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Abstract

In this thesis we study combinatorial and algorithmic problems for graphs and
partially ordered sets. The thesis is centered around four themes: planar graphs,
reachability, order dimension and special cases of NP-hard problems. The re-
sults presented are of both algorithmic and structural flavor. The thesis begins
with an overview of the problems considered and an introduction to the neces-
sary mathematical tools, whereafter the results are described in more detail.

Thorup proved that we can label the vertices in a planar directed n-vertex
graph with labels of size O(log n), such that reachability queries can be an-
swered in constant time by inspecting only the labels of the two vertices in the
query. In Chapter 2 we generalize Thorup’s labeling scheme to a setting where
only a subset of the vertices are labeled. We prove that if the set of vertices
we are interested in is a subset of the union of f faces, we can label the inter-
esting vertices with labels of size O(log f), while still supporting constant time
reachability queries. In particular, this yields an optimal labeling scheme for
reachability in k-outerplanar digraphs for constant k.

In Chapter 3 we study the combinatorial problem of replacing a directed
graph and a set of interesting vertices with a graph of smaller size while preserv-
ing the existence of paths between the interesting vertices. We call such a new
graph a reachability substitute, and we prove that finding a reachability sub-
stitute of minimum size is NP-hard. Furthermore, we show that for almost all
graphs and sets of interesting vertices, no planar reachability substitute exists,
not of any size.

The dimension of a partially ordered set P is the minimum number of linear
orders whose intersection is P, and the vertex-edge-face poset PM of a planar
map M is the poset on the vertices, edges and faces of M ordered by inclusion.
Brightwell and Trotter proved that dim(PM ) ≤ 4. In Chapter 4 we investigate
the cases where dim(PM ) ≤ 3 and where dim(QM ) ≤ 3; here QM denotes the
vertex-face poset of M , which is the subposet of PM induced by the vertices
and faces of M .

We show that a map M with dim(PM ) ≤ 3 must be outerplanar and have an
outerplanar dual. We concentrate on the simplest class of such maps and prove
that within this class dim(PM ) ≤ 3 is equivalent to the existence of a certain
oriented coloring of a subset of the edges. This condition is easily checked and
can be turned into a linear time algorithm returning a 3-realizer.

Additionally, we prove that if M is 2-connected and M and M∗ are out-
erplanar, then dim(QM ) ≤ 3. There are, however, outerplanar maps with
dim(QM) = 4. We construct the first such example.
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Finally, in Chapter 5 we consider some classic NP-hard graph optimization
problems, e.g., maximum independent set. Using a simple partitioning lemma,
we extend algorithms that give exact solutions to these problem for graphs with
small treewidth, to approximation algorithms for graphs with larger treewidth.
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Chapter 1

Introduction

Many interesting and important problems lie in the intersection of graph theory
and the theory of finite partially ordered sets. Studying those problems from a
structural perspective leads to both new combinatorial and algorithmic insights.

Perhaps the most fundamental algorithmic graph problem is the reachability
problem: given two vertices u and v in a graph G, is there a path from the u to
v in G? Two problems related to reachability in directed graphs are considered.
If we want to answer many reachability queries for the same graph, it makes
sense to pre-compute the answers in order to improve the speed with which
the queries can be answered. The result of such a pre-computation is called
a reachability oracle.Of course, we could just store the answers to all possible
queries in an n × n matrix, where n is the number of vertices in the graph,
but ideally, we want a more compact data structure that still can provide quick
answers to queries. In general, this is unfortunately not possible, but we will
see that for planar graphs, we can do much better than storing the adjacency
matrix.

Every acyclic digraph induces a poset on its vertices. There is a path from
the vertex u to the vertex v in the graph if and only if u < v in the corresponding
poset. Hence, a reachability oracle for an acyclic graph is also a representation
of some poset. It turns out that cycles are very easy to handle, so we can view
the reachability oracle problem as the problem of efficiently representing posets.

If we have a graph were only some of the vertices are interesting, it would
be nice if we could replace it with a smaller graph that preserves the existence
of paths between interesting vertices. Here too we only have to consider acyclic
graphs. We will see that this problem can also be formulated as the problem
of finding a superposet with a cover graph of small size.

Every finite partially ordered set P is the intersection of finitely many lin-
ear orders. The minimum number of linear orders on the same ground set
whose intersection is P is called the dimension of P. Dimension has, since its
introduction in 1941 [24], become a significant topic of research in combina-
torics. There are many connections and analogies between dimension and the
chromatic number of graphs and hypergraphs. Whereas the chromatic number
in some sense measures how close to being a independent set a graph is, the
dimension of a poset measures how close to being a linear order the poset is.

The posets induced by the incidence structures of graphs have attracted a

1



2 Chapter 1. Introduction

lot of attention in the last two decades. Schnyder proved that the dimension
of the poset induced by the incidences of vertices and edges of a graph has
dimension at most 3 if and only if the graph is planar [53]. For planar maps,
the dimension of the posets induced by the incidences of vertices and faces and
vertices, edges and faces have also been studied. This is the problem considered
in this thesis.

There is an interesting analogy between the chromatic number of planar
graphs and the dimension of the vertex-face poset of planar maps. Every planar
graph has chromatic number at most four, and every planar map has vertex-
face dimension at most 4. Planar graphs with chromatic number 2 and planar
maps with vertex-face dimension 2 has relatively simple structures. On the
other hand, the maps with dimension 3 and the 3-colorable graphs do not seem
to have nice characterizations. The latter case is NP-complete to recognize,
while the complexity of the former case is still unknown. It is connected to a
major open problem in dimension theory.

Finally, we study some special cases of NP-hard graph problems. Treewidth
is a central concept in modern graph theory. It is also a very successful param-
eterization of graphs — many intractable problems become tractable in graphs
with bounded treewidth. We introduce a scheme to produce approximation
algorithms for graphs with larger treewidth.

1.1 Definitions

Before we proceed with the discussion of the contents of the thesis, we recall
some definitions about graphs and partially ordered sets, and introduce some
tools from dimension theory.

1.1.1 Graphs

We start by stating definitions of some basic graph theoretic terms relevant to
this thesis. For a lengthier introduction, we refer to e.g. Diestel’s excellent
textbook [21].

An undirected graph G = (V,E) is a pair of a set of vertices V and set
of unordered pairs E of vertices. The vertices and edges of the graph G are
also denoted V (G) and E(G), respectively. An undirected edge containing the
vertices u and v is denoted {u, v}, and u and v are the endpoints of {u, v}. The
vertices u and v are adjacent, and the edge {u, v} is incident on u and v. The
number of edges incident on a vertex v is called the degree of v. A multigraph is
a graph where we allow multiple edges between the same endpoints, and edges
with the two endpoints being identical (loops).

Directed graphs, also called digraphs, are pairs of sets of vertices and sets
of ordered pairs of vertices. A directed edge (u, v) is an edge from the vertex
u to the vertex v. We say that (u, v) has the head v and the tail u. The edge
(u, v) is outgoing from u and incoming into v. The number of incoming edges
into a vertex v is called the indegree of v and the number of outgoing edges
is called the outdegree of v. Vertices with outdegree 0 are called sinks and a
vertices with indegree 0 are called sources.
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A graph H = (V ′, E′) is a subgraph of the graph G if V ′ ⊆ V (G) and
E′ ⊆ E(G). If G′ contains all the edges of G between the vertices in V ′, G′ is
said to be an induced subgraph of G. The subgraph of G induced by the vertex
set V ′ is written G[V ′].

A bipartite graph is a graph G = (A ∪ B,E), such that all edges in E have
one endpoint in A and one in B. The vertex sets A and B are called bipartitions.
We call a graph with the maximum number of edges is a complete graph, and
is denoted Kn if it has n vertices. A complete graph is also called a clique.
A complete bipartite graph is a bipartite graph with the maximum number of
edges. The complete bipartite graph with m vertices in one bipartition and n
vertices in the other is denoted Km,n.

Paths and cycles

A path is a graph of the form V = {v1, v2, v3, . . . , vk}, E = {{v1, v2}, {v2, v3}, . . . ,
{vk−1, vk}}. If k ≥ 3 and we add the edge {vk, v1}, we get a cycle. The length
of a path is the number of edges in it. The distance dG(u, v) from the vertex u
to the vertex v in the graph G, is the length of the shortest path from u to v
in G. A graph with no cycles in it is called acyclic.

Minors and subdivisions

We contract an edge e = {u, v} in a graph G by removing e and identifying the
vertices u and v. Contractions of directed edges are defined in the same way.
A graph H is a minor of G if H can be obtained by contracting some of the
edges of a subgraph of G.

A subdivision of an edge e is path of length at length at least 2 between
the endpoints of e replacing it. A subdivision of a graph G is a graph obtained
from G by subdividing one or more of the edges in E(G). See Figure 1.1 for an
example.

Figure 1.1: A subdivision of K2,3.

Connectivity

An undirected graph G is connected if there is a path from each vertex to every
other vertex, and it is k-connected if it still connected after any k − 1 vertices
has been removed. A graph that is not connected is disconnected. Note that
1-connected just means connected. The maximal k-connected subgraphs of G
are called the k-connected components. Sometimes, the connected components
of G are just called the components of G.



4 Chapter 1. Introduction

If G is 1-connected or 2-connected, some vertices are of special interest. A
cutvertex in a graph is a vertex whose removal makes the graph disconnected,
while a separating pair is a pair of vertices who does the same. An edge whose
removal disconnects the graph is called a bridge.

For directed graphs we have additional terms for connectivity. We say that
a directed graph G is strongly connected if there is a directed path from each
vertex v ∈ V (G) to all the vertices in V (G) \ {v}, and it is weakly connected if
the underlying undirected graph is connected.

Trees

An undirected acyclic graph is called a tree. If a specific vertex is designated
root of a tree, the tree is said to be rooted. In this case, non-root vertices of
degree 1 are called leaves. A root path is a path that ends in the root.

Planarity and planar maps

A plane drawing D of a graph G is a representation of G by points and arcs in
the Euclidean plane in which two arcs meet only at common vertices. We say
that a graph is planar if it has a plane drawing.

The regions of the plane that we get when we remove a plane drawing of G
are called the faces of G. There is exactly one face which is unbounded, this
is called the outer face If there is a set of faces F and a set of vertices U in a
plane drawing of G such that U ⊆ ∪F , we say that F covers U .

A graph G is outerplanar if it has a plane drawing where all vertices are
on the unbounded face. Alternatively, we say that G is 1-outerplanar. We
inductively define k-outerplanarity: G is k-outerplanar if it has a drawing where
removing all the vertices on the unbounded face results in a k − 1-outerplanar
graph.

A planar map M = (G,D) consists of a finite planar multigraph G and a
plane drawing D of G. In this thesis a planar map M we will be understood as
the combinatorial data given by the set V of vertices, the set E of edges, the
set F of faces of M and the incidence relations between these sets. The dual
map M∗ of M is defined as follows: there is a vertex F ∗ in M∗ for each face
F in M , and an edge e∗ in M∗ for each edge e of M , joining the dual vertices
corresponding to the faces in M separated by e (if e is a bridge, e∗ is a loop).
Each vertex in M will then correspond to a face of M∗.

Many of the maps we consider in the thesis are outerplanar. We differentiate
between two notions of outerplanar maps. A planar map M = (G,D) is weakly
outerplanar if G is outerplanar, and strongly outerplanar if G is outerplanar
and D is an outerplane drawing of G, i.e., a plane drawing of G where all the
vertices are on the boundary of the outer face (see Figure 1.2). When it is clear
from the context, the qualifiers weakly and strongly will be omitted.

1.1.2 Partially Ordered Sets

Finite partially ordered sets are basic combinatoric objects. Following Trot-
ter [58], we introduce some basic terms in the partially ordered set literature.
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M ′M

Figure 1.2: The map M is strongly outerplanar, while the map M ′ is weakly
outerplanar.

A partially ordered set (poset) P is a pair (X,P ), where X is a set (the
ground set) and P is a reflexive, antisymmetric, and transitive binary relation
on X. The relation P is then a partial order on X. We often do not distinguish
between posets and partial orders when the ground set is clear from the context.

Throughout the thesis, the notations x ≤ y in P , y ≥ x in P and (x, y) ∈ P
are used interchangeably. We say x < y in P and y > x in P when x ≤ y
in P and x 6= y. When x, y ∈ X, (x, y) 6∈ P and (y, x) 6∈ P , x and y are
incomparable. Furthermore, if x < y in P , and there is no z ∈ X \ {x, y} such
that x < z < y in P , y is said to cover x in P .

When Y is a subset of the ground set X, the restriction P (Y ) of the partial
order P on X to Y is a partial order on Y . The poset (Y, P (Y )) is then called
a subposet of (X,P ), and (X,P ) is called a superposet of (Y, P (Y )). The order
P d = {(y, x) | (x, y) ∈ P} is called the dual of the partial order P .

A poset is called a chain if all elements are comparable, and an antichain if
no two elements are comparable. If (X,P ) is a chain, then P is called a linear
order . The maximum cardinality of a chain in a poset P is called the height of
P.

The cover graph of a poset (X,P ) is a graph G = (X,E), where {x, y} ∈ E
if and only if y covers x or x covers y in P . A poset is often represented by
an upward, straight line drawing the Euclidean plane of the directed graph
obtained from the cover graph by orienting each edge towards the endpoint
that covers the other endpoint. Such a drawing is called a Hasse diagram, or
just a diagram.

Figure 1.3: A Hasse diagram of a 3-dimensional poset of height 3.

A linear order L on X is called a linear extension of the partial order P on
X when x < y in L for all x, y ∈ X with x < y in P . A family R of linear
extensions of P is called a realizer of P when P =

⋂R, i.e., for all x, y ∈ X,
x < y in P if and only if x < y in every L ∈ R. The dimension of P, denoted
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dim(P), is the minimum cardinality of a realizer of P .
After seeing the definition of dimension, it is not immediately clear that

there are posets of unbounded dimension. The example below shows that this
is the case.

Let Sn = (X,P ) be the poset with ground set X = {a1, a2, . . . , an} ∪
{b1, b2, . . . , bn}, where for all i, j ∈ {1, 2, . . . , n}, ai‖aj and bi‖bj , and ai < bj

iff and only if i 6= j. The posets Sn are called the standard examples, and
dim(Sn) = n.

To see that dim(Sn) ≤ n, for each i = 1, 2, . . . , n, let Li be a linear extension
of Sn with ai > bi in Li. It follows that {L1, L2, . . . , Ln} is a realizer. On the
other hand, suppose dim(Sn) = t and {L1, L2, . . . , Lt} is a realizer. Then, for
each i = 1, 2, . . . , n, there is an integer ji ∈ {1, 2, . . . , t} so that ai > bi in Lji

.
Now, for two integers i and k where 1 ≤ i < k ≤ n, ak < bi < ai < bk in Lji

,
and ji 6= jk. Hence t ≥ n.

Tools from dimension theory

In this section we recall some facts from the dimension theory of finite posets.
Again, the reader is referred to Trotter’s monograph [58] for additional back-
ground and references.

A critical pair is a pair of incomparable elements (a, b) such that x < b if
x < a and y > a if y > b for all x, y ∈ P. A family of linear extensions R of P
is a realizer of P if and only if each critical pair (a, b) is reversed in some linear
extension L ∈ R, i.e., b < a in L. An incomparable min-max pair, i.e., a pair of
incomparable elements (a, b) where a is a minimal element and b is a maximal
element of P, is always critical.

An alternating cycle in P is a sequence of critical pair (a0, b0), . . . , (ak, bk)
such that ai < b(i+1 mod (k+1)) for all i = 0, . . . , k. A fundamental result is that
dim(P) ≤ t if and only if there exists a t-coloring of the critical pairs of P such
that no alternating cycle is monochromatic.

In the following example we illustrate how these facts can be combined to
determine the dimension of a specific incidence order.

Example: Let M be the planar map of the complete graph K4, and let QM be
the poset on the vertices and faces of M ordered by inclusion. Every vertex has
a single non-incident face, hence, there are four incomparable min-max pairs in
QM . These are all the critical pairs. Any two of these critical pairs form an
alternating cycle. Therefore, the hypergraph of alternating cycles is again a K4

and has chromatic number 4. This shows that dim(QM ) = 4.

1.2 Reachability Oracles

Reachability is a classic algorithmic graph problem. It asks if there exists a
path between two given vertices in the input graph. In some settings an actual
path connecting the given vertices is also wanted. The question ”Is there a
path in from the vertex u to the vertex v in the graph G = (V,E)?” is called
a reachability query . If the answer to the query is affirmative, we say that u
reaches v (and v is reached by u).
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In the simplest case, where only one query has to be answered, and no
pre-computation is done, the reachability problem is solved by breadth-first
search or depth-first search with u as starting vertex. This takes O(|V | + |E|)
time and uses O(|V | + |E|) space. Reachability can, however, be solved using
much less space: for directed graphs O(log |V |2) space is sufficient [52], and
recently Reingold proved that undirected reachability can be solved using just
O(log |V |) space [49]. Reachability arises as a subproblem to be solved in many
basic graph algorithms, e.g., in topological sorting, Ford-Fulkersons max-flow
algorithm etc. (see [20] for further examples).

Suppose we instead want a data structure that can answer repeated reach-
ability queries. Such a data structure is called a reachability oracle. For an
undirected graph, it is easy to construct a reachability oracle that uses lin-
ear space and supports constant time queries: just label each vertex with the
connected component it is in. In the rest of this section we will only discuss
directed graphs. In fact, we only have to consider acyclic digraphs. Since each
vertex in a strongly connected component (SCC) reaches and is reached by the
same vertices, we can contract each SCC to a single vertex. Every acyclic di-
graph G induces a poset PV (G) on the vertices V (G) in G where u < v iff there
is a path from u to v. Hence, we can formulate the problem of constructing
a reachability oracle for the graph G as the problem of efficiently representing
PV (G). For convenience, let n be the number of vertices in all graphs mentioned
below, unless otherwise mentioned.

The traditional way to construct a reachability oracle is to compute the
transitive closure of G and represent it as a matrix of size n × n. Using such a
matrix allows constant query time. However, the matrix representation requires
O(n2) bits. Unfortunately, in general Ω(n2) bits are required, as we will see in
Chapter 2. However, if we restrict the input to special classes of graphs, the
situation is entirely different.

Note that if the dimension of the poset PV (G) is low, G has a small reacha-
bility oracle supporting fast query time. More precisely, if dim(PV (G)) = t, then
G has an O(t) time O(tn) space reachability oracle. Let {L1, . . . , Lt} be a real-
izer of PV (G). Label each element x in PV (G) with a t-tuple (x1, . . . , xt), where
xi is the position of x in Li. Now x < y in PV (G) iff xi < yi for i = 1, . . . , t,
i.e., we use the standard dominance order.

Computational model The measure of space in the reachability oracle re-
sults above is words, unless explicitly stated otherwise. The word size is as-
sumed to be just large enough to hold a vertex identifier, i.e., O(log n) bits for
an n-vertex graph. Our computational model is thus the word RAM model [2].
Instructions like addition and multiplication operate on a constant number of
words in a single time unit. This models what can be done in a standard
programming language fairly well.

1.2.1 Reachability oracles for planar digraphs

Many of the previous oracles for reachability in planar digraphs work for dis-
tances as well. The first approach to reachability oracles for planar digraphs was
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to use the Lipton-Tarjan Separator Theorem [44], which says that for any pla-
nar graph G, there is a set of vertices S of size O(

√
n) such that no component

of G \ S contains more than 2|V |/3 vertices. Arikati et al. [5] and Djidjev [22]
constructed distance oracles with a space-time product of O(n2). More pre-
cisely, if their distance oracle uses space s, they can answer reachability queries
in O(n2/s) time.

Djidjev [22] proved that with space s ∈ [n4/3, n3/2], the query time can be
improved to O((n/

√
s) log n) using the topology of planar graphs. For space

s = O(n4/3), this gives a query time of O(n1/3 log n) and a space-time product
of O(n5/3 log n). Later, Chen and Xu [17] generalized this bound to space
s ∈ [n4/3, n2], achieving a distance query time of O((n/

√
s) log(n/

√
s) + α(n)).

Significant progress was made when Thorup 2001 presented a O(n log n)
space reachability oracle with constant query time [57]. His reachability result
can also be generalized to approximate distances. Before his result, no o(n2)
bit oracle was known that could answer reachability queries in constant time.
We will return to this result shortly, but first we discuss some special classes of
planar graphs and distributed oracles.

A planar acyclic digraph G is spherical s-t planar if s is the only sink and
t is the only source in G [55]. If we can add an edge from s to t in G while
maintaining planarity, G is said to be s-t planar . It is well known that there
are reachability oracles for s-t planar and s-t spherical graphs that use only
linear space while still supporting constant query time [37, 55]. In the case of
s-t planar graphs, this follows from the fact that the dimension of PV (G) is 2.

Djidjev et al. [22] proved that if G is k-outerplanar, there is an O(n log n +
k2)-space distance oracle with query time O(log n). For outerplanar graphs, this
can be improved to oracle space O(n log log n) and query time O(log log n) [23].

1.2.2 Labeling schemes

A special kind of reachability oracle is the labeling scheme [47]. Here, the
oracle distributes perfectly: each vertex v gets a label D(v), and to answer
the reachability query ”Does u reach v?”, we only have to inspect the labels
D(u) and D(v). Such a labeling scheme is a called a reachability labeling of the
vertices.

Gavoille et al. [34] proved that planar graphs admit a distance labeling
with labels of size O(

√
n) supporting distance (and hence reachability) queries

in time O(
√

n) using the Lipton-Tarjan Separator Theorem. They provide an
almost matching lower-bound showing that even for undirected graphs, we need
Ω(

√
n)-bit labels to support exact distance queries, no matter the time available

to compute the distances.

1.2.3 Thorup’s oracle construction

Thorup’s oracle can also be implemented as a labeling scheme. The main idea
is to construct a series of digraphs, such that any reachability query can be
answered by considering a two of them, and such that each graph admits sep-
arators consisting of a constant number of directed paths.
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Thorup first shows that any planar digraph G can be transformed into a
series of digraphs G1, . . . , Gℓ such that (i) the total sizes of the Gis is linear in
the size of G, (ii) every vertex u has an index ι(u) such there is a path in G
from u to v if and only if there is a path in Gι(u) or Gι(u)−1 from u to v, (iii)
each Gi has a spanning tree where each root path is the concatenation of two
directed paths, and (iv) each Gi is an (undirected) minor of G. Thus, it suffices
to find reachability oracles for the Gis.

Then, it is shown that in every such graph Gi, it is possible to find a set
of vertices that induce a constant number of directed paths and whose removal
separates the graph into connected component of balanced sizes in linear time
using a component of the proof of the Lipton-Tarjan Separator Theorem.

It is then sufficient to store for each of the other vertices v the vertices in the
separator paths that reaches or is reached by v. This can be done recursively.

1.2.4 Contributions

Now, what if we only care about a subset U of the vertices? This corresponds
to a representation of the subposet PU of PV (G). It is fairly straightforward
to change Thorup’s labeling of the vertices in U to a reachability labeling with
labels of size O(log |U |) in this case. However, we can do better.

If the set U is covered by f faces in a plane drawing of the input graph G,
we prove that U has a reachability labeling with labels of size O(f) and con-
stant query time. With a different vertex weighting in the separator algorithm
Thorup uses, we can change the recursion from the vertices in U to the faces
that cover U . Using the O(f)-labeling as base case we thus get a reachability
labeling of U with labels of size O(log f) supporting constant query time. For
k-outerplanar digraphs (with U = V ), this yields a reachability labeling with
O(log k)-sized labels and constant query time. For k ∈ O(1), this is optimal.

1.3 Reachability substitutes

In the setting where only a subset of the vertices are interesting, it is possible
to replace the input graph with a simpler graph, while preserving the existence
of paths between interesting vertices. This problem arises as a subproblem
in a dynamic reachability algorithm by Subramanian [54], but it is also an
interesting combinatorial problem in its on right.

More precisely, we consider the following network design problem. Let G =
(V,E) be a directed graph with n = |V | vertices and let U ⊆ V be a set of κ
vertices in G which are designated interesting. A reachability substitute (G,U)
is a digraph H = (V ′, E′) such that U ⊆ V ′ and for any two interesting vertices
u, v ∈ U , there is a path from u to v in H iff there is a path from u to v in
G. For convenience, we sometimes speak of H as a reachability substitute of
the graph G when U = V . Of course, G itself is a substitute for (G,U) for any
U ⊆ V . The problem we are interested in is that of finding a small reachability
substitute, i.e., one that minimizes |V ′| + |E′|.

We can also frase this problem as a poset problem. Construct an acyclic
graph G′ by contracting each strongly connected component. A substitute for
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G′ can now be turned into a substitute for G by replacing each contracted vertex
with a simple cycle on the interesting vertices in the corresponding strongly
connected component in G. Clearly, this preserves optimality. Hence, we only
have to consider acyclic digraphs.

The input of the reachability substitute problem is the following in poset
terms: a poset PU is given together with its superposet PV (G). A reachability
substitute is a different superposet of PU . The task is now to find a superposet
with cover graph of minimum size.

Aside from the complexity of finding a small reachability substitute, the
structural question of lower and upper bounds on the size of substitutes is
interesting. Trivially, every input pair (G,U) has a substitute of size O(|U |2).

If all vertices are interesting (U = V ) and one also requires V ′ = V and
E′ ⊆ E, the problem is called Minimum Equivalent Graph (MEG). It is NP-
hard and can be approximated within a constant factor in polynomial time [40].
If only V ′ = V is demanded while E′ is allowed to contain edges that are not
in E, the problem can be solved in polynomial time [1, 36, 40]: Compute the
transitive reduction of the acyclic digraph G′ corresponding to the input graph
G. Note that the reachability substitute problem treated in this thesis, besides
allowing U ⊂ V , removes both requirements of MEG: V ′ does not need to be
contained in V and E′ does not need to be a subset of E.

1.3.1 Steiner graphs and spanners

A Steiner graph G′ = (V ′, E′) of a digraph G = (V,E) is an edge-weighted
digraph such that V ⊆ V ′ and the distances dG and dG′ satisfy dG′(u, v) ≥
dG(u, v) for all vertices u, v ∈ V . Bollobás, Coppersmith and Elkin [12] studied
Steiner graphs that preserves large distances. A Steiner d-preserver is a Steiner
graph G′ such that dG′(u, v) = dG(u, v) if dG(u, v) ≥ d. Hence, a Steiner 1-
preserver is a reachability substitute of G. Moreover, Bollobás, Coppersmith
and Elkin proved that every graph has a Steiner 1-preserver of size O(n2/ log n),
so each pair (G,U) has a reachability substitute of size O(|U |2/ log |U |).

A substitute graph that not only preserves the existence of paths but also
approximates their lengths is called a spanner. Several spanner constructions,
with different size and approximation guarantees, are known, though most of the
existing work on spanners is about undirected graphs [4,9,10,18,25–27,48,51].
Recently, Coppersmith and Elkin [19] introduced a new variant of spanners
which is more closely related to the problem considered here. In a special
case they try to find a small subgraph of a given (undirected) graph, also with
a subset of interesting vertices, such that in the subgraph we have the same
distances between interesting vertices as in the original graph. They show that
there always exists such a subgraph with O(n) edges if the number of interesting
vertices is O(n1/4). Even more recently, Klein [41] showed that undirected
planar graphs have small subset-spanners. That is, he proved that for a planar
graph G with weights on the edges and a subset U of the vertices designated
as interesting, for every constant ǫ > 0, there is a subgraph H of G such that
(1) H contains all vertices of U , (2) the distance between every two vertices in
H is at most 1 + ǫ times their distance in G, and (3) the total weight of H is
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at most a constant times the weight of a Steiner tree for U in G.

1.3.2 Reachability substitutes for planar digraphs

Similar to reachability oracles section, our main focus is on planar inputs —
the output substitutes need not be planar, though. Subramanian [54] showed
that if all vertices of U lie on a constant number of faces of a planar embedding
then there is a solution of size O(|U | log |U |), which can be found in O(n log n)
time. That algorithm was designed as a component of an algorithm for dynamic
reachability in planar graphs; the graph is recursively partitioned with small
separators, where the separator vertices become the interesting vertices. Epp-
stein et al. [28] generalized this approach and obtained fully dynamic algorithms
for several problems on planar graph. In addition, Klein and Subramanian [42]
showed that the algorithm of [54] can be modified to construct a substitute
graph that not only represents the existence of paths between the interesting
vertices but also approximates the lengths of shortest paths.

1.3.3 Contributions

By a counting argument, we prove that at most a fraction o(1) of the pairs
(G,U) of graphs and sets of interesting vertices have reachability substitutes of
size o(|U |2/ log |U |). From Bollobás, Coppersmith and Elkin’s result on Steiner
1-preservers, we know that this bound is tight.

We show how to change Thorup’s oracle construction to produce a reacha-
bility substitute of size O(|U | log |U |) for planar input graphs. The substitutes
that we construct are not planar however — we show that this is unavoidable.
We exhibit an example of a graph with no planar reachability substitute of size
o(|U |2).

The combination of the lower bound on the size of substitutes for general
graphs and the upper bound on the size of reachability substitutes for planar
graphs implies that only a tiny minority of digraphs have a planar substitute.
We briefly discuss the possibility of characterizing such graphs.

1.4 Dimension

The dimension is a widely studied parameter of posets. Since its introduction
by Dushnik and Miller [24] in 1941, it has moved into the core of combinatorics.
There are close connections and analogies with the chromatic number of graphs
and hypergraphs. From the applications point of view, dimension is attractive
because low dimension warrants a compact representation of the poset, as we
saw in Section 1.2. Trotter [58, 59] provides a more extensive introduction to
the area.

Yannakakis showed that for t ≥ 4, it is NP-hard to decide if dim(P) ≤ t for
height 2 posets [60]. For posets P of height 3 or more, the problem becomes
NP-hard already for t = 3. On the other hand, there are fast algorithms to test
whether a poset P is of dimension 2, see e.g. [46]. The complexity of deciding
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if the dimension of a height 2 poset is at most 3 is a major open problem in
dimension theory.

1.4.1 Schnyder’s Theorem and the dimension of graphs

There are many connections between posets and graphs [59]. One of most
studied is the dimension of the posets defined by the incidence structures in
graphs.

The vertex-edge poset (or incidence poset) PG of a graph G is the poset on
the vertices of edges of G ordered by inclusion. More precisely, let G = (V,E)
be a graph. Then the vertex-face poset PG = (X,P ), where X = V ∪ E and
(v, e) ∈ P if and only if v ∈ V , e ∈ E and v is an endpoint of e.

The study of of the dimension of the vertex-edge poset of a graph is justified
by Schnyder’s celebrated theorem.

Theorem 1.1 (Schnyder [53]). A graph G is planar if and only if dim(PG) ≤ 3.

Felsner and Trotter [31] defined the closely related concepts of a realizer and
dimension of a graph G = (V,E). A realizer of G is a nonempty family R of
linear orders on V such that for every edge e ∈ E and every vertex v ∈ V \ e
there is some L ∈ R such that v > w in L for all vertices w ∈ e. As in the case
of posets, the dimension of G, dim(G), is the minimum cardinality of a realizer
of G.

We can formulate Schnyder’s Theorem in terms of graph dimension instead
of poset dimension. To avoid uninteresting special cases, we assume that we are
dealing only with connected graphs with 3 or more vertices (all other graphs are
planar and have vertex-edge posets of dimension at most 3 anyway). If we insert
the edges of a graph G as low as possible in each linear extension in a realizer
R = {L1, . . . , Lt} of G, we get a set of linear extensions R′ = {L′

1, . . . , L
′
t} of

PG. The only critical pairs not reversed in some L′
i ∈ R′ are of the form (w, v),

where v,w are end points of the same edge and w has degree 1. Hence, it is not
hard to see that dim(PG) ≤ 3 if and only if dim(G) ≤ 3.

The dimension of a graph can be used to characterize other classes of graphs.
We can refine the definition of dimension as follows: we say that the dimension
of a graph G is [t−1 l t] if dim(G) > t−1 and G has a realizer {L1, L2, . . . , Lt}
with Lt−1 = Ld

t [31], where Ld
t is the dual poset of Lt, i.e., the poset on the

same ground set as Lt such that x < y in Ld
t if and only if x > y in Lt. Using

Schnyder’s Theorem, Felsner and Trotter [31] proved that a graph is outerplanar
if and only if its dimension is at most [2 l 3].

The proof that G is planar if dim(G) ≤ 3, actually due to Babai and Duffus
[8], is relatively easy. To prove the other direction, Schnyder developed a more
involved combinatorial machinery with several lemmas of independent interest.
For instance, the classic results that planar graphs have arboricity at most 3,
i.e., that the edges of every planar graph can be partitioned into 3 disjoint
forests, follows from Schnyder’s oriented coloring of the edges in triangulations.
These Schnyder woods are families of three trees such that each vertex has one
outgoing edge in each tree.
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1.4.2 Planar maps

Schnyder’s theorem can be extended from planar graphs to planar maps. Simi-
lar to the vertex-edge poset of graph, the vertex-edge-face poset PM of a planar
map M is the poset on the vertices, edges and faces of M ordered by inclusion.
The vertex-face poset QM of M is the subposet of PM induced by the vertices
and faces of M .

The theorems by Brightwell and Trotter cited below are the starting point
for our investigation into the order dimension of planar maps.

Theorem 1.2 (Brightwell and Trotter [15]). Let M be a planar map. Then
dim(PM ) ≤ 4.

Theorem 1.3 (Brightwell and Trotter [14]). For every 3-connected planar
map M , dim(PM ) = dim(QM ) = 4. Furthermore, if one face or vertex is
removed from PM , dim(PM ) = dim(QM ) = 3.

Brightwell and Trotter [15] have also presented a complete characterization of
the planar maps with dim(PM ) = 2.

1.4.3 Contributions

Most maps have dimension at least 3. For dim(PM ) ≥ 3 it is sufficient that
M has a vertex of degree 3. Motivated by this we approach the problems of
characterizing the maps M with dim(PM ) ≤ 3 and the maps with dim(QM ) ≤
3. These characterization problems have earlier been posed by Brightwell and
Trotter [15].

We prove that for dim(QM ) ≤ 3 it is necessary that M is K4-subdivision
free. This is done by showing that a map containing a K4-subdivision must
contain the vertex-face poset of some 3-connected planar map as a subposet.
For dim(PM ) ≤ 3 an additional necessary condition is that both M and M∗

are K2,3-subdivision free. We show this by establishing that each path in a
K2,3-subdivision induces a fence poset, i.e., a poset with elements {x1, . . . , xk

such that x1 < x2 > x3 < x4 > . . . < xk−1 > xk, and that such a triple of
fences force dim(PM ) > 3. Together, these results mean that if dim(PM ) ≤ 3,
then both M and M∗ are outerplanar.

We then study the simplest class of maps M such that M and M∗ are
outerplanar, which we call path-like. For maximal path-like maps we prove that
dim(PM ) ≤ 3 is equivalent to the existence of a special oriented coloring of the
interior edges and characterize the path-like maps which admit such a coloring.
The characterization is turned into a linear time algorithm that generates a
3-realizer, i.e., three linear extensions whose intersection is PM , or returns the
information that dim(PM ) ≥ 4.

Finally, we prove that if M is 2-connected and M and M∗ are outerplanar,
then dim(QM ) ≤ 3. We also present a strongly outerplanar map with a vertex-
face poset of dimension 4. No such map was known before. The example, a
maximal outerplanar graph with 21 vertices, is quite large. We provide some
arguments which indicate that our example is not far from being as small as
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possible. Given these results we raise the question of if it is NP-hard to decide
if dim(QM ) already for strongly outerplanar maps M .

1.5 Large treewidth

The final theme mentioned in the beginning of this chapter is special cases
of NP-hard problems. In the last section, we discussed special cases of the
NP-hard poset dimension problem. In this section we consider graph problems.

One of the most successful parameterizations of graphs is that of treewidth.
While the formal definition is deferred to Chapter 5, graphs of treewidth k, also
known as partial k-trees, are graphs that admit a tree-like structure, known as
tree-decomposition of width k.

Many NP-hard problems have been shown to be solvable in polynomial
time, or even linear time, for graphs with treewidth k [6, 7, 56]. For some of
these problems, polynomial time algorithms exists possible even for graphs of
treewidth O(log n) or O(log n/ log log n) [7, 56].

A standard example of a problem solvable in graphs of treewidth O(log n)
is the maximum independent set (MIS) problem [7], which is that of find-
ing a maximum cardinality set of pairwise non-adjacent vertices. For gen-
eral graphs, the best polynomial-time approximation ratios known for MIS is
n (log log n)2/ log3 n [29]. On the other hand, it is known that unless NP ⊆
ZPTIME(2(log n)O(1)

), no polynomial-time algorithm can achieve an approxima-
tion guarantee of n1−O(1/(log n)γ) for some constant γ [39].

We study the approximability of some of the aforementioned NP-hard prob-
lems, mainly considering graphs of treewidth k = ω(log n). We focus our study
on MIS, deriving further applications of our method by extensions of that given
for MIS.

Better approximation bounds for MIS are achievable for special classes of
graphs. A class that properly contains the graphs of treewidth at most k is that
of k-inductive graphs. A graph is said to be k-inductive if there is an ordering
of its vertices so that each vertex has at most k higher-numbered neighbors. If
such an ordering exists, it can be found by iteratively choosing and removing
any vertex of minimum degree in the remaining graph. The best approximation
known for MIS in k-inductive graphs is O(k log log k/ log k) [35].

1.5.1 Contributions

We develop a generic scheme for approximation algorithms for maximum in-
dependent set and other NP-hard graph optimization problems in graphs with
treewidth k = ω(log n). This scheme leads to polynomial-time algorithms with
approximation ratio ℓ/ log n when a tree-decomposition of width ℓ = Ω(log n)
is given. For MIS, this improves the previously best known bound by a factor
log log k if ℓ = k.

Our scheme can be applied to any problem of finding a maximum induced
subgraph with hereditary property Π and any problem of finding a minimum
partition into induced subgraphs with hereditary property Π provided that for
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graphs given with tree-decompositions of logarithmic or near logarithmic width
it can be solved exactly in polynomial time. All approximation factors achieved
are the best known for the aforementioned problems for graphs of superloga-
rithmic treewidth. See Table 5.1 for a comparison with previous results.

In case a tree-decomposition of width ℓ = k is not given, the approximation
achieved by our method increases by a factor of O(

√
log k).

1.6 Outline of the thesis

In Chapter 2 we discuss reachability oracles and prove that planar graphs with
U interesting vertices such that f faces covers U admit reachability labelings
with labels of size O(log f) and constant query time. This chapter is based on
the paper

• Johan Nilsson. Improved reachability oracles for planar digraphs. In
preparation.

Chapter 3 contains the discussion of reachability substitutes. It is based
on the paper

• Irit Katriel, Martin Kutz, Johan Nilsson and Martin Skutella. Reachabil-
ity substitutes for planar digraphs. 2006. Submitted to Journal of Graph
Algorithms and Applications. Under revision.

In Chapter 4 we investigate the order dimension of planar maps. This
chapter is based on

• Stefan Felsner and Johan Nilsson. On the order dimension of outerplanar
maps. 2007. Submitted to the journal Combinatorics, Probability and
Computing. An extended abstract of this paper has been submitted to
the 19th ACM-SIAM Symposium on Discrete Algorithms.

Finally, in Chapter 5 we provide a scheme for approximation algorithms for
optimization problems in graphs with superlogarithmic treewidth based on the
paper

• Artur Czumaj, Andrzej Lingas, Magnús M. Halldórsson and Johan Nils-
son. Approximation algorithms for optimization problems in graphs with
superlogarithmic treewidth. Information Processing Letters 94(2):49–53
(2005).





Chapter 2

Reachability oracles

One of the most fundamental algorithmic graph problems is determining if there
is a path from a vertex u to another vertex v in a directed graph G. If such a
path exists, v is said to be reachable from u. Suppose we want a data structure
that can answer queries of the type ”Is v reachable from u?”. Such a structure
is called a reachability oracle. For an undirected graph, it is easy to construct
a reachability oracle that uses linear space and supports constant time queries:
just label each vertex with the connected component it is in.

The traditional way to construct a reachability oracle is to find the transitive
closure of G and represent it as a n×n matrix, where n = |V (G)|. This allows us
to answer reachability queries in constant time, but the matrix representation
requires O(n2) bits.

Can we do much better? Unfortunately, this is not the case. A very simple
argument shows that Ω(n2) bits are necessary: Consider the set of bipartite
n-vertex digraphs with n/2 vertices in each of bipartitions A and B, such that
all edges are directed from A to B. Now, for each of the n2/4 pairs (a, b) of
vertices a ∈ A, b ∈ B, the graph where (a, b) is an edge and the graph where
it is not an edge must have different reachability oracles. Hence, at least n2/4
bits are necessary.

However, if we restrict the input to special classes of graphs, the situation
is entirely different. For planar digraphs, Thorup has shown that it is possible
to construct constant time, O(n log n) space reachability oracles for planar di-
graphs [57]. Below, we will describe Thorup’s construction in more detail. Note
that the measure of space in the results above, as well as throughout the chap-
ter, will be words, unless explicitly stated otherwise. The word size is assumed
to be just large enough to hold a vertex identifier, i.e., O(log n) bits.

Thorup’s oracle can be distributed perfectly as labels on the vertices: each
vertex v is given a label D(v) such that we can test if u reaches v by just
inspecting the labels D(u) and D(v). We call such a labeling scheme a reach-
ability labeling . Thorup’s reachability labeling uses labels of size O(log n) and
supports constant query time.

Note that a reachability oracle is the same as a representation of the poset
PV (G), i.e., the poset on V (G) where u < v iff u reaches v. As we saw in the
introduction, if PV (G) has dimension t, V (G) has a reachability labeling with
labels of size O(t) and query time O(t). The dimension does not help much

17
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for planar digraphs, though. There are planar digraphs G such that the poset
PV (G) contains the standard example Sr for r ∈ O(

√

|V (G)|) as a subposet
(see Figure 2.1 for an example), so dim(PV (G)) = O(

√
n).

Figure 2.1: A planar digraph G with 56 vertices such that S8 is a subposet of
PV (G).

2.0.1 Contributions

If we consider the slightly different problem, where we only are interested in
queries ”Is v reachable from u?” for some u, v ∈ U ⊆ V (G), we can find a
better labeling. Suppose there are f faces in a plane drawing of G such that
every vertex of U is in one of these faces. Then there is a reachability labeling
with labels of size O(log f). This is optimal for constant f . In particular, it is
optimal for k-outerplanar digraphs, where k is constant.

2.1 Thorup’s oracle construction

We begin with a brief sketch of the relevant details of Thorup’s construction of
reachability oracles [57].

The main idea is to construct a series of digraphs, such that any reachability
query can be answered by considering a constant number of them, and each
graph admits separators consisting of a constant number of directed paths.
Thorup first shows that any planar digraph G can be transformed into a series
of digraphs G1, . . . , Gℓ such that

• The total sizes of the Gis is linear in the size of G.

• Every vertex u has an index ι(u) such there is a path in G from u to v if
and only if there is a path in Gι(u) or Gι(u)−1 from u to v.

• Each Gi is a 2-layered digraph, i.e., a digraph that has a spanning tree
where each root path is the concatenation of two directed paths.
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• Each Gi is an (undirected) minor of G.

Thus, it suffices to find reachability oracles for the Gis.

The Gis are constructed as follows. First, the vertices of G are partitioned
into layers. We start with an arbitrary vertex v0. The layer L0 consists of the
vertices reachable from v0. Let L<i denote ∪j<iLj. The layer Li then contains
the vertices in V (G)\L<i reachable from a vertex in L<i when i is even, and the
vertices in V (G)\L<i that reach a vertex in L<i when i is odd (see Figure 2.2).
The graph Gi is constructed from G[L<i+2] contracting all vertices in L<i into
a single vertex r0 for i > 0. For G0, r0 = v0.

2

0
1

3

Figure 2.2: The first four layers.

Then, it is shown that in every 2-layered digraph, it is possible to find a set
of vertices that induce a constant number of directed paths and whose removal
separates the graph into maximal connected component of balanced sizes in
linear time. More precisely, the following lemma (which essentially appears
in [44]) is proved.

Lemma 2.1 (Thorup [57], Lemma 2.3). Given a vertex-weighted undirected
planar graph H with a rooted spanning tree T , in linear time, we can find three
vertices u, v and w such that if we remove the vertices in the paths T (u),
T (v) and T (w) from u, v and w to the root of T , no connected component of
H \ V (T (u) ∪ T (v) ∪ T (w)) have weight more than 1/2 of the weight of H.

2.1.1 Recursive framed separators

In the following sections we show how to use Lemma 2.1 for a reachability
labeling of each 2-layered graph Gi.

We recursively separate Gi using Lemma 2.1. With each subgraph H ⊆ Gi

we will pass down a set R of root paths of T that separates H from the rest of
the graph Gi. This set of root paths R is called the frame of H, and H is a
component in Gi \V (R). Hence, if S separates u from v in H, R∪S separates u
from v in Gi. For each directed path q induced by a subset of V (R)∪V (S), we
will identify the connections between H and q over Gi, i.e., the vertex v ∈ V (H)
connects to (from) the first (last) vertex in q that v reaches in Gi. We store the
position of these vertices in q as tov[q] and fromv[q].

If R and S are of constant size, there will only be a constant number of
separator and frame paths to query to check reachability from u to w. The
frame R is a set of root paths in T whose cardinality we want to minimize,
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so we can assume that each path starts in a leaf of the subtree T [V (R)] ⊆ T
induced by V (R). For convenience, we call he leaves of the tree T [V (R)] the
leaves of R.

2.1.2 Bounding the number of frame paths

In order to keep the frames of constant size, we alternate between two types of
recursive calls of Lemma 2.1 with different vertex weightings: subgraph reducing
calls and frame reducing calls. Let H + R denote H and R together with all
edges from Gi between H and R. In the subgraph reducing recursion, we pick
a separator S = {T (u), T (v), T (w)} such that no component of (H + R) \V (S)
contains more than half of V (H). This is done by giving the vertices in H
weight 1 and vertices in R weight 0 when applying Lemma 2.1 to H + R.

In a frame reducing recursion, we pick S so that no component of (H +
R) \ V (S) contains more than half the leaves of R. Thus, in a frame reducing
recursion these leaves are given weight 1, whereas all other vertices in H + R
are given weight 0. Since every other recursive call halves the weight of the
subgraph H, the recursion will have depth O(log |V (Gi)|).

We will now consider the number of root paths in the frames passed down
to the recursions on the components of H V (S), starting with a subgraph
reducing recursive call. If the original frame R has α root paths, then trivially,
each component receives a frame with at most α′ = α + 3 root paths; those
from R plus the three in S. In a frame reducing recursive call, we only pass
down S and the root paths in R who starts in H \ V (S) as a frame. Since each
frame path starts in a leaf, at most α′/2 + 3 = α + 4.5 frame paths will be
passed down. The graph Gi has no frame, so there are no more than 12 frame
paths at any time during the recursion. Each of these frame paths corresponds
to two directed paths in Gi.

2.1.3 Indexing with frames

Every vertex v participates in all recursive calls in the recursion tree along the
path from the root of the recursion tree to the call where it is added to the
separator S. This last call is called the final call of v. In each ancestor call of
the final call of v, the vertex v enumerates both the directed paths in the frame
and the directed paths in the separator. This means that the same directed
path might be numbered several times; first as a separator, and later as a frame.
The enumeration is done such that each vertex in a call gives the path q the
same number.

The separation number of a call is the last number used for enumerating
directed paths for that call. Now, let C be the nearest common ancestor of
the final calls of u and w, and let s be the separation number of C. If p is the
separation number of the parent of C, then {p + 1, ..., s} will be the indices of
directed paths of the frame and the separator of C, so u reaches w in Gi if and
only if there exists a q ∈ {p + 1, ..., s} such that tou[q] ≤ fromw[q].
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2.1.4 Distributing the oracle

The reachability oracle constructed so far can be distributed as a labeling
scheme. With each vertex v we associate a label D(v) of size O(log n), such
that given only D(u) and D(w), we can determine if u reaches w.

The first parts of the label for v are the O(log n)-space tables fromv and
tov. In able to distribute these parts, we cannot store the separation numbers
globally with the calls in the recursion tree anymore. Instead, for each vertex
v and depth d, we store the separation number sv[d] of the depth d ancestor
of the final call of v in the recursion tree. Then we can just use a labeling
scheme for depths of nearest common ancestors. Alstrup et al. [3] proved that
such a labeling with labels of size O(log n) bits and constant query time can be
computed in time O(n), where n is the number of vertices in the tree.

Theorem 2.2 (Thorup [57]). Let G be a planar n-vertex digraph. Then we
can, in O(n log n) time, compute a reachability labeling of V (G) with labels of
size O(log n) and constant query time.

Now, suppose we are only interested in a subset U ⊆ V (G) of the vertices.
We then want a labeling of the vertices in U such that we can answer reachability
queries about two vertices u, v ∈ U by just inspecting the labels of u and v. It
is fairly straightforward to modify Thorup’s construction so that each vertex in
U gets a label of size O(log |U |) while still having constant query time. In each
subgraph reducing recursion, instead of giving all the vertices in V (H) weight
1, we only give vertices in U weight 1 (all other vertices get weight 0). We then
only consider connections between vertices in U and the directed paths in the
frames and separators.

2.2 An improved labeling scheme

We next prove that Thorup’s labeling can be improved if the vertices are con-
tained in the input graph.

Suppose we are interested in a set U ⊆ V (G) of vertices in the planar
digraph G. Let F be a set of faces in a plane drawing of G. Recall that F
covers U if for each vertex u ∈ U there exists some face F ∈ F such that u ∈ F .
It turns out if we are given a set F that covers U such that |F| ∈ o(|U |), we
can use smaller labels.

Theorem 2.3. Let G be planar n-vertex digraph with a set of U interesting
vertices given with a plane drawing of G, such that U is covered by the set F
of faces. Then we can, in O(min{n log n, n|U |}) time, compute a reachability
labeling of U with labels of size O(log |F|) and constant query time.

Contracting the vertices in L<i does not change the incidences between faces
in F and vertices in Li and Li+1, so still can consider each 2-layered graph Gi

separately.

We change the recursion so that each subgraph reducing recursive call
roughly halves the number of faces in F that contains a vertex in U in each
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component. Then we show how to construct a reachability labeling with labels
of size O(|F|) and use that as a base case of our recursion.

We start by constructing a new graph Gi,F by adding a new vertex vF in each
face F ∈ F and connecting it to all the other vertices v ∈ F by inserting new
edges {v, vF }. These new vertices are called face vertices. We then augment the
spanning tree T to a spanning tree of Gi,F by adding one of these new edges.
During the recursion, we will split these vertices in a way such that in the end,
each component H will contain a constant number of face vertices connected
to the vertices in U ∩ V (H).

Throughout the recursion, we will maintain the invariant that each face
vertex is a leaf in the spanning tree and that every vertex in U that is not in a
separator or a frame is connected to a face vertex corresponding to a face in F .

This is immediately true after each application of Lemma 2.1, unless a face
vertex is in the separator. Now, suppose vF is in the separator S for some face
F ∈ F after we have applied Lemma 2.1 to the graph H during the recursion.

We add one copy of vF to each component H ′ of H\V (S) where V (H ′)∩F 6=
∅ and connect it to the vertices in V (H ′)∩F (see Figure 2.3). We then augment
the spanning tree of H ′ by adding one of the new edges like before. Since every
face vertex is a leaf of the spanning tree, at most 3 face vertices can be split in
this way.

vF

vF

vF

vF

S

S

S

Figure 2.3: The face vertex vF is split if it is contained in the separator.

In a subgraph reducing recursive call, we give weight 1 to the face vertices
and weight 0 to all the other vertices. If H contains f face vertices before
applying Lemma 2.1, no augmented component of H \ V (S) contains more
than f/2 + 3 face vertices after the face vertices are split. In a frame reducing
recursive call the weighting is the same as before. The number of face vertices
in an augmented component of H \ V (S) can hence be at most f + 3. Hence,
after two recursive calls the number of face vertices in a component goes from
f to at most f/2 + 6.

For sufficiently large f , f/2 + 6 is a constant fraction of f . Hence, after
O(log |F|) recursive calls, each component contains a constant number of face
vertices. This means that for each component H, U ∩ V (H) is covered by a
constant number of faces in F .
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2.2.1 Labels of size O(|F|)
As base case for our recursion, we need a compact reachability labeling when
|F| is constant. We start with the case |F| = 1.

Lemma 2.4. Let G be planar graph with a set U ⊆ V (G) of interesting vertices
given with a plane drawing of G such that all vertices in U are in a single face
F . Then there is a reachability labeling of U using labels of constant size with
constant query time.

Proof. We assign each vertex u ∈ U a natural number C(u) by giving an arbi-
trary start vertex x the number C(x) = 1 and giving the other vertices increas-
ing numbers going clockwise around the boundary of F from x.

The label of each vertex v will consist of 5 parts. The first part is the
number C(v). We then have two labels each for the cases C(u) < C(v) and
C(u) > C(v), where u is the other vertex involved in the reachability query:
one label for paths from u to v (the incoming label) and one label for paths
from v to u (the outgoing label). We only have to consider paths from u to v
where C(u) < C(v); the other case is symmetric.

First, we note the following useful fact.

Fact A. Let u, v, w, s and t be vertices in U such that u and v both reach
the vertex t and w reaches the vertex s. If C(v) < C(w) < C(u) < C(s), then
w reaches t.

Proof. The path between w and s must cross either the path between v and t
(if C(s) > C(t)) or the path between u and t (if C(s) < C(t)) (see Figure 2.4).
△

v w u t

Figure 2.4: The vertex w cannot reach any vertex to the right of u without
reaching t.

We then construct a graph T on the vertices in U as follows: (u, v) ∈ E(T )
if u and v reach a common vertex, C(u) > C(v) and for every other vertex
w that reaches a common vertex with u, C(u) > C(w) implies C(v) > C(w).
Clearly, T is acyclic and every vertex has at most one outgoing edge in T . We
construct a new weakly connected graph T ′ from T by adding a new vertex r
and edges (s, r) for all vertices s ∈ V (T ) with outdegree 0. It is easy to see that
the underlying undirected graph T ′′ of T ′ is a tree. We choose r as root of this
tree.

Claim P. The set of vertices S(t) that reach a vertex t in G induces a path in
T ′.

Proof. Let u, v be the vertices in S(t) such that C(u) > C(v) and such that for
all w ∈ S(t), C(u) > C(w) implies C(v) > C(w). Suppose C(v) < C(z) < C(u)
and z and u both reach the vertex s 6= t for some vertex z 6∈ S(t). Then, by
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Fact A, z must reach t, which is a contradiction. Hence, (u, v) is an edge in T ′.
The claim follows by induction. △

Hence, every set S(t) induces a connected subgraph of root path in T ′′.
We can now give each vertex v an incoming and outgoing label: the outgoing
label is the pre- and post-order numbers x and y of v in T ′′, and the incoming
label is the pre- and post-order numbers x1, y1 of the vertex in S(v) that is
highest in T ′′ and the pre- and post-order numbers x2, y2 of the vertex in S(v)
that is lowest in T ′′. A query ’u reaches v?’ is then answered by checking if
x1(v) ≤ x(u) ≤ x2(v) and y2(v) ≤ y(u) ≤ y2(v).

Since we already have a labeling for paths between vertices in the same face,
we only need to add labels for paths between vertices in different faces when
|F| ≤ 2.

Lemma 2.5. Let G be planar graph with a set U ⊆ V (G) of interesting vertices
given with a plane drawing of G such that all vertices in U are in the two faces
F1 and F2. Then there is a labeling of the vertices in U using labels of constant
size such that we can answer queries ”is v reachable from u?” for u ∈ F1 and
v ∈ F2 in constant time.

Proof. W.l.o.g. we assume that each vertex in U ∩ F1 reach some vertex in
U ∩ F2. We start by constructing a directed cycle C on the vertices in U ∩ F1

by adding edges directed from each vertex in U to the nearest clockwise vertex
in U .

Claim P. The set of vertices S(t) in U ∩ F1 that reaches a vertex t ∈ U ∩ F2

induces a path in C.
Proof. Suppose not. Then there are vertices u, v,w, z ∈ F1 ∩ U and a vertex
t ∈ F2 ∩ U , such that the vertices come in the order u, v,w, z in C, u,w ∈ S(t)
and v, z 6∈ S(t) (see Figure 2.5)). Now, the paths from u and w to t together
with the boundary cycle in F1 delimits a region in the plane such that one of
v and z is inside the region, and all the vertices in (U ∩ F2) \ {t} is outside
the region. W.l.o.g. assume v is inside the region. But v reaches some vertex
s ∈ (U ∩ F2) \ {t}. The path to s must hence intersect either the path from to
u to t or the path from w to t, so v also reaches t; a contradiction. △

z

w
t

u
v

F2

F1

Figure 2.5: The vertex v cannot reach any vertex in F2 \ {t} without reaching
t.

Now, we can just number the vertices in U ∩ F1, like in the proof of
Lemma 2.4, giving each vertex u a natural number C(u). Each vertex u ∈ U∩F1
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gets the number C(u) as its label, and each vertex v ∈ F2 ∩ U gets C(v1) and
C(v2) as label, where v1 is the first vertex and v2 is the last vertex vertex in
the path induced by S(v). A query ’u reaches v?’ is then answered by checking
if C(v1) ≤ C(u) ≤ C(v2) when C(v2) > C(v1) and by checking if C(v1) ≤ C(u)
or C(v2) ≥ C(u) when C(v1) > C(v2).

Combining Lemma 2.4 and Lemma 2.5 we get the labeling we need.

Theorem 2.6. Let G be planar n-vertex digraph with a set of U interesting
vertices given with a plane drawing of G, such that U is covered by the set F
of faces. Then we can, in O(min{n log n, n|U |}) time, compute a reachability
labeling of U with labels of size O(|F|) and constant query time.

Proof. Suppose the vertex u ∈ U is in the face F . We use one incoming and
one outgoing label of constant size for the vertices in every face in F \{F} from
Lemma 2.5, and the constant sized label for the vertices in F from Lemma 2.4.
To see that the running time is O(min{n log n, n|U |}), we note that the con-
structions in Lemma 2.4 and Lemma 2.5 can be done in linear time if we are
given a reachability oracle for U with constant query time. To get such an
oracle, we can either use Thorup’s algorithm or compute the transitive closure
of G[U ].

Theorem 2.3 then follows by concatenating the label from the modified
recursion and the label we get from Theorem 2.6 for each vertex.

2.3 Concluding remarks

While have an upper bound of O(log |F|) on the size of the labels, no non-
trivial lower bound on the size of the labels needed for a constant query time
reachability labeling scheme is known. This is also true for reachability oracles
that do not distribute. It is not clear that allowing more time to answer queries
makes smaller reachability oracles possible; it is an open question if there is
a reachability oracle for every n-vertex planar digraph using o(n log |F|) space
even if polylogarithmic query time is allowed.

Note that the upper bound is weakest for the case where the interesting
vertices are spread out in many faces. Is there perhaps any property for such
maps with many faces that can be used to create smaller labels?





Chapter 3

Reachability substitutes

3.1 Introduction

In this chapter, we consider the problem of constructing small reachability
substitutes. Reachability substitutes are defined as follows: Let G be a digraph
with n = |V (G)| vertices and let U ⊆ V (G) be a set of κ vertices in G which
are designated interesting. A reachability substitute for (G,U) is a digraph
H = (V ′, E′) such that U ⊆ V ′ and for any pair of vertices u, v ∈ U , there is
a path from u to v in H iff there is a path from u to v in G. Throughout the
rest of this chapter, κ will denote the cardinality of U . When U = V (G), we
also say that H is a reachability substitute of the graph G.

The problem we are interested in is that of finding a small reachability
substitute, i.e., one that minimizes |V ′| + |E′|. We show that it is NP-hard.
Aside from the complexity of finding a small substitute, we are mainly interested
in the structural question of lower and upper bounds on its size and in efficient
methods of constructing small substitutes. Trivially, every input has a solution
of size O(κ2), and we show by a counting argument that in general it is not
possible to obtain a considerably smaller reachability substitute:

Theorem 3.1. The fraction of pairs (G,U) of digraphs G = (V,E) and subsets
U ⊆ V of κ interesting vertices with reachability substitutes of size o(κ2/ log κ)
can be at most o(1).

Recall that a Steiner graph G′ = (V ′, E′) of a digraph G = (V,E) is an
edge-weighted digraph such that V ⊆ V ′ and the distances dG and dG′ satisfy
dG′(u, v) ≥ dG(u, v) for all vertices u, v ∈ V . A Steiner d-preserver is a Steiner
graph G′ such that dG′(u, v) = dG(u, v) if dG(u, v) ≥ d [12]. A Steiner 1-
preserver of G hence preserves the existence of paths between vertices in V (G),
so a Steiner 1-preserver of G is also a reachability substitute. Bollobás, Copper-
smith and Elkin proved that every graph on n vertices has a Steiner 1-preserver
of size O(n2/ log n), so each pair (G,U) has a reachability substitute of size
O(|U |2/ log |U |). This shows that the lower bound O(κ2/ log κ) on the size of
reachability substitutes above is the best possible.

The main focus of this chapter is on planar inputs — the output substitute
need not be planar, though. If all vertices of U lie on a constant number of
faces of a plane graph, there is a solution of size O(κ log κ), which can be found

27
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in O(n log n) time. This result is due to Subramanian [54]. That algorithm
was designed as a component of an algorithm for dynamic reachability in pla-
nar graphs; the graph is recursively partitioned with small separators, where
the separator vertices become the interesting vertices. We will generalize Sub-
ramanian’s result using Thorup’s oracle construction for planar digraphs [57]
discussed in Chapter 2. We show that techniques used in a component of Tho-
rup’s construction can be adapted to produce a reachability substitute of size
O(κ log κ) in O(n log n) time for any planar digraph, regardless of where the
interesting vertices are located.

Theorem 3.2. Any planar n-vertex graph G = (V,E) with a subset U ⊆ V
of κ “interesting” vertices has a reachability substitute of size O(κ log κ), which
can be found in O(n log n) time.

Observe that κ may be arbitrarily small compared to the size of the input
graph. In view of Theorem 3.1, Theorem 3.2 demonstrates that the structure
of reachability relations in planar digraphs is considerably less complex than in
general digraphs. Furthermore, the combination of the two theorems implies
that most graphs do not have planar reachability substitutes, not of any size.

This observation immediately raises the question how one could character-
ize the class of directed graphs that have planar substitutes. We make some
first observations about such graphs, but we are far from solving it. The full
classification problem seems to be a difficult task. We shall address this subject
and the questions that arise from it at the end of the chapter.

Road map. The rest of this chapter is organized as follows. In Section 3.2 we
derive several complexity results about the computational cost of finding small
reachability substitutes and lower bounds on their sizes. In Section 3.3 we sketch
a modification of a component of Thorup’s oracle construction which yields an
O(κ log κ)-size reachability substitute for any planar graph in O(n log n) time.
Finally, in Sections 3.4 and 3.5 we discuss the implications of our results and
point out interesting questions that arise from our work.

3.2 The complexity of reachability substitutes

We begin with an examination of the computational and structural complexity
of reachability substitutes.

3.2.1 NP-hardness

Finding a minimum reachability substitute is NP-hard. Our proof is a reduction
from the following problem.

Minimum Hitting Set.
Input: A collection C of subsets of a finite set S.
Output: A hitting set for C, i.e., a subset S′ of S such that S′ contains at least
one element from each subset in C.
Objective: Minimize |S′|.
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Figure 3.1: A minimum substitute for the graph corresponding to the Minimum
Hitting Set instance {{x, y}, {x, z}, {y, z}}.

We will show that if there is a polynomial-time algorithm that finds a
minimum-size reachability substitute, then it can be used to solve the Mini-
mum Hitting Set problem in polynomial time. We will restrict our attention to
Minimum Hitting Set instances where each element belongs to at least two sets
(this does not make the problem tractable).

The basic idea for our reduction is to construct a graph G with an interesting
vertex for every element x ∈ S and one for every set C ∈ C, and to demand paths
from S to C to reflect set membership, i.e., we include the edge (x,C) whenever
x ∈ C. Additionally, we will have an interesting “start vertex” a from which
each set-vertex C must be reachable. A compact substitute for such a graph G
should then be forced to establish reachability from this vertex a to the sets in C
by connecting a to the S-vertices and these connections should implicitly encode
a small hitting set. There is just one technical problem with this approach: The
graph G we are going to construct must already determine which of the elements
in S should be reachable from a, because all these vertices are interesting.
The trick to circumvent this is to force the reachability substitute to contain
uninteresting dummy vertices for the elements of S to which a will then connect.
The precise reduction is as follows.

The graph G has a vertex C for each C ∈ C, one vertex a, and four vertices,
x1, x2, x3, x4, for each element x ∈ S. All of these are interesting and the edges
are (a,C) for each C ∈ C and (xi, C) whenever x ∈ C.

Lemma 3.3. A minimum-size reachability substitute for the graph G above
contains an uninteresting vertex x̄ for every x ∈ S, such that the interesting
vertices reachable from x̄ are exactly those sets C ∈ C with x ∈ C.

Proof. Assume otherwise. Let H be a minimum reachability substitute for G
and let x ∈ S be an element such that there does not exist an uninteresting
vertex in H that reaches all sets to which x belongs. Each of x1, x2, x3, x4

reaches exactly those sets that contain x, so we get that each of them must have
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out-degree at least 2 (recall that we assume that each element belongs to at least
two sets). We can assume without loss of generality that x1, x2, x3, x4 have the
same out-neighbors; otherwise, transform the substitute H by connecting all
four copies of x to the out-neighbors of the one among them that has minimum
out-degree. The subgraph induced by x1, x2, x3, x4 and their common out-
neighbors is a 4 × k bipartite clique for some k ≥ 2. This contradicts the
minimality of H because it can be reduced by adding a non-interesting vertex
x̃ and connecting the two sides of this bipartite clique trough x̃.

We will now show that once we have found a reachability substitute H
for G, we can use it to find a minimum hitting set. First, observe that an
optimal reachability substitute for G is acyclic. This follows from the fact that
G itself contains no directed cycles so that any strongly connected component
of a reachability substitute of G would contain at most one interesting vertex.
Consequently, we could collapse any such component to just one vertex, thereby
reducing the size of the substitute.

We now use the acyclicity to normalize a reachability substitute for G:
Consider an optimal reachability substitute H for G. For each edge (a, b) of H,
we move the tail b of this edge to some non-interesting predecessor of b that
has only interesting in-neighbors.

Lemma 3.4. After applying the normalizing step above to an optimal reachabil-
ity substitute for G, all of the out-neighbors of a are from among the x̃ vertices
whose existence is guaranteed by Lemma 3.3.

Proof. Since the reachability substitute is acyclic, it is clearly not optimal if it
has uninteresting source vertices; they can just be removed. By Lemma 3.3,
for every x ∈ S the reachability substitute has an uninteresting vertex x̃ that
reaches exactly the sets that x belongs to. The substitute is not optimal if x̃
is not unique or if x1, x2, x3, x4 have out-neighbors other than x̃. The lemma
follows.

Lemma 3.4 implies that the out-neighbors of a correspond to a hitting set for
C. In the optimal substitute, this hitting set must be of minimum cardinality.
Hence:

Theorem 3.5. Finding a minimum reachability substitute for a given digraph
is NP-hard.

3.2.2 Incompressibility of almost all digraphs

We now prove Theorem 3.1. A counting argument will show that there are
relations that cannot be represented by a graph of size less than Ω(κ2/ log κ).
In fact, it turns out that almost all digraphs allow for almost no compression,
which is quite in contrast to the planar case of Theorem 3.2.

Let κ = 2k for some integer k and consider as possible inputs all labeled
bipartite graphs with k (interesting) vertices in each bipartition (the labels are
from {1, 2, . . . , κ}), with all edges going in the same direction. There are exactly
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2k2
such input graphs and no two of them induce the same reachability relation.

We use this as a lower bound on the total number of inputs.

On the other hand, we upper bound the number N(ℓ) of different reacha-
bility substitutes of size at most ℓ. Obviously, N(ℓ) is smaller than the number
of different digraphs on ℓ vertices with at most ℓ edges. The latter quantity
can be bounded as follows: Fix a labeling of the vertices. For any edge, there
are less than ℓ2 possibilities of how to place it in (or omit it from) the di-
graph. As a consequence, the number of digraphs, and thus N(ℓ), is bounded
by ℓ2ℓ = 22ℓ log ℓ. Therefore, only a fraction of 22ℓ log ℓ−k2

of all inputs can have
a reachability substitute of size at most ℓ. This fraction can only be constant
if ℓ ∈ Ω(k2/ log k).

3.2.3 A lower bound for planar outputs

The almost linear-size reachability substitutes for planar graphs that we con-
struct for Theorem 3.2 will, however, be far from planar. To see that this cannot
be avoided, we argue why in general, planarity must be sacrificed if one wants
small reachability substitutes.

Theorem 3.6. The planar digraph in Figure 3.2 with κ interesting vertices has
no planar reachability substitute of size o(κ2).

Proof. Consider the plane digraph G in Figure 3.2. The paths through the
black uninteresting vertices are set up to make a lower interesting vertex vj

reachable from some upper interesting vertex ui if and only if i ≤ j < i + r.

We claim that any planar reachability substitute for G′ with the white ver-
tices marked interesting, must contain essentially all those black intermediate
vertices, too. In other words, G is incompressible if planarity is to be main-
tained. With r ≈ ℓ this gives a quadratic lower bound on the representation
size in terms of κ.

To prove this claim, we first observe that a path from s to a vertex ui can
only intersect paths from s to other vertices uj in the upper row. If a path from
s to ui intersects a path from any other vertex than s or ui, it will induce a new
path that is not allowed in the substitute. On the other hand, if a path from
ui intersects the path from s to ui, we get a cycle with only one interesting
vertex. We can then contract the cycle into a single vertex and get a smaller
substitute.

The same observation is true for the paths from vertices vj to t. Hence, if
we fix a plane drawing of a minimum planar reachability substitute H of G, we
can add one Jordan curve Ju through all the uis and another Jordan curve Jv

through all the vjs such that all the paths between the uis and the vjs must
be outside these curves. That is, if we remove the paths from s and to t which
do not contain any other interesting vertices, there will be one face in which all
the uis are contained and one face in which all the vjs are contained.

Now, consider a vertex ui. The Jordan curve Jv together with the paths
from ui to vi and vi+r−1 delimits a region R in the plane. By planarity, the
only interesting vertices that can be inside R are {vi+1, . . . , vi+r−2}.
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Figure 3.2: A planar acyclic digraph with no planar substitute of sub-quadratic
size.

Claim A. All the vertices in {vi+1, . . . , vi+r−2} are inside R.
Proof. Suppose not. Then vi+k is outside R for some 0 < k < r − 1. Either the
paths from ui to vi and vi+k or the paths from ui to vi+k and vi+r−1 delimits a
new region R′ containing R together with Jv . W.l.o.g. assume R′ is delimited
by the paths to vi and vi+k. Then vi+r−1 is inside R′. But there must be a path
between the vertex ui+r−1 and vi+r−1, and this path is not allowed to cross any
of the paths delimiting R′; a contradiction. △

By a similar argument, we see that the v1, v2, . . . , vℓ must come in this order
while traversing Jv either clockwise or counterclockwise.

Now, consider a pair of vertices ui, ui′ with i ≤ i′ < i + r. The path from
ui′ to vi′ is not allowed to cross any path to vi. Hence, in a substitute for G′,
there must be a path P from ui to vi+r−1 and a path P ′ from ui′ to vi′ that
intersect at some vertex x. It is easy to see that the set of vjs reachable from
this x is exactly {v′i, . . . , vi+r−1}. Hence, for each such pair of vertices ui, ui′

there must be a different vertex x in the substitute. Setting r ∈ O(ℓ) gives us
desired lower bound.

3.3 An O(κ log κ)-size substitute for planar digraphs

Thorup’s oracle construction [57] that we sketched in Section 2.1 can be turned
into an algorithm that produces a reachability substitute. We start by reducing
the problem to 2-layered graphs as before. However, to create a reachability
substitute, we don’t need to pass down a frame with each recursive call. Hence,
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the frame reducing recursion is removed. Like before, we find the connections to
and from the directed separator paths. To get a reachability substitute, we add
these connections as edges. For each vertex u in the graph and each directed
separator path P , let Pu be the first vertex along P that is reachable from u
and let P u be the last vertex on P that reaches u. The reachability substitute
contains two edges between u and P : one from u to Pu and one from P u to u.

After the edges to and from the separator paths are added, these paths
are contracted into the root of the spanning tree. When a new separator is
computed, the root is given weight 0, since all paths through the root already
have been added to the substitute. The depth of the recursion remains O(log n)
and the number of edges inserted into the substitute in each recursive level is
O(n), so the total size of the reachability substitute is O(n log n).

We now sketch how this algorithm can be modified to give an O(κ log κ)-size
substitute when only a subset of κ vertices are interesting. Two changes are
necessary. The first is to reduce the recursion depth to O(log κ) and the second
is to reduce the number of edges inserted into the reachability substitute in
each recursive level to O(κ). This is very similar to the change we made to the
oracle construction in the previous chapter.

To reduce the recursion depth, we change the vertex weighting when used
when we compute a separator: the interesting vertices get weight 1 and the
other vertices get weight 0. The number of interesting vertices in each connected
component after removing the separator is at most a constant fraction of the
number of interesting vertices we had before, and the depth of the recursion is
thus O(log κ).

Finally, the contribution of each recursive level to the size of the substitute
can be reduced to O(κ) as follows. Initially, we link each interesting vertex u
to Pu and P u as before. This adds at most O(κ) edges to the substitute; two
for each interesting vertex and directed separator path, and the number of such
paths is constant. The problem now is that the separator paths themselves may
consist of too many vertices and edges. In each directed path, there are O(κ)
vertices to which we directly connected interesting non-separator vertices. We
call them ”connection points”. Any separator vertex that is not a connection
point has exactly one incoming edge and one outgoing edge, so we remove it
and connect its predecessor directly to its successor.

This way we get the desired O(κ log κ)-size substitute for Theorem 3.2.

3.4 Planarly induced graphs

As mentioned in the introduction, a consequence of Theorems 3.1 and 3.2 is that
most graphs do not have planar reachability substitutes, not of any size. We say
that a graph is planarly induced if it has a planar reachability substitute. The
class of planarly induced graphs is clearly very different from the class of planar
graphs. For example, an instance of K3,3 in which all edges are oriented from
one bipartition to the other, is not planar but is induced by a 7-vertex 3-layered
planar graph. On the other hand, the graph obtained by subdividing each edge
in the oriented K3,3 above, shown in Figure 3.3, is not planarly induced. This
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can be seen as follows.
In a planar substitute for that graph, there would have to exist a path

from any of the three sources to any of the three sinks, which also has to pass
through one of the nine intermediate interesting vertices. It can be seen that
any crossing between two such paths would induce a path between a source or
sink vertex and an intermediate vertex who are not linked in the given graph.
Therefore, a planar substitute cannot exist for this graph, by Kuratowski’s
theorem. Similarly, it follows that there is no planar reachability substitute for
such an oriented subdivision of any non-planar bipartite graph.

Figure 3.3: A directed K3,3-subdivision that is not planarly induced.

Several questions arise from this observation. Are there alternative charac-
terizations of the planarly induced graphs? One might suspect that planarly
induced graphs could be captured by a generalization of Kuratowski’s classifica-
tion of planar graphs. However, the example above shows that planarly induced
graphs are not even stable under subdivisions, a property that one would nat-
urally expect when trying to follow some graph-minor related approach.

Further open questions concern the minimal size of planar substitutes. Given
a planarly induced graph with κ vertices, how large is its smallest planar reach-
ability substitute? We have shown that the answer can be as bad as Ω(κ2) in
the worst case. Is this also an upper bound?

On the algorithmic side, we ask whether planarly induced graphs can be
identified by an efficient algorithm. Furthermore, if we know that a graph is
planarly induced, what is the complexity of constructing the smallest possi-
ble planar reachability substitute for it? Or an approximation of the smallest
possible planar substitute? Or any planar substitute?

3.5 Further open problems

Apart from the open problems related to the concept of planarly induced graphs,
mentioned above, there are further immediate open questions that arise from
the results in this chapter.

There remains a gap between the upper bound of O(κ log κ) and the trivial
lower bound of Ω(κ) on the size of a reachability substitute for a planar input.
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So far, we have not found a planar instance that does not have a linear-size
reachability substitute. Even for the special case in which all interesting vertices
are on a single face of the graph, it is an open problem to improve upon the
O(κ log κ)-size solution (which, as we have mentioned, was first achieved by
Subramanian [54]). It seems like it should be possible to turn the constant size
labeling from the previous chapter into a substitute of size O(κ) in this case,
but so far our efforts in this direction has been fruitless.

We have shown that the problem of computing a minimum-size reachability
substitute for a general graph is NP-hard. Can it be approximated? Is it NP-
hard also for planar inputs? If so, can it be approximated within a better factor
than our O(log κ)?

Finally, it would be interesting to find other classes of graphs that have
small reachability substitutes.





Chapter 4

The order dimension of planar maps

4.1 Introduction

In this chapter we study planar maps and the order dimension of posets related
to them. By a planar map M we mean the combinatorial data given by the set
V of vertices, the set E of edges, the set F of faces and the incidence relations
between these sets. As usual, the dual map of M is denoted M∗.

Most of the maps we consider in this chapter are outerplanar. We differen-
tiate between two notions of outerplanar maps. A planar map M = (G,D) is
weakly outerplanar if G is outerplanar, and strongly outerplanar if G is outer-
planar all the vertices are on the boundary of the outer face in D. When it is
clear from the context, the qualifiers weakly and strongly will be omitted.

The dimension is a widely studied parameter of posets. Since its introduc-
tion by Dushnik and Miller [24] in 1941, dimension has moved into the core of
combinatorics. There are close connections and analogies with the chromatic
number of graphs and hypergraphs. From the applications point of view, di-
mension is attractive because low dimension warrants a compact representation
of the poset. Trotter [58] provides an extensive introduction to the area.

The vertex-edge-face poset PM of a planar map M is the poset on the
vertices, edges and faces of M ordered by inclusion. The vertex-face poset QM

of M is the subposet of PM induced by the vertices and faces of M .

F∆

F∞

M

Figure 4.1: A planar map. Two faces are labeled, F∞ is the outer face.

Note that if M is connected, the vertex-edge-face poset PM∗ of the dual
map, is just the dual poset (PM )∗ (i.e., x < y in (PM )∗ if and only if y < x in
PM ). The same observation is true for QM .

Recall that the dimension dim(P) of a poset P is the minimum number t

37
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PMQM

F∆ F∞

Figure 4.2: The vertex-face and the vertex-edge-face posets of the map from
Figure 4.1.

such that P is the intersection of t linear orders on the same ground set. Our
investigations ground on Schnyder’s characterization of planar graphs in terms
of dimension [53] and the two theorems of Brightwell and Trotter cited below.
A simpler proof of Theorem 4.2 can be found in [32].

Theorem 4.1 (Brightwell and Trotter [15]). If M is a planar map, then
dim(PM ) ≤ 4.

Theorem 4.2 (Brightwell and Trotter [14]). If M is a 3-connected planar, then
dim(QM) = 4.

The cases where the dimension is 2 are well-studied. There are fast al-
gorithms to test whether a poset P is of dimension 2, see e.g. [46]. More-
over, Brightwell and Trotter [15] have presented a complete characterization
of the planar maps with dim(PM ) = 2. This characterization can be turned
into a linear time recognition algorithm. Surprisingly, the characterization of
dim(QM) = 2 is less satisfying. It seems that the most compact way of stating
the characterization is to refer to the list of 3-irreducible posets, see e.g., [58, Ta-
ble 2]. A map that contains Ak for some k ≥ 4 in its vertex-face poset also
contains another forbidden subposet. Therefore, it is enough to forbid A3, B,
CX2 and EX1 and their duals, i.e, subposets with six or seven elements (see
Figure 4.3). Another option is to refer to characterizations of bipartite permuta-
tion graphs, e.g, as being exactly the bipartite AT-free graphs, see [13] for more
on this topic. Again, these characterizations lead to linear time recognition
algorithms, see [13,16].

EX1CX2

A3B

Figure 4.3: The forbidden posets B, A3, CX2 and EX1.

For dim(PM ) ≥ 3 it is sufficient that M has a vertex of degree 3. To test
for dimension 3 is known to be NP-complete [60]. A major open problem in
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the area is to determine the complexity of the dimension 3 problem for orders
of height 2. Even the special case where the order of height 2 is the vertex-face
poset of a planar map remains open. Motivated by these algorithmic questions
we approach the problems of characterizing the maps M with dim(PM ) ≤ 3
and the maps with dim(QM ) ≤ 3. These characterization problems have earlier
been posed by Brightwell and Trotter [15].

4.1.1 Our contributions

In Section 4.2 we prove that for dim(QM ) ≤ 3 it is necessary that M is K4-
subdivision free. For dim(PM ) ≤ 3 an additional necessary condition is that
both M and M∗ are K2,3-subdivision free. This means that if dim(PM ) ≤ 3,
then both M and M∗ are outerplanar.

In Section 4.3, we study the simplest class of maps M such that M and
M∗ are outerplanar. We call these maps path-like. For maximal path-like maps
we prove that dim(PM ) ≤ 3 is equivalent to the existence of a special oriented
coloring of the interior edges and characterize the path-like maps which admit
such a coloring. The characterization is turned into a linear time algorithm that
generates a 3-realizer, i.e., three linear extensions whose intersection is PM , or
returns the information that dim(PM ) ≥ 4.

Finally, in Section 4.4, we prove that if M is 2-connected and M and M∗

are outerplanar, then dim(QM ) ≤ 3. We also present a strongly outerplanar
map with a vertex-face poset of dimension 4. The example, a maximal outer-
planar graph with 21 vertices, is quite large. We provide some arguments which
indicate that our example is not far from being as small as possible.

4.2 Vertex-edge-face posets of dimension at most 3

From Theorem 4.2, we know that dim(QM ) = 4 for every 3-connected map M .
We show that this excludes K4-subdivisions from being contained in M if
dim(QM) ≤ 3.

Theorem 4.3. Let M be a planar map that contains a subdivision of K4. Then
dim(QM) > 3.

Proof. We will prove that QM has the vertex-face poset of some 3-connected
planar map as a subposet, and then apply the Brightwell-Trotter Theorem.
This is essentially done in two steps: first 1-vertex cuts and then 2-vertex cuts
are removed.

A K4-subdivision in M will be contained in a 2-connected component of M .
The vertex-face poset of a 2-connected component of M is an induced subposet
of QM . Hence, we can assume that M is 2-connected.

Now, consider a 2-vertex cut {x, y}. There must be two components C1 and
C2 such that removing x and y separates C1 from C2. We create two new maps
by replacing one of the two components by an edge {x, y}, see Figure 4.4. The
vertex-face posets of these new maps are subposets of QM . Furthermore, if M
contains a K4-subdivision, one of the new maps must contain a K4-subdivision.
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C2
C1 C2

x

y

C1

y y

x x

Figure 4.4: Removing a separating pair.

For vertex-edge-face posets, we provide another criterion which forces di-
mension 4. If M contains a K2,3-subdivision, then dim(PM ) = 4. Before ana-
lyzing the general situation we deal with the simple case where M is, actually,
a subdivision of K2,3.

Proposition 4.4. Let M be a planar drawing of a subdivision of K2,3. Then
dim(PM ) > 3.

Proof. Let x and y be the two vertices of degree 3 in M , and let P1, P2 and P3

be the three x-y paths. The map has three faces F1, F2 and F3. In Figure 4.5
face Fi is labeled Ri. The vertex closest to y in the path Pi is denoted vi.

Suppose {L1, L2, L3} is a realizer of PM . By symmetry, we may assume
that y > x in L1 and L2 and x > y in L3. The edge {v1, y} can go below x only
in L3. In L3 we thus have v1 below {v1, y} below x below F1, F2 and F3. In the
same way, we obtain that v2 and v3 are below F1, F2 and F3 in L3. Hence, none
of the three critical pairs of the the subposet S induced by v1, v2, v3, F1, F2

and F3 in PM can be reversed in L3. However, S is a crown with dim(S) = 3.
This shows that {L1, L2, L3} is not a realizer of PM . Hence, dim(PM ) > 3.

v1

v3

v2
x

P1

P3

P2

R2

R3

y

R1

Figure 4.5: The three paths P1, P2 and P3 partitions the map into 3 regions.

For the general case, where M only contains a K2,3-subdivision, we have
to use a more sophisticated technique. We illustrate this technique with an
alternative proof of the simple case.
Second proof of Proposition 4.4. The vertices and edges of path Pi all belong
to Fi ∩ Fi+1 (cyclically). Hence, each path Pi induces a fence of the form
x < e0 > u1 < e1 > . . . us < es > y between x and y in PM such that all
maximal elements are below Fi and Fi+1. These three fences are mutually
disjoint.
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Suppose {L1, L2, L3} is a realizer of PM . By symmetry, we may assume
that y > x in L1 and L2 and x > y in L3. Now, consider the fence induced by
Pi, i ∈ 1, 2, 3, see Figure 4.6.

The edge {vi, y} must be below x in L3, hence vi is below x in L3. Let wi

be the last vertex encountered when traversing the path Pi from y to x which is
below x in L3, and let ei be the edge leaving wi in direction of x. The choice of
wi implies that ei is above x and y in L3. Since ei has to go below y somewhere
there is an index ji ∈ {1, 2} such that ei and thus wi go below y in Lji

.
Two of the three indices j1, j2, j3 must be equal, so we can w.l.o.g. assume

that w1 and w2 are below all faces that contain both x and y in in L2 and L3.
Now, none of the critical pairs of the subposet 2+2 of PM induced by w1,

w2, F1 and F3 are reversed in L2 or L3. But dim(2+2) = 2, so the critical pairs
of Q cannot be reversed in L1 alone. Hence {L1, L2, L3} cannot be a realizer
of PM .

y

v1

w1

y

x

L3

e1e1

w1

v1

x

Figure 4.6: The fence of the path P1 and L3.

We now move on to the slightly more complicated case where M only con-
tains a subdivision of K2,3.

Theorem 4.5. Let M be a planar map such that M contains a subdivision of
K2,3. Then dim(PM ) > 3.

Proof. If M contains a subdivision of K4, the conclusion of the lemma follows
from Theorem 4.3. We thus can assume that M contains no subdivision of K4.

Let x and y be the degree 3 vertices in the subdivision of K2,3. Our goal
is to find at least three mutually disjoint fences Ti between x and y, and a set
of faces Fi such that x, y ∈ Fi and each minimal element in Ti is below Fi and
Fi+1.

Given fences Ti and faces Fi as described we can continue as in the previous
proof: Assume a realizer {L1, L2, L3} such that y > x in L1 and L2 and x > y
in L3. In each fence Ti we find a minimal element wi which is below x in
L3 and below y in some Lji

, ji ∈ {1, 2}. Since i ≥ 3 there are indices a and
b with ja = jb, and we can w.l.o.g. let ja = jb = 1. Let a′ ∈ {a, a + 1} and
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b′ ∈ {b, b+1} be such that wb 6∈ Fa′ and wa 6∈ Fb′ . Hence, wa, Fa′ , wb, Fb′ induce
a 2+2. The critical pairs of this 2+2 are not reversed in L3 nor in L1, and
they can’t be both be reversed in L2. This is in contradiction to the assumption
that {L1, L2, L3} is a realizer. Hence, dim(PM ) > 3.

It remains to show how to determine appropriate fences Ti. Consider a
maximal set P0, P1, . . . , Pk of pairwise internally disjoint paths from x to y.
Clearly, k ≥ 2. The numbering should correspond to the cyclic order of their
first edges at x. Let Ri be the bounded area between Pi−1 and Pi. The maxi-
mality of the family P0, P1, . . . , Pk implies that in Ri there is a face Fi that has
a nonempty intersection with the interior of both, Pi−1 and Pi. Next we prove
that this face Fi contains x and y.

Claim A. In Ri there is a face Fi containing x and y.

Otherwise, the cycle consisting of Pi and Pi+1 has a chordal path and this path,
together with Pi, Pi+1 and some Pj , j 6∈ {i, i + 1} is a subdivision of K4 in M .
△

Let u and w be vertices of Pi such that u is closer to x than w and (u,w) 6=
(x, y). A shortcut between u and w over Pi is a path from u to w which is
internally disjoint from Pi. Two shortcuts, {u1, w1} and {u2, w2} are crossing
if their order along P1 is either u1, u2, w1, w2 or u2, u1, w2, u1. In particular this
requires the four vertices to be pairwise different.

Pi−1

yx
u2 w2

u1 w1

Figure 4.7: Crossing shortcuts.

Claim B. There is no crossing pair of shortcuts on Pi.

Otherwise, the four vertices of the two shortcuts are the degree three vertices of
a subdivision of K4. This subdivision of K4 is formed by the shortcuts together
with Pi and Pi−1. See Figure 4.7. △

Let Vi be the set of all vertices of Pi that are contained in Fi ∩ Fi+1.

Claim C. Two consecutive vertices u and w in Vi either are the two endpoints
of an edge or there exists a face F such that F ∩ Vi = {u,w}.
Suppose {u,w} is not an edge. From Claim B it follows that there is a shortcut
{u,w} over Pi. Essentially the same proof as for Claim A shows that the
subregion bounded by Pi and the shortcut between u and w contains a face F
with u,w ∈ F ; otherwise, there is a K4-subdivision. △.

The fence Ti consists of Vi (the set of minimal elements) and edges, re-
spectively faces over consecutive pairs of vertices in Vi. The existence of a
K2,3-subdivision between x and y implies that at least three of the fences
T0,T1, . . . ,Tk are nontrivial, i.e., have minima different from x and y. These
fences can be used to conclude the proof.
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Pi+1

Pi−1

F

u v
yx

Figure 4.8: The common face F of u and w.

Theorem 4.6. If dim(PM ) ≤ 3, then M and M∗ are both weakly outerplanar.

Proof. From Theorem 4.3 and Theorem 4.5, we know that if dim(PM ) ≤ 3 then
M contains neither a K4-subdivision nor a K2,3-subdivision. This is equivalent
to saying that the graph G corresponding to the map M is outerplanar. Since
PM and PM∗ are dual orders and, hence, have the same dimension the same
necessary condition for dim(PM ) ≤ 3 applies to M∗.

Note that testing if M and M∗ are weakly outerplanar, i.e., if the corre-
sponding graphs are outerplanar, can be done in linear time [45].

4.3 Path-like maps and permissible colorings

From Theorem 4.6 we know that if dim(PM ) ≤ 3, both M and M∗ are weakly
outerplanar. In this section we study the order dimension of 2-connected maps
M , such that M is strongly outerplanar and M∗ is weakly outerplanar.

A 2-connected component of an outerplanar map M has a Hamilton cycle.
If the graph of M is simple, the Hamilton cycle is unique. This yields a natural
partition of the edges of M into cycle edges and chordal edges. The restriction of
the dual graph to the graph induced by the vertices corresponding to bounded
faces is called the interior dual. For a strongly outerplanar map, the edges of
the interior dual are just the dual edges of the chordal edges.

We say that a simple 2-connected outerplanar map M is path-like if and
only if the interior dual of M is a simple path. Note that this implies that the
Hamilton cycle is the boundary of the outer face F∞, i.e. that M is strongly
outerplanar. Since the interior dual is a path, it follows that M∗ is weakly
outerplanar. On the other hand, if M is a 2-connected strongly outerplanar
map and M∗ is weakly outerplanar, the interior dual of M must be a simple
path. Hence, M is path-like iff M is a 2-connected outerplanar map such that
M∗ is weakly outerplanar.

Path-like maps are in some sense the simplest ones with dim(PM ) ≤ 3.
From Theorem 4.6 it follows that if M is a 2-connected strongly outerplanar
map with dim(PM ) ≤ 3, M must be path-like. We can also prove something
slightly stronger.
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Proposition 4.7. Let M be a simple 2-connected planar map with dim(PM ) ≤
3. The map M ′ obtained by moving all the chordal edges of M into the interior
of the Hamilton cycle is path-like.

Proof. Suppose not. Then the interior dual of M ′ contains a vertex of degree
at least 3, and hence its dual (M ′)∗ contains a subdivision of K2,3 with the dual
of one degree 3 vertex inside the Hamilton cycle H and the dual of the other
outside. We proceed to show that we can move the necessary chordal edges
outside one by one to create M without destroying the K2,3-subdivision in the
dual.

We do this as follows: let M ′ = M0,M1, . . . ,Mk = M be a sequence of
maps such that Mj+1 is obtained from Mj by moving a chordal edge from the
inside to the outside of the Hamilton cycle. The proposition follows from the
following claim.

Claim A. For each map Mi, i = 0, 1, . . . , k, the dual map M∗
i contains a

K2,3-subdivision such that H∗ separates the two vertices of degree 3.

We prove the claim by induction on i. We have already seen that the statement
is true for M0 = M ′.

Suppose the claim is true for Mi. Let e = {u, v} be the edge that has to be
moved to the outside of H to get from Mi to Mi+1. Let F ∗ and G∗ be the degree
3 vertices in the K2,3-subdivision in M∗

i , where F is inside H. We construct a
new map M ′

i , by adding the edge e′ = {u, v} to Mi outside H, see Figure 4.9.
Note that F and G must be on the same side of the cycle {e, e′}, since otherwise
{e∗, (e′)∗} is a 2-edge cut in (M ′

i)
∗ separating F ∗ from G∗; a contradiction.

e
F

e′

G

Figure 4.9: The map M ′
i is constructed by adding e′ to Mi.

Claim B. Let P ∗ be a simple F ∗-G∗ path in (M ′
i)

∗. If e∗ ∈ P ∗, then P ∗

consists of at least 3 edges.

Suppose e∗ ∈ P ∗. Since P ∗ is simple, and F and G are on the same side of the
cycle {e, e′}, it follows that (e′)∗ ∈ P ∗. Moreover, the dual H∗ of the Hamilton
cycle H separates F ∗ from G∗, so P ∗ must contain the dual of a cycle edge.
But neither e nor e′ are cycle edges, so the claim follows. △
Now, Mi+1 is obtained by removing e from M ′

i . In (M ′
i)

∗, this corresponds to
the contraction of edge e∗. If e∗ is not on any F ∗-G∗ path, then M∗

i+1 contains
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a K2,3-subdivision. On the other hand, an F ∗-G∗ path containing e∗ has at
least 3 edges, hence, the contraction of e∗ cannot destroy the K2,3-subdivision.

Corollary 4.8. Let M ′ be obtained from a simple weakly outerplanar map M
by flipping all chordal edges to the interior of the Hamilton cycle. If (M ′)∗

contains a K2,3-subdivision, then so does M∗.

In the rest of this section, we consider maximal path-like maps, i.e., path-like
maps where all interior faces are triangles. Consider a triangle of a maximal
path-like map M . Each of the three vertices forms a critical pair with a face or
edge that is above the other two vertices of the triangle. In Figure 4.10 these
critical pairs are (u, Fu), (v, Fv), (w, ew). Note that one of Fu or Fv can be an
edge, if the triangle has two edges in the Hamilton cycle. Now, if dim(PM ) = 3,
we can color each of these critical pairs with the linear extension it is reversed
in to obtain a 3-coloring of the angles. For convenience we interchangeably use
red, green and blue or 1,2 and 3 as the of colors.

ew

FuFv

u v

w

Figure 4.10: The critical pairs of a triangle.

We go on to prove some properties of such an angle 3-coloring for a maximal
path-like map M with dim(PM ) ≤ 3.

Lemma 4.9. No two angles in a triangle can have the same color.

Proof. Consider a triangle with the angle coloring described above. Any two of
the critical pairs (u, Fu), (v, Fv), (w, ew) form an alternating cycle. Hence, no
two pairs can be reversed in the same linear extension.

Lemma 4.10. Let e = {a, b} be a chordal edge. The four angles αℓ, αr, βℓ and
βr incident on e at a and b are colored such that all three colors are used, and
one of the pairs (αℓ, αr) or (βℓ, βr) is monochromatic.

Proof. We refer to Figure 4.11. Suppose αℓ = 1 and αr = 2. This implies that
in L1 we have F ℓ

b and F r
b above a above F ℓ

a above b. In L2 we have the same
order with F r

a taking the role of F ℓ
a . Hence b has to be above both F ℓ

b and F r
b

in L3 which is equivalent to βℓ = βr = 3.

Suppose both pairs of angles have the same colors, say αℓ = αr = 1 and
βℓ = βr = 2 Then the third angle in both triangles (at x and y, respectively)
must have color 3. This induces a monochromatic alternating cycle (x, Fx),
(y, Fy), a contradiction.
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Fyx y

a

F ℓ
b

b

F r
a

F r
b

F ℓ
a

e

αrαℓ

βℓ βr

Fx

Figure 4.11: Colors and critical pairs around a chordal edge.

By Lemma 4.10 we can encode the angle coloring as an oriented coloring of
the chordal edges: each chordal edge gets the color that appears twice around
it and is oriented towards the endpoint where this happens.

The orientation of an interior triangle is is either clockwise or counterclock-
wise depending on the cyclic reading which shows the colors 1,2,3 in this order.
Lemma 4.9 implies that the orientation of interior triangles is defined.

γ2γ1

α1 α2

β1 β2

Figure 4.12: The triangles must have the same orientation.

Lemma 4.11. All interior triangles have the same orientation.

Proof. This is a direct consequence of Lemma 4.10 and Lemma 4.9. Referring
to Figure 4.12 we discuss one of the cases: Suppose the left triangle in the figure
is counterclockwise, i,e., (α1, β1, γ1) = (i, i + 1, i + 2). The orientation of the
edge implies α2 = i, hence from Lemma 4.10 we get β2 = i + 2. This shows
that the right triangle is counterclockwise as well.

Lemma 4.12. Let c be the color of the chordal edge e. Then e > F∞ in Lc.

Proof. Again referring to Figure 4.12 we observe that γ1 6= γ2 and c 6= γ1, γ2

by Lemma 4.11. Hence, e < F∞ in Lγ1 and Lγ2 . Therefore e > F∞ in Lc.

Lemma 4.13. A vertex is either a sink or a source w.r.t. the orientation of
the chordal edges.
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δ

ei

F

wv

eo

β

F∞

γ

α

Figure 4.13: A vertex must be either a sink or a source.

Proof. Suppose that there is a triangle F and a vertex v such that F has
two chordal edges ei and eo meeting at v, such that ei is incoming and eo is
outgoing at v. See Figure 4.13. The colors of the angles α, β and γ must be
pairwise different by Lemma 4.10. Hence, α and δ must have the same color
(Lemma 4.9). But α has the same color as ei. From Lemma 4.12 it follows that
the alternating cycle (ei, F∞),(w,F ) is monochromatic; contradiction.

y

v

x x′

y′

Figure 4.14: No two outgoing edges can have the same color.

Proposition 4.14. No two outgoing edges from a vertex have the same color.

Proof. Suppose that v has two outgoing edges of the same color and that all
triangles are clockwise. From the coloring of angles it follows that edges sharing
an angle have different colors. Even more, the colors of the outgoing edges at v
in clockwise order cycle through 1,2,3. Hence, we find a sequence x, x′, y′, y of
vertices, such that vx and vy have the same color, see Figure 4.14. Now, v is
above x in blue and green, so any face incomparable to x which contains v has
to be below x in red. The same is true for y. In particular x > {v, y′, y} and y >
{v, x, x′} in red. This is a monochromatic red alternating cycle; contradiction.

Corollary 4.15. No vertex belongs to four or more outgoing chordal edges.

We say that the colors of the chordal edges bounding a face are the colors
of the face. A face with two colors is called bicolored .

Proposition 4.16. No two bicolored faces have the same colors.
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Proof. Suppose F and F ′ are two such faces. Suppose the two colors are red and
green. Then F∞ is below F and F ′ in red and green (Lemma 4.12). Therefore,
F and F ′ can be below any vertex only in blue. Let x be vertex in F \F ′ and y
be a vertex in F ′ \F . Then (x, F ′), (y, F ) is a monochromatic blue alternating
cycle; contradiction.

We say that an oriented coloring satisfying Lemma 4.11, Proposition 4.14
and Proposition 4.16 is permissible. The map of Figure 4.15 is shown with a
permissible coloring. We call it the canonical map. The vertices (edges) in the
top of the figure are called q-vertices (edges) and the ones in the bottom of the
figure are called p-vertices.

F1

p0 p2p1 p3 p4 p5

q5q4q3q2q1

F3 F5 F7F∞

r
r

r g
gg

g
b

b b
b

bg

r b g r

rbbrr g g r bg

F4F0 F6 F8F2

Figure 4.15: The canonical map.

Lemma 4.17. Any maximal path-like map with a permissible coloring of the
chordal edges can be constructed from the canonical map by a sequence of the
following three operations:

(i) Contracting a q-edge.

(ii) Subdividing a q-edge. Chordal edges between the new vertices and the p-
vertex in the triangle are inserted with the same color and orientation as
the old edges.

(iii) Deleting all the vertices, edges and faces on one side of a chordal edge.

Proof. Let M be a maximal path-like map with a permissible coloring of the
chordal edges. If M has n sinks, then there are n − 1 bicolored faces in M .
From Proposition 4.16 and Lemma 4.11 it follows that the canonical map has
the maximum possible number of sinks.

Again from Proposition 4.16 it follows that M has at most one vertex with
outdegree 3. We can contract {q2, q3} or {q3, q4} in the canonical map to get
such a vertex. Furthermore, any sinks or sources in the canonical map that are
not in M can easily be removed using operation (iii). Hence, what remains is
to possibly add some sources of degree one to the map M ′ we have constructed.
But this is easy, since the new inserted chordal edges must have the same colors
as the faces they split, i.e., we can just subdivide the q-edges as in (ii).

Lemma 4.18. Let M be the canonical map. Then dim(PM ) = 3.
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Proof. Consider the vertical symmetry through q3 and the edge {p2, p3}. This
partitions the vertex set into a left part Vl = {p0, p1, p2, q1, q2} a right part
Vr = {{p5, p4, p3, q5, q4} and {q3}.

We construct three partial orders, one for each color. We start with the
order of the vertices. In the green order we want Vr > q3 > Vl. The ordering
of the vertices in Vl and Vr is such that it allows to reverse all critical pairs
corresponding to green angles, i.e., on Vl : p0 > q1 > q2 > {p2, p1} and on Vr :
p3 > q4 > q5 > {p4, p5}. We add the relations p2 > p1 and p5 > p4 so that the
order on Vl and Vr conforms with the clockwise ordering around the outer face
with start in p0 and p3, respectively.

The blue partial order is created symmetrically. I.e., it is obtained from the
green order with the mappings pi → p5−i and qj → q6−j. Note that the order
on Vl and Vr conforms with the counterclockwise ordering around the outer face
with start in p2 and p5, respectively.

For the red partial order, we construct two linear orders on Vl ∪ {q3} and
Vr ∪ {q3}. These linear orders gives us a partial order on Vl ∪ Vr ∪ {q3}. In the
linear order on Vl ∪ {q3}, the vertices come in the clockwise ordering around
the outer face boundary with p1 as maximal element, i.e, p1 > p0 > q1 > q2 >
q3 > p2. The right part is done symmetrically, p4 > p5 > q5 > q4 > q3 > p3.

We now have three partial orders on the vertices. We extend these to
partial orders on the vertices, edges and faces in three steps. First, we insert
the Hamilton cycle edges and the outer face as low as possible in each of the
three orders. Then the chordal edges are put above the outer face in their color,
and as low as possible in the other two colors. Finally, the interior faces are
inserted as low as possible.

Claim R. Every critical pair is reversed in one of the partial orders.

The lemma clearly follows from this claim; any three linear extensions of
the partial orders constructed will then form a realizer.

There are three types of critical pairs: edge-face pairs, vertex-edge pairs and
vertex-face pairs. All edge-face pairs are of the form (chordal edge, outer face),
so they are reversed in the color of the edge.

Consider a vertex-edge critical pair (v, e). For the pair to be critical v and e
must belong to a triangle and e has to be an edge of the Hamilton cycle. Such
a critical pair corresponds to a colored angle at v. Since the order of each color
reverses all critical pairs corresponding to this color each critical pair of this
class is reversed.

It remains to prove that all vertex-face pairs (v, F ) are reversed. Note that
F is an interior face. If v ∈ Vl and F ⊂ Vr ∪ {q3}, then (v, F ) is reversed in
blue. Similarly, if v ∈ Vr and F ⊂ Vl∪{q3}, then (v, F ) is reversed in green. All
the vertices that are incomparable to F4 are above F4 in red, and q3 is above all
incomparable faces in green or blue. Hence, we only have to show that (v, F )
is reversed when F and v are either both left or both right.

Suppose v ∈ Vl. The critical pairs (v, F0) and v = p2, q2 are reversed in
blue. The pair (p0, F1) is reversed in green and (p2, F1) in blue. The two pairs
involving F2 are reversed in green and all three pairs with F3 in red. The cases
where v ∈ Vr are symmetric.
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Theorem 4.19. Let M be a maximal path-like map. Then dim(PM ) = 3 if
and only if there is a permissible coloring of the chordal edges.

Proof. We have to prove that none of the operations of Lemma 4.17 increases
the dimension.

(i): Only the q-edges {q2, q3} and {q3, q4} can be contracted (contracting
one of the other q-edge is equivalent to the deletion of a part of the map). These
two cases are symmetric, so we only consider the contraction of {q2, q3}. The
new merged vertex q2,3 takes the place of q2 in green and blue, and the place
of q3 in red.

The vertex-edge pairs involving q2,3 are reversed in green and red. Now, q2,3

is only below the old position of q2 in red. But the only vertex-face critical pair
with q2 that was reversed in red is (q2, F4), and q2,3 ∈ F4, so all critical pairs
involving q2,3 are reversed.

Now, the position of a face in a partial order can only change if it contains
q2 or q3 as its highest vertex. The new vertex q2,3 is as high as q2 in green and
blue, and as high as q3 in red, so the only affected face is F5 in blue. In the
blue partial order, the critical pairs (v, F5), v ∈ {p0, p1, q1}, are not reversed
anymore. This is taken care of by moving q1 (and hence p1 and p0) above q4

in red. Since none of p0, p1 and q1 where comparable to q4 in red before, all
previously reversed critical pairs are still reversed.

Suppose that both {q2, q3} and {q3, q4} are contracted. In this case it is
enough to place the new vertex q2,3,4 at the position of q3 in all three vertex
orders. The edges and face then are inserted by the above rules. This yields a
realizer.

(ii): The partial orders are constructed as before (with possible changes
resulting from a q-edge contraction). By an argument similar to the proof of
Lemma 4.18, dim(PM ) = 3.

(iii): The only incidence that changes among the remaining elements of PM

is that one chordal edge e now is on the outer face. The edge e is moved below
F∞ in its color. The only new critical pair is (v, e), where v is the vertex in the
same interior face as e that is not in e. But previously, there was a critical pair
(v, F ), e ∈ F , which was reversed, so (v, e) must be reversed.

4.3.1 Algorithmic aspects

Theorem 4.19 can easily be turned into an algorithm for testing if dim(PM ) ≤ 3
for a maximal path-like map M . Start by fixing the orientation and the color
of one chordal edge. This induces an angle coloring in the adjacent triangles
(Lemma 4.10, Lemma 4.9). Lemma 4.11 now gives us the colors of the angles
in all the interior triangles in M , which in turns induces an oriented coloring
of the chordal edges. Hence, given a fixed orientation of one chordal edge, any
permissible coloring is unique up to permutations of the colors. To test for
dim(PM ) ≤ 3, we check if any vertex has four outgoing edges or if any two
bicolored faces have the same colors. This can be done in linear time.

Once we have a permissible coloring of the chordal edges of M a 3-realizer
can be generated: Since we now know which vertices are sinks, we know the
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p-edges and q-edges of the colored map M and identify the operations of
Lemma 4.17 (contracting a q-edge, subdividing a q-edge and removing a part
of the map) that have to be applied to get M from the canonical map. The
proof of Lemma 4.18 gives us a 3-realizer of the canonical map, and the proof of
Theorem 4.19 demonstrates how to modify the 3-realizer for each of the opera-
tions. This yields an algorithm to produce a 3-realizer of PM from a permissible
coloring of M . It is clear from the proofs Lemma 4.18 and Theorem 4.19 that
the running time of this algorithm can be bounded by some constant times the
number of elements in PM . Since M is a planar map, we have the following
theorem.

Theorem 4.20. There is an algorithm running in time O(n), which takes as
input a maximal path-like map M with n vertices and either returns a 3-realizer
of PM , or asserts that dim(PM ) = 4.

4.4 Vertex-face posets of dimension at most 3

From Theorem 4.3 we know that if dim(QM ) ≤ 3, then M does not contain
a subdivision of K4. Figure 4.16 shows an example of a planar map which
contains no K4-subdivision but still dim(QM ) = 4. This example from [15],
has a dual map which is a K2,3, with each edge replaced by a 2-face. More
generally every map M where we can find fences of vertices and faces like in
the proof of Theorem 4.5 must have dim(QM ) = 4.

Figure 4.16: A planar map with vertex-face poset dimension 4.

However, unlike in the vertex-edge-face case, there are no 2-connected maps
M of dimension 4 such that both M and M∗ are weakly outerplanar.

Theorem 4.21. Let M be a simple 2-connected planar map such both M and
its dual M∗ are weakly outerplanar. Then dim(QM ) ≤ 3.

Proof. We may assume that no two vertices v,w of degree 2 are neighbors in
M : Two such vertices are twin elements in QM , hence contracting the edge
v,w in the graph does not affect dim(QM ).

From Corollary 4.8, we know that if all chordal edges of M are moved inside
the Hamilton cycle, the dual of the resulting map M ′ is K2,3-subdivision free.
Hence, M ′ is a path-like map. We will inductively construct two linear exten-
sions, L1 and L2, of QM , in which all vertex-face pairs are reversed. Similar
to the proof of Proposition 4.7, we start with the path-like map M0 = M ′ and
then move the required chordal edges outside the Hamilton cycle one by one,
creating a series of maps M0,M1, . . . ,Mk = M .
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Since M0 is path-like, there must be exactly two faces that contains only
one chordal edge. Each of these two faces contains a vertex of degree 2. Let
these two vertices be ℓ and r.

Given a face F and a vertex x we say that x is left of F iff there is a x-ℓ
path avoiding F . Symmetrically, x is right of F if there is a x-r path avoiding
F . This definition of left of and right of coincides with the intuition of left and
right based on a drawing where the Hamilton cycle is a circle, and ℓ and r are
its left and right extreme points. Note that x is neither right, nor left of F if
and only if x ∈ F . We define a vertex to be to the left (right) of a chordal edge
in the same way.

Next, we inductively construct two linear extensions Li
1 and Li

2 of the vertex-
face poset of Mi, for i = 0, 1, . . . , k, such that Lk

1 = L1 and Lk
2 = L2. Since

M0 is path-like, the interior dual of M0 is a path. In the linear extensions L0
1

and L0
2 we order the interior faces by their position in this path, with the face

containing ℓ highest in L0
1 and the face containing r highest in L0

2. The vertices
and the outer face are inserted as high as possible.

Let e be the chordal edge that is moved outside the Hamilton cycle when
Mi is changed to Mi+1. Before it is moved, it is contained in the two faces
F ′ and F ′′ that are inside the Hamilton cycle. Let F ′ be the left one, i.e., let
F ′ contain a vertex u that is left of e. When e is moved outside, some face G
outside the Hamilton cycle is split into two faces G′ and G′′, let G′ contain u.
The faces F ′ and F ′′ are merged into a new face F+ (see Figure 4.17).

G′

F ′ G′′

F ′′
ℓ r

u

Figure 4.17: Moving the dashed edge from the inside to the outside.

We can now create Lj+1
1 and Lj+1

2 from Lj
1 and Lj

2. In Lj+1
1 , F+ is inserted

in the position of F ′ in Lj
1, G′ is inserted in the position of G and G′′ is inserted

in the position of F ′′. In Lj+1
2 , F+ is inserted in the position of F ′′ in Lj

2, and
G′′ and G′ are inserted in the positions of G and F ′, respectively.

Claim A. For i = 0, 1, . . . , k, Li
1 and Li

2 are linear extensions of QMi
. If a

vertex v is to the left of a face F in the map Mi, then v > F in Li
1, and if v is

to the right of F , v > F in Li
2.

The claim can be verified by induction on i. From the construction of L0
1 and

L0
2, it is clear that the claim is true for i = 0.

Suppose the claim is true for i. The map M i+1 is constructed by moving
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the edge e in Mi outside the Hamilton cycle. To verify that Li+1
1 and Li+1

2 are
linear extensions of QM it is enough to check that F , G′ and G′′ are above all
the vertices contained in them. This is immediate from the construction.

It remains to prove the second part of the claim. By induction and symmetry
it is enough to consider the case where v is to the left of e and F is one of F+,
G′ and G′′. If v is to the left of e, either v ∈ F ′ or v is to left of F ′. In the
latter case v is above F ′ in Li

1, so v > F+ in Li+1
1 . If v is to the left of G, then

v is also to the left of G′ and G′′. Since v > G in L1i, v > G′ > G′′ in Li+1
1 . On

the other hand, if v ∈ G, v must also be in G′ and to the left of G′′. But v is
to the left of F ′′, so v > F ′′ in Li

1 by construction, and hence v > G′′ in Li+1
1 .

Hence, the claim is true for i + 1. △
Claim A implies that all vertex-face critical pairs of QM are reversed in L1

and L2. It remains is to find a linear extension L3 of QM which reverses all
vertex-vertex and face-face critical pairs. A vertex-vertex pair (v,w) is critical
when w ∈ F only if v ∈ F for all faces F , and a face-face pair (F,G) is critical
when v ∈ F only if v ∈ G for all vertices v. Hence there is no alternating cycle
containing only vertex-vertex pairs and face-face pairs. This implies that there
is a linear extension L3 reversing all these pairs. Together L1, L2, L3 reverse all
critical pairs. Hence, they form a realizer and dim(QM ) ≤ 3.

In a strongly outerplanar map M it is never the case that we can find
fences like in the proof of Theorem 4.5. The interior dual is a tree, and F∞

contains all the vertices. Hence, F ∗
∞ has to be one of the degree 3-vertices of

any K2,3-subdivision in M∗ (M contains no K2,3-subdivision since it is outer-
planar). Therefore, the existence of a strongly outerplanar map of vertex-face
dimension 4 is not obvious.

F0

F1

F2

F3

M

x1x2

y1

y2

x3
y3

Figure 4.18: An outerplanar map with dim(QM ) = 4.

Theorem 4.22. The strongly outerplanar map M shown in Figure 4.18 has a
vertex-face poset of dimension four.

Proof. Suppose dim(QM ) ≤ 3. Again we identify the three linear extensions of
a realizer with three colors and use these to color critical pairs. Our main focus
will be on the coloring of critical pairs involving a vertex and an interior face.
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Fact A. For an interior face F only two colors appear at critical pairs (v, F ).

Suppose that the critical pair (F,F∞) is reversed in color i. This forces all
vertices below F in color i, and hence all critical pairs (v, F ) are reversed in the
other two colors. △

Fact B. If a triangular face ∆ = {v1, v2, v3} is surrounded by interior faces
F1, F2, F3 such that vi 6∈ Fi, then the three critical pairs (vi, Fi) use all three
colors.

Any two of the three critical pairs form an alternating cycle and, hence, require
different colors. Equivalently, the order induced by v1, v2, v3, F1, F2, F3 is a
3-crown. △

These two facts are applied to the central face F0 of the map M : Fact B
implies that the three critical pairs (xi, Fi−1) use all three colors. Symmetry
among the colors allows us to assume that (x2, F1) is red, (x3, F2) green and
(x1, F3) blue. Fact A implies that two of the three critical pairs (yi, F0) have the
same color. The symmetry of the graph allows to assume that this duplicated
color is blue. It is infeasible to have (y3, F0) in blue, because it forms an
alternating cycle with the blue pair (x1, F3). Hence, (y1, F0) and (y2, F0) are
both blue.

To reach a contradiction we can from now on concentrate on the submap of
M shown in Figure 4.19. The colors of critical pairs which have already been
fixed are indicated by the colored arrows in the figure.

F0

F1

F2

F3

y1

y2

I

J
H3

z1

y3

H1

H2

x1x2

z2

x3

H

Figure 4.19: Having fixed the colors of some critical pairs, we concentrate on a
submap M ′ of M .

To avoid a monochromatic alternating cycle with the blue pair (y1, F0) and
with the green pair (x3, F2) the color of (x1, I) has to be red. Similarly, the
colors of (y2, F0) and (x2, F1) imply that (x1, J) is green.

From the critical pairs (x1, J) and (x1, F3) we know that x1 > x2 in green
and blue, so all critical pairs (x2, F ), where x1 ∈ F must be red. Similarly,
all critical pairs (x3, F ), where x1 ∈ F must be green. In particular we have
(x2,Hi) red and (x3,Hi) green for i = 1, 2.

From Fact A applied to H1 and H2 we can conclude that neither (z1,H2)
not (z2,H1) can be blue. Applying Fact B to face H we can conclude that
(x1,H3) is blue. See Figure 4.20.
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x3
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Figure 4.20: Colored critical pairs on M ′.

Consider the critical pair (z1, F0). It forms an alternating cycle with (x1,H3),
hence it can’t be blue. It forms an alternating cycle with (x2,H1), hence it can’t
be red. It forms an alternating cycle with (x3,H1), hence it can’t be green. Con-
sequently there is no legal 3-coloring of the hypergraph of critical pairs of QM .

The maximal outerplanar map T4 shown in Figure 4.21 has a vertex-face
poset of dimension 3 (a 3-realizer is listed in Table 4.1). Therefore, the example
of a strongly outerplanar map M with dim(QM ) = 4 given in Theorem 4.22
is close to a minimal example. Figure 4.22 shows a map where all 2-connected
components are submaps of T4 and hence have vertex-face poset dimension 3.
Still an argument as in Theorem 4.22 shows that the map in Figure 4.22 has a
4-dimensional vertex-face poset.

F
B

C

A

C1C2

y

x

z b7

b6

b5

b4

b3

b2b1

C21 C12

C22
C11

Figure 4.21: A 2-connected outerplanar map with vertex-face dimension 3. The
naming scheme of the faces and vertices of the map is indicated in the figure.

4.5 Concluding remarks

When we started our investigations we set out to characterize the planar maps
with vertex-edge-face posets of dimension at most 3. We proved that for all
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L1
1 L1

2 L1
3 L2

1 L2
2 L2

3 L3
1 L3

2 L3
3

A22 C C11 B2 F c7 c7 a1 b7

A2 B12 C1 b4 C11 a2 C2 A1 B2

A B21 C12 B22 c1 a1 C A B
F B2 C21 b6 C1 a3 z z y
B B22 C2 b7 y a5 C21 A12 B21

B1 F∞ C22 A21 C12 C c6 a2 b6

B11 b6 A11 a6 c2 c4 c5 a3 b5

F∞ b3 A1 a5 c3 A22 C12 A21 B12

x b5 A12 A12 C21 a7 c3 a5 b3

a7 b7 A21 a3 c5 A2 C1 A2 B1

b1 B11 F∞ A1 C2 a6 c4 a4 b4

B12 b1 c2 a4 c4 A C11 A22 B11

b2 B1 c6 A11 C22 a4 y x x
b3 b2 c1 a2 c6 F c2 a6 b2

B21 B c3 a1 c7 z c1 a7 b1

b5 b4 c5 C22 A11 B22

Table 4.1: A 3-realizer of the map in Figure 4.21. The order Li is obtained
from the concatenation Li = L1

i ⊕ L2
i ⊕ L3

i .

Figure 4.22: A map M with dim(QM ) = 4, where each 2-connected compo-
nent C has dim(QC) = 3

such maps M , both M and its dual M∗ must be weakly outerplanar. In the
case of maximal path-like maps, we found necessary and sufficient conditions
for dimension at most 3 using an oriented coloring of the chordal edges. What
remains open are four cases:

• M is path-like but not maximal, i.e., has non-triangular faces.

If M can be obtained from a maximal path-like map M0 by subdividing some
edges of the Hamilton cycle, then dim(PM ) = dim(PM0). Now, let M be a
2-connected map with dim(PM ) ≤ 3. If a cycle edge e = {u, v} is subdivided
by a vertex w incident on the new cycle edges e1 = {u,w} and e2 = {w, v} to
create a new map M ′, we can change a 3-realizer of PM into a realizer of PM ′

in the following way. In each linear extension, insert e1 in the old position of
e if v < u, and right below v if v > u. Symmetrically, e2 is inserted into the
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position of e if u < v, and right below u if u > v. The vertex w is inserted
right below min{e1, e2}. This produces a 3-realizer of PM ′ . The general case
remains a challenge.

• M is simple, and both M and M∗ are weakly outerplanar, but neither of
them is strongly outerplanar.

We can extend the coloring approach from Section 4.3 to get a set of necessary
conditions for dim(PM ) ≤ 3 in this case. There is a natural way to get an
oriented coloring as in the case of path-like maps, if M is a different drawing
of the graph of some maximal path-like map. Instead of coloring the angles
of triangular faces, we color the angles of triangles in the strongly outerplanar
drawing of the graph of M . Again, this angle coloring can be encoded as an
oriented coloring of the chordal edges. Instead of each vertex being a sink or a
source, each vertex will now be a sink on one side of the Hamilton cycle and a
source on the other side. The proof of this is similar to the proof of Lemma 4.13.

If F is a face in the 2-connected map M with dim(PM ) ≤ 3, the submap
MF induced by the vertices in F must be path-like by Theorem 4.5. In the
same way, the submap M∗

v∗ of the dual map M∗ induced by the dual vertices
in the dual face v∗ is also path-like. Since (x, y) is a critical pair in PM if and
only if (y∗, x∗) is a critical pair in PM∗ , the primal oriented coloring induces
an oriented coloring in the dual map. Hence, the oriented coloring of a map
M with dim(PM ) ≤ 3 must be permissible “locally” around each vertex and
face. The question remains whether the existence of such a locally permissible
coloring is also a sufficient condition for dim(PM ) ≤ 3, or if there are some
non-local effects that force dim(PM ) = 4.

• M is not simple.

• M is not 2-connected.

Suppose M is not 2-connected. From dim(PC) ≤ 3 for each 2-connected com-
ponent C it can not be concluded that dim(PM ) ≤ 3. The conclusion is not
even possible if all components are maximal path-like maps and have a common
outer face. Consider the map M constructed by taking two maximal path-like
maps C1 and C2 and identifying two vertices v1 ∈ C1 and v2 ∈ C2 and the outer
faces of each map. We choose C1 and C2 such that dim(PC1) = dim(PC2) = 3
and that in any permissible coloring of the chordal edges in each map Ci there
will be two outgoing edges from vi. Such maps clearly exist. A straightforward
modification of Proposition 4.14 will now show that dim(PM ) = 4.

Vertex-face posets and posets of height 2

For vertex-face posets, we saw that it seems hard to characterize even the
strongly outerplanar 2-connected maps with dimension at most 3. This relates
to the long-standing open question if it is NP-hard to determine if the dimension
of a height 2 poset is at most 3. Yannakakis [60] proved in 1982 that it is NP-
hard to determine if dim(P) ≤ 3 for posets P of height at least 3. Brightwell
and Trotter [15] refined the question and asked if it is NP-hard to recognize
planar maps with dim(QM ) ≤ 3. Given our results, it makes sense to ask this
question even for 2-connected strongly outerplanar maps.





Chapter 5

Approximation algorithms for graphs with

large treewidth

5.1 Introduction

One of the most successful parameterizations of graphs is that of treewidth.
While the formal definition is deferred to the next section, graphs of treewidth
k, also known as partial k-trees, are graphs that admit a tree-like structure,
known as their tree-decomposition of width k.

A wide variety of NP-hard graph problems have been shown to be solvable
in polynomial time, or even linear time, when constrained to partial k-trees
[6,7,56]. For some of these problems polynomial time solutions are possible for
graphs of treewidth O(log n) or O(log n/ log log n) [7, 56].

A standard example of a problem solvable in graphs of treewidth O(log n)
is the maximum independent set (MIS) problem [7], which is that of finding a
maximum collection of pairwise non-adjacent vertices. In the weighted version
of the problem, vertices are given with weights and we seek an independent
set of maximum total weight. For general graphs, the best polynomial-time
approximation ratios known for MIS is n (log log n)2/ log3 n [29]. On the other

hand, it is known that unless NP ⊆ ZPTIME(2(log n)O(1)
), no polynomial-time

algorithm can achieve an approximation guarantee of n1−O(1/(log n)γ) for some
constant γ [39].

In this chapter, we investigate the approximability status of some of the
aforementioned NP-hard problems, where our main interest is in graphs of
treewidth k = ω(log n). We focus our study on MIS, deriving further applica-
tions of our method by extensions of that given for MIS.

Better approximation bounds for MIS are achievable for special classes of
graphs. For the purposes of this chapter, a class that properly contains partial
k-trees is that of k-inductive graphs. A graph is said to be k-inductive if there
is an ordering of its vertices so that each vertex has at most k higher-numbered
neighbors. If such an ordering exists, it can be found by iteratively choosing
and removing a vertex of minimum degree in the remaining graph. From this
definition, it is clear that k-trees, and thus also partial k-trees, are k-inductive.
A k-inductive graph is easily k + 1-colored by processing the vertices in their
reverse inductive order, assigning each vertex one of the colors not used by its
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at most k previously colored neighbors. This implies that the largest weight
color class approximates the weighted MIS within a factor of k + 1. The best
approximation known for MIS (and weighted MIS) in k-inductive graphs is
O(k log log k/ log k) [35].

5.1.1 New contribution

We present a novel generic scheme for approximation algorithms for maxi-
mum independent set and other NP-hard graph optimization problems con-
strained to graphs of treewidth k = ω(log n). Our scheme leads to determinis-
tic polynomial-time algorithms that achieve an approximation ratio of ℓ/ log n
when a tree-decomposition of width ℓ = Ω(log n) is given.

Our scheme can be applied to any problem of finding a maximum induced
subgraph with hereditary property Π and any problem of finding a minimum
partition into induced subgraphs with hereditary property Π provided that for
graphs with given tree-decomposition of logarithmic or near logarithmic width
can be solved exactly in polynomial time. All these approximation factors
achievable in polynomial time are the best known for the aforementioned prob-
lems for graphs of superlogarithmic treewidth (see Table 5.1 for some examples).

Problem Old New

Max independent set O(k log log k/ log k) [35] O(k/ log n)
Max clique O(n(log log n)2/ log3 n) [29] O(min(k/ log k,

k(log log k)2/ log3 k))

Min vertex coloring O(n1−3(k+1) log n) [38] O(k log log k/ log k)

Table 5.1: Examples of old and new approximation ratios for optimization
problems in graphs with treewidth k (assuming a tree-decomposition of width
O(k) is given).

In case a tree-decomposition of width ℓ = k is not given, the approximation
achieved by our method increases by a factor of O(

√
log k).

5.2 Preliminaries

The notion of treewidth of a graph was originally introduced by Robertson
and Seymour [50] in their seminal graph minors project. It has turned out to
be equivalent to several other interesting graph theoretic notions, e.g., that of
partial k-trees.

Definition 5.1. A tree-decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )), where {Xi | i ∈ I} is a collection of subsets of V , and T = (I, F )
is a tree, such that the following three conditions are fulfilled:

1.
⋃

i∈I Xi = V ,

2. for each edge (v,w) ∈ E, there exists a node i ∈ I, with v,w ∈ Xi, and
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3. for each vertex v ∈ V , the subgraph of T induced by the nodes {i ∈ I | v ∈
Xi} is connected.

The size of T is the number of nodes in T , that is, |I|. Each set Xi, i ∈ I,
is called the bag associated with the ith node of T . The width of a tree-
decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The treewidth of
a graph is the minimum width of its tree-decomposition taken over all possible
tree-decompositions of the graph.

It is well known that a graph G is a partial k-tree iff the treewidth of G is at
most k [6]. For a graph with n vertices and treewidth k, a tree decomposition
of width k can be found in time O(n 2O(k3)) [11], whereas a tree decomposition
of width O(k

√
log k) and size O(n) can be found in time polynomial in n [30].

For technical reasons, it will be more convenient to use a special form of
tree-decomposition termed as nice tree-decomposition.

Definition 5.2. A tree-decomposition T = (I, F ) of a graph G is nice if

1. T is a binary rooted tree,

2. if a node i ∈ I has two children j1 and j2, then Xi = Xj1 = Xj2 (i is
called a join node),

3. if a node i ∈ I has one child j, then either Xj ⊂ Xi and |Xi − Xj | = 1,
or Xi ⊂ Xj and |Xj − Xi| = 1 (i is called an introduce or a forget node,
respectively).

Fact 5.3. [43] A tree-decomposition T = (I, F ) of a graph G can be transformed
into a nice tree-decomposition in time polynomial in |I| and the size of T ,
without increasing its width. The size of the resulting nice decomposition is
O(ℓ · |I|), where ℓ is the width of T .

5.3 Approximation of maximum independent set

In this section we present a deterministic approximation algorithm for finding
maximum independent set in graphs with given tree-decomposition of width ℓ.
We begin with the following general partition lemma of independent interest.

Lemma 5.4. Let t be a positive integer and let G be a graph given with a tree
decomposition T of width ℓ. Then, the vertex set of G can be partitioned in
polynomial time into classes V1, . . . , V⌈(ℓ+1)/t⌉ so that each bag of T contains at
most t vertices from each class.

Proof. By Fact 5.3, we may assume w.l.o.g. that the given tree decomposition
T is nice.

To obtain the intended partition, we proceed top-down, arbitrarily assigning
the vertices in the root-bag of T into classes with at most t vertices each.
Inductively, for a node v with a child u in T , the partition of the bag of u is
consistent with that of the bag of v and the upper bound of t on the size of
each class Vi within each bag. Namely, if v is a join node, the bag of u gets the
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same partition as that of v; if v is an introduce node, the partition is also the
same (with one fewer vertices); if v is a forget node, then the additional vertex
in u is placed into some class that has fewer than t vertices from the bag of u.

Lemma 5.4 yields the aforementioned approximation algorithm for maximum
independent set.

Theorem 5.5. Let c be a positive constant. For a graph G on n vertices given
with its tree-decomposition of width ℓ and of polynomial size, the maximum
weighted independent set problem admits a ⌈(ℓ + 1)/(c log n)⌉-approximation
algorithm.

Proof. Apply Lemma 5.4 to T with t = c log n to obtain a vertex partition
V1, . . . , V⌈(ℓ+1)/(c log n)⌉.

For any i, 1 ≤ i ≤ ⌈(ℓ + 1)/(c log n)⌉, let Gi be the subgraph of G induced
by the vertex set Vi and let Ti be the tree-decomposition of Gi obtained by
constraining the bags of T to the vertices in Vi. By the properties of the classes
Vi, each Ti has width at most c log n.

For each i, 1 ≤ i ≤ ⌈(ℓ + 1)/(c log n)⌉, we can find a maximum independent
set in Gi by using the standard dynamic programming method on Ti [7]. By
the pigeon hole principle, at least one of these satisfies the claim of theorem.

5.4 Extensions of the approximation method

We can generalize Theorem 5.5 to include the problem of maximum weight
induced subgraph with hereditary property Π provided that the problem con-
strained to graphs of treewidth O(log n) can be solved exactly in polynomial
time. For a graph with vertex weights, the problem of maximum weight induced
subgraph with property Π is to find a maximum weight subset of vertices of the
input graph which induces a subgraph having the property Π. If Π holds for
arbitrarily large graphs, does not hold for all graphs, and is hereditary (holds
for all induced subgraphs of a graph whenever it holds for the graph) then the
problem of finding a maximum weight induced subgraph with the property Π
is NP-hard (see GT21 in [33]). Examples of such properties Π are “being an
independent set,” “being m-colorable,” and “being a planar graph.”

Theorem 5.6. For a graph G given with tree-decomposition of width ℓ ≥ t > 0
and of polynomial size, the problem of finding a maximum weight induced sub-
graph with hereditary property Π admits a ⌈(ℓ + 1)/t⌉-approximation, provided
that for graphs of treewidth t the problem can be solved exactly in polynomial
time.

Proof. Similar to Theorem 5.5.

Since for every clique W in a graph G and every tree decomposition ({Xi|i ∈
I}, T ) of G, there is an i ∈ I with W ⊆ Xi, it suffices to check each subset in
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each bag of the given tree decomposition in order to find a maximum weight
clique. Hence, we can approximate the clique problem by applying any clique-
approximation algorithm on the graphs induced by each Xi. E.g., we can check
each subset of logarithmic size or apply the algorithm from [29]. Combined
with Theorem 5.6, we obtain the following corollary.

Corollary 5.7. Let c be any positive constant. For a graph G on n ver-
tices given with its tree-decomposition of width ℓ ≥ c log n and of polynomial
size, the problem of maximum weighted clique admits a min((ℓ + 1)/(c log n),
ℓ(log log ℓ)2/ log3 ℓ)-approximation.

The problem of minimum partition into induced subgraphs with property
Π is to find a minimum cardinality partition of vertices of the input graph
into subsets inducing subgraphs having the property Π. E.g., if Π is “being
independent,” we get the minimum coloring problem.

Theorem 5.8. For a graph G on n vertices given with its tree-decomposition of
width ℓ ≥ t > 0 and of polynomial size, the problem of minimum partition into
induced subgraphs with hereditary property Π admits a ⌈(ℓ+1)/t⌉-approximation
algorithm, provided that for ℓ = t − 1 the problem can be solved exactly in
polynomial time.

Proof. Produce the subgraphs Gi, 1 ≤ i ≤ ⌈(ℓ + 1)/t⌉, as in the proof of
Theorem 5.5. For each Gi find a minimum number partition Pi into induced
subgraphs with hereditary property Π and output the union of Pi as the ap-
proximate solution.

Since the minimum vertex coloring problem can be solved exactly in polyno-
mial time for graphs with given tree-decomposition of width O(log n/ log log n)
[56], we obtain the following.

Corollary 5.9. Let c be any positive constant. For a graph G on n vertices
given with its tree-decomposition of width ℓ and of polynomial size, the minimum
vertex coloring problem admits ⌈(ℓ + 1) log log n/(c log n)⌉-approximation.

Since a tree-decomposition of width O(k
√

log k) and size O(n) can be found
in time polynomial in n [30], we obtain the following variants of Theorems 5.6
and 5.8 for graphs of treewidth k.

Theorem 5.10. Let k ≥ t > 0 and let G be a graph with treewidth k. The prob-
lems of maximum weight induced subgraph with hereditary property Π and the
problems of minimum partition into induced subgraphs with hereditary property
Π admit

√
log k⌈(k + 1)/t⌉-approximation algorithm provided that for a graph

of treewidth t − 1 they can be solved in polynomial time.

In [56], classes of vertex partitioning problems that can be solved in polyno-
mial time on graphs of near logarithmic treewidth are given. Thus, for problems
in these classes, Theorems 5.8 and 5.10 can be used.





Notation

General

|A| cardinality of the set A
log binary logarithm

Graphs and maps

G graph
V (G) set of vertices in the graph G
E(G) set of edges in the graph G
G[U ] graph induced by the vertex (edge) subset U ⊆ V (G) (U ⊆ E(G))
G \ U subgraph of G induced by V (G) \ U
H + R subgraph H and subgraph R together with H-R edges in a graph G
{u, v} undirected edge
(u, v) directed edge from u to v
M planar map
M∗ the dual map of M

Posets

P poset
PV (G) poset induced by V (G), G acyclic digraph

PM vertex-edge-face poset of the map M
QM vertex-face poset of M
(a, b) critical pair
dim(P) dimension of the poset P
a||b a and b are incomparable.
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bicolored face, 47
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Brightwell-Trotter Theorems, 38

call

frame reducing, 20
subgraph reducing, 20

canonical map, 48
order dimension of, 48

chain, 5
chordal edge, 43
clique, 3
coloring

angle, 45
chordal edge, 46

complete graph, 3
bipartite, 3

connected
strongly, 4
weakly, 4

connected component, 3
cover

face, 4
poset, 5

cover graph, 5

critical pair, 6
reversed, 6

cutvertex, 4
cycle, 3
cycle edge, 43

degree, 2
diagram, 5

digraph, 2
dimension, 5, 37

graph, 12
distance labeling, 8
dominance order, 7
dual

map, 4
order, 5

edge contraction, 3
endpoint, 2

face vertex, 22
fence, 13, 40
final call, 20
frame, 19

ground set, 5

Hasse diagram, see diagram
head, 2
height, 5
hereditary graph property, 62

incomparable, 5
indegree, 2
interesting vertex, 9, 27
interior dual, 43

Jordan curve, 31

k-inductive graph, 59

label
incoming, 23
outgoing, 23

labeling scheme, 8, 21
leaf, 4
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linear order, 5
Lipton-Tarjan Separator Theorem, 8
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Maximum Clique, 63
Maximum Independent Set, 59, 62
Minimum Equivalent Graph, 10
Minimum Hitting Set, 28
Minimum Vertex Coloring, 63
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multigraph, 2

nearest common ancestor labeling, 21

orientation, 46
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counterclockwise, 46

outdegree, 2

outer face, 4
outerplanar graph, 4, 12
outerplanar map

strongly, 4, 37
weakly, 4, 37

partial k-tree, 14
path, 3
path-like map, 13, 43
permissible coloring, 48

locally, 57

planar graph, 4
planar map, 4
planarly induced graph, 33
plane drawing, 4
poset, 5

reachability labeling, 8

reachability labeling, 17
reachability oracle, 7, 17
reachability query, 6
reachability substitute, 9, 27

lower bound, 30

NP-hardness, 28
planar, 31

realizer, 5
root, 4
root path, 4

s-t planar, 8
Schnyder wood, 12
Schnyder’s Theorem, 12
separating pair, 4
separation number, 20

shortcut, 42
crossing, 42

sink, 2
source, 2
spherical s-t planar, 8
standard examples, 6
Steiner d-preserver, 10, 27
Steiner graph, 10, 27
subdivision, 3
subgraph, 3

induced, 3
subposet, 5

tail, 2
tree, 4
tree-decomposition, 14, 60

nice, 61
size of, 61

treewidth, 14, 60

vertex-edge poset, 12
vertex-edge-face poset, 13, 37
vertex-face poset, 13, 37
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