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Abstract
This thesis concerns optimizing contour lines on bathymetric charts. Given accurate depth data
and and initial contours approximating the accurate depths, we wish to produce optimized contour
lines such that (1) the maximum curvature along the contour is minimized and (2) the area of the
deeper parts of the chart are maximized.

We define an optimization problem modeling the task, with a loss function capturing the
two desired properties as well as constraints defining feasible solutions. To do this, we make
extensive use of Bézier curves as a precise way to represent curves mathematically, and as such
we describe existing theory of Bézier curves as a foundation.

We develop an optimization algorithm capable of producing solutions to the optimization
problem defined. To this extent we analyze the loss function of the optimization problem and
conclude that exploiting properties of it is not a viable approach. Instead, we consider the loss
function as a black box, and describe the direct search methods Compass Search and Combined
Compass Search as well the random search method Fixed Step Size Random Search (FSSRS) for
traversing the solution space. We benchmark the methods against each other and find that FSSRS
is able to find the lowest-loss solution when the methods are run for the same amount of time.

Lastly, we describe how we use variations of the Hilbert R-tree data structure to increase the
efficiency of the optimization algorithm in regards to checking if a solution is feasible. From
benchmarks we see that using Hilbert R-trees can decrease the constraint checking query time by
a factor up to 775 on the largest dataset we tested.
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Notation Definition

Bn
i (t) / Bn Bernstein basis polynomial.

Pi The i-th control point of a Bézier curve.
Pk

i Intermediate point in de Casteljau’s algorithm. In this case the parameter is
implied, so in reality shorthand for Pk

i (t).
Bn(t) Bézier curve of degree n.
B[P0, . . . ,Pn](t) Bézier curve with specified control points. In cases where the parameter is

omitted e.g. B[P0, . . . ,Pn] the curve is still parameterized implicitly.
x = (v0, . . . ,vn) x is a vector of values v0, . . . ,vn

x = {v0, . . . ,vn} x is a set of values v0, . . . ,vn

p,u,v Lowercase boldface math letters are vectors in R2.
px The first entry of p.
py The second entry of p.
ℓ= [p0,p1] A line segment consisting of all points on the linear interpolation between p0

and p1.
S A Bézier spline; represented by a sequence of connected Bézier curves.
Sh The height of all points along a Bézier spline S.
X A solution to the optimization problem; represented as a set of Bézier splines.
A An accurate contour line; represented as a sequence of line segments.
Ah The height of all points along an accurate contour A.
C A set of accurate contours
CS Set of accurate contours in C of height Sh

XS Set of Bézier splines in X of height Sh

p ∈B p is a point on the Bézier curve in the interval t ∈ [0,1]
B ∈ S B is a Bézier curve in the spline S
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Chapter 1

Introduction

This thesis concerns the problem of simplifying contour lines on bathymetric charts. Bathymetric
charts are, generally, maps that convey information about the depth of bodies of water. Analo-
gously to topological charts that concern themselves with the height of terrain above water, a 2D
bathymetric chart illustrates water depth by using contour lines. In this context, contour lines are
curves connecting points on the map of an equal depth d, put differently all points on a contour
line represent an exact depth of d. This data could be of particular interest to, for example, ships
navigating at sea, as the water depth dictates what paths are possible for the ships to take.

With modern technology, it is possible to measure water depth at an incredible level of detail.
However, a very high level of detail is not always desirable in all applications. This project
considers the aforementioned setting, where a human navigator perceives the bathymetric chart
and wants to read off useful information from it.

A lot of detail in the data can easily lead to visual clutter when plotted, making it hard to gain
any useful insights from looking at it. As such, it is often necessary to use simplifications of the
real depth data in charts that have to be perceived by humans, simply to improve readability. In
order to go from real-depth data to a readable chart, several steps are involved. We highlight the
most important steps below to better put our work into context:

First, detailed data of the seabed is collected and put into a digital elevation
model (DEM) [11].y

Contour lines can be extracted from the DEM as points connected by line
segments [2, 1]. We refer to these as accurate contour lines.y

Contours represented by connected line segments can now be approximated
with curves, giving what we refer to as initial contour lines (since they are

input to the algorithms studied in this thesis).y
The initial contour lines are changed iteratively in an effort to improve the

approximation by (1) making them more true to the accurate contours while
(2) enhancing the readability to human observers. We can refer to these as

optimized contour lines.

Putting it very succinctly and in terms of the above flow, our work is concerned with the last
part mentioned, namely taking both accurate and initial contour lines as input and outputting
optimized contour lines. The different types of contours are illustrated in Figure 1.1. Our
approach to the above problem will be to define a mathematical optimization problem with
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Figure 1.1: An illustration of the different kinds of contour lines. Dark red dashed lines
indicate the boundary of the dataset. Red lines are accurate contours, gray dashed lines are

initial contours and black lines are optimized contours.

an objective function subject to some constraints. As such, we need to introduce a way of
representing contour lines, which in the present case are Bézier curves. We of course also present
an optimization algorithm for solving the said problem. This algorithm can be run in different
configurations, each of which we conclude by evaluating experimentally. In order to give a more
concrete idea of the optimization problem we are interested in solving in this thesis, we will
introduce the objective and the constraints at an intuitive level in the following section.

1.1 Introduction to Optimization Problem
Recall that the goal is, on a high level, to optimize the initial contour lines to decrease visual
clutter and thereby increase human readability while not deviating too much from the accurate
contours. This objective is not precise enough to give a uniquely defined optimization problem
and thus more well-defined metrics are required. The problem is defined according to an objective
subject to constraints.

Objective The measures we aim to optimize for are the curvature and the area of the contour
lines. Curvature is formally described in Section 2.10 and Section 3.5 contains a precise
description of how the objective is defined as a function of curvature and area. For now, we just
provide a visual interpretation of their effect on the contours.

Firstly, curvature is a measure of how sharply a curve turns/bends at a given point. It is
defined in such a way that a high curvature corresponds to a sharper turn, while a low curvature
corresponds to a less sharp turn. With this in mind, we would like to output contours that have

2



low curvature. More precisely we desire a curvature lower than some predefined target curvature.
Secondly, the area measure in this case concerns the area of the deeper regions of the contour

map. The thinking is that maximizing deeper areas of the map pushes the optimized contours
closer to the accurate contours, thus increasing the navigable area for vessels. The importance of
the area depends on a predefined area score.

Both the curvature and area metric are defined in detail in Chapter 3, where they are combined
into a single so-called loss function. The loss function defines an exact way to compare the quality
of one contour map with another with respect to the mentioned metrics. The target curvature and
area score used for this project are provided in Section 3.4.

Constraints Constraints are used to ensure that the contour maps we produce have certain
properties. In essence they ensure that the contour lines convey information that is in line with
the underlying data. It is desirable that an optimized solution consist of valid contour lines that
are safe for navigation at sea. For this purpose we introduce three types of constraints.

Firstly, we must obey the intersection constraint to keep contour lines meaningful. The
constraint simply requires that no contour line intersects with another contour line or itself.
The reason for this constraint comes from the fact that, as mentioned, contour lines represent
points having the exact same depth. If two contour lines intersect and have different depths, this
indicates the point of intersection has two depths. In reality this is meaningless and should be
considered misbehavior.

Secondly, we have the depth constraint. According to the depth constraint, we must ensure
that the deep region of any optimized contour is entirely contained inside the deeper region of the
accurate contour. This has the effect that an optimized contour always underestimates the depth.
Without this constraint, there might be areas where the optimized contour line overestimates the
depth thus encouraging vessels to travel where they might go aground.

Lastly, the topology constraint ensures that the optimized contour lines are in line with the
underlying data. The constraint requires contour lines to keep the same relation between each
other. That is, if a contour line is in one region of another contour before the optimization, it
must also be in the same region after the optimization.

1.2 Introduction to Datasets
In this thesis we have access to three datasets which we refer to as D1, D2, and D3. D1 is small
and mostly used for testing, validation, and illustrative purposes. D2 and D3 are larger and more
aligned with what we aim to develop a method to solve.

Each dataset consists of two main components: (1) accurate contours modeling what we think
of as the true water depth and (2) initial contours modeling an approximation of the accurate
contours. Accurate contours are represented as polylines, that is, sequences of connected line
segments. Initial contours are represented with splines. Splines are sequences of connected
curves, which allow for a much more space-efficient representation. The curves, in this case, are
Bézier curves which we cover in detail in Chapter 2. A subset of the accurate contours is used
to define the boundary of the datasets, as boundaries are represented as contours of zero depth.
The boundary consists of one or multiple closed polylines that split the plane into an interior
and exterior region. All other geometries of our dataset lie in the interior region of the boundary.
Figure 1.2 illustrates a part of D1. As seen in the figure, each initial contour is an approximation
of an accurate contour. The amount of data points in each dataset is shown in Table 1.1. This is
to note that the initial contour has fewer points than the accurate contours and thus require less
space to store.

Properties: The contours in the dataset obey certain properties that are important with regard
to having a well-defined problem. Specifically, the initial contours given satisfy the depth,
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Figure 1.2: A cutout of D1 showing accurate contours in red, initial contours in black, and
the boundary as a red-black dashed line.

Accurate Contours Data Points Initial Contours Data Points

D1 7 994 1 087
D2 403 720 48 278
D3 427 803 92 606

Table 1.1: Amount of two-dimensional data points used to represent the accurate contour
and initial contour, respectively, in each dataset.

intersection, and topology constraints introduced above. Additionally, the endpoints of the
splines modeling both the accurate contours and the initial solution are either connected to each
other (forming a closed curve) or to the boundary of the dataset. This ensures the contours in
combination with the boundary are continuous. Finally, contours are given in either clockwise or
counter-clockwise order. This order helps determine which side of the contour corresponds to
points of deeper or shallow elevation. For any contour, the port side is the shallow region and the
starboard side is the deep. Figure 1.3 illustrates this.

1.3 Reading Guide
We will present the work undertaken in the following order. In Chapter 2 we define the Bézier
curve along with several important properties of them. In the same chapter, we also describe
different computations that can be performed with Bézier curves. In Chapter 3 we present our
optimization problem in detail. This entails defining the loss function as well as the constraints.

4



Figure 1.3: Arrows indicate the order of contour lines. Light and dark blue areas represent
shallow and deep regions respectively.

We also provide a small analysis of which type of problem we categorize it as in Section 3.8. In
order to frame our approach to implementing an algorithm for solving the optimization problem,
we dedicate the next two sections to describing more general theories on solving optimization
problems as well as specialized data structures. Concretely, Chapter 4 describes different ways of
searching the solution space of the problem while Chapter 5 introduces R-trees as a data structure
helpful for determining the feasibility of solutions. In Chapter 6 we give a description of the
optimization algorithm that has been implemented and show the output it can produce. The last
section, Chapter 7, presents the results of running benchmarks on the implementation, comparing
different configurations and hyperparameters.

5



Chapter 2

Theory of Bézier Curves

Bézier curves are a tool for representing curves by means of control points. Bézier curves get
their name from the French engineer Pierre Bézier (1910-1999), and were developed as part of
his work at the car manufacturer Renault, supposedly in order to aid the design of automobile
bodies and other parts. Since their introduction in the 1960s, Bézier curves and related splines
have become a fundamental part of most computer aided design (CAD) software and computer
graphics in general [32].

Figure 2.1: A cubic Bézier curve defined by four control points. Control points are
connected by a dashed line only for illustrative purposes.

In the following sections, we will present the formal definition of a Bézier curve as well as
different geometric problems relevant to the project. In each subsection, we briefly introduce
how the problems relate to optimizing contour lines. The descriptions are based on the textbook
by Gerald E. Farin [10] and lecture notes by Thomas W. Sederberg [32].

2.1 Bernstein Polynomials
Mathematically, a Bézier curve is a parametric function/curve defined by a linear combination of
polynomials [10]. Essentially this means that both the x and y coordinates of all points on the
curve are defined by the sum of specific polynomials parameterized by a common parameter t.

Thus, we begin by presenting the foundation upon which Bézier curves are built, namely the
Bernstein polynomials. These polynomials are referred to by their degree, as we are used to with
polynomials in standard form. However, a single Bernstein polynomial of some degree n ≥ 1
has a set of so-called basis polynomials associated with it. Explicitly the definition of the i-th

6



Bernstein polynomial of degree n is

Bn
i (t) =

(
n
i

)
(1− t)n−it i ,

for i = 0, . . . ,n and t ∈ [0,1]. If we fix the degree to some specific number, say, n = 3, the four
resulting polynomials can be nicely visualized as in Figure 2.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
i = 0

i = 1 i = 2

i = 3

t

B
3 i(

t)

Figure 2.2: Plot of all Bernstein polynomials of degree n = 3.

2.1.1 Partition of Unity
An important property of Bernstein polynomials of any degree is that they form a partition of
unity meaning

n

∑
i=0

Bn
i (t) = 1 . (2.1)

This fact can be proved with the binomial theorem, which describes how to expand a binomial
(i.e., a polynomial with only two terms, in this case, a and b) raised to an integer power m > 0
and states that

(a+b)m =
m

∑
k=0

(
m
k

)
am−kbk . (2.2)

The proof follows directly, as the definition of a Bernstein polynomial is identical to the expanded
binomial in Equation (2.2) giving

n

∑
i=0

Bn
i (t) =

n

∑
i=0

(
n
i

)
(1− t)n−it i = ((1− t)+ t)n = 1 .

2.2 Definition of a Bézier Curve
A Bézier curve such as seen in Figure 2.1 arises when Bernstein polynomials are used in
conjunction with control points. To define a Bézier curve Bn(t) = (x(t),y(t)) of degree n, is a
matter of combining the Bernstein polynomials of degree n and the control points Pi = (xi,yi)
for i = 0, . . . ,n as follows:

Bn(t) =
n

∑
i=0

PiBn
i (t) =

n

∑
i=0

Pi

(
n
i

)
(1− t)n−it i . (2.3)
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To make the control points of some curve more explicit, we will sometimes use the notation
B[P0, . . . ,Pn](t) =Bn(t), where the degree of the curve can be seen by the number of control
points in the list. Since a Bézier curve is a parametric function, we will use the term component
function in order to refer to its constituents x(t) and y(t) individually. An example curve and its
component functions are shown on Figure 2.3.

t

x(t)

x(t)

y(t)

t

y(t)

Figure 2.3: Middle: An example cubic Bézier curve B3(t). Left: The component function
x(t) of the curve shown in the middle. Right: The component function y(t) of the curve in

the middle.

Interpreting the different parts of Equation (2.3) is relatively straightforward. The polynomials
Bn

i (t) can be seen as blending functions that dictate how much a particular control point Pi
contributes to the position of the Bézier curve at a specific time t. This interpretation makes sense
due to the partition of the unity property of Bernstein polynomials, so the contribution across all
different points will always sum to 1. When t ∈ [0,1] the choice of Bernstein polynomials for
blending functions has the effect that the curve will always start in P0 and end in Pn, a property
referred to as endpoint interpolation. This follows directly from the definition: Say we are
looking at a so-called cubic Bézier curve, i.e., one that has degree n = 3 and thus 4 control points.
The curve will be expressed as below, and the described property is seen by evaluating at t = 0
and t = 1 respectively, so if

B3(t) = P0 · (1− t)3 +P1 ·3(1− t)2t +P2 ·3(1− t)t2 +P3 · t3

then B3(0) = P0 and B3(1) = P3. It should be noted that Bézier curves can be defined over
arbitrary parameter ranges t ∈ [t0, t1], in which case Equation (2.3) has to be modified slightly.
Such a curve would be subscripted with the parameter range in the notation B[t0,t1](t). However,
the curves in the present thesis are always with t ∈ [0,1], so we refer to [32] for an introduction
to Bézier curves over arbitrary parameter intervals.

2.2.1 Convex Hull Property
The convex hull property of a Bézier curve states that the curve will always be contained within
the convex hull of the control points defining it. This is useful in several ways, most notably as
a tool for determining intersections of curves as explained in Section 2.8 and storing curves in
geometric data structures as explained in Section 2.6.1. Arguing for the convex hull property can
be done by looking at two related concepts, namely a convex combination and its relation to the
convex hull: Consider a set of points p0, p1, . . . , pn in Rn. A convex combination of these points
is the linear combination

8



λ0 p0 +λ1 p1 + . . .+λn pn =
n

∑
i=0

λi pi

where coefficients λi must all be non-negative and all sum to one, i.e.,

λi ≥ 0 for all i and
n

∑
i=0

λi = 1 .

One way to define the convex hull of the points is to say that it is the set of all possible convex
combinations of p0, p1, . . . , pn [7]. With these definitions in place, we can now argue the convex
hull property of Bézier curves.

Firstly, any point on a Bézier curve is a convex combination of the control points of the
curve. A Bézier curve is a linear combination of the control points, as seen from the definition,
Equation (2.3). In addition, both conditions for being a convex combination are satisfied due to
properties of Bernstein polynomials in the [0,1] interval, namely non-negativity and partition of
unity from Equation (2.1). Secondly, since all convex combinations of the control points taken
together define the convex hull of the points, any convex combination of the control points are
guaranteed to be within the convex hull. Thus, all points on the Bézier curve must be within the
convex hull of the control points, since they are, at heart, just convex combinations of the control
points.

2.3 De Casteljau’s Algorithm
From the above definition of a Bézier curve, it is apparent that points on the curve can be
computed by directly evaluating Equation (2.3) for different values of t ∈ [0,1]. However, this
turns out to be a bad approach, as numerical instability becomes an issue when taking powers
of very small values, when evaluating the Bernstein polynomials. The numeric instability of
Bernstein polynomials is illustrated in Figure 2.4, where lower values of t result in a incorrect,
jagged curve. Luckily, de Casteljau’s algorithm [4] provides a method for evaluating points on a
Bézier curve by means of repeated linear interpolation between only the control points of the
curve. In this section, we present how Bézier curves can also be expressed recursively with linear
interpolations and how this fact is utilized in de Casteljau’s algorithm.

Linear interpolation: If two 2-dimensional points u and v are given, a point p at some ratio
t ∈ [0,1] along the straight line connecting the two points can be computed by linear interpolation
(abbreviated lerp) using:

p= (1− t)u+ tv .

Linear interpolation of Bézier curves: Say we have a degree n Bézier curve B[P0, . . . ,Pn](t)
that we want to evaluate at some specific t. Instead of evaluating the polynomials directly, the
exact same point can be computed by linear interpolation between points on two n−1 degree
sub-curves that taken together use the same control points as the curve we are trying to compute.
Concretely, the first sub-curve will use all the same control points as the original except endpoint
Pn, while the second sub-curve will exclude the endpoint P0 only. This is captured in the
following theorem.

Theorem 2.3.1 (Interpolation of Bézier Curves) The point at parameter value t on a degree
n Bézier curve B[P0, . . . ,Pn](t) can be computed by linear interpolation between points at
parameter value t on two degree n−1 sub-curves as

B[P0, . . . ,Pn](t) = (1− t)B[P0, . . . ,Pn−1]+ tB[P1, . . . ,Pn] .

9



Figure 2.4: Plot showing a cubic Bézier curve computed with respectively Bernstein
polynomials and de Casteljau’s algorithm. Only de Casteljau’s algorithm has the numerical

stability to render the curve accurately.

The proof of this relies only on the definition of a Bézier cuve, Equation (2.3), and the recursive
formula for the binomial coefficient.

(1− t)B[P0, . . . ,Pn−1]+ tB[P1, . . . ,Pn]

= (1− t)
n−1

∑
i=0

PiBn−1
i + t

n

∑
i=1

PiBn−1
i−1

= (1− t)
n−1

∑
i=0

Pi

(
n−1

i

)
t i(1− t)n−i−1 + t

n

∑
i=1

Pi

(
n−1
i−1

)
t i−1(1− t)n−i

=
n−1

∑
i=0

Pi

(
n−1

i

)
t i(1− t)n−i +

n

∑
i=1

Pi

(
n−1
i−1

)
t i(1− t)n−i

= P0(1− t)n +Pntn +
n−1

∑
i=1

Pi

(
n−1

i

)
t i(1− t)n−i +

n−1

∑
i=1

Pi

(
n−1
i−1

)
t i(1− t)n−i

= P0(1− t)n +Pntn +
n−1

∑
i=1

Pi

((
n−1

i

)
+

(
n−1
i−1

))
t i(1− t)n−i

= P0(1− t)n +Pntn +
n−1

∑
i=1

Pi

(
n
i

)
t i(1− t)n−i

=
n

∑
i=0

Pi

(
n
i

)
t i(1− t)n−i

=
n

∑
i=0

PiBn
i

=B[P0, . . . ,Pn](t)
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Intuition behind de Casteljau’s algorithm: We begin by fixing some terminology and notation.
As mentioned in the definition, a Bézier curve of degree n has n+1 control points each denoted Pi
(note only a single subscript letter i used) for i = 0, . . . ,n. Furthermore, de Casteljau’s algorithm
gives rise to what we call intermediary points each denoted Pk

i (t) (note both subscript i and
superscript k) for k = 0, . . . ,n and i = 0, . . . ,k−n. These are points on a k degree Bézier curve
for a specific value of t. They are defined recursively from Theorem 2.3.1. Given a n degree
Bézier curve Bn we have Pn

0(t) =Bn(t). Other intermediate points are defined as

Pn
i (t) = (1− t)Pn−1

i (t)+ tPn−1
i+1 (t)

and are points on the two sub-curves defined in Theorem 2.3.1. Intermediary points are always
functions of the parameter t, so when we use notation Pk

i the parameter is implicit. It can be
helpful to think about the two types of points in the following way:

Control points are always given when a Bézier curve is defined. They are fixed in space
and are not a function of the parameter t.

Intermediary points are always computed, in some way, from the control points. They
appear as a result of linear interpolations between either control points or other intermediary
points and, as such, they change as a function of the parameter t.

Note: If k = 0 in the notation Pk
i , then the point is a control point of the curve e.g. P0

0 = P0 and
P0

3 = P3.

P0
0

P0
1

P0
2

P0
3

P1
0

P1
1

P1
2

P2
0 P2

1

P3
0

Figure 2.5: Illustration of how to compute point P3
0 with t = 0.6 given Bézier curve

B[P0
0,P

0
1,P

0
2,P

0
3]. All control points and intermediary points in de Casteljau’s algorithm

are shown. Control points of the curve are drawn in black, while the intermediary points of
the algorithm are drawn in gray.

We can now introduce the idea used in de Castaljau’s algorithm by means of an example.
Say we are given a cubic Bézier curve B[P0

0,P
0
1,P

0
2,P

0
3], i.e., one defined by four control points –

although the algorithm works for any degree curve. The curve can be seen as the thickest line
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in Figure 2.5. We want to compute the value of the curve at t = 0.6, which is to say, we want
to compute point P3

0. To that end, we turn to the recursion of Theorem 2.3.1, which tells us
that we can do this by computing a linear interpolation between points P2

0 and P2
1, since these

are the points at t = 0.6 on the two light gray quadratic curves B[P0
0,P

0
1,P

0
2] and B[P0

1,P
0
2,P

0
3]

respectively. Now, since the points P2
0 and P2

1 are points on a Bézier curve, they can be computed
in turn as a linear interpolation of linear Bézier curves. For example, P2

0 depends on P1
0 and P1

1
and analogously P2

1 depends on P1
1 and P1

2 and so on. The recursion tree will unfold as below, the
leaves being linear interpolations of control points.

P3
0 = (1− t)P2

0 + tP2
1

P2
0 = (1− t)P1

0 + tP1
1 P2

1 = (1− t)P1
1 + tP1

2

P1
0 = (1− t)P0

0 + tP0
1 P1

1 = (1− t)P0
1 + tP0

2 P1
2 = (1− t)P0

2 + tP0
3

Note: The number of equations will be quadratic in the degree of the curve, if we were to
generalize to higher degree curves. Dynamic programming can be used to avoid computing the
same point multiple times e.g. P1

1 in the above example.

The correctness of this approach comes down to the proof of Theorem 2.3.1, but to drive
home the point, we can take a look at P3

0 where we plug in the expressions of all intermediary
points and simplify giving

P3
0 = P0

0 · (1− t)3 +P0
1 ·3(1− t)2t +P0

2 ·3(1− t)t2 +P0
3 · t3 ,

which is exactly the definition of a point on a cubic Bézier curve as in Equation (2.3)! We can
now present de Casteljau’s algorithm in its general form as follows.

De Casteljau’s algorithm:

Given a Bézier curve B[P0
0,P

0
1, . . . ,P

0
n] and some parameter t ∈ [0,1], compute

Pk
i = (1− t)Pk−1

i + tPk−1
i+1

for k = 1, . . . ,n and i = 0, . . . ,k−n. Then Pn
0 is the point with parameter value t on the Bézier

curve B[P0
0,P

0
1, . . . ,P

0
n].

As an added bonus, the intermediary points computed by the algorithm can be used to
split the curve. By splitting the curve we mean producing two curves that taken together form
the same curve as the original. These two curves will be defined by points P0

0,P
1
0, . . . ,P

n
0 and

Pn
0,P

n−1
1 , . . . ,P0

n respectively, and have the same degree as the original. Looking at Figure 2.5, it
is possible to split the cubic curve at parameter value t = 0.6 into two new cubic curves, with the
first being defined by B[P0

0,P
1
0,P

2
0,P

3
0] and the second with points B[P3

0,P
2
1,P

1
2,P

0
3].

Future work: Through the literature we have identified another way of evaluating polynomials,
namely Horner’s method, which is described in [5]. Using this method requires rewriting the
Bézier curve from the Bernstein basis into a so-called power basis. Although we have found
indications that this can incur some numerical issues, as explained in [6], it is not disputed that
Horner’s method is optimal in terms of the number of arithmetic operations needed to evaluate
the polynomial.
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Summary
Summarizing the previous two sections, Bézier curves are parametric curves defined algebraically
as a linear combination of control points and Bernstein basis polynomials as in Equation (2.3).
We highlight the most relevant properties and algorithms as follows.

Endpoint interpolation. Given a curve B[P0, . . . ,Pn](t) with t ∈ [0,1] then the curve will
start in P0 and end in Pn. This property is key to chaining multiple curves together to form
a contour line.

Convex hull property. Given a curve B[P0, . . . ,Pn](t) with t ∈ [0,1] then the curve will
always be contained within the convex hull of the control points. This fact was due to the
partition of unity property of Bernstein polynomials.

De Casteljau’s algorithm. An algorithm based on a recursive formula used to evaluate
points on a Bézier curve. It provides a numerically stable alternative to evaluating Bernstein
polynomials directly.

2.4 Computing Roots of a Curve
Many different geometric problems of Bézier curves are equivalent to finding roots in the
parametric functions that define all points along the curve. Examples of these include, but are not
limited to: determining if a curve intersects a line segment as in Section 2.7 or computing a tight
bounding box around a curve as in Section 2.6.2. In this section, we provide an overview of the
methods used to compute the roots of Bézier curves.

Since these parametric functions, in our case, are always cubic polynomials at most, we
focus our attention on finding roots of quadratic and cubic polynomials. As Bézier curves are
parametric, i.e., they are defined by component functions x(t) and y(t), when we refer to a root
of the curve Bn(t) = (x(t),y(t)), we are referring to a parametric value t ∈ [0,1] such that either
x(t) = 0 or y(t) = 0. When relevant, we will specify which case we are referring to.

2.4.1 Quadratic curves – the Quadratic formula
Say we have a quadratic curve B[P0,P1,P2](t) and we want to find its roots. Since the component
functions are quadratic polynomials, the roots can be found using the omnipresent quadratic
formula stating that, if f (t) = at2 +bt + c then

f (t) = 0 when t =
−b±

√
b2 −4ac

2a
. (2.4)

The formula can be used provided we rewrite the Bézier component functions in standard
form. This can be done as follows:

B2(t) = P0(1− t)2 +P12(1− t)t +P2t2

= P0(t2 −2t +1)+P12(t − t2)+P2t2

= (P0 −2P1 +P2)t2 +2(P1 −P0)t +P0

giving us the coefficients a = P0 −2P1 +P2, b = 2(P1 −P0) and c = P0. We compute the roots
of x(t) by plugging the coefficients into Equation (2.4) using only the x-coordinates of the points,
disregarding any resulting t not in the unit interval. Roots of y(t) are found in a similar fashion.
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2.4.2 Cubic curves – Cardano’s method
Say we have a cubic curve B[P0,P1,P2,P3](t) and we want to find its roots. The component
functions of the curve are cubic, and luckily there is a standard algebraic method of finding roots
of these. It is called Cardanos’ method and involves substantially more calculation steps than the
quadratic formula, which is to say that we will not go into the mathematical details of it. Our
approach has simply been to implement the math as we have seen it described in [36], without
drilling into the rationale behind it. As the roots of a cubic polynomial are general complex
numbers we disregard any roots that are not real numbers in the unit interval.

Future work: An obvious next step with regards to root finding would be to research and
implement numerical methods e.g. Newton’s method, experimentally evaluate its performance
and compare to the algebraic methods described above.

2.5 Continuity of Connected Bézier Curves
We express contour lines as a series of Bézier curves chained together such that each individual
Bézier curve ends where the next one begins. In the literature, this construction has several
different names: composite Bézier curve, Bézier spline or polybézier to name a few. We will use
Bézier spline when referring to them, as it seems to be most common.

When connecting curves in the above mentioned fashion, the concept of continuity[32] is
used to characterize the transition between two curves. For parametric curves, a distinction
between parametric continuity and geometric continuity is made, with the latter being "less strict"
in a mathematical sense.

2.5.1 Parametric Continuity
As the name suggests, parametric continuity imposes some constraints on the parameter of the
curves involved. Two curves G[t0,t1] and H[t1,t2] are said to be Ck continuous (have k-th order
parametric continuity) if

G(t1) =H(t1),G′(t1) =H ′(t1), . . . ,G(k)(t1) =H(k)(t1) , (2.5)

with (k) meaning the k-th derivative. We can think of the value k as being proportional to how
"smooth" the transition between curves should be. Being C0 continuous only guarantees that they
share a common endpoint. Going a step further, C1 continuity requires that the first derivatives,
i.e., the tangent vectors at the common endpoint are equivalent in both direction and magnitude.
The problem with using parametric continuity in our case is that it requires the curves to have the
same parameter value in their common endpoint for all orders of parametric continuity, which
can be seen in from t1 being used on both sides of the equalities in Equation (2.5).

2.5.2 Geometric Continuity
In our implementation, each curve in a spline is defined with parameter t ∈ [0,1]. This also means
that when we "chain" them together into a spline, their parameter value at the common endpoint
will be different. Mathematically, if we have two curves Q[0,1] and Z[0,1] then their common
endpoint is where Q(1) =Z(0), so we violate already the requirement for C0. This motivates
the use of geometric continuity [8], which is independent of the parameterization of the curves.

With geometric continuity, the objective is to obtain continuity in a more visual sense – the
transition from one curve to the next has to look smooth. If we denote orders of geometric
continuity as Gk and explicitly give the control points of the curves as Q[V0, . . . ,Vn](t) and
Z[U0, . . . ,Un](t), then G0 continuity requires only that two curves share a common endpoint,
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i.e., Vn = U0. Establishing G1 continuity is a matter of ensuring that the curves have a common
tangent line in the point where they meet. This turns out to be the case when points Vn−1,Vn =U0
and U1 are collinear, a result that can be found in [8].

2.6 Axis-aligned Bounding Boxes
Axis-aligned rectangles are a fundamental geometry that lend themselves well to being stored in
geometric data structures, or to being used to query the data structures. In later section we look
at problems such as finding intersection points between two Bézier curves. Bounding boxes of
curves can be used in this regard, and as such we present methods for computing axis-aligned
bounding boxes (AABB) next.

2.6.1 Convex hull based approach
A naive approach to finding the bounding box of some Bézier curve is to make use of one its
fundamental properties, namely the convex hull property [32]. Recall that this property guarantees
that a Bézier curve B[P0, . . . ,Pn](t) is contained within the convex hull of its control points.
In this case, where an axis-aligned bounding rectangle of the curve is desired, it can thus be
computed solely from the maximum and minimum coordinate values of the control points on
each axis, i.e, the minimum bounding rectangle (MBR) of the control points.

2.6.2 Derivative based approach
The convex hull of the control points of a curve, and thus the AABB found in the above approach,
is not tight in the sense that it only encompasses the actual curve. In fact, it is easy to fabricate
an example, where the naive AABB is quite large relative to a tight AABB computed from the
parametric curve itself. This is exactly the case illustrated in Figure 2.6.

x

y

P0

P1

P2

P3

Figure 2.6: A cubic Bézier curve with two different AABBs illustrated. The light gray rectangle being the
result of the convex hull approach, while the dark gray rectangle is the result of the derivative based

approach. Notice the difference in size.

A tighter axis-aligned bounding box can be computed by looking to the extremities of the
parametric functions that together define the curve, i.e., if Bn(t) = (x(t),y(t)) we look to the
extremities of x(t) and y(t) separately. The x-coordinate of all points along the curve are defined
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by x(t). As such, finding roots in the derivative x′(t) gives us the t value where the curve has an
extremity, or more visually, where the curve has horizontal or vertical tangents (see Figure 2.3).
All such points along the curve are potential candidates for defining the tight AABB. The Bézier
curve is only defined for t ∈ [0,1], so any roots found outside of this interval are discarded. On a
high level, we get the following procedure for finding a tight AABB of a Bézier curve B:

1. Find all t-values that are roots of x′(t) and y′(t) respectively.

2. Discard all t /∈ [0,1], and add the endpoints t = 0 and t = 1 to the list.

3. For all ti in the list compute B(ti) = (x(ti),y(ti)) and find mini x(ti) and maxi x(ti), which
are the x-coordinates of the two points defining the AABB. The minimum and maximum
y-coordinates are found identically.

In theory, the most tightly fitting bounding box of the curve might not be axis-aligned at all.
With the above method established, computing it is a matter of (1) axis-aligning the curve itself
by means of linear transformations (2) applying the above method.

2.7 Intersection of Curve and Line Segment
The need for determining intersections between Bézier curves and line segments arises from
the fact that we represent optimized contour lines with Bézier curves and accurate contours as
line segments. Deciding whether a curve and a line segment intersect is useful for deciding if a
contour violates a depth constraint. In the following explanation we focus on cubic Bézier curves
as these are used for the optimization, but the same approach generalizes to curves of higher
order.

x

y

0 1 2 3 4 5 6

−1

0

1

2

3
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x

y

0 1 2

−1

0

1

Figure 2.7: Visualization of axis alignment. The blue square encloses the same region in both plots. Left: A
Bézier curve with a line segment crossing it. Right: The curve and line segment after translation, rotation

and scaling.

Given a Bézier curve B[P0,P1,P2,P3](t) and a line segment ℓ = [p0,p1], it is possible to
compute whether the two have an intersection point. Both geometries can be positioned arbitrarily
in the real plane R2. The problem can be simplified to root finding by first applying the same
linear operations to B and ℓ such that ℓ coincides with the x-axis. This transformation can be
performed in multiple ways, and we did it in the following way (as illustrated in Figure 2.7):
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First, a translation by −p0 is performed on all points making ℓ= [0,p= p1 −p0], where 0 is
the 2-dimensional zero vector. As ℓ has a point in the origin we simply need to rotate it down on
the x-axis. The matrix

R =

[
px −py

py px

]
is a matrix of orthogonal column vectors satisfying

R

[
1
0

]
= p .

As columns of R are orthogonal, R can be perceived as a scaling and rotating matrix. As a
result, applying R on vectors defining a Bézier curve produces a scaled and rotated variant of
the previous Bézier curve. As such, R−1 can be used as our final transformation to rotate B and
ℓ such that ℓ lies in the 0−1 interval of the x-axis. The intersections point(s), if there are any,
are now the roots of the y-component, y(t), provided that these are found within t ∈ [0,1] and
x(t) ∈ [0,1]. An illustration of this transformation is shown in Figure 2.7. Computing R−1 is
simple: Each column of R are vectors of magnitude ||p||, thus the matrix R/||p|| is an orthogonal
matrix, meaning

R
||p||

(
R

||p||

)T

=
1

||p||2
RRT = I.

The equation tell us that the inverse matrix of an orthogonal matrix is equivalent to the transpose
matrix. This provides the result

R−1 =
1

||p||2
RT .

The reason that we can translate, rotate and scale a Bézier curve and be sure that its shape is
retained is due to a property of Bézier curves called affine invariance. We only state this as a
fact; the definition affine maps and a proof that Bézier curves are affine invariant can be found in
the textbook by G. E. Farin [10].

2.8 Intersection of Curve and Curve
A natural constraint when dealing with contour lines on any map is, that they cannot be allowed
to cross each other, thereby creating overlapping regions. Such an overlap would signify two
different water depths within same physical region, which is impossible. Since we represent
contour lines as Bézier curves, detecting such a violation requires a method to finding intersections
between two curves.

For an overview and performance comparisons of curve-curve intersection algorithms we
refer to [32]. Below we present the most basic method, which is based on a general technique
called subdivision.

2.8.1 Subdivision method
The convex hull subdivision approach [22] relies, as the name suggests, on the property that a
Bézier curve is completely contained within the convex hull of the control points of the curve.
Only if the convex hulls of two curves overlap is it possible that the curves themselves do so
as well. The subdivision algorithm uses this fact recursively: Given two curves, compute their
hull and check if they overlap. If they do, the curves are subdivided (split) at their halfway,
and the procedure is called recursively on the subdivided curves. As the recursion proceeds,
non-overlapping hulls are discarded. When the overlapping convex hulls are sufficiently small in
some well-defined way, the algorithm concludes that it has found an intersection.

17



The only concrete stopping criteria we have come across is mentioned by Sederberg [32] with
reference to Wang [38]: The subdivision should terminate once the curve has been subdivided
enough times that it approximates a straight line segment to within a specified tolerance ε . A
closed formula for computing the number of subdivision necessary for this criteria to hold can be
found in [32, Equation 10.4].

To increase performance, it is possible to use the axis-aligned bounding boxes of the curves
instead of their convex hulls. This optimization is motivated by the fact that convex hulls are
more expensive to compute and determine overlaps for, compared to bounding boxes. Intuitively
the procedure is still correct, as the convex hull is fully contained within the bounding box, and
the convergence argument thus still holds.

Future work: Several approaches to the curve-curve intersection problem are described in the
literature, and we have only presented the most basic. A natural next step would be to implement
and experimentally evaluate more advanced techniques such as interval subdivision [20], Bézier
clipping [34] or implicitization [33]. Furthermore, interesting hybrids of these exist, namely the
cocktail algorithm [17] and hybrid clipping [24].

2.9 Interior Point Problem
Although curve-line intersection as presented in Section 2.7 is useful for checking some type of
constraints, it is not sufficient. Datasets can contain small spikes in elevation that an optimization
step might jump entirely, which is illustrated in Figure 2.8: This is a clear constraint violation with
no direct intersections occurring. Thus, an additional method is required to ensure no constraints

Figure 2.8: An optimization step updating an old contour segment to a new contour segment. The update
crosses an accurate contour line without intersecting it.

are inside the hatched area on the figure. Our method for doing this combines intersection
checking (either curve-line or curve-curve intersection) with a simpler problem we describe
shortly. In order to prove this indeed provides the correct result, a more formal definition of the
problem is required. We define the problem as follows:

Problem 2.9.1 (Interior Line Segment) Given two Bézier splines S and S′ with the same start-
and endpoints and a line segment ℓ = [p0,p1] for points p0,p1 ∈ R2. Let P be the set of all
points that lie in the interior of the area enclosed by S and S′. Decide if ∃p : p ∈ P∧p ∈ ℓ.
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Consider also the decision problem with a point instead of a line segment:

Problem 2.9.2 (Interior Point) Given two Bézier splines S and S′ with the same start- and
endpoints and a point p ∈ R2. Let P be the set of all points that lies in the interior of the area
enclosed by S and S′. Decide if p ∈ P.

Problem 2.9.2 is simpler than Problem 2.9.1 and we will shortly show that it is sufficient for our
problem. Additionally it generalizes better to the case of checking if a Bézier curve is swallowed
by an optimization step.

In Section 2.7 we saw how to determine if a line segment and a Bézier curve intersect. By
performing curve-line intersection first we only need to consider the cases with no intersection,
i.e., as on Figure 2.8. The idea is that with no intersections, all points will either lie inside or
outside of the enclosed area P. This follows closely from the Jordan curve theorem [15, 37],
which can be seen below as Theorem 2.9.1. The theorem concerns so-called simple curves, which
defined as a continuous curve with no self-intersections:

Theorem 2.9.1 (Plane Sub-Division) Every simple closed curve decomposes its plane into two
open regions. An interior and exterior region.

Theorem 2.9.2 (Curve Crossing) Any simple curve joining an interior point of a region to an
exterior point must cross the boundary in a point or a pair of points.

The proofs are quite involved and out of the scope of this thesis but can be found in [37].
With these theorems in mind, the following can be proven.

Theorem 2.9.3 (Problem Equality) Given two splines S and S′, a line segment ℓ = [p0,p1] :
p0,p1 ∈ R2 and an arbitrary point p ∈ ℓ. Assuming ℓ is not intersecting S or S′ then Prob-
lem 2.9.1 and Problem 2.9.2 are equivalent.

In the following, we use C to denote the curve created by joining S and S′ at their endpoints.
Let P be the interior region enclosed by C. To prove the theorem we need the assumption that
ℓ does not intersect C. In this case, we want to argue that all points on ℓ are either all in the
interior of P or in the exterior of P. Since S and S′ are continuous and share endpoints, C is a
continuous closed curve. Unfortunately, C is not guaranteed to be simple as it may self-intersect
n ≥ 0 times. Instead, consider the disjoint curves C0, ...,Cn achieved by splitting C at intersection
points into multiple disjoint curves. All Ci for i ∈ {0, ...,n} do not self-intersect as they otherwise
would have been split. All Ci are still closed and continuous as they are connected at intersection
points. They are thus simple closed curves. By assumption, there exists no point p ∈ ℓ such
that p is on the boundary of C. Further, no point is on the boundary of any Ci as they are
constructed from disjoint segments of C. From Theorem 2.9.1 all Ci have a well-defined interior
and exterior. Assuming a p ∈ ℓ is in the interior of Ci and p′ ∈ ℓ the exterior of Ci contradicts
with Theorem 2.9.2. As such all points on ℓ must be reside in either the interior or exterior. Let
Pi ⊆ P be the interior of Ci and denote

⋃
i Pi = P, which means a point is in some Pi if and only if

it is in P. Thus the line segment ℓ has to reside either completely in the interior of P or in the
exterior of P. Considering just a single point on p ∈ ℓ is a special case of the above, where an
arbitrary point on the line segment is used and as such it is equivalent.

We consider now how to solve Problem 2.9.2. One simple approach would be constructing
a polygon from C and use an interior point algorithm for polygons such as the Ray Casting
Algorithm [35]. The algorithm can pictorially be described by casting a ray parallel to the x-axis
out of the point in a direction as illustrated on Figure 2.9. Line segments of the polygon are
now traversed and intersections with the ray are counted. If the number of intersections is odd
the point is in the interior and otherwise in the exterior. The intuition for why this algorithm is
correct lies in Theorem 2.9.2. Crossing the boundary of a polygon goes from exterior to interior
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Figure 2.9: An illustration of the Ray Casting Algorithm. The red circle is the target point,
and orange circles indicate intersection points

and vise versa. Having finite polygons the ray will eventually end up in the exterior. Every time
it crosses the border the state is flipped, thus an odd number means the point in the interior.

A problem with this approach lies in the fact that Bézier curves are, as the name suggests,
curves, and thus they do not form a polygon. They can however be approximated arbitrarily well
with polygons by splitting them into many shorter line segments. Unfortunately, more splits
decrease the numeric precision and slow down the point-in-polygon algorithm, as its running
time is linear in the amount of line segments.

Instead, we tweak the algorithm to handle curves: Given a query for a point p on the curve C,
apply a translation to the point and the curve such that p becomes the origin. By directing the ray
towards negative x values, so it resides on the negative side of the x-axis. Computing intersection
points is thus equivalent to finding roots with negative x value. C consists of cubic Bézier curves
and computing roots of these are covered in Section 2.4.2.

As a last note consider a similar problem to Problem 2.9.1, where we consider a curve in the
interior instead of a line segment:

Problem 2.9.3 (Interior Curve) Given two Bézier splines S and S′ with the same start- and
endpoints and a simple curve D consisting of points R2. Let P be the set of all points that lie in
the interior of the curve enclosed by S and S′. Decide if ∃p : p ∈ P∧p ∈ D.

This problem can be solved with the same procedure as for a line segment if the intersection algo-
rithm is substituted with a curve-curve intersection algorithm. The reason is that Theorem 2.9.2,
as it states, is true for any simple curve and not just line segments.

2.10 Curvature
The purpose of introducing the curvature metric is to get a somewhat objective way of steering
the optimization algorithm in a direction that produces "smooth" or "foreseeable" curves. In
terms of curvature, this means that we would like to minimize the maximum curvature along the
curve.

The curvature of a curve, usually denoted κ , is a measure of how sharply the curve moves in
space. A perfect circle with radius ρ has a curvature of κ = 1/ρ . A straight line by definition
has a curvature of zero. In the case of Bézier curves, the curvature is generally different for
each point on the curve. As such, the curvature of some point on a curve is defined as the
reciprocal radius of the osculating circle of that point on the curve. Figure 2.10 illustrates this
circle. Informally, the osculating circle is the circle that "best fits" the curvature of the curve in
the point. A more formal definition of the curvature uses the concept of the multiplicity of the
intersection between a curve and a circle, which is further covered in [32]. For our purpose, the
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Figure 2.10: A sketch of the osculating circles of two points on a curve

curvature of Bn(t) = (x(t),y(t)) can be computed from the first and second derivatives as:

κ(t) =
|x′(t)y′′(t)− y′(t)x′′(t)|
((x′(t))2 +(y′(t))2)3/2 . (2.6)

While the curvature is easily computed at some specific t, we have not found an analytical way of
determining the maximum or minimum curvature along a curve. Thus we turn to the numerical
approximation method explained in the following.

2.10.1 Ternary Search Method for Maximum Curvature
A naive approach to determining the maximum curvature is to compute the curvature of a bunch
of points sampled evenly distributed along the curve. Unfortunately, when dealing with cubic
Bézier curves, curvature extremes can be very localized. However, speaking very informally, the
degree of the curve limits how erratic its shape can be, i.e., how many sharp twists and turns it can
take. This is a result of the curvature formula in Equation (2.6) which is a third-degree polynomial
divided by a fourth-degree polynomial. Ignoring the absolute operation in the numerator, the
derivative of Equation (2.6) is a fifth-degree polynomial, thus the curvature has at most 5 extreme
values. Maximizing an absolute formula is the same as finding the minimum and maximum of
the same function without the absolute operator. The amount of minimum and maximum values
are bounded by the number of roots in the derivative, thus the curvature formula has at most 5
extreme values.

The idea is to sample x points along the curve and run a ternary search between each point
to find the maximum curvature. Ternary search is only guaranteed to find the maximum if the
interval contains only one extreme point. When x gets larger the chance of having two extreme
values in the space between two sample points gets smaller. By choosing the maximum value
among each ternary search, the maximum curvature is approximated.

While we do not provide any theoretical guarantees with respect to this approach, we have
tried to evaluate it experimentally as follows: We ran the ternary search approach with x = 10
to compute a maximum curvature on multiple random curves. This result was then compared
with the curvature at 10 000 evenly spread points along the curve. The ternary search approach
always returns the highest curvature. This shows that x = 10 provides reasonable results however,
it might not be the most efficient approach. For a better understanding of what the most efficient
x would be further experiments are required. This is left as future work.

2.11 Computing Area
As described in Chapter 1 our optimization must consider the deep area of contour lines. As
mentioned in Section 1.2 this is the area of the starboard region. This area should naturally be as
large as possible, thus ways of computing areas of Bézier curves are required. To be specific, we
are interested in computing the area inside the shape that arises when closing the curve using a
line segment connecting the two endpoints of the curve, as is illustrated in Figure 2.12.
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As Bézier curves are parametric functions as described in Section 2.2, one can compute the
area under the curve using integration. The idea follows from integration of non-parametric
functions. Given a function C the area under the graph y =C(x) is determined by∫

C(x)dx . (2.7)

Recalling that the parametric definition of a cubic Bézier curves as B[P0,P1,P2,P3](t) =
(x(t),y(t)), its x and y position at some t is determined by the component functions x(t) and
y(t). By substituting the values x and y from Equation (2.7) with the component functions of the
parametric definition, we get y(t) =C(x(t)) as a function of t. Using the chain rule

dx
dy

=
dx
dt

dt
dy

which is equivalent to

dx =
dx
dt

dt ,

Equation (2.7) can be rewritten as an integral over t as∫
y(t)x′(t)dt . (2.8)

In our context, Bézier curves are always defined in the interval t ∈ [0,1], thus the last step is
to compute the integral in this interval. The area computed with this integral is illustrated as a
dark gray shade on Figure 2.11. Equation (2.8) quite intuitively reveals why this is the acquired
area. When x(t) is increasing, x′(t) is positive, and so the contribution of y(t) to the integral is
positive. When the curve changes direction, x(t) is decreasing and x′(t) is negative. As such, the
contribution of y(t) is instead "subtracted" from the integral, seen as the light-gray hatched area
on Figure 2.11.

Figure 2.11: The area computed by integration is
shown in dark gray.

Figure 2.12: The desired area for a curve.

Evaluating the definite integral of Equation (2.8) is indeed possible, as x(t) and y(t) are
both third-degree polynomials. Further, the product y(t)x′(t) is a fifth-degree polynomial (in the
context of cubic Bézier curves) for which known integration methods exist. The calculation is,
according to [14], quite extensive and tedious, so we present only the simplified formula from
the paper. We use the notation Px

i and Py
i to refer to the x and y values of the i-th control point on
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the curve, respectively:

20
∫ 1

0
y(t)x′(t)dt = (Px

1 −Px
0)(10Py

0 +6Py
1 +3Py

2 +Py
3)

+ (Px
2 −Px

1)(4Py
0 +6Py

1 +6Py
2 +4Py

3)

+ (Px
3 −Px

2)(P
y
0 +3Py

1 +6Py
2 +10Py

3) ,

Note that the factor of 20 is only there to simplify the expression. To compute the desired integral,
the right-hand side of the equation must be divided by 20.

Now, as Figure 2.11 illustrates, the area we get from Equation (2.8) is not the area shown
on Figure 2.12, which is what we are really after. In the case where the endpoints of the Bézier
curve coincide with the x-axis, the areas will in fact be equal. However, since curves are not
guaranteed to be aligned with the x-axis in the coordinate system of the dataset (in fact, most of
them are definitely not), we have to take into account the trapezoid formed by connecting the
endpoints of the curve with the x-axis. Fortunately computing the area of such a trapezoid is
simple. Recall the endpoints of the cubic curve are P0 and P3, the area is computed by

(Px
3 −Px

0)(P
y
3 +Py

0)

2
, (2.9)

and can then be subtracted from the integral to achieve the desired area as shown on Figure 2.12.
In Equation (2.9) the term (Px

3 −Px
0) is the width of the trapezoid and (Py

3 +Py
0)/2 is the average

height, thus this formula is simply the area of a rectangle with height equally between the two
side length of the trapezoid.

Combining Equation (2.8) and Equation (2.9) we can express the area of a given Bézier curve
B as follows:

Area(B) =
∫ 1

0
y(t)x′(t)dt −

(Px
3 −Px

0)(P
y
3 +Py

0)

2
.
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Chapter 3

Contours as an Optimization
Problem

In this section, we return to the optimization problem described briefly in Chapter 1 and give
a formal definition of it. The aim is to describe how the problem should be modeled as an
optimization problem: A formal definition of our aim follows in Section 3.1. From there, we
discuss first how a Bézier spline is best represented in the optimization and how the representation
is then used to define problem solutions, which happens in Sections 3.2 and 3.3. We then describe
the function we use to assess solutions, i.e., the objective function of the problem in Section 3.5.
We complete the formulation by defining the constraints of the problem in Section 3.6 and sum
it all up in Section 3.7. To better motivate the methods we have studied in order to solve the
optimization problem, we finish this section with a small analysis of the problem in Section 3.8.

3.1 Optimization in Standard Form
Using common terminology, we want to define an objective function f : Rm → R taking inputs
X ∈ Rm subject to constraints defined by additional functions ci : Rm → R for i = 0, ...,n. Using
this notation, an optimization problem in standard form is described by

minimize
X∈Rm

f (X)

subject to
ci(X) = 0, i ∈ γ

ci(X)≤ 0, i ∈ θ

, (3.1)

where γ and θ are indices of equality and inequality constraints. All X ∈ Rm are considered a
solution. However, not all solutions are feasible. Only a solution X ∈Rm satisfying all constraints
is considered a feasible solution. The goal is typically to find an optimal feasible solution. That
is, find an X∗ satisfying the constraints such that f (X∗)≤ f (X) for all feasible X ∈ Rm.

We want to model the optimization problem in standard form, as optimization techniques
for such problems are well-studied and it provides a precise description of the problem. In the
following sections, we describe how the problem of optimizing contour lines can be modeled in
standard form. This includes constructing a suitable objective function f , representing contours
as a vector X ∈ Rm and mathematically defining constraints on the contours.

Note on terminology: In the above f (X) is referred to as the objective function, which is
common terminology in mathematical optimization. Another term for f (X) that we use is loss
function, the reason being that this term more explicitly captures our intent to minimize the value
of f (X). With that being said, the reader can treat the terms as synonyms.
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Figure 3.1: An illustration of a spline point. Each spline point has a position (ppos), tangent
(ptangent) and scalars (out, in)

3.2 Bézier Spline Representation
As both objective f and constraints ci depend on the solution X , we first consider how X should
represent contour lines. To represent contour lines of a solution we use Bézier splines, as defined
in Section 2.5, which in turn consist of multiple connected Bézier curves. There are multiple
ways to represent this mathematically. We present two:

Representation 1: One obvious method is representing a Bézier spline as a list of Bézier
curves. We exclusively use cubic Bézier curves for contours. Cubic Bézier curves are defined by
four points in R2, thus one Bézier curve can be represented by a vector in R8. A Bézier spline of
n Bézier curves can thus be represented as a vector of size 8n. One problem with this approach is
that extra measures are required to ensure the geometric continuity of the spline as discussed in
Section 2.5. Recall that, to have geometric continuity requires two Bézier curves have a common
endpoint, as well as a common tangent direction at this point. Since the vector representation of a
Bézier spline uses two distinct points to model the endpoints of adjacent curves, extra constraints
are needed to ensure that these points are equal and share tangent direction. For this reason, we
use another representation, which merges the common endpoints by default.

Representation 2: In this representation, the spline is expressed by what we call spline points
instead of all the control points of the Bézier curves. A spline point contains five pieces of
information: The coordinates of where two curves meet, a tangent vector at that point, and a the
length of the tangent vectors in each direction. Mathematically, a spline point is a 5-tuple

p = (posx,posy,angle,out, in)

with the following named fields: The position is a coordinate pair ppos = (posx, posy), the tangent
vector ptangent = (cos(angle),sin(angle)), and the length of the tangent going out (out) and in
(in) at the point. Figure 3.1 illustrates this representation. Given two spline points p0 and p1 in
this representation, the cubic Bézier curve B[P0,P1,P2,P3](t) between them has control points

P0 = ppos
0

P1 = ppos
0 + ptangent

0 · pout

P2 = ppos
1 − ptangent

0 · pin

P3 = ppos
1 .

(3.2)

Thus it is easy to convert between the two representations. A Bézier spline of n Bézier curves is
represented by n+1 spline points. Note that this representation enforces geometric continuity
automatically. When changing ppos or ptangent for some spline point p, both the next and previous
Bézier curve is affected, as p controls the endpoint and tangent of both curves. A spline is
denoted S = (p0, p1, . . . , pn) where each pi is a spline point. This invites for the notation p ∈ S
meaning p is a spline point in S. However, often the Bézier curves are needed and not just
the spline points. Thus we also introduce the slightly abused notation of B ∈ S to indicate a
Bézier curve B of the spline S. This corresponds to constructing the Bézier curve defined by two
consecutive spline points using Equation (3.2).
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3.3 Solution Representation
Using the spline point representation for Bézier splines simplifies the task of defining the set
of feasible solutions. A solution is simply a sequence of Bézier splines of some fixed size
determined by the initial solution. Given an initial solution X = (Si : i ∈ {0, . . . ,n−1}) where
each spline Si has |Si| spline points, then a solution X = (Si : i ∈ {0, . . . ,n−1}) must also have
n Bézier splines each of size |Si| respectively. This is required to keep the number of optimization
variables constant which is required from the standard form Equation (3.1). Note that the standard
form requires a vector X ∈Rm, and as we represent each spline Si in the solution using the spline
point representation from the previous section, the total dimension is

m = 5
n−1

∑
i=0

|Si|. (3.3)

3.4 Constants
Our optimization problem has certain constants used in the loss function and constraints. These
are not optimized but used to ensure that everything behaves correctly. These include constants
such as the accurate contour lines and their depth, the Bézier spline depths, the target curvature
and area score. In particular the target curvature and area score are defined from the chart scale
that the chart should be rendered in. As such, we dedicate a short subsection to explain the chart
scale.

3.4.1 Defining the Chart Scale
As it is very impractical to display geographical in a 1-to-1 manner, it is natural to scale data by
some amount, before displaying it. The scaling factor called the chart scale, is different with each
dataset, and is written as x : y meaning x units on the chart correspond to y units in the dataset.
D1 has a chart scale of 1 : 50000 while D2 and D3 have a chart scale of 1 : 25000. Using the
chart scale allows for conversion between the chart and data. As an example, consider measuring
one millimeter on a chart with chart scale 1 : 50000. This corresponds to 50000mm = 50m in
the dataset. To summarize if two data points have a distance of 50, they will be one millimeter
apart on the chart with a chart scale of 1 : 50000.

3.4.2 Accurate Contours
Firstly the accurate contours are important constants as they are used to ensure depth constraint
are satisfied which which is further elaborated in Section 3.6.1. We denote the set of all accurate
contours by C = {Ai : i ∈ {0, . . . ,k}}, where each Ai is a accurate contour line. The accurate
contours are represented with a height h and a poly-line p of connected line segments. As such,
we will refer to the height of an accurate contour Ah

i , the polyline Ap
i and line segments ℓ ∈Ap

i .
The height is a metric of distance above the water surface, thus for bathymetric contours these
values are negative. When we write Ah

i <Ah
j it means that the i-th contour is lower than the j-th.

A optimized contour S is likewise associated with a constant height which we denote by Sh. Note
that as the height is a constant value it is not directly included in the solution definition seen in
Section 3.3.

3.4.3 Target Curvature and Area Score
The loss function which we introduce shortly requires two additional constants. A target curvature
κ ′ = 1

r′ and an area score A. The target curvature is the max curvature we desire and the area
score is a relation between area to loss. The following values for these constants are chosen by
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Geodatastyrelsen based on their experience. The target curvature is 1
5mm in chart scale equivalent

to r′ = 5mm in chart scale. The area scale is 2cm2 in the chart scale, meaning 2cm2 on the chart
corresponds to 1 loss. The datasets in this project are represented in meters and have different
chart scales. Thus, for a dataset of chart scale 1 : x,

r′ =
5

1000
x, A =

2
10000

x2 .

3.5 Defining the Loss Function
Before any optimization can be done a way of comparing the different solutions is needed. For
this, we will define a loss function which is a function that given a solution returns a floating point
number which we call loss. A solution with lower loss will be considered a better solution, thus
the loss function can be used to compare solutions. The loss function has to capture properties
described in Chapter 1 in order for the optimized solution to reflect the wanted properties such as
low detail and large sailable area. In the following sections, we describe our building blocks for
constructing a suitable loss function.

3.5.1 Metric: Curvature
The first property the loss function should capture is the curvature. This includes the following
desired properties:

1. The sharper the turns the higher the loss. Exceeding κ ′ by a small amount should be
insignificant compared to large deviations.

2. The curvature should be as evenly distributed as possible for curves to appear more
consistent. This means it is preferable to have a slightly too large curvature on a longer
section of the curve than to have a large curvature in a small section.

3. All Bézier curves with curvature lower than some given target κ ′ = 1
r′ , result in constant

loss. The reason for this is to discourage the algorithm from creating straight lines when a
smooth curve of acceptable curvature fits. This means that a straight line and curve with
target curvature, as well as everything in between, gets the same loss.

We recall Equation (2.6) defining curvature as seen earlier in Section 2.10 as

κ(t) =
|x′(t)y′′(t)− y′(t)x′′(t)|(

x′(t)2 + y′(t)2
)3/2 .

To see how the curvature formula naturally captures property 1, we examine it more closely: The
numerator is the absolute cross-product of the first and second derivative and the denominator is
the Euclidean distance of the derivatives raised to the third power. The derivative is the tangent
of the Bézier curve at some point t while the double derivative is the change in tangent. Sharp
turns correspond to large changes in the tangent, which in turn means large values of the second
derivative and thus a large numerator. If the length of the tangent vector is large, then the
denominator is also a large value, which reduces the curvature. This makes perfect sense as large
adjustments are not as severe if the tangent has a large magnitude itself.

To handle property 2 we want to minimize the maximum curvature for each Bézier segment.
We define the max curvature along a Bézier curve as

Curvemax(B) = max({κB(t) : t ∈ [0,1]}).

To handle property 3 the final formula for curvature loss of a Bézier curve is

Curve(B) = max(Curvemax(B) · r′,1). (3.4)
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This equation is easiest understood using curvature defined from the osculating circle. Note that
if r ≥ r′ , meaning the radius r of the smallest osculating circle along B is larger than the one of
the target, then Curve(B) = 1. Thus all curves with lower max curvature than κ ′ will result in
the same loss. It is no problem that the loss of a ’perfect’ Bézier curve is 1 as opposed to 0 as the
loss function is only used for comparisons.

3.5.2 Metric: Area
The curvature is important to achieve simplicity, however, it puts no requirements on the similarity
of the optimized and accurate contours. It is preferable that the optimized contour maintains a
degree of fidelity to the original, requiring another metric. For this purpose, we employ an area
metric to maximize the area on the deeper side of the simplified curve. As described in Chapter 1
the optimized contour must lie entirely in the deeper region of the original, implying that the
area on the deeper side of the optimized contour is less than that of the original. For this reason,
equality in the area can only be achieved if the two contours are identical. Consequently, it seems
reasonable to maximize the deep area in the loss function, as maximizing deep area without
violating the depth constraint must mean maximizing similarity between the accurate contour
and the optimized contour. Furthermore, maximizing this area also allows for more space for
ships to maneuver when navigating according to the optimized contour map.

Instead of computing the whole area enclosed by the optimized contour, we simplify the
computation by computing the area difference between the initial contour and our optimized
contour. Both are suitable as the loss function is only used for comparisons.

We recall the notation developed in Section 3.3: any solution X consists of splines S and the
initial solution denoted X consists of splines S. Now, consider connecting all the endpoints of
the Bézier curves of the initial solution. This forms a polygon represented as a sequence of line
segments, which we can denote

L =
(
[P0,P3] : B[P0,P1,P2,P3](t) ∈ S

)
.

This polygon can then serve as a baseline for the area computation. With it, the global area gain of
a contour can be defined as the difference in area between the initial polygon L and the contours
computed by our algorithm. This area is illustrated as the hatched region in Figure 3.2a. Note
that each line segment in L corresponds to a Bézier curve in S. Furthermore, there is one-to-one
correspondence between the Bézier curves in S and S as each B ∈ S is just a modification of
B ∈ S as described in Section 3.2. Thus a B ∈ S has a unique line segment ℓ ∈ L. We denote by
ℓB the line segment corresponding to B. For each Bézier curve B in S, it is possible to compute
the area ’between’ B and ℓB and we denote it Area(B, ℓB). As illustrated on Figure 3.2b, we
define ’between’ as the region enclosed by connecting endpoints of B and ℓB . The sum of the
areas computed in this way can then constitute a global area metric for the whole contour map as

Areatotal(S) = ∑
B∈S

Area(B, ℓB) .

When a Bézier curve is updated, computing the area gain as a sum of individual area gains is
advantageous for local updates. If only a few curves are modified, the efficiency of recomputing
the loss improves, as only the corresponding terms of the sum need to be considered. More
precisely if a curve B is modified into B′ then the new area Area′total is simply

Area′total = Areatotal −Area(B, ℓB)+Area(B′, ℓB
′
) .

We will now discuss the method used for computing Area(B, ℓB). The area is split up
into two parts as illustrated on Figure 3.2b. The first part is the area of the polygon defined
by connecting the endpoints of ℓB with the endpoints of B. The second part is the remaining
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(a) (b)

Figure 3.2: An illustration of the polygon L, an optimized contour S and area gain marked
in hatched grey (a). (b) shows the part marked in red of (a). B is a Bézier curve and ℓ ∈ L

is line segment. The dark hatched corresponds to Area(B) and the light hatched area
corresponds to the area of the polygon P

area inside the curve, which we already covered how to compute in Section 2.11 and denoted
Area(B). The area of a polygon is simple to compute using algorithms such as the trapezoid
formula 1. The trapezoid formula simply traverses line segments of the polygon and computes
the area under the line segment. Putting all this together, we get the area between line segment
ℓB = [u,v] and Bézier curve B as

Area(B, ℓB) = Area(B)+
1
2 ∑
(p0,p1)∈P

(px
0 −px

1)(p
y
0 +py

1) , (3.5)

where P = ([u,v], [v,P3], [P3,P0], [P0,u]) is the polygon made from connecting endpoints of
B[P0,P1,P2,P3](t) and ℓB .

3.5.3 Combining both Metrics
As mentioned earlier, our optimization has to consider both the curvature and gain in area. The
Curve function in Equation (3.4) and Area function in Equation (3.5) are of different units, thus
not directly comparable and we should not simply add them together. The Curve function is a
product of a curvature ( 1

m ) and radius (m) and therefore the Curve function is unitless. The Area
function outputs an area of unit m2. By using the area score A defined in Section 3.4, we can
convert the units of these two functions and in that way we obtain the combined function

Curve(B)− Area(B, ℓB)

A
. (3.6)

Note that Area is negated in the above formula, as minimizing −Area is equivalent to maximizing
Area. Thus minimizing Equation (3.6) results in lower curvature and larger area. Summing up all
Bézier curves results in a final loss function we get

Loss(X) = ∑
S∈X

∑
B∈S

Curve(B)− Area(B, ℓB)

A
. (3.7)

1https://en.wikipedia.org/wiki/Shoelace_formula#Triangle_formula
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3.6 Defining the Constraints
In this section, we consider what defines a feasible solution and how one can decide if a solution
is feasible. In Chapter 1 we described the criteria that must hold for our solution. In short, a
feasible solution should satisfy:

Depth: The optimized contours are not allowed to be on the shallow side of the corre-
sponding accurate contour at any point on the curve.

Intersection: The optimized contours may not intersect.

Topology: The optimized contours and initial contours must be topological equivalent.

In the following sections we describe these constraints more formally and, in addition, describe
how they can be computed. Before diving into the actual constraints new definitions are required.

Figure 3.3: An illustration of the a deep region CS
d (dark blue) and shallow region CS

s (light
blue) of a set of accurate contours CS marked with a black line. Stripped lines indicate

accurate contours of different heights

Consider the boundary of our problem, i.e., the edge of our dataset. As described in Section 1.2,
the boundary, B, corresponds to one or multiple contour lines with a depth of zero. All other
geometries in the dataset lie in the interior of the boundary. We use BI to denote the set of all
points in the interior of B.

Consider now also part of a solution S ∈X with height Sh. Recall that S is a Bézier spline
with a corresponding initial solution S. Recall also that S is a less detailed representation of some
accurate contour. We denote the set of these accurate contours by CS = {Ai : Ah

i = Sh,Ai ∈C},
where C is the set of all accurate contours as mentioned in Section 3.4. As CS is a set of contours
of height h, it splits up the set BI into sub-regions. A shallow region CS

s less deep than h and the
deeper region CS

d . Figure 3.3 illustrates this sub-division. There might exist multiple splines with
height h in some solution X . We denote the set of these XS = {Si : Sh

i = Sh,Si ∈X}. Similarly,
XS splits up BI into two-regions which we define XS

s and XS
d . Figure 3.4 illustrates this division.

3.6.1 Depth Constraint
The depth constraint must ensure that no optimized contour line overestimates the true depth.
Mathematically, for all S ∈X , the depth constraint is satisfied if and only if

CS
s ∩XS

d = /0 .
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Figure 3.4: An illustration of the a deep region XS
d (dark blue) and shallow region XS

s (light
blue) of a set of optimized contours XS marked with a black line. Gray dashed lines indicate

optimized contours of different heights and red dashed lines indicate accurate contours

Figure 3.5: An illustration of an invalid update S shown in orange to an initial solution S
shown in black. The red stripped line represents an accurate contour

In other words, this means that no point on the deep side of the optimized contour is on the
shallow side of its corresponding accurate contour.

A way of computing this is still required. In Section 2.9 we saw how one by computation can
decide if a line segment intersects the interior of a closed Bézier spline. However, this cannot
directly be utilized as CS and XS might not be closed if the contours connect with the boundary
B. The algorithm can however be used to compute if a line segment in CS is in the interior of
the closed Bézier spline achieved by connecting the endpoints of S and S. We denote the set of
interior point SS and Figure 3.5 illustrates this interior region. More precisely we can compute if

CS
s ∩SS = /0.

In the remaining part of this section, we show that this is enough:

Theorem 3.6.1 Let S ∈X be part of a feasible solution X . Let S be an arbitrary Bézier spline
with the same endpoints as S. Let X equal X with S substituted for S. Then CS

s ∩SS = /0 ⇐⇒
CS

s ∩XS
d = /0.

To show that Theorem 3.6.1 we also consider the set XS as the set of contours in X with height
h. To ease the notation we use D = XS

d , D = XS
d and S =CS

s for this section. Recall that D and D
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respectively are the deep regions of an updated and feasible optimized contour of some height h.
Similarly, S is the shallow region of the accurate contours of height h. As we assume X to be
feasible it is guaranteed that

S∪D = /0, (3.8)

as the initial solution would otherwise not be feasible. Additionally, consider the sets D∩SS.
These are shared points of D and SS and represent the set of points that are in D but not in D.
Thus we describe D as

D = (D∪SS)\ (D∩SS).

For the first case assume S∩SS = /0. It follows that (D∪SS)∩S = /0, thus S∩D = /0. Likewise
in the second case assume S∩SS ̸= /0, then

(D∪SS)∩S ̸= /0 ⊆ S.

As a result of Equation (3.8) we have that,

∄p : p ∈ (D∩SS),p ∈ S,

and thus S∩D ̸= /0. This shows us that checking in SS suffice. Checking against all points in S is
infeasible to compute thus, we instead check against all line segments in CS. If there is no line
segment in SS, then S cannot enter the S and the depth constraint is satisfied. We have already
seen a way to check if a line segments is in the interior of a closed Bézier spline in Section 2.9.

To summarize the method, intersection between each Bézier curve and constraint is checked.
If they intersect, it is considered a violation. If not, an interior point algorithm is used for an
arbitrary point on each line segment in CS against SS. The constraint is now satisfied if and only
if no line segment intersects S and no point is in SS. The correctness follows from Section 2.9.
We denote the algorithm for checking if a line segment ℓ is in the set SS defined by two splines S
and S

Interior(ℓ,S) =

{
1 if ∃p : p ∈ ℓ,p ∈ SS
0 otherwise

.

Finally we define the depth constraint from the above function, S and CS as

Depth(S,CS) = ∑
C∈CS

∑
ℓ∈C p

Interior(ℓ,SS).

Note that this only constraints a single Bézier spline, thus it must be applied to each S ∈X for a
solution X . The result of Depth equals the number of line segments in SS, thus Depth is satisfied
only when equal to 0.

3.6.2 Intersection Constraint
As mentioned in Section 1.2, contour lines represent a depth, thus two contours with different
depth must never intersect. An intersection would indicate that a point has two depths, which
cannot be true. The intersection constraint should prevent this by not allowing contours to
intersect. Mathematically, given two contours S and S′,

∄p : p ∈B,p ∈B′

for Bézier curves B ∈ S and B′ ∈ S′. Checking the intersection between two Bézier curves is
already covered in Section 2.8. We turn this algorithm into a 0-1-valued function that takes two
Bézier curves B and B′ and returns the result of the intersection check, that is,

Intersection(B,B′) =

{
1 ∃p : p ∈B,p ∈B′

0 otherwise
.
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Using the above function, intersection between two Bézier splines S and S′ is computed as the
function

Intersection(S,S′) = ∑
B∈S

∑
B′∈S′

Intersection(B,B′) . (3.9)

We use Equation (3.9) as the intersection constraint in the optimization problem. Note that the
function computes the count of how many Bézier curves intersect, thus Intersection(S,S′) = 0 is
required for the intersection constraint to be satisfied.

Computing intersections between all pairs of S,S′ ∈X×X ensures that no contour lines
intersect, however, less can suffice. As S is a contour line it splits up the plane on points of
lower and higher elevations. Thus if S′ has height S′h > Sh, then it cannot intersect a contour of
height h < Sh without also intersecting S. Therefore, it suffices to only check the intersection of
neighbor height contour lines.

3.6.3 Topology Constraint
The topology of the solution X and the initial solution X must stay equivalent throughout the
optimization as explained in Chapter 1. Recall the notation from Section 3.4: XS

d and XS
d being

sets of all points on the deep regions defined by all optimized contours of height Sh of X and X
respectively. Mathematically, for all S ∈X let Z and Z be the set of optimized contours lying in
XS

d and XS
d respectively then the topology constraint requires

Z = Z. (3.10)

That is, if a spline initially lies in the deep region of a contour, then it must also lie in the deep
region after the optimization. Similar to the depth constraint we simplify the problem by just
considering the interior SS of connecting S and S at their common endpoints, and checking if
any S′ is in the interior. The correction is similar to Theorem 3.6.1.

Theorem 3.6.2 Let S ∈X be part of a feasible solution X . Let S be an arbitrary Bézier spline
with the same endpoints as S. Let X equal X with S substituted for S. Finally, let z be the set of
contours in the interior of SS. If z = /0 then X satisfy Equation (3.10).

Z∩ z represent contours that are in XS
d but not in XS

d . This provides us with the following relation

Z = (Z ∪ z)\ (Z ∩ z)

Assuming z = /0 then Z = Z meaning that contours in X and X has the same relation, thus X
also satisfy Equation (3.10).

Using Theorem 3.6.2 we can check if an update of a single spline of some feasible solution
provides a solution satisfying the topology constraint. If a solution X has multiple splines
differing from a feasible solution X , Theorem 3.6.2 can be used for each differing spline to
check if X satisfies the topology constraint. For X to satisfy the topology constraint the set z
in Theorem 3.6.2 has to be empty for all differing splines. This is true since if z = /0 then X is
feasible and can thus be fed to Theorem 3.6.2 targeting another spline.

The algorithm seen in Section 2.9 also works for checking if a Bézier curve is in the interior
of a Bézier spline as of Problem 2.9.3. Thus the algorithm is used to define the function

Interior(B,S) =

{
1 if ∃p : p ∈B,p ∈ SS
0 otherwise

for a Bézier curve B and Bézier spline S. The topology constraint for two Bézier splines S and
S′ is now defined by the function

Topology(S,S′) = ∑
B′∈S′

Interior(B′,SS),
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which is satisfied only when equal to 0. Applying the topology constraint for all pairs S,S′ ∈
X×X ensures a correct solution, however, as we saw in Section 3.6.2 fewer constraints can
also do the job. By only checking against the contours of neighboring heights, all topology errors
should be caught. Say two non-neighboring contours violate the topology constraint. Then the
violating contour must also violate the topology constraint with one of its neighbors.

3.6.4 Static Endpoint Requirement
This requirement is simply that endpoints of contours must be stationary. In this context, the
endpoints of a contour are where the contour meets either the boundary of the dataset or itself
resulting in a closed curve. It is not strictly needed, but having this requirement is a simple way
to ensure that contour lines stay connected to the boundary or stay closed. Instead of modeling it
as a constraint, we consider the endpoint position constant and thus not a part of the solution X .

3.7 Final Optimization Problem
With all previous sections, we can finally define the optimization problem in standard form. For
a solution X = (Si : i ∈ {0, ...,n−1}) of n Bézier splines, with k depth constraints C = {Ai :
i ∈ {0, ...,k}}, the problem is described by

minimize
X∈Rm

Loss(X)

subject to

Depth(Si,H) = 0, Si ∈ S,H = {Ai ∈C : Ah
i = Sh

i }
Depth(Si,B) = 0, Si ∈ S,B = {Ai ∈C : Ah

i = 0}
Intersection(Si,S j) = 0, Si,S j ∈ S×S
Topology(Si,S j) = 0, Si,S j ∈ S×S

.

Note that there are two depth constraints. One is for the accurate contours with Ah
i = Sh and one

for the boundary Ah
i = 0.

3.8 Analysis of the Optimization Problem
Optimization problems exist in numerous shapes thus large amounts of optimization algorithms
have developed over time. Different algorithms take advantage of specific properties of the
optimization problem for faster and better convergence. These are properties such as once or
twice differentiable loss functions allowing for gradient base optimization or Newton’s method
respectively. Likewise, if the loss function and constraints are linear, linear programming is an
obvious choice. These methods are iterative algorithms further detailed in [27].

In cases where the optimization problem does not have such properties, more general op-
timization techniques are required. These optimization problems are typically referred to as
black box optimization since loss functions and constraints are treated as a black box with no
assumptions on their interior functionality. These optimization techniques are more general and
are applicable in a larger domain than previously named algorithms at the cost of efficiency or
results.

Considering our model as presented in Section 3.7 it is clear that this is no simple optimization
task as both the loss function and constraints are complicated non-linear functions. In the next
subsection, we elaborate on our thoughts about the problem, more specifically the loss function.
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3.8.1 Examining the Loss Function
The loss function as seen in Equation (3.7) is quite complex, consisting of multiple terms of area
and curvature containing max and absolute functions. This leaves us with few to no properties to
exploit, as we will explain below.

A differentiable loss function is desirable as it allows for computation of the gradient, which
provides the steepest direction towards a lower loss. Intuitively choosing the steepest direction
results in fewer optimization steps. While the Area function used in our loss function is quite
involved, it is still just made up of simple terms, and thus computing a derivative should be a
doable task.

However, the Curve function is not as simple. It consists both of taking max and absolute
values, making it a non-smooth function and, thus not differentiable. One possible approach
would be to split up the function into multiple smooth functions and compute derivatives of
these. For a smooth function, the gradient provides information about the slope in the close
neighborhood. When a function is non-smooth this property might no longer holds. That being
said, a gradient might still be useful. One approach would be to numerically approximate the
gradient. For a function f (x) with x∈Rn, some small value ε , basis vector ei and i= {0, ...,n−1}
a popular approach for computing the partial derivative ∂ f/∂xi at x is

∂ f
∂xi

(x) =
f (x+ εei)− f (x)

ε
.

Smaller ε values provide more precise derivatives up until a certain point where numeric instabil-
ity overrules the result. We refer to [27, p 195] for a more elaborate explanation and bounds on
numeric instability.

For the above reasons, we think it appropriate to consider the problem as a black box
optimization problem. In Chapter 4 describe examples of algorithms suitable for these kinds of
optimizations.

Remark: As black box optimization techniques are not able to exploit the properties of the
functions, we cannot expect the same theoretical guarantees as exists with linear programming
or gradient descent, for example, such as bounded conversion time and optimal results. As our
optimization is run on large amounts of data, speed is crucial for our optimization. Finding
the optimal value is not as important. As the output of our problem is, above all, meant to be
visualized, ending up in a local minimum is not particularly detrimental. In other words, finding
a local minimum close to the global minimum will suffice.

Future work: As mentioned, it would be interesting to experiment with approximating the
gradient of our loss function. This would certainly provide a very different way of tackling the
optimization problem perhaps shedding some light on the contents of the black box that we are
dealing with in the present thesis.

35



Chapter 4

Black Box Optimization

As we have described in Section 3.8, searching for solutions to the optimization problem we have
defined in Section 3.7 is a non-trivial task. The optimization problem has no clear properties that
we are able to cleverly exploit, and we will thus consider black box optimization techniques. In
this section, we present different approaches found in the literature to handle exactly this kind of
black box optimization.

4.1 Direct Search Methods
In this section we describe Direct Search, a simple iterative black box optimization technique
which, to our knowledge, was first phrased in 1961 [13]. In each iteration of a Direct Search
algorithm the current solution is compared to a set of new solutions. A new and better solution is
chosen, if it exists, and the algorithm proceeds to the next iteration. For this project, we refer to
following definition from [19, p. 394]:

1. There is assumed to be an order relation ≺ between any two points x and y in the solution
space. For instance, in unconstrained minimization, points x and y may be compared as
follows: x ≺ y if f (x) < f (y). That is, x is "better" than y because it yields a lower loss
function value.

2. At any iteration, only a finite number of possible new candidates exists and the possibilities
can be enumerated in advance.

Different Direct Search methods differ in how they choose new candidate solutions. A common
approach in an optimization step is to choose the best candidate, where "best" is defined according
to point 1 above. Note that this approach treats f as a black box, as no assumptions on the interior
of f are made. Everything needed for such optimizations to run is an arbitrary function returning
comparable values.

Direct search methods are often very simple and easy to implement. Having that said, Direct
Search methods also have their liabilities. Many variations are pure heuristics with no guarantees
of discovering a good solution. In certain cases, they are also slow, as convergence requires
numerous steps. This is often a result of small step sizes and the problem of deciding if a search
has hit a local minimum without having access to gradient information.

4.1.1 Compass Search
One of the earliest and simplest Direct Search methods is known as Compass Search. Having a
solution x ∈ Rn and a step size s, candidate solutions are chosen by adding and subtracting s for
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Figure 4.1: Compass Search on diagonal loss landscape. Lighter colors represent lower loss
(desired) with a red square as a target.

each index in x e.g. the candidate set is described by

{x+ ei · s′ : i ∈ {0, . . . ,n−1}, s′ ∈ {−s,s}} ,

where ei is the standard basis vector. For a solution x∈R2, this corresponds to checking directions
north, south, east, and west in the loss landscape as illustrated in Figure 4.1. If an improving
solution is found, we iterate on that. If not, a new step size s = s/2 is chosen. Choosing a small
initial step size s results in slow convergence while choosing a large s has a higher probability of
so-to-speak overshooting. As Compass Search has 2n candidates, an optimization step is O(n),
which for large values of n this is quite slow.

Direct search has also been proven to perform better in lower dimensions [19, p 408]. In
certain cases, Compass Search can also converge very slowly as illustrated on Figure 4.1. As
the optimization step must move in a diagonal direction in order to hit the target square, it has
to decrease s multiple times, leading to small optimization steps and thus slow convergence.
All that said, Compass Search can in other cases quickly discover a reasonable solution, and
is well suited for a naive solution for our optimization. As we see later in Section 6.1 a slight
modification of Compass Search has been implemented, in which only a subset of the possible
solutions are tried. Compass search will correspond to either moving a spline point or rotating or
scaling its tangent. In Section 7.3 we experiment with how these parameters could be chosen.

4.1.2 Combined Compass Search
Consider the case where a spline point in our solution requires a move and a rotation to reach
an optimal curvature. As our optimization problem has constraints, Compass Search might not
succeed as a move, and rotation individually might violate a constraint while the combination
will not. Thus, we expect that allowing optimization steps combining different dimensions can
result in a lower loss.

This motivates what we call Combined Compass Search which simply extends the candidate
set by all combinations of the previous candidate set. It is expected that this makes a single
iteration slower, but results in lower loss. This approach is only applicable in low dimensions,
as the number of combinations blows up. However, this is not a problem in our case, as our
optimization algorithm only considers x ∈ R5 as described later in Section 6.1. In Section 7.1
most of our expectations are confirmed.
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4.2 Random Search
In optimization, Random Search is the class of optimization algorithms that use randomness to
define the method. These algorithms are interesting for the following reasons, as seen in [39]:
Firstly, they are useful for ill-structured global optimization problems, where the loss function is
non-convex and non-differentiable. Secondly, in contrast to deterministic methods such as Branch
and Bound, which guarantees convergence to an optimal result, Random Search only guarantees
convergence with some probability in order to gain efficiency. Finally, they are also easy to
implement on complex black box problems. These are exactly the desired properties as described
in Section 3.8, which is why we dedicate this section to describing them. Following terminology
from [40], Random Search algorithms are categorized as instance-based or model-based.

Model-based Random Search algorithms generate solutions based on some distribution of
the model, which may be updated during the optimization. It is not trivial how such an approach
would apply to our problem as it would require some distribution of valid contour lines. Thus,
we abandon this approach and instead consider instance-based Random Search.

Instance-based Random Search algorithms generate new solution based on the current solu-
tion, which is similar to Direct Search seen in Section 4.1. As the problem already provides an
initial solution, and and optimal solutions probably is not far from the initial solution, instance-
based algorithms seems like the direction to go.

4.2.1 Rastrigin’s Family of Random Searches
The instance-based algorithms we consider in this project can be boiled down to two points of
variation, being (1) the direction and (2) the step size. We denote the direction as a unit vector
d ∈ Rn and the step size as a scalar value θ . That is, given a solution x ∈ Rn, the solution of the
next iteration, x′, is computed by

x′ = x+θd .

Choosing a suitable d and θ is the challenging part and it is done differently by the various
optimization algorithms, but always some randomness is involved. Rastrigin [28] introduces
a simple general approach which is to choose d uniformly from the n-dimentional unit sphere.
This simplifies the problem into just picking a suitable step size. Keeping it simple, Rastrigin
introduced the fixed step size Random Search (FSSRS) [28], which, as the name suggests, uses a
predefined fixed step size combined with a uniformly random chosen d. At each step, the solution
is updated so long as the update is improving the loss, i.e., f (x′)< f (x) for a loss function f . If
a predefined step size is given, this method is extremely simple, and computing a new solution x′

is fast. However, finding a suitable step size θ depends on the specific problem and is thus up to
the user. Finding a suitable step size is possible in numerous ways. One of our configurations
uses FSSRS, and we refer to Section 7.3 for elaboration of our parameter choice.

4.2.2 Alternative Step Sizes
Having to discover a suitable fixed step size, as is necessary with the above approach, comes with
multiple drawbacks, namely (1) finding the optimal step size becomes an optimization problem in
itself with no guaranties that a step size generalizes to other all datasets and (2) the optimal step
size may vary throughout the optimization, which a fixed step size cannot model. This motivates
other step size approaches like Optimum Step Size Random Search (OSSRS) [26] or Adaptive
Step Size Random Search (ASSRS) [31]. The Optimum Step Size approach uses a variable θ and
aims for the optimum θ ′ at each step, such that for any θ

f (x+θ
′d)≤ f (x+θd) .

Computing θ ′ may not be trivial, but is often simpler, as it is only a one-dimensional
optimization problem. Using an optimal step size requires fewer steps for convergence, however,
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each step is slower to compute compared to FSSRS. If computing θ ′ prime is too slow this
method yields no performance boost. Additionally, computing θ ′ depends on f , thus it has to be
tailored for each specific problem.

ASSRS was invented as an extension to FSSRS to solve drawbacks (2). The intuition of
ASSRS is to increase the step size if a larger step size yields better loss and on the other hand,
decrease the step size if all possible steps would end up in an infeasible solution. More precisely,
assume we have some step size θ , a value a such that 1 > a > 0, and a counter c. For a uniform
random unit vector d and another step size θ ′ = θ(1+a) compare

f (x), f (x+θd), f (x+θ
′d) .

If f (x) is smallest, increment c and do nothing. If c exceeds some limit m, the step size is reduced.
If f (x+θd) is smallest, do the optimization step with step size θ . If f (x+θ ′d) is smallest, do
the optimization step with θ ′ and update θ = θ ′. In this way, if the larger step size improves
the results, it is chosen and if the step size is too large to yield improvement for some time, it is
reduced.

This optimization has hyperparameters a, m, and the initial step size θ . If a bad step size
is chosen the algorithm will eventually adapt, and this just results in a slow start. How fast the
algorithm adapts depends on a and m.

Future work: The paper [31] in which Adaptive Step Size Random Search was introduced
shows great potential for this method in higher dimensions compared to derivative-based ap-
proaches such as the Newton–Raphson method. Testing it for our problem would thus be
interesting, however, this is left as future work.

Future work: Common for all previously described optimization methods is that they only do
improving steps. Only accepting improvement steps is beneficial for fast convergence but also
comes at a cost. In certain cases, it might be beneficial to perform a step resulting in worse loss,
as it might expose the algorithm to new minima of possibly lower loss. An illustration is shown in
Figure 4.2, where loss compromises have to be made to move from a local minimum (light blue
dots) to the global minimum (dark red). For this reason, it would also be interesting to investigate

Figure 4.2: An example loss curve over one parameter. Light blue and dark red points mark
local and global minimum respectively.
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methods allowing steps compromising steps: Simulated annealing [18] is an interesting example
that can be used in conjunction with the previously described Random Search methods. In short,
the idea is to allow compromising steps with a certain probability. This probability is defined
by a cooling function h(t) where t is a time parameter. As t increases h ’cools down’ resulting
in lower probabilities of compromising steps. Simulated annealing requires a definition of a
neighboring solution. For our problem, neighbor solutions could be defined as solutions close in
Euclidean space. More precisely a solution x and x′ = θd would be neighbors for some step size
and direction defined using one of the methods seen previously. Using simulated annealing for
this optimization is left as future work.
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Chapter 5

Constraint Checking with R-trees

In a single step of the optimization algorithm, we must verify that the changes made to the
contour do not make the solution infeasible, i.e., it must not violate any of the constraints of
the problem. The naive approach to this verification is to test the curves affected by the change
against all accurate and optimized contours in the dataset. Evidently, this is neither a clever nor
efficient method. This section details our effort to utilize so-called R-trees as a data structure to
store contour lines and perform efficient queries on them. The textbook by Y. Manolopoulos et
al. [25] has served as a reference for the section.

5.1 The Original R-tree
The R-tree was introduced by Guttman [12] in an effort to efficiently answer queries on geometric
objects. Specifically, he tried his data structure in a Very-Large-Scale Integration (VLSI) context,
where a query could be formulated as: "Is this area on the die already occupied?". The R-tree can
efficiently answer this query because it creates an index of the objects according to their spatial
location.

The R-tree is, in essence, a balanced search tree, where the geometric objects stored are
represented by minimum bounding rectangles (MBRs). Each internal node in an R-tree represents
an MBR that completely encloses its children. Internal nodes of the tree contain pointers to child
nodes as well as the minimum bounding rectangle that encompasses all the rectangles in the child
nodes. The leaves then contain the actual data objects (or pointers to them). As such, the root of
the tree will have an MBR enclosing the whole spatial region along with pointers to child nodes
with more and more fine-grained MBRs as we move down the tree. It should be apparent how
this structure aids in indexing: If a query rectangle does not overlap with the MBR of a given
node u in the tree, then it cannot overlap with any of the children of u. Thus the whole subtree
rooted at node u can be safely ignored in the search. However, the MBR of some geometric
objects can be larger than the object itself. This means that results returned by the tree have to be
examined more closely in another routine, specific to the type of geometric object stored and the
query type. Figure 5.1 illustrates a small example of MBRs in an R-tree over two Bézier curves.

To be more precise, and following the presentation in [25], an R-tree is a height-balanced
search tree with fan-out given by two numbers m and M s.t. m ≤ M/2. Leaf nodes contain
entries of the form (mbr, id), where mbr is the MBR of the geometric object stored in the
entry, and id is some identifier of the object. Internal nodes contain entries of the form (mbr,
p), where mbr is the MBR of the (multiple) MBRs contained in the child node pointed to by p.
The tree must satisfy the following properties:

• Every node in the tree contains between m and M entries, except for the root, which is
allowed to have less than m entries.
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Figure 5.1: A small example of an R-tree over two Bézier curves. Black boxes are MBRs of
the Bézier curves representing leaves. The dashed gray box is the MBR of the two leaves.

• The minimum number of entries in the root is 2.1

• All leaves of the tree are at the same level/depth.

In general, R-trees support the following operations: Insert, Delete, Split, and Query.
Most of these are self-explanatory in regard to their effect on the tree. The Split operation is
necessary to keep the size of the tree nodes within the allowed range: If an object is inserted such
that the tree node u it ends up in exceeds M entries, the Split operation splits u into two or more
new nodes.

We want to briefly mention two aspects of R-trees that will be relevant to us. Firstly, since
nodes in the tree are not required to be at full capacity, it makes sense to talk about the storage
utilization of a specific tree. Basically, how much of the space reserved by the data structure is
filled with actual data. Secondly, the standard R-tree definition allows nodes at the same level in
the tree to have overlapping MBRs. When querying either a point or area, this can lead to trying
multiple search paths before finding the correct leaf. As such, building the tree in such a way that
MBR overlap is minimized is often desired.

5.1.1 Dynamic and Static Variations
An important distinction between types of R-trees is whether they are designed to be dynamic
or static. We will briefly explain the difference, and then argue for which type best suits our
application.

A dynamic R-tree is designed to handle objects being inserted one-by-one and to handle
queries mixed into these insertions. When the tree is built in this way, the structure of the
tree is impacted mostly by the co-called splitting criteria used, i.e., what to do when a
node has reached its capacity and needs to be split into two new nodes. The typical storage
utilization of dynamic trees is around 60% to 70% [3].

A static R-tree is designed to have certain advantages when the set of objects is of a static
nature and is all known beforehand. This enables some thought to be put into the way
the tree is constructed from the objects, possibly giving it some desirable characteristics,
such as good storage utilization or overlap minimization. The specific way the objects
are prepared is called packing, and the static R-trees are primarily distinguished by their
chosen approach to packing.

In the present context, we are trying to improve the performance of constraint checking. The
depth constraint requires checking against the accurate contour lines. The accurate contours do

1As a special case, if the root is itself a leaf, it is allowed to contain only zero or one entry.
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not change during execution, and furthermore are known to us from the get-go. In combination,
these facts enable the use of static trees. As such we focus our attention on describing a static
variation of the R-tree in the following section.

Note: Static R-trees are not static in the sense that they disallow insertions, deletions, and
splitting. As such, a static tree can be built using packing to have a high storage utilization, but if
lots of insertions and deletions are performed afterward, the properties of the tree will of course
degenerate.

5.2 The Hilbert Packed R-tree
In this section, we first describe the properties of Hilbert Packed R-tree (HPR-tree) that make it
interesting to us. We will then go on to explain how packing is done, which is the distinguishing
feature of this static data structure.

The HPR-tree aims to provide close to 100% storage utilization without impacting the
performance of queries, that is to say, it has at least the same performance as the R*-tree2 [16].
In particular, the high storage utilization makes the HPR-tree a promising data structure in our
application since, intuitively, it gives better scalability. In addition, as will become apparent
below, packing using Hilbert values is simple to implement.

With the above motivation mentioned, it should be noted that HPR-trees are based on
heuristics, and as such do not provide any improved theoretical guarantees with regard to query
performance compared to traditional R-trees. However, empirical results show good query
performance compared to both dynamic R-trees and other static R-tree versions [25, 16, 23]. We
now look into how it is achieved.

5.2.1 The Hilbert Curve
The Hilbert curve [30, pp. 9–30] is a so-called space-filling curve, which means that it is a
recursively-defined curve that, in the limit, visits all points in k-dimensional space exactly once
and never crosses itself. In our application we have k = 2, so we think of the curve as a mapping
from 2-dimensional coordinates to Hilbert values. Figure 5.2 shows how a Hilbert curve is
constructed from a basic pattern (a curve of order 1). For higher orders, each "part" of the curve
is replaced by the order 1 pattern, possibly rotated, and the ends are connected. What we mean
by the curve visiting all points in the plane in the limit is, specifically, that we let the order of
the curve go toward infinity. In practice, the appropriate order curve to use is determined by the
precision of the coordinates of the underlying data.

The important property of the Hilbert curve is that it imposes a linear ordering on all points
in the plane. Again, consider the curve of order 1 in Figure 5.2: Each tile in the 2-by-2 grid can
be denoted by a (x,y) pair of coordinates. The curve imposes an ordering on these coordinates
s.t. (0,0) 7→ 1, (0,1) 7→ 2, (1,1) 7→ 3 and (1,0) 7→ 4. So, when the tiles are sorted based on their
Hilbert values, their ordering will follow the shape of the curve in the plane. The Hilbert curve is,
as mentioned, a type of space-filling curve, which implies that others do exist, notably the Z-order
curve. In [9] it is argued that, of the two, the Hilbert curve is the best mapping for preserving
distance. As such, points that are close in the plane are most likely to have 1-dimensional values
that are close to each other, if the Hilbert curve is used.

5.2.2 Packing a Tree
The defining characteristic of static R-trees is as mentioned in Section 5.1.1 the way they are
packed a.k.a. bulk loaded, which essentially is just a term referring to how data is prepared before

2The R*-tree is often used as a benchmark with regards to querying, which is explained in [25].
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Figure 5.2: Image showing the 1st- (left), 2nd- (middle) and 3rd-order (right) Hilbert curves. The curve has
been annotated with the Hilbert value of the points in 2-dimensional space along the curve.

Source: By User:Braindrain0000, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=47570255

the tree is built. The concept of packing was introduced in [29], but we will go straight to Hilbert
packing, as it deviates very little from the original approach.

The packing algorithm for the Hilbert Packed R-tree, as introduced in [16], takes a bottom-up
approach, roughly as follows: The input rectangles are sorted according to their Hilbert value.
The Hilbert values are computed from the center point of the rectangle. Now for some integer
c > 1, go through the list of rectangles and assign each c consecutive rectangle to a leaf, creating
new leaves as needed. Once this is done, all leaves will be at their capacity except potentially the
last one. The MBR of the leaf nodes are computed and the procedure repeats to create the next
layer in the tree until the root is reached. Note that the Hilbert value is only used to sort the input
rectangles. Any subsequent sorting of MBR nodes is done from their creation time.

The nearly 100% storage utilization of the resulting R-tree follows directly from the packing
method. In each layer of the tree, all nodes except one are guaranteed to be at full capacity. In
this project, we used c = 2 thus constructing a binary tree.

5.3 Lazy Update R-tree
Our optimization problem is subject not only to depth constraints but also to intersection
constraints as explained in Section 3.6.2. To briefly recap, two contour lines are not allowed to
intersect, as this would indicate two different water depths at the same point, which is impossible.
As such, we are forced to not only check for intersections between contour lines and depth
constraints, but also between contour lines and other contour lines.

At first, this might seem like a problem. After all, the reason we can benefit from the (static)
Hilbert Packed R-tree in Section 5.2 is that the line segments representing the depth constraints
do not change during the optimization. On the contrary, all contour lines are subject to changes
during a run of the optimization. Since the geometric objects we are trying to store are not static
by nature, does it mean we cannot use a static R-tree? In the next subsection, we describe how
this "problem" is handled.

5.3.1 Dynamic Trees Not Needed
We wish to store the contour lines in a data structure such that, given a Bézier curve (remember,
contour lines are represented as Bézier splines a.k.a. multiple Bézier curves) we can efficiently
determine if the curve intersects with any other curves in the data set. Even though the contour
lines are not completely static throughout the optimization, we do have access to an initial
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solution as the problem input. This fact alone enables us to use the HPR-tree. However, this also
implies that we have to update the tree each time a Bézier curve is changed by the optimization
algorithm, which happens in every iteration. We want to avoid this for two reasons:

• Updating an R-tree can be a slow procedure since the tree properties have to be upheld.
Less time spent updating the tree should, as a consequence, give faster iterations.

• The more frequent updates are needed, the less suited the R-tree is for parallel access. With
parallelization of the optimization algorithm as motivation, we want to keep the R-tree as
un-changing as possible.

The Lazy Update R-tree (LUR-tree) is introduced in [21] as a way to postpone doing updates
of the tree, without impacting the search query performance too much. We recall that the curves
in the HPR-tree are represented as their MBRs. A change to a curve results in an updated MBR,
which in turn should result in an update of the tree. The idea behind lazy update is to replace
the normal MBR with an extended MBR (EMBR). As the name suggests, this EMBR is larger
than the MBR by some fixed amount, if the EMBR was used when building the R-tree. Any
update to the curve such that the curve is still within the EMBR by definition does not require
an update. Only when a curve is changed such that it exceeds the bounds of the EMBR is an
update required. Note that this change to the data structure is only useful if the changes in stored
geometry positions are local in Euclidean space and tend to stay inside the EMBR. Luckily our
application of R-trees only does small changes to the Bézier curves. Additionally, the optimized
Bézier curves are expected to stay close to the corresponding initial curve. This expectation is
validated in Section 7.4.

Bulk Updating: In [21] an update of the tree is performed by deleting the old element and
inserting the new/updated element. Even though this happens lazily, the outcome of the update
is, in essence, that only the curve that triggered the update obtains a new EMBR. Other curves
might still be a single optimization step away from triggering an update.

In order to make the R-tree even more static, we present a heuristic we call bulk updating:
When, at some point, a change to a curve triggers an update of the HPR-tree, the whole tree is
rebuilt with current curves as described in Section 5.2.2. The intuition is as follows: Since in
each iteration of the optimization a uniform random curve is chosen to be updated, then if some
curve triggers a tree-update by being moved outside its EMBR, most likely, other curves in the
tree are also only a few steps from triggering a tree-update. By giving all curves a new EMBR the
next tree-update is deferred even more. When bulk updating is used, we can refer to our tree as a
Lazy Bulk Update Hilbert Packed R-tree (LBUHPR-tree). Although we have not benchmarked
the two methods against each other, we believe lazy bulk updating to be of comparable speed to
lazy normal updates on average, because packing/bulk loading HPR-trees is highly efficient.

In Section 7.4 we document our benchmarks of using this data structure for our optimization
problem. We provide a brief summary of the section here. The slowest performance was on D3
for which construction took 67.9 milliseconds on average. When MBRs were extended by 0.48
millimeter in chart scale in each direction, this incurred a total of 2 bulk updates over 10 000
optimization steps, with approximately the same query time and the average number of objects
returned in each query increasing by about 3%. In other words, this seems very efficient.
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Chapter 6

Contour Optimization Algorithm

Previously, we have introduced our optimization problem on an intuitive level in Chapter 1 and in
detail in Chapter 3. In this section, our main goal is to describe how the optimization algorithm
solves the optimization problem as stated in Chapter 1. This will include a lot of references to
earlier sections of the thesis, as most of the theory used has already been accounted for. We will
also introduce the so-called configurations that the optimization algorithm can use.

We begin in Section 6.1 by explaining how the algorithm searches for solutions, and notably
how we have implemented it slightly differently from the theory in Chapter 4. Then we move on
in Section 6.2 to explain how we check the feasibility of solutions. In Section 6.3 we summarize
the different configurations we choose to benchmark and finally in Section 6.5 we show some
example output of the optimization algorithm. Our algorithm has the following signature:

Input: initial contours and accurate contours

Output: optimized contours

Recall in the following sections that initial contours are Bézier splines that we want to improve
upon. The accurate contours are polylines needed to constrain the problem. The optimized
contours are represented by Bézier splines as well.

6.1 Searching for Solutions
In section Chapter 4 we presented different ways of optimizing solutions when looking at the
optimization problem as a black box. We have implemented methods of both search variations
described in that section, namely two direct search variations and one random search variation:

Direct search: Both direct search methods have been implemented according to Sec-
tion 4.1. In the configurations, we call them Compass Search and Combined Compass
Search respectively.

Random search: The random search method has been implemented according to Sec-
tion 4.2. In the configurations, we refer to it as FSSRS.

Common to these is that, in theory, when going from one solution to the next, all variables of
the loss function are changed simultaneously. We want to highlight that our algorithms look for
new solutions by changing only a few variables at a time. This is true for all three variations
implemented. In the following, we explain why this is possible as well as the motivation behind
it.
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6.1.1 Local Updates Only
As mentioned in Section 3.3 we formally represent solution contours using the spline point
representation, which results in solution vectors in Rm where m is the dimension according to
Equation (3.3). Generally speaking, the search methods described in Chapter 4 all go from one
solution to the next by adding some search vector of the same dimension m to the solution vector.
In practice, our changes are much more localized, with only a few entries of the m-dimensional
search vector being different from zero. Mathematically, instead of considering updates to the
loss function as updates all entries of X ∈ Rm, we instead choose X ′ ∈ R5 uniformly random
corresponding to changing a single spline point. This is a special case of the general unit search
vector, and as such the correctness of the optimization methods follows from the arguments given
in Section 3.6. To elaborate, our algorithm is correct if it produces a feasible solution. Such local
updates are indeed also practically possible, the reason being as follows. Recall that solutions use
the spline point representation. By the endpoint interpolation property of Bézier curves, updating
a spline point can only affect the shape of the two curves that share the spline point as a common
endpoint. Since we know what curves are affected by an update, it is easy to subsequently check
the feasibility of the update.

Motivation: The main reason we choose to do local updates is as follows. Each update to
the loss function requires the constraints to be satisfied in order to have a feasible solution.
Any update leading to an infeasible solution can thus be considered a wasted update in terms
of computation. Local updates increase the efficiency of the optimization step by so-to-speak
detecting constraint violations sooner. Say we have a spline S made from n Bézier curves, i.e.,
|S|= n, and accurate constraints C with |C|= m. Then, if only one of the curves in an updated S
is responsible for the solution being infeasible, we will have worst-case made nm computations
in order to find out. By performing updates only on the smallest spline possible, i.e., |S|= 2, we
can detect constraint violations in 2m computations. This argument applies only to the naive
constraint checking approach where all curves in a spline are checked against all constraints.
However, when R-trees are used to filter which constraints the spline potentially intersects with,
the smaller query box of a shorter spline will return fewer constraints, increasing performance.

Pitfalls: The most severe pitfall we have identified with regard to local updates is the likelihood
of ending up in a local minimum. In some cases, the only way out of a local minimum might
very well be to update several spline points simultaneously, which is currently not possible in
our implementation. An example of such local minimum is shown in Section 6.5. However,
as explained in Section 3.8 we choose to value the speed of computation over finding a global
minimum.

6.2 Implementation of Constraint Checking
It remains to be described how constraint checking is implemented, i.e., how we make sure that
the constraints of the optimization problem of Section 3.7 are upheld. We give a brief description
of each constraint below.

Depth: The depth constraint is checked by the algorithm described Section 3.6.1. Specifically,
we use Depth(S,H) where S is the spline containing only the two curves possibly affected by
updating a spline point. Since we can see H as the set of accurate contours that an updated
solution might be in violation with, reducing the size of the set should intuitively provide a
performance increase. An important point of variability between the different configurations is
how many accurate contours are passed to Depth(S,H) as the parameter H, namely
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All Contours: The case where all accurate contours of the contour map are part of H we
refer to as the exhaustive search variation.

Some Contours: The case where a Packed Hilbert R-tree (see Section 5.2) is used as a
filtering mechanism to bring down the size of H we refer to as the Hilbert R-tree variation.

Intersection: The intersection constraint is checked by the algorithm described in Section 3.6.2.
Specifically, we use Intersection(S,S′) where S is the spline containing only the two curves
possibly affected by updating a spline point. Analogous to the case of depth constraints, the
number of elements in the second parameter S′ is proportional to the amount of computation
needed. As such, we have similar two variations of intersection checking, one using exhaustive
search and one using a LBUPHR-tree (see Section 5.3) as a filter.

Topology: The topology constraint has, in this thesis, not been implemented. However, im-
plementing it would, similar to the other constraints, be a matter of following the procedure
described in Section 3.6.3 and use Topology(S,S′). We skipped it as we figured optimization
steps to be so small that they would never jump an entire optimized contours. When this is the
case the intersection constrain is sufficient.

6.3 Configuration Summary
We can summarize the different configurations described above as follows. The configurations
are different combinations of (1) optimization method and (2) constraint checking.

Compass: Uses Compass Search for solutions combined with Exhaustive Search for
constraint checking.

Compass R-tree: Uses Compass Search for solutions combined with Hilbert R-trees (both
HRP-tree and LBUHPR-tree) for constraint checking.

Combined Compass R-tree: Uses Combined Compass Search for solutions combined
with Hilbert R-trees (both HRP-tree and LBUHPR-tree) for constrain checking.

FSSRS R-tree: Uses Fixed Step Size Random Search for solutions combined with Hilbert
R-trees (both HRP-tree and LBUHPR-tree) for constraint checking.

Optimization step: Our optimization algorithm is iterative and we denote an iteration as an
optimization step. The optimization step depends on the configuration but all configurations have
the following steps in common:

1. Choose a uniform random spline point p ∈ R5.

2. Choose a step direction d ∈ R5 and step size α ∈ R5 using the specified search method.

3. Compute new spline point p′ = α ⊙d + p, where ⊙ represent entry wise multiplication.

4. Let X be the old solution and X ′ the new solution with p′.

5. If Loss(X ′)≥ Loss(X), return X as the solution

6. If X ′ violates a constraint constraint, return X as the solution

7. return X ′ as the solution
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Note: The step size used is a vector as opposed to a scalar as described in Chapter 4. This
is a result of the angle of a spline point being more sensitive to scaling than its other entries.
Using a vector different step sizes are used for each entry in the spline point. In Section 7.3 we
experiment with different values of α .

The equation Loss(X ′)≥ Loss(X) is computed quite efficiently when only a single spline
point is changed. Generally, when Loss(X) is known, the time for computing Loss(X ′) is
proportional to the number of spline points that are changed. This is explained in further detail
in Section 3.5.2. Additionally, loss is computed before the constraints are checked and the
constraints are only validated if loss has improved.

Future work: The optimization algorithm can be run a fixed amount of steps, a fixed amount
of time or until it is manually stopped. It would be interesting to look at defining stopping criteria
for the configurations. Defining a common stopping criteria in particular is not a trivial task, as
the search methods behave differently.

6.4 Correctness
The correctness of our implementation relies on the feasibility of the initial contours we provide
as input to the optimization algorithm. That is, it can be seen as an argument of mathematical
induction, where the base case is feasible by assumption. Given that the initial contours are
feasible, and that each step of the optimization algorithm outputs a new feasible solution by the
arguments of Section 3.6, we argue that the optimized contours must also be feasible.

We also argue that the R-tree queries provide all relevant geometries needed to determine
feasibility. In Section 3.6 we proved that checking for constraints only requires checking against
geometries in the interior of the closed spline achieved by connecting the previous spline with
the updated spline. Thus, when querying the R-trees the query rectangle is chosen as the MBR of
this closed spline.

6.5 Visualization of Results
In this section, we visualize results of our optimization. For performance comparisons between
configurations we refer to Section 7.1. In short, the FSSRS R-tree configuration performs best,
thus all the following illustrations are the results of this configuration. Performing 100 000
optimization steps on D1 results in Figure 6.1.
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Figure 6.1: D1 after 100 000 optimization steps. Black lines are optimized contours, pink
lines are the accurate contours, and dashed red lines are the boundary.

The figure primarily shows nice smooth contour lines of low curvature. However, not all
curves are as smooth as desired. In certain areas the target curvature cannot be achieved without
violating the depth constraint. This is fully acceptable as constraints are more important than a
low curvature. Other curves as seen in Figure 6.2 can be improved without violating constraints.
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Figure 6.2: Part of D1 showing a local minimum which the optimization algorithm cannot
escape. Colors indicate higher than desired curvature and crosses represent spline points.

This requires further explanation. The figure illustrates part of D1, where the solution is
colored depending on the curvature along the curve. Black indicates that the curve has target
curvature or lower and colors indicate different curvature above the target. Notice the colored
spline and the accurate contour in red right under it. The spline is allowed to cross this accurate
contour, as it represents a deeper depth than the spline. If the spline crossed this accurate contour,
it could achieve the target curvature, and thereby reduce loss. It would obviously result in a higher
area loss, but not as great as the decrease in curvature loss. This indicates that the optimization
is stuck in a local minimum, a sub-optimal solution which it cannot escape. This does make
sense if we inspect the spline points marked with crosses on the illustration. The optimization
only updates one point at a time and only allows for improving solutions. It is not clear how a
change to just a single of these spline points would decrease loss as they would either violate
the depth constraint or increase the curvature. This motivates for optimization steps changing
multiple points at a time and/or a search method with techniques to escape local minima like
described in the future work paragraph of Chapter 4. That being said, the optimization is still a
clear improvement to the initial solution. Figure 6.3 illustrates the initial solution compared to the
optimized solution in part of D1 after 100 000 optimization steps. All sharp turns are improved
and a large area of improvement is visible in the middle of the figure. These results indicate that
the loss function in combination with the FSSRS configuration to some extent solves the problem
described in Chapter 1.
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Figure 6.3: Part of D1 after 100 000 optimization steps. The gray dashed lines represents
the initial solution and the black lines the optimized solution.

D2 and D3 are way larger, thus illustrating the whole dataset does not provide a clear picture
of the optimization. Figures of optimization of these datasets are found in the appendix as
Figure C.1, Figure C.2 and Figure C.3.
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Chapter 7

Benchmarks

In this section we present a series of benchmarks that lead to our choice of hyperparameters for
the search methods, as well as providing insight the how the different configurations perform.
The benchmarks were conducted on an 8 core 3.4GHz machine with 8GB of memory running
Arch Linux 64-bit.

7.1 Comparing Configurations by Loss
Loss defines how well a solution performs and thus well suited for comparing our different
configurations. This section explores the change in loss as a function of either optimization steps
or time. Inspecting loss as a function of optimization steps provides insight into the effectiveness
of the different optimization steps strategies from Chapter 4. Combining it with loss as a function
of time provides insight into how efficient each configuration is.

Loss as a function of steps: Firstly, we consider loss as a function of optimization steps. We
expect FSSRS to perform worse in this case, as it considers only a single random direction as
opposed to twelve directions of the Compass Search and even more for the Combined Compass
Search. Likewise, it is expected that Combined Compass Search will perform better than Compass
Search. We ran 10 000 optimization steps for each configuration on dataset D1, resulting in
Figure A.1, which can be found in Appendix A. We zoom into two different parts of Figure A.1
in Figure 7.1 and Figure 7.2. Our expectations are initially validated in Figure 7.1. Combined
Compass configuration performs slightly better than Compass, while FSSRS performs worse.
FSSRS is however not too far behind. Choosing a random direction seems to compete well
and after around 600 optimization steps it catches up to the others. Note that the Compass
configuration is completely equivalent to the Compass R-tree configuration. This is expected as
the R-tree purely affects efficiency and not how solutions are searched for.

Considering Figure 7.2 showing the rest of the optimization steps, FSSRS comes to dominate
the other configurations as the number of steps increase. It seems that a random direction is better
than any of the fixed solutions the others provide. A hypothesis as to why this is the case, is that
it is a result of random directions having more "freedom" as they allow for search directions not
available to the Compass configurations. Additionally, Compass Search performs many violating
steps before it decreases its step size, thus many optimization steps are wasted.
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Figure 7.1: All configurations loss as a function of optimization steps on dataset D1. This
plot is a cutout of Figure A.1

Figure 7.2: All configurations loss as a function of optimization steps on dataset D1. This
plot is a cutout of Figure A.1

Loss as a function of time: From what we have seen above, the steps used in the FSSRS
configuration work surprisingly well in terms of average loss decrease over the number of steps
tested compared to the other configurations. As it only considers a single direction, it is also
expected to be the most efficient. Consequently, FSSRS is expected clearly to outperform
the other configurations when run over a fixed period of time. Figure 7.3 illustrates loss as a
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function of time for all four configurations on dataset D1. The illustration clearly shows FSSRS
to perform best. It also shows, that the small improvement the Combined Compass Search
achieved in each step is neglected by the extra computation time as the simpler Compass R-tree
configuration outperforms the Combined Compass R-tree configurations. Lastly, the Compass
R-tree configurations shows a significant improvement in using R-trees for constraint checking.

Figure 7.3: Loss as a function of time on dataset D1 shown for all described configurations.
Lower loss is better.

After just one second it is hard to see further improvement of FSSRS, thus we also computed
loss as a function of time on dataset D2. The illustration in shown in Figure 7.4.
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Figure 7.4: Loss as a function of time on dataset D2 shown for all described configurations.
Lower loss is better.

The result of D2 shows similar results, but the final difference in loss between the different
configurations becomes much clearer. Note that the illustration is merely a comparison of the
configuration, thus it grants no explanation regarding how the configurations compare to the
optimal solution.

7.2 Behavior of Area and Curvature
Recall that the loss function as defined in Equation (3.7) is a combination of a curvature metric
and an area metric. In this section we are interested in examining how their contribution to the loss
function change as a function of the number of optimization steps of the FSSRS configuration.
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Figure 7.5: Change in area loss and curvature loss of FSSRS R-tree on dataset D1 over
10 000 optimization steps.

Figure 7.5 illustrates the curvature loss compared the the area loss of FSSRS over 10 000
optimization steps. The illustration reveals how the area is compromised for the benefit of
curvature. Curvature loss decreases throughout the whole optimization while area loss increases.
This makes perfect sense considering the different scales of the two. Values of curvature loss
are larger than values of area loss by quite a margin. This is not necessarily poor behavior as
curvature by definition of the loss function is more important than area. Recall that we can
change how much area "matters" to the loss function by changing the so-called area score we
defined in Section 3.4. We can look at an example to see how curvature is prioritized over area in
Figure 7.6. Considering the spline in the lower left corner, which is an example of area not being
as important. The spline can certainly be improved to contain more area without compromising
the curvature.
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Figure 7.6: Part of a solution of 10 000 optimization steps using FSSRS with chart scale 2cm2. The colors
indicate curvature higher than the target of 0.0036

If the optimization were run for a longer time, it would eventually conquer this area, as
can be seen when comparing to Figure 6.3, where the optimization is run 10 times longer for a
total of 100 000 optimization steps. This indicates that the FSSRS configuration quickly finds
a reasonable solution, but it is slow at getting the fine details correct. Our guess as to why this
happens is because there are fewer ways to improve the search directions as better solutions are
found. For example, the initial contour can be improved in many ways, making it more likely
to randomly choose a search direction which results in lower loss. However, with an optimized
solution that has only a few possible improvements left, the chances of randomly finding an
improving search direction are low.

If more emphasis on area is desired, a change of area score is sufficient. We have run the
optimization with other area scores, the result of which can be found in Figure B.1 and Figure B.2
in the appendix.

7.3 Hyperparameter Optimization
In Chapter 4 we presented three optimization methods for black box optimization used for this
project: Compass Search, Combined Compass Search, and FSSRS. Common is that all require
some initial step size parameter. This section describes the process of determining this parameter
for the FSSRS configuration. We choose to focus on FSSRS as this seems to perform best from
the results in Section 7.1. Determining such parameters for optimization is often referred to as
hyperparameter optimization.

For our problem, an optimization step changes one or multiple properties of a spline point.
As described in Section 6.3 our algorithm uses a vector of step sizes α ∈ R5. Recall the spline
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point representation
p = (posx,posy,angle′,out, in) .

Each entry of α corresponds to a step size for each entry in p. posx and posy are closely coupled
as well as out and in, thus we use the same scalar values for these. For the scalar values position,
scale and angle we have

α = (position,position,angle,scale,scale).

In order to discover as suitable α , we deploy a simple random search approach. This time we
use a model-based approach as opposed to the instance-based approaches used in the context of
the actual optimization algorithm. For the difference between model-based and instance-based,
we refer to Section 4.2. The model-based random search simply samples random step sizes
in some distribution and computes the loss for each. Inspection of the results hopefully yields
greater insight into how different step sizes suit the problem. position and scale are chosen
uniformly at random in the interval [0mm,1mm] in chart scale and the angle step size in [0,2π].
Using this distribution, the optimization was run on D1 752 times with 10 000 optimization steps.
Recall that D1 has a chart scale 1 : 50000, thus 1 millimeter corresponds to 50 meters. The result
is illustrated in a parallel coordinate plot in Figure 7.7.

Figure 7.7: A parallel coordinate plot combining randomly chosen hyperparameters for the
FSSRS R-tree configuration and their resulting loss on dataset D1. Dark green lines

represent the best combinations, as they result in a lower loss (the loss is negated thus larger
values are better).

The parallel coordinate plot connects a combination of hyperparameters by lines. This
line is then colored based on the loss that the combination of hyperparameters provided. The
combinations resulting in a low loss are illustrated with a dark green color. From the illustration,
it is clear that lower values of angle provide better results. It is not as clear for position and
scale. Many different combinations seem to work, but no certain conclusion is made. Thus we
investigate this further. From the precise data, an angle of around 0.05 provided the best results.
Fixing the angle to 0.05 we ran the optimization again. The result is illustrated in the scatter
plot in Figure 7.8. A position step size between 10 and 20 meters ([0.2mm,0.4mm] chart scale)
yields best results. The scale step size seems to have no significant effect. As such, we choose
the following parameters: scale = 0.1mm, position = 0.3mm, and angle = 0.05rad.
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Figure 7.8: Random combinations of position step size and scale size step size given a fixed
angle step size of 0.05. Points colors of negated loss thus yellow colors represent the best

combinations.

7.4 R-tree Performance
In this section we present the benchmarks done of our Hilbert R-trees usage for improving
constraint checking efficiency. The results are most interesting when presented in relation to
the size of the different datasets. As such, Table 7.1 shows how many line segments and Bézier
curves the datasets contain. Note that line segments are solely used for accurate contours, and
Bézier curves for the optimized contours.

No. Line Segments No. Bézier Curves

D1 7 885 360
D2 394 004 15 924
D3 418 336 30 514

Table 7.1: Amount of line segments in the accurate contour and Bézier curves in the
optimized contours of each dataset D1, D2 and D3.

Naive: Recall that, in this project, R-trees are used as a filtering mechanism. That is, given
the MBR of a Bézier curve as query input, the R-tree will return all Bézier curves whose MBR
intersect the query rectangle, i.e., the curves that the query curve potentially intersects with. To
get a meaningful baseline to compare the R-tree implementation with, consider a naive query
technique for constraint checking in which the MBR of a Bézier curve from the optimized contour
is checked against the MBR of all other optimized contours to get the same set of potential
intersecting curves. This approach to constraint checking is what we have benchmarked in
Table 7.2, by performing 100 queries on randomly sampled curves from the respective dataset.
Unsurprisingly, the number of MBR comparisons need is exactly the amount of line segment or
curves in the dataset, and the query time is substantial.

60



Accurate Contour Naive Optimized Contour Naive

query time comparisons query time comparisons

D1 2.16 ms 7 885 0.14 ms 360
D2 102.77 ms 394 004 5.77 ms 15 924
D3 124.92 ms 418 336 8.49 ms 30 514

Table 7.2: Benchmark data of the naive (baseline) approach for constraint checking. Values
are averaged over 100 random queries.

R-tree: Our optimization algorithm stores two trees, one for the accurate contours and one
for the optimized. As with the naive query approach, we benchmark by performing multiple
queries and averaging. In addition to query time and comparisons, we also measured the average
construction time of the R-tree. The construction time is an average over 100 constructions. The
query time is an average over one query for each Bézier curve of the initial solution. Each query
uses the MBR of the corresponding Bézier curve. The results are shown in Table 7.3.

Accurate Contour R-tree Optimized Contour R-tree

construction time query time comparisons construction time query time comparisons

D1 13.9 ms 0.042 ms 374.5 0.5 ms 0.003 ms 56.7
D2 959.8 ms 0.24 ms 11 157.6 31.8 ms 0.010 ms 860.1
D3 1042.7 ms 0.16 ms 7 596.8 67.9 ms 0.015 ms 1 098.3

Table 7.3: Benchmark data of the Hilbert R-tree data structure for constraint checking.

As expected, the query time and comparison count seem to be correlated. Now we can
compare the data from Table 7.2 and Table 7.3. Again as expected, using an R-tree greatly
reduces the number of comparisons when compared to checking against all line segments or
Bézier curves, which has an impact on the query time. Looking at querying accurate contours
in D3 we see that using an R-tree provides a 775 times speedup. For the accurate contours, the
slowest construction time is for D3 of approximately one second. As this construction is only
run once, this is very efficient. For optimized contours, the construction is even faster, with the
slowest being just 67.9ms.

We now turn our attention to the LBUPHR-tree described in Section 5.3. As described in
that section multiple reconstructions may be applied to the optimized contour tree while the
optimization is running. With a construction time of just 67.9ms, numerous reconstructions are
possible in a short amount of time. Table 7.4 shows results of experiments with different sizes of
bounding boxes for the LBUPHR-tree storing D1. As ε increases no significant change is visible
in query time. The query result size indicates how many geometries the query finds and not
surprisingly, this does not change much. However, the amount of reconstruction drops fast. With
ε = 0.6 no reconstructions are performed. As reconstruction time is fast a lower ε also suffice.
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ε (mm) 0.12 0.24 0.36 0.48 0.6 0.72 0.84 0.96

reconstructions 1125 473 30 2 0 0 0 0
query time (ns) 8556 7764 8301 8424 8517 8376 8462 8193
query result size 3.01 3.04 3.07 3.10 3.16 3.22 3.28 3.36

Table 7.4: Number of reconstructions, query time and query size for different size extensions of bounding
rectangles ε in chart scale on dataset D1 with 10 000 optimization steps. Bounding rectangles are increased
by ε in each direction. Query time and query size is an average of one query for each Bézier curve in the
dataset.
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Chapter 8

Conclusion

In this thesis, we set out to explore the problem of optimizing contour lines on bathymetric
charts. Concluding this work, we have come to gain an understanding of the context in which the
problem arises, as well as extensive knowledge about the problem itself. In order to successfully
model the problem as a precise mathematical optimization problem, we looked into a fundamental
way of expressing curves digitally, namely using Bézier curves (Chapter 2). We have provided
intuition as well as proofs for the most important properties of Bézier curves. Furthermore, we
have presented descriptions of algorithms for computing roots, bounding boxes, curvature, area,
and intersections of Bézier curves.

Using this knowledge we have modeled a loss function that is used to compare different
solutions to each other (Section 3.5). The loss function takes into account the maximum curvature
of Bézier curves forming the optimized contour lines, as well as the area of the relatively deeper
parts of the map. The optimization algorithm aims to minimize the maximum curvature metric
while maximizing the area. We have defined feasible solutions to the problem by use of three
constraints namely the depth, intersection, and topology constraints (Section 3.6). We have
argued how these, in conjunction, ensure that feasible solutions are true to the underlying data.
Finally, we have modeled the problem in standard form by combining the loss function and
constraints (Section 3.7).

We have implemented an optimization algorithm for the stated optimization problem. Specif-
ically, given a feasible initial contour map as input the algorithm will produce an optimized (but
not necessarily optimal) feasible contour chart as output. The algorithm treats the loss function
as a black box, and as such we have explored several search heuristics, namely direct search
and random search for traversing the solution space (Chapter 4). Furthermore, we have used the
R-tree data structure to improve the performance of constraint checking, allowing us to process
larger datasets (Chapter 5).

The optimization algorithm can be run in different configurations: with or without the use of
R-trees, with direct search or with random search. These configurations are the primary subjects
of our benchmarks, which show random search to perform the best by a large margin (Section 7.1).
R-trees significantly improved the efficiency of constraint checking and experiments showed the
uses of lazy update R-trees to be very efficient (Section 7.4). Visualization of the output of the
optimization algorithm as seen in Section 6.5 suggests that the constructed loss function models
the goals of the problem description well.
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Appendix A

Loss over 10 000 Steps

Figure A.1: All configurations loss as a function of optimization steps on D1.
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Appendix B

Curvature vs. Area

Figure B.1: Part of a solution of 10 000 optimization steps using FSSRS with area score
2
30 cm2. The colors indicate curvature higher than the target.
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Figure B.2: Part of a solution of 10 000 optimization steps using FSSRS with area score
2
60 cm2. The colors indicate curvature higher than the target.
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Appendix C

Visualization of Datasets D2 and D3

Figure C.1: D2 after 150 000 optimization steps. Note that it is not displayed in its true
chart scale as it would otherwise not fit the page. This makes contours appear with higher

curvature.
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Figure C.2: D3 after 150 000 optimization steps. Note that it is not displayed in its true
chart scale as it would otherwise not fit the page. This makes contours appear with higher

curvature.
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Figure C.3: Part of D3 after 150 000 optimization steps.
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