable Spanner [14] O(n

εd
) O(log α

εd
) - Θ(n)

Table 7.1: Properties of spanners (the upper bounds for kinetic spanner in
R

d are those from lemma 5 in Section 4.3.4).

7.2 Theoretical Bounds on Properties

Before continuing with the results of the experiments we will see that the
asymptotic bound of the diameter of the implemented spanners is Θ(n).

For the deformable spanner this is seen by placing n points on a line
where the left most is denoted 0 and the right most is denoted n. For a
level in the hierarchy of discrete centers we place two points with distance
such that that i+1 covers i and no other points are neighbors on that level.
By recursively placing the points like this such that n is the root of the
hierarchy we have to visit n points to come from 0 to n (0 and n included).

The diameter for the kinetic spanner in R
d is easily seen by placing all

the points on a line such that they are all connected via the same cone.
Then all points are only connected with the next point on the line (and the
previous) and thus the diameter is Θ(n).

Table 7.1 summarize the properties of the spanners constructed by the
different algorithms.

7.3 Notes About the Experiments

The experiments are done with stretch-factors t = 1.12, t = 1.27, t = 1.49,
t = 1.85 and t = 2.42.

Besides the two implemented kinetic spanners the experiments also in-
cludes the results from a kinetic Delaunay triangulation having a stretch-
factor t ≈ 2.42. The kinetic Delaunay triangulation is part of the the kinetic
package of the CGAL framework and is described in [22].

The results of the experiments will be compared with the other span-
ners and the results of Farshi and Gudmundsson in Experimental Study of
Geometric t-Spanners [13].

One problem with the spanners are that they may contain multiple edges
between two points u, v. In practice this does not make sence and being
mathematical stringent a set can only contain unique elements (the spanners
have undirected edges thus (u, v) = (v, u)). So the edge set of the kinetic
spanners has been pruned so that it only contains unique edges. Doing the

48

experiments there are two results for each spanner one based on the original
edge set and one on the pruned edge set. The asymptotic bounds for the
original and pruned spanner are the same so if nothing else is noted the
spanner that is referred to in the remaining of this Section is the pruned
spanner.

7.4 Experimental Results

In the following sections the results from the experiments are presented and
analyzed with respect to the spanner properties from Section 2.2. All the
results of the experiments can be found in Appendix A.

7.4.1 Size

The deformable spanner in general seems to have a good ratio between the
stretch-factor and the size of the input. The difference between the number
of edges with a stretch-factor on t = 1.12 and t = 2.42 is slightly under
a factor 2 at 200 points on uniform and multivariate normal distributed
points. It is clearly that the deformable spanner performs well on clustered
input which was expected as the points will cover each other at fairly low
distances and hence the number of points in the levels of the hierarchy will
decrease rapidly.

The kinetic spanner in R
d performs in general a bit better than the de-

formable spanner. It has about the same ratio between the different stretch-
factors as the deformable spanner. Compared with the other distributions
it has a lower size on the clustered data set. This may be explained by that
points are grouped together such that the probability of empty ranges are
higher and hence no edges are created for those ranges.

The kinetic Delaunay triangulation outperforms both of the kinetic span-
ners only having approximately 3n number of edges while the deformable
spanner has approximately 5.5n edges at 1000 points (with t = 2.42) on
clustered data and the kinetic spanner in R

d performs even worse.

7.4.2 Degree

As with the size the result of the deformable spanner varies a lot between
the clustered data and the other distributions.

On uniform and multivariate normal distributed data the maximum de-
gree is almost equal to the size of the input when the input is small. This
stops from around a input of 200 points where the ratio begins to decrease.
With t = 1.85 the maximum degree is around 150 on a input of 200 points
and with a input of 600 points the maximum degree is only around 300.
There is a difference between the maximum degree of the different stretch-

49

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Average Degree of Points

t=2.42 avg. degree
t=1.85 avg. degree
t=1.49 avg. degree
t=1.27 avg. degree
t=1.12 avg. degree

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

Figure 7.1: (a) Shows the average degree of the deformable spanner on
clustered data. (b) Shows the maximum degree of the kinetic spanner in R

d

on multivariate normal distributed data.

factors but the progress for the different stretch-factors are all decreasing.
The average degree has the same characteristics as the maximum degree.

On clustered data the maximum degree is less than 100 for a input of
1000 points. The progress however seems to be similar to that of the other
distributions. The average degree however is rather low and is under a degree
of 16 per point on a input of 1000 points. Compared with the Delaunay
triangulation which has a average degree slightly under 6 per point on the
same input size it is quite good. However while the Delaunay triangulation
has almost reached a constant average degree on a input of 500 points the
average degree of the deformable spanner keeps increasing.

The maximum degree of the kinetic spanner in R
d has a constant dif-

ference between the stretch-factor and it seems like the maximum degree
follows a logarithmic progress in the input size. For t = 2.42 it has already
flatten out at around an input of 160-180 points with a maximum degree on
approximately 50. This was expected as the maximum degree depends on
the size of the cone set and only logarithmic on the number of input points.
Compared with the Θ-graph variants from [13] the kinetic spanner in R

d

constructs spanners with a maximum degree of only a small factor larger.
The average degree of points has the same tendencies but is rather high

compared with the maximum degree. For t = 2.42 the average degree is
almost 30 and the maximum degree is only slightly under 50 on the uniform
and multivariate normal distributed data set. This comes as no surprise as
the degree of each point is dominated by the number of cones.

7.4.3 Diameter

The stretch-factor of the deformable spanner hardly has any effect on the
diameter on uniform and multivariate normal distributed data. This was

50

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

Figure 7.2: (a) Shows the diameter of the deformable spanner on clustered
data. Note that the stretch-factor hardly influences the result. (b) Shows
the diameter of the kinetic spanner in Rd on multivariate normal distributed
data.

expected as the diameter do not depend on the stretch-factor of the spanner
but depends on the aspect ratio of the input set. The diameter seems to
be linear in the size of the input set and is approximately n on the uniform
distributed data and 0.7n on the multivariate normal distributed data. This
ratio between the diameter and the input set is about the same as for the
kinetic Delaunay triangulation.

On clustered data the stretch-factor has an impact on the diameter but
in a way such that a lower stretch-factor implies a higher diameter. This is a
bit surprising and an explanation for this has not been found . On clustered
data the diameter is lower than on the other data sets and it seems like it
is increasing linearly from input of 500 points at about 0.9n.

The diameter of the kinetic spanner in R
d has a high dependency on the

stretch-factor. With the nature of the spanner in mind this makes sence
as more cones implies that more points are connected directly. With a low
stretch-factor the diameter is rather low, at t = 1.12 it seems as low as n

4 but
due to the lack of testing on higher input sizes this estimates is a bit unsure.
The diameter is still high compared with the results for Θ-graph variants in
[13] where the best has a diameter of 5 when t = 2 on input of 100 points
which increases to 15 on input of 2000 points. The kinetic spanner in R

d has
a diameter ranging from 70-80 with t = 1.85 and t = 2.42 on input of 100
points. The diameter however do not seem to depend on the distribution.
Something it has in common with the Θ-graphs variant from [13].

If we look at the average diameter between every pair of points in the
spanners the tendencies are the same for both kinetic spanners.

51

7.4.4 Weight

The weight of the deformable spanner seems to have a linear progress on the
higher values of t. It is reasonable to assume that this tendency is the same
with the lower values of t when the size of the input set is large enough. The
ratio between the different stretch-factors is about a factor 2 on clustered
data at input of 1000 points between t = 1.12 and t = 2.42 but this factor
seems to increase on the other distributions.

The weight of the spanner on the uniform distributed data is much higher
than on the other data sets. Considering the nature of a uniform distribution
and the deformable spanner this is however not surprising. The uniform
distribution may imply that points are spread all over the defined area and
as the deformable spanner has a tendency to create a lot of long edges
between points on a level in the hierarchy the weight quickly increases when
the points are not grouped.

For the kinetic spanner in R
d the stretch-factor has influence on the

weight of the spanner and the gap between a low and high stretch-factor is
rather high. With t = 1.85 and t = 1.12 the weight is approximately 200000
and 500000 on a input of 50 uniform distributed points and on input of 100
uniform distributed points the weight is approximately 400000 and 1600000.

Compared with the kinetic Delaunay triangulation the kinetic spanners
performs worse. On uniform distributed points (where the Delaunay trian-
gulation performs at worst) it has a weight of approximately 32500 on input
of 100 points.

52

Chapter 8

Experimental Results on

Kinetic Properties

This chapter presents the experimental results of the kinetic properties of
the kinetic spanners. Section 8.1 describes the set-up of the experiments
and Section 8.2 presents and analyses the results.

8.1 Notes About the Experiments

The experiments is based on the uniform and clustered data set explained
in Section 7.1.

The size of the input is limited to 10, 30, 50, 70 and 90 as running a full
simulation requires a lot more computation than just computing the initial
spanner.

The simulation runs from [0;1] and the time is increased by 0.1 for each
step in the simulation. The short interval of the simulation has been chosen
since the coefficients ci of the polynomials in the data sets are 0 < ci ≤ 1000
meaning that almost all of the events are handled in the chosen interval.

It is worth to notice that the simulator of the kinetic package of CGAL
do not contain certificates that are never going to fail. So as the simulation
progress and events are handled the simulator will contain fewer and fewer
certificates.

In Section 6.4 it is explained that the kinetic structure of the deformable
spanner contains errors. So the kinetic experiments are only done on the
kinetic spanner in R

d and the kinetic Delaunay triangulation.

8.2 Experimental Results

In the following sections the results from the experiments on the kinetic
properties are presented. The properties experimented with are the ones
described in Section 3.3 except for responsiveness. The responsiveness of

53

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90

M
ax

im
um

 L
oc

al
ity

 o
f P

oi
nt

s

Number of Points

Locality of Kinetic Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 A

ct
iv

e
C

er
tif

ic
at

es

Number of points

Compactness of Kinetic Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

Figure 8.1: (a) Locality of the kinetic spanner in R
d on clustered data. (b)

Compactness of the kinetic spanner in R
d on normal distributed data.

the implementations are not the same as in the theory so experimenting
with this property would not bring any interesting results. All the results
from the experiments can be found in Appendix B.

8.2.1 Locality

It is expected of the kinetic spanner in R
d that at most a poly-logarithmic

number of certificates depends on a given point. From the experiments
this can be confirmed. The stretch-factor of the spanner has an impact on
the locality of the spanner. Going from approximately 30 certificates when
t = 2.42 to approximately 150 certificates when t = 1.12 on a input of 30
clustered points. The difference between the locality on the clustered data
and the uniform distributed data is small. The number of certificates a
point is involved in for t = 1.12 with input of 30 uniform distributed points
is approximately 170 (compared to 150 on clustered data).

Compared with the kinetic Delaunay triangulation the kinetic spanner
in R

d has a lot more certificates. This was expected as a point in the
kinetic spanner in R

d is involved in certificates per lists of every cone. The
kinetic Delaunay implementation only has a certificate per edge so its locality
follows the maximum degree of the spanner from Section 7.4.2 which is quite
low.

8.2.2 Compactness

The compactness of the kinetic spanner in R
d is expected to be linear in

the input size. This is confirmed when looking at the experiments on both
uniform distributed data and clustered data. Again the stretch-factor has
an impact on the total number of certificates which was expected due to the
nature of the spanner.

54

There is a slightly increase in the total number of certificates when run-
ning the kinetic spanner with a uniform distributed data set. This can be
explained by that it is less likely that two points swaps position in some
sorted list in the clustered data set. This is also confirmed below when we
look at the total number of handled events.

The kinetic Delaunay triangulation clearly outperforms the kinetic span-
ner in R

d. Considering the kinetic Delaunay triangulation low number of
total edges from Section 7.4.1 this comes as no surprise.

8.2.3 Efficiency

For the kinetic spanner in R
d there is a rather larger difference between

the number of handled events when the input is uniform distributed points
compared to clustered points. With t = 2.42 and a input of 90 points the
number of handled events for uniform distributed points is approximately
45000 events and on clustered points it is slightly under 5000 events. As
with locality and compactness the stretch-factor also influences the num-
ber of triggered events. The kinetic Delaunay triangulation only handles
approximately 425 and 120 respectively. Considering the locality and com-
pactness and the nature of the kinetic spanner in R

d it comes as no surprise
that the Delaunay triangulation performs much better. On the clustered
data sets the number of handled events of both spanners seems to be linear
while on the uniform distributed sets the progress of the curve increases.

55

Part IV

Summary

56

Chapter 9

Future Work

An obvious thing to look into is the error in the kinetic structure of the
deformable spanner. Finding and fixing this error will allow experimenting
with the kinetic properties of the deformable spanner. This can hopefully
give some interesting results that can put the kinetic properties of the kinetic
spanner in R

d in a broader perspective.
When we have a fully working implementations the focus can be changed

to optimization with respect to running time and size. To get responsive
kinetic spanners the last bits from the theory needs to be implemented such
that events are handled in poly-logarithmic time. Optimizing with respect
to memory consumption and running time will also allow experiments with
larger data size sets.

As mentioned in Section 3.4 Abam and Berg [3] has introduced another
kinetic spanner running in R

2. It is of interest to implement and experiment
with this kinetic spanner so that it can be compared with the two spanners
implemented in this thesis.

57

Chapter 10

Conclusion

This thesis have presented two algorithms that constructs and maintains ge-
ometric t-spanners. The kinetic spanner in R

d and the deformable spanner.
The algorithms have been implemented in R

2 with the purpose of testing
them on different input sets.

The experiments have considered the properties of the spanners con-
structed by the algorithms. The results of these experiments showed that
the spanners constructed by the kinetic algorithms in general is of worse
quality than spanners constructed from non-kinetic algorithms.

If we only consider the kinetic algorithms some interesting results of the
experiments are that:

• The deformable spanner performs well when the input is clustered into
groups.

• The diameter of the deformable spanner do not depend on the stretch-
factor t.

• The diameter of the kinetic spanner in R
d is rather low.

• The maximum degree the kinetic spanner in R
d highly depends on the

stretch-factor.

Another group of experiments focused on the kinetic properties of the ki-
netic spanners. However due to an error in the implementation of the kinetic
structure of the deformable spanner these experiments could only be done
on the kinetic spanner in R

d. To compare the spanner with another kinetic
structure experiments were also done on a kinetic Delaunay triangulation

Some interesting results of the experiments on the kinetic properties are
that the stretch-factor has a high influence on the number of certificates
and that maintaining the kinetic spanner in R

d is a lot more expensive than
maintaining the kinetic Delaunay triangulation.

58

Bibliography

[1] M. A. Abam. New Data Structures and Algorithms for Mobile Data.
Eindhoven Univesity of Technology, 2007. Ph.D. Thesis.

[2] M. A. Abam and M. de Berg. Kinetic spanners in rd. In SCG ’09:
Proceedings of the 25th annual symposium on Computational geometry,
pages 43–50, New York, NY, USA, 2009. ACM.

[3] M. A. Abam, M. de Berg, and J. Gudmundsson. A simple and efficient
kinetic spanner. In SCG ’08: Proceedings of the twenty-fourth annual
symposium on Computational geometry, pages 306–310, New York, NY,
USA, 2008. ACM.

[4] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse
spanners of weighted graphs. Discrete Comput. Geom., 9(1):81–100,
1993.

[5] M. J. Atallah. Some dynamic computational geometry problems. Com-
puters & Mathematics with Applications, 11(12):1171 – 1181, 1985.

[6] J. Basch. Kinetic Data Structures. Stanford University, 1999. Ph.D.
Thesis.

[7] P. Bose, J. Gudmundsson, and P. Morin. Ordered theta graphs. Com-
put. Geom. Theory Appl., 28(1):11–18, 2004.

[8] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimen-
sional point sets with applications to k-nearest-neighbors and n-body
potential fields. J. ACM, 42(1):67–90, 1995.

[9] L. P. Chew. There are planar graphs almost as good as the complete
graph. Journal of Computer and System Sciences, 39(2):205 – 219,
1989.

[10] K. Clarkson. Approximation algorithms for shortest path motion plan-
ning. In STOC ’87: Proceedings of the nineteenth annual ACM sympo-
sium on Theory of computing, pages 56–65, New York, NY, USA, 1987.
ACM.

59

[11] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer-Verlag,
second edition, 2000.

[12] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are
almost as good as complete graphs. In SFCS ’87: Proceedings of the
28th Annual Symposium on Foundations of Computer Science, pages
20–26, Washington, DC, USA, 1987. IEEE Computer Society.

[13] M. Farshi and J. Gudmundsson. Experimental study of geometric t-
spanners. In ESA 2005. LNCS, volume 3669, pages 556–567, Berlin,
2005. Springer-Verlag.

[14] J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and appli-
cations. In SCG ’04: Proceedings of the twentieth annual symposium on
Computational geometry, pages 190–199, New York, NY, USA, 2004.
ACM.

[15] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations,
Analysis, and Internet Examples. Wiley, 2001.

[16] L. J. Guibas. Kinetic data structures: a state of the art report. In
WAFR ’98: Proceedings of the third workshop on the algorithmic foun-
dations of robotics on Robotics : the algorithmic perspective, pages 191–
209, Natick, MA, USA, 1998. A. K. Peters, Ltd.

[17] L. J. Guibas J. Basch and J. Hershberger. Data structures for mobile
data. In SODA ’97: Proceedings of the eighth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 747–756, Philadelphia, PA, USA,
1997. Society for Industrial and Applied Mathematics.

[18] J. M. Keil. Approximating the complete euclidean graph. In No. 318
on SWAT 88: 1st Scandinavian workshop on algorithm theory, pages
208–213, London, UK, 1988. Springer-Verlag.

[19] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the
complete euclidean graph. Discrete Comput. Geom., 7(1):13–28, 1992.

[20] G. Narasimhan and M .Smid. Geometric Spanner Networks. Cambridge
University Press, New York, NY, USA, 2007.

[21] J. Ruppert and R. Seidel. Approximating the d-dimensional complete
euclidean graph. In In Proceedings of the 3rd Canadian Conference on
Computational Geometry (CCCG’91), pages 207–210, 1991.

[22] D. Russel. Kinetic Data Structures in Practice. Stanford University,
2007. Ph.D. Thesis.

60

Index

Ci−1(p), 30
M , see top level
Ni(p), see neighbors
P i(p), 31
Pm, 31
RBRTσ, 24
S = (P,E), 9
St, 9
Ψσ, 21
Θ-graph, 11, 19
Θ-graphs, 10
α, see aspect ratio
σ(p), 19
θ, 19
θ-cones, 19
distσ(p, q), 20
m, see .
p(i), 30
ranki(p), 23
wt(MST), 10

add edge event, 37
ancestor, 31
aspect ratio, 29
attribute, 12
auditing, 41

bottom level, 31

certificates, 14
child, 30
compact, 15
compactness, 15
complete graph, 9
cone, 19
cone-separated pair decomposition, 21
cones, 19

cousins, 31
cover, 30
CSPD, 21

deformable spanner, 29, 30
delete edge event, 37
demote node event, 38
dilation, 9
directions, 24
discrete centers, 29

edge certificate, 36, 37
efficiency, 16
efficient, 16
event, 14
event queue, 14
expires, 14
external, 14

fails, 14
first-level tree, 23

geometric (1 + ε)-spanner, 9
geometric t-spanner, 9
geometric t-spanners, 9
geometric spanner, 9

hierarchy of discrete centers, 30

internal, 14

Kinetic Data Structures, 13
Kinetic Spanner in R

d, 19

local, 15
locality, 15

Mobile data, 13

61

mobile data, 12
motion plan update, 13

neighbor, 31

opposite cone, 21
ordered Θ-graph, 11

parent, 30
potential edge certificate, 36, 37
promote node event, 38
proofs, 13

range, 19
range query, 23
range set, 24
range tree, 22
rank, 23
rank based range tree, 21
rank based rank tree, 22
RBRT, 22
representative line, 20
responsive, 15
responsiveness, 15
root, 31

second-level tree, 23
separation certificate, 38
static data, 12
stretch-factor, 9

time, 12
top level, 31

well-connected, 22

62

Part V

Appendix

63

Appendix A

Experiments on Spanner

Qualities

64

Figure A.1: Showing results for Kinetic Spanner in R
2 on uniform dis-

tributed data.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 10 20 30 40 50 60 70 80 90 100
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Average Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

65

Figure A.2: Showing results for the Kinetic Spanner in R
2 only containing

unique edges on uniform distributed data.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 20 40 60 80 100 120 140 160

W
ei

gh
t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

D
eg

re
e

Number of points

Average Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

66

Figure A.3: Showing results for Deformable Spanner on uniform distributed
data.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 10 20 30 40 50 60 70 80 90 100
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Average Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

67

Figure A.4: Showing results for the Deformable Spanner only containing
unique edges on uniform distributed data.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 100 200 300 400 500 600 700 800 900 1000
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Average Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

68

Figure A.5: Showing results for kinetic Delaunay triangulation on uniform
distributed data.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 100 200 300 400 500 600 700 800 900 1000
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42

 5

 6

 7

 8

 9

 10

 11

 12

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Average Degree of Points

t=2.42

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42

69

Figure A.6: Showing results for Kinetic Spanner in R
2 on multivariate nor-

mal distributed data.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 10 20 30 40 50 60 70 80 90 100
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Average Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

70

Figure A.7: Showing results for the Kinetic Spanner in R
2 only containing

unique edges on multivariate normal distributed data.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100 120 140 160 180

W
ei

gh
t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160 180

D
eg

re
e

Number of points

Average Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

71

Figure A.8: Showing results for Deformable Spanner on multivariate normal
distributed data.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 20 30 40 50 60 70 80 90 100
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Average Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

72

Figure A.9: Showing results for Deformable Spanner only containing unique
edges on multivariate normal distributed data.

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 100 200 300 400 500 600 700 800 900 1000
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Average Degree of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

73

Figure A.10: Showing results for kinetic Delaunay triangulation on multi-
variate normal distributed data.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600 700 800 900 1000
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Average Degree of Points

t=2.42

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42

74

Figure A.11: Showing results for Kinetic Spanner in R
2 on clustered data.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 10 20 30 40 50 60 70 80 90 100
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42 max. degree
t=1.85 max. degree
t=1.49 max. degree
t=1.27 max. degree
t=1.12 max. degree

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Average Degree of Points

t=2.42 avg. degree
t=1.85 avg. degree
t=1.49 avg. degree
t=1.27 avg. degree
t=1.12 avg. degree

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

75

Figure A.12: Showing results for the Kinetic Spanner in R
2 only containing

unique edges on clustered data.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 20 40 60 80 100 120 140 160 180

W
ei

gh
t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160 180

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42 max. degree
t=1.85 max. degree
t=1.49 max. degree
t=1.27 max. degree
t=1.12 max. degree

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180

D
eg

re
e

Number of points

Average Degree of Points

t=2.42 avg. degree
t=1.85 avg. degree
t=1.49 avg. degree
t=1.27 avg. degree
t=1.12 avg. degree

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160 180

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

76

Figure A.13: Showing results for Deformable Spanner on clustered data.

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 20 30 40 50 60 70 80 90 100
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 20

 25

 30

 35

 40

 45

 50

 55

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42 max. degree
t=1.85 max. degree
t=1.49 max. degree
t=1.27 max. degree
t=1.12 max. degree

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 10 20 30 40 50 60 70 80 90 100

D
eg

re
e

Number of points

Average Degree of Points

t=2.42 avg. degree
t=1.85 avg. degree
t=1.49 avg. degree
t=1.27 avg. degree
t=1.12 avg. degree

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 20 30 40 50 60 70 80 90 100

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

77

Figure A.14: Showing results for the Deformable Spanner only containing
unique edges on clustered data.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 100 200 300 400 500 600 700 800 900 1000
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42 max. degree
t=1.85 max. degree
t=1.49 max. degree
t=1.27 max. degree
t=1.12 max. degree

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Average Degree of Points

t=2.42 avg. degree
t=1.85 avg. degree
t=1.49 avg. degree
t=1.27 avg. degree
t=1.12 avg. degree

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

78

Figure A.15: Showing results for kinetic Delaunay triangulation on clustered
data.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 E

dg
es

Number of Points

Total Number of Edges

t=2.42

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 100 200 300 400 500 600 700 800 900 1000
W

ei
gh

t

Number of points

Total Weight of Spanner

t=2.42

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Maximum Degree of Points

t=2.42 max. degree

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 0 100 200 300 400 500 600 700 800 900 1000

D
eg

re
e

Number of points

Average Degree of Points

t=2.42 avg. degree

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Diameter of Spanner

t=2.42

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

D
ia

m
et

er

Number of points

Average Diameter of Pair of Points

t=2.42

79

Appendix B

Experiments on Kinetic

Qualitites

80

Figure B.1: Showing results for Kinetic Spanner in R
2 on uniform dis-

tributed data.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70 80 90

M
ax

im
um

 L
oc

al
ity

 o
f P

oi
nt

s

Number of Points

Locality of Kinetic Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 A

ct
iv

e
C

er
tif

ic
at

es

Number of points

Compactness of Kinetic Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 20000

 40000

 60000

 80000

 100000

 120000

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 H

an
dl

ed
 E

ve
nt

s

Number of points

Total Events Handled by Kinetic Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

81

Figure B.2: Showing results for kinetic Delaunay triangulation on uniform
distributed data.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 10 20 30 40 50 60 70 80 90

M
ax

im
um

 L
oc

al
ity

 o
f P

oi
nt

s

Number of Points

Locality of Kinetic Spanner

t=2.42

 0

 50

 100

 150

 200

 250

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 A

ct
iv

e
C

er
tif

ic
at

es

Number of points

Compactness of Kinetic Spanner

t=2.42

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 H

an
dl

ed
 E

ve
nt

s

Number of points

Total Events Handled by Kinetic Spanner

t=2.42

82

Figure B.3: Showing results for Kinetic Spanner in R
2 on clustered data.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90

M
ax

im
um

 L
oc

al
ity

 o
f P

oi
nt

s

Number of Points

Locality of Kinetic Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 A

ct
iv

e
C

er
tif

ic
at

es

Number of points

Compactness of Kinetic Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

 0

 5000

 10000

 15000

 20000

 25000

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 H

an
dl

ed
 E

ve
nt

s

Number of points

Total Events Handled by Kinetic Spanner

t=2.42
t=1.85
t=1.49
t=1.27
t=1.12

83

Figure B.4: Showing results for kinetic Delaunay triangulation on clustered
data.

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 10 20 30 40 50 60 70 80 90

M
ax

im
um

 L
oc

al
ity

 o
f P

oi
nt

s

Number of Points

Locality of Kinetic Spanner

t=2.42

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 A

ct
iv

e
C

er
tif

ic
at

es

Number of points

Compactness of Kinetic Spanner

t=2.42

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 H

an
dl

ed
 E

ve
nt

s

Number of points

Total Events Handled by Kinetic Spanner

t=2.42

84

