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Abstract
The main goal of this thesis is to consider data structures and algorithms for dynamic graph
problems using splay top trees as the central data structure. This is done through the theory of
splay trees, splay top trees and a dynamic 2-edge connectivity algorithm, which are considered
in detail. An amortized analysis of splay trees is provided to gain insight into concepts reused for
splay top trees. The correctness and amortized runtime of splay top trees are then considered,
with the addition of user-defined operations skipped in the publication of splay top trees. The
user-defined operations are heavily used in the applications of top trees and are mentioned in
the original paper on top trees. The 2-edge connectivity algorithm uses top trees as a black
box. Thus, no modifications were required directly in the algorithm but relied on reintroducing
user-defined operations in splay top trees.

The Splay top tree data structure was implemented and verified using an incremental minimum
spanning trees algorithm compared to the static Kruskal algorithm. Finally, 2-edge connectivity
was implemented and verified against a static algorithm and the theoretical results through
experiments. The experiments suggested that the modified analysis of splay top trees is correct.
An experimental comparison of two different implementations behaved differently than expected,
as the advanced version showed no improvements even though it was conjectured as a significant
speed-up.
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1 INTRODUCTION

1 Introduction
Dynamic graph algorithms is an extensively researched area within computer science that con-
siders a graph G = (V, E) that changes, e.g. through edge insertions and deletions. Dynamic
algorithms aim to maintain enough information about a given problem so that queries, i.e., con-
nectivity, 2-edge connectivity, bi-connectivity, shortest path, and many more, can be efficiently
answered without recomputing the result from scratch[5, 8]. This calls for dynamic data struc-
tures that can be updated efficiently, e.g., top trees[1], where the following operations are usually
considered:

• Preprocess: Preprocess the graph G

• Insert: Insert an edge or vertex in the graph G

• Delete: Delete an edge or vertex in the graph G

• Query: Query the data structure for some property

Generally, we are interested in three different measurements for efficiency: (i) The initial prepro-
cess time; (ii) the update time for insertions and deletions, which can differ between the two, and
(iii) the query time. The runtimes can be expected, worst-case or amortized depending on the
algorithm and analysis applied. Additionally, we may require the algorithm to be deterministic,
which can negatively impact the achieved runtimes or significantly increase the complexity.

Dynamic graph algorithms can be sorted into one of three groups depending on which update
operations it supports. It may be fully dynamic, supporting both insertion and deletion; Incre-
mental only supporting insertions or decremental, supporting only deletion, with the last 2 also
being referred to as semi-dynamic.

Throughout this thesis, the focus will be on fully dynamic data structures and algorithms. First,
splay trees are used to introduce amortized analysis and the splaying concept[17]. The concept
of splaying was recently reused by Holm et al. to give a direct proof for the top tree data struc-
ture, used in many state-of-the-art graph algorithms, achieving amortized runtimes of O(log n)
matching the asymptotic bounds of current implementations. Top trees were initially proved by
a reduction to topology trees by Alstrup et al. [1], with many implementations still being based
on topology trees today[9].

The top tree data structure allows the user to store user-defined information about subsets of
the spanning tree it is built upon, which are used to answer queries quickly. As the top tree data
structure dynamically changes, so does the stored subsets, thus, requiring a recomputation of the
information stored. These recomputations happen through user-defined operations combine and
split, skipped by Holm et al. in their pseudocode and analysis of splay top trees[9]. The user-
defined operations have been readded and considered throughout the analysis. Splay top trees
were implemented, and to verify the implementation, an incremental algorithm for maintaining
spanning trees was implemented and compared to Kruskal.

A dynamic 2-edge connectivity algorithm by Holm et al. using top trees is then considered in
detail, reproducing its correctness and amortized analysis. The dynamic algorithm considered
takes O(log4 n) amortized time for the insert and delete operations, and O(log3 n) amortized
time for query with a space usage of (m + n log2 n), with n being the number of vertices and
m the number of edges[6, 7, 8]. The algorithm has been improved multiple times over the years,
achieving better update and query times with a smaller space usage [8, 10, 19]. The original
algorithm proposed by Holm et al. has been implemented using splay top trees and compared to
a static 2-edge connectivity algorithm to verify the correctness of the implementation. Finally, an
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2 SPLAY TREES

experimental evaluation of the implementation was made to verify the theoretical observations.
The experiments supported the theory, except for a conjectured result by Holm et al.[9], where
a more advanced version of splay top trees provided no improvement.

2 Splay Trees
In this section, splay trees and their properties are considered. Splay trees are a version of binary
search trees(BST) that take recently accessed elements and rotate them up the tree so they are
located closer to the root. The advantage of this is that repeated access to the same elements is
faster because they are located near the root, but it can also lead to worse worst-case times than
a standard balanced binary search tree as seen in Table 1. The reason for the worse worst-case
times is the fact splay trees may be unbalanced. Thus, in the worst case, the splay tree can have
a height and runtime of O(n)[17].

Operation Amortized Worst case
Insert O(log n) O(n)
Delete O(log n) O(n)
Search O(log n) O(n)

Table 1: Splay tree runtimes

2.1 Splay tree operations
This section considers the search, insert and delete operations on splay trees. The splay tree
operations can be implemented in multiple ways, but can all be implemented as an extension
of their BST implementations, an example of which can be seen in Algorithm 1. The insert
operation is implemented by performing the BST insertion, followed by an operation which moves
the newly inserted node to the root. This is handled by the splay operation, which is discussed
in detail in Section 2.1.1. search and delete can be implemented in a similar fashion as seen
in Algorithm 2 and Algorithm 3.

As all three operations are based on the splay operation, this will be the initial focus of the
analysis in Section 2.2. The runtimes of insert, search and delete is then considered in
Section 2.2.1.

Algorithm 1 insert(x)
1: BST insertion(x)
2: splay(x)

Algorithm 2 search(x)
1: BST search(x)
2: if x ∈ T then
3: splay(x)
4: else
5: splay(last accessed node in BST search)
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2.1 Splay tree operations 2 SPLAY TREES

Algorithm 3 delete(x)
1: BST delete(x)
2: splay(parent of removed node)

2.1.1 Splaying

The splay operation moves the desired node x to the root by repeated applications of rotations
through the zig, zig-zig and zig-zag operations described below. Let p(x) denote the parent of x
in splay tree T .

• Zig: This single rotation only happens if p(x) is the root. The rotation is performed on the
parent p(x). An example of this can be seen in Figure 1.

y

x c

a b

x

a y

b c

right rotate y

Figure 1: zig(x) example

• Zig-zig: This operation is performed if the element x and p(x) are both left(right) children
on the path to the root. In the case of x and p(x) both being left children, we perform
two right rotations, first on p(p(x)) and then on p(x). An example of this can be seen in
Figure 2.

z

y d

x c

ba

y

x z

a b c d

x

a y

b z

c d

right rotate z right rotate y

Figure 2: zig-zig(x) example

• Zig-zag: This is performed if the element x is a right child and p(x) is a left child (or
swapped). Here we first perform a left rotation on p(x), followed by a right rotation on
p(p(x)). An example of this can be seen in Figure 3.
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z

y d

c x

a b

z

x d

y b
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x

y z

c a b d

left rotate y right rotate z

Figure 3: Zig-zag(x) example

Mirrored versions, zag-zag and zag-zig, are also required; these are, however, handled identically
to zig-zig and zig-zag. Therefore, these will be ignored throughout.

2.2 Analysis
We wish to consider the amortized runtime of zig, zig-zig and zig-zag. To do so, a potential
function ϕ(·) is needed. The amortized runtime a is then equal to the actual time t and the
difference in potential before and after the operation, e.g. a = t + ϕ′ − ϕ, where ϕ and ϕ′ denote
the potential before and after respectively.

The amortized analysis can be performed on a weighted tree, where each node is assigned some
positive weight w(x) > 0. But for this analysis, assume the weight of every node is 1. The size
s(x) is then defined to be the size of the subtree rooted at x. From the size, we then define the
rank of a node to be r(x) = log2(s(x)). The potential function of a splay tree T is then defined
to be the sum of all ranks ϕ(T ) =

∑
x∈T r(x).

The total runtime of a sequence of m operations is then,
∑m

i=1 ti =
∑m

i=1(ai + ϕi−1 − ϕi) =
ϕ0 − ϕm +

∑m
i=1 ai. The potential function ϕ is ≥ 0 for any splay tree, with ϕ = 0 for an empty

tree. This means that
∑m

i=1 ti ≤
∑m

i=1 ai if the sequence of operations starts on an empty tree,
which allows us to give an upper bound on the actual runtime by computing the amortized time
of each operation.

One downside of using amortized analysis is that even though the average runtime of the oper-
ation might be low, there may be some worst-case occurrences that are very slow. This may be
an issue in some applications if they depend on quick worst-case response times.

Lemma 2.1. (Lemma 1 in [17]) Amortized runtime to splay x in a tree T with root node x′ is
at most 3(r(x′) − r(x)) + 1.

Proof.

Case zig(x):

This is the simplest case, as only two elements change rank x and its parent y = p(x) as seen
in Figure 1. Let r(x) and r′(x) denote the rank before and after the zig operation. Similarly,
let s(x) and s′(x) denote the tree size before and after. We note that only a single rotation is
performed. Thus, let the actual time be equal to 1.
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2.2 Analysis 2 SPLAY TREES

a = t + ϕ′ − ϕ definition
= 1 + r′(y) + r′(x) − r(y) − r(x)
≤ 1 + r′(x) − r(x) follows from r(y) ≥ r′(y)
≤ 1 + 3(r′(x) − r(x)) follows from r′(x) ≥ r(x)

The final step is performed only to get the constant of 3, to get some similarity with the zig-zig
and zig-zag result.

Case zig-zig(x): Zig-zig performs two rotations. As such, the actual time is 2. Let x, y = p(x)
and z = p(y) be the elements whose rank changes as seen in Figure 2.

a = t + ϕ′ − ϕ definition
= 2 + r′(z) + r′(y) + r′(x) − r(z) − r(y) − r(x)
= 2 + r′(z) + r′(y) − r(y) − r(x) r′(x) = r(z)
≤ 2 + r′(z) + r′(x) − 2r(x) r′(x) ≥ r′(y) and r(y) ≥ r(x)
≤ 2 + (2r′(x) − r(x) − 2) + r′(x) − 2r(x) See concavity argument below
= 3(r′(x) − r(x))

The third equality follows from the fact that the new root of this subtree is x, which now has the
same size as the subtree rooted at z had before the rotation, i.e. s′(x) = s(z) as seen in Figure 2.

The last inequality follows from the concavity of the log function, i.e. log(a)+log(b)
2 ≤ log a+b

2 .
Which gives the following inequality

r(x) + r′(z)
2 = log(s(x)) + log(s′(z))

2

≤ log s(x) + s′(z)
2

≤ log s(x) + s′(z)
2 Since s(x) + s′(z) ≤ s′(x)

≤ log s′(x)
2

= r′(x) − 1

The second inequality follows directly from Figure 2. We see that s(x) + s′(z) = w(x) + s(a) +
s(b) + w(z) + s(c) + s(d) and s′(x) = w(x) + w(y) + w(z) + s(a) + s(b) + s(c) + s(d), thus
s′(x) − s(x) − s′(z) = w(y), which means s(x) + s′(z) ≤ s′(x).

Thus, by the concavity of the log function, we have r′(z) ≤ 2r′(x) − r(x) − 2.

Case zig-zag(x): The actual time is 2 for the zig-zag case. Let x, y = p(x) and z = p(y) be the
elements whose rank changes as seen in Figure 3.
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2.2 Analysis 2 SPLAY TREES

a = 2 + r′(z) + r′(y) + r′(x) − r(z) − r(y) − r(x) definition
= 2 + r′(z) + r′(y) − r(y) − r(x) r′(x) = r(z)
≤ 2 + r′(z) + r′(y) − 2r(x) r(y) ≥ r(x)
≤ 2(r′(x) − r(x)) Concavity arguement
≤ 3(r′(x) − r(x)) r′(x) > r(x)

The second to last inequality follows from the concavity of the log function again, where r′(z) ≤
2r′(x) − r′(y) − 2 can be obtained through a similar analysis.

With the above three cases, the desired result can be shown using a telescoping sum, adding up
all the individual splay-step costs from moving an element to the root.

amortized cost =
∑

i

cost(splay stepi)

≤
∑

i

(3r′(x)) − r(x)) + 1 Note: + 1 from the potential zig step

= 3(r(root) − r(x)) + 1

When considering an unweighted tree, r(root) = log(n), and r(x) ≤ log(n). Which gives an
amortized cost for splaying an element to the root of ≤ 3 log(n) + 1 = O(log(n)). With this, it
remains to be argued that we can also perform the insert, delete and search operations in
O(log(n)) amortized time.

2.2.1 runtime analysis of search, insert and delete operations

Let us consider the operations described in Section 2.1 and their amortized runtimes. Because the
operation is defined as their BST version followed by splaying, we can consider their amortized
cost as follows:

a = cost of splay + BST operation cost + potential change from BST operation
= O(log n) + BST operation cost + potential change from BST operation
= O(log n) + potential change from BST operation

When splaying an element to the root, some potential is freed up to pay for some of the rotations
performed in the zig-zig and zig-zag operations. The same potential can be used to pay for the
additional levels searched throughout the search, insert and delete operations in BST that
occur due to an unbalanced tree, as these operations are dominated by traversing down the tree
to the location of the node. The insertion and deletion change a few pointers, which takes O(1)
time, and can thus be ignored. Therefore, the cost of the BST operations is at most O(log n) as
well.

Thus, the only part missing is the potential change from the operations.
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2.3 Alternative versions of splay trees 2 SPLAY TREES

• Search ⇒ Does not change the tree. Thus there is no potential change besides from the
splaying

• Delete ⇒ Decreases the potential (The ranks of all ancestors become smaller), thus potential
change from operation ≤ 0.

• Insert ⇒ Increases the potential of possibly n ancestors, and thus we need to handle this
case.

Lemma 2.2. The potential increases by at most O(log n) when a new node is inserted.

Proof. When inserting an element, the potential of all ancestors increases. Let p = p0 → p1 →
. . . → pl be the path to the root. Each has size s(pi) before the insertion and s′(pi) afterwards.
As only a single element is inserted, we know that s′(pi) = s(pi) + 1, and the potential change
of the entire tree is then:

l∑
i=0

r′(pi) −
l∑

i=1
r(pi) =

l∑
i=1

r′(pi) − r(pi)

=
l∑

i=1
log(s′(pi)) − log(s(pi)

=
l∑

i=1
log
Å

s′(pi)
s(pi)

ã
=

l∑
i=1

log
Å

s(pi) + 1
s(pi)

ã
≤

l∑
i=1

log
Å

i + 1
i

ã
= O(log n)

When a new element is inserted, it always becomes a leaf, and thus the new node p0 has s′(p0) = 1
and r′(s(p0)) = 0 and therefore can be ignored in the sums above.

Given this, we have an amortized runtime for insert, search and delete of O(log n).

2.3 Alternative versions of splay trees
Depending on your application’s needs and requirements, different splay trees exist. Specifically,
we may require a space-efficient version that sacrifices some runtime. Such a version with only
two pointers per node is shown in Figure 4[17].

Likewise, one may not wish to move the latest accessed element to the root, as this may require
a lot of restructuring of the splay tree. Thus, a new concept was introduced called semi-splaying.
The semi-splaying heuristic is to only perform a single rotation during zig-zig, namely, the first
step of rotating with p(p(x)) and then continuing the splaying from y = p(x), essentially the
zig-zig step stops at the middle figure in Figure 2. This ensures that the depth of x is at most
half the starting depth after splaying, as the remaining operations are left alone[17].
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3 TOP TREES

Figure 4: Memory efficient splay tree

Whether semi-splaying was an improvement to fully-splaying was assumed to be dependent
on the access pattern. Intuitively, the main difference is how long it takes to adapt to new
access patterns. Semi-splaying takes longer to adjust, performing fewer rotations and writings
to memory. It has later been experimentally tested, and it turns out that for a wide variety of
access patterns semi splaying practically outperforms splaying the node the entire way and can,
thus, be used as a replacement in many cases[3].

3 Top trees
This section gives a detailed description of splay top trees with the user-defined operations
reintroduced. An analysis of the amortized runtime of the splay top tree data structure is given
too. Some of the lemmas in this section are restated from the original paper on splay top trees
with additional proof details.

The top tree T data structure is a rooted binary tree that can be combined with any explicitly
maintained spanning tree T . Top trees are designed to be used in various graph algorithms, i.e.
minimum spanning tree, 2-edge connectivity and bi-connectivity [8], thus, demanding a certain
amount of versatility. This is accomplished by storing user-defined information in the top tree,
which can be tailored to the problem.

Let a cluster be a connected set of edges in T . A summary is stored for each cluster, containing
the user-defined information. These summaries are then stored in the nodes of T , representing
the clusters of T . A cluster C can contain up to 2 boundary vertices, either flagged as a boundary
by the user or incident to something outside the cluster. If two clusters share a boundary vertex,
they can be combined to define a larger cluster. An example of this can be seen in Figure 5,
where the clusters A and B can be combined.

A vertex flagged as a boundary vertex is also called exposed, and the importance of these should
become clear throughout.

In the rest of this paper, nodes will be used to address elements in the top tree and vertices
for elements in the spanning tree. The relationship between nodes is expressed using parent,
children, sibling, or uncle. There is a one-to-one mapping between clusters and nodes. Thus, let
these terms be used interchangeably.

Cluster information: Let leaf nodes in T represent a single edge in the spanning tree. These
are the smallest clusters, with summary information which only depends on a single edge.

The internal nodes of T represent a union of its children, thus requiring them to share a bound-
ary vertex. The summary information may now depend on multiple edges. Recomputing the
summary from scratch for each node may be an expensive operation. Therefore, the user-defined
combine operation is reintroduced. combine computes the cluster information of an internal
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3 TOP TREES

node by combining the cluster information of its children. The combine operation is not a nov-
elty, as it plays an essential part in the 2-edge connectivity algorithm considered in Section 4 and
any other algorithm using top trees. However, likely for simplicity reasons combine was ignored
in the analysis of splay top trees by Holm et al., even though it was used in the implementation
they provided [9].

The combine operation varies depending on the problem, with examples of combine shown
in Table 2. A slightly more in-depth example is given to gain familiarity with the combine
operation. Let π(C) define the path between boundary vertices of C in T . For clusters with
fewer than 2 boundary vertices, π(C) is undefined. Now consider the problem of maintaining
the maximum edge weight of π(C) in a spanning tree as the summary information.

Let C be a cluster with 0 or 1 boundary vertices, called a point cluster. Since π(C) is undefined,
let C.maxWeight be undefined. Instead, let C be a cluster with 2 boundary vertices, called a
path cluster. Since leaf nodes only represent a single edge e in their cluster C, π(C) can only
contain e. Therefore, let C.maxWeight = e.weight.

Let an internal node represent cluster C. We can now consider how combine should operate
in different cases. Let combine be called on C with boundary vertices a and b, and children A
and B. Let A be a path cluster with boundaries a and b, and B a point cluster with boundary
b as seen in Figure 5. In this case, we can set C.maxWeight = A.maxWeight as the boundary
vertices of C and A are the same, which means π(C) = π(A).

b a
B

A

Figure 5: Spanning tree T with a clusters A and B with boundary vertices a, b and b respectively

Let combine be called on cluster C with boundary vertices a and b, with children A and B, as
seen in Figure 6. Let A and B be path clusters with boundary vertices a, c and b, c respectively.
C.maxweight can then be computed as, C.maxWeight = max(A.maxWeight, B.maxWeight).

c

b

a

B

A

Figure 6: Spanning tree T with a clusters A and Bwith boundary vertices a, c and b, c respectively
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3 TOP TREES

The attentive reader may ask, what if A and B are point clusters? When this is the case, it
is impossible for C to be a path cluster. Since A and B are children of C, they must share a
boundary vertex c, which means C can only have c as a potential boundary vertex. Thus, π(C)
is always undefined for this case. All cases for combine can be seen in Table 3.

Without the ability for users to explicitly mark vertices as boundary vertices, the max edge weight
problem is rather dull. The cluster represented by the top trees root node contains all vertices
in the spanning tree. Thus, the only boundary vertices of this cluster are vertices exposed by
the user. By exposing vertices u and v, the root will contain the maximum edge weight between
these vertices. Thus, the user can ask for the maximum edge weight on the path between any
two vertices in the spanning tree.

Not all problems require two boundary vertices in the root to answer queries. But generally,
with 2 exposed vertices, we answer queries about the path between them, i.e., the maximum
edge weight. If we expose a single vertex, we could view the spanning tree as rooted in this
vertex and answer queries about its height. Finally, if we don’t expose any vertices, the queries
are often unrelated to specific vertices, i.e., the size or diameter of the spanning tree.

Problem Case handled in Table 3 Computation
Size of spanning tree 1,2,3,4 and 5 C.size = A.size + B.size

Maximum edge weight 1 C.maxWeight = max{A.maxWeight, B.maxWeight}
Maximum edge weight 2 C.maxWeight = A.maxWeight

Maximum edge weight 3,4 and 5 C.maxWeight = undefined

Diameter of spanning tree 1

dab = A.dac + B.dbc

da = max(A, da, A.dac + B.dc)
db = max(B.db, B.dbc + A.dc)
d = max(A.d, B.d, A.dc + B.dc)

Diameter of spanning tree 2

dab = A.dab

da = max(A, da, A.dab + B.db)
db = max(B.db, A.db)
d = max(A.d, B.d, A.dc + B.dc)

Diameter of spanning tree 3
dab = db = undefined

da = max(A, da, A.dab + B.db)
d = max(A.d, B.d, A.dc + B.dc)

Diameter of spanning tree 4
dab = db = undefined

da = max(A, da, B.da)
d = max(A.d, B.d, A.dc + B.dc)

Diameter of spanning tree 5
dab = da = db = undefined

d = max(A.d, B.d, A.dc + B.dc)

Table 2: Examples of combine computations for different problems for the cases presented in
Table 3
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Case number Description Drawing
1 C is a path cluster with boundary vertices a, b and

children A, B. A and B are path clusters with a, c
and b, c as boundary vertices respectively

ca b

A B

2 C is a path cluster with boundary vertices a, b and
children A, B. A is a path clusters with boundaries
a, b and B is a point cluster with b as boundary vertex

ba

A B

3 C is a point cluster with boundary vertices a and
children A, B. A is a path clusters with boundaries
a, b and B is a point cluster with b as boundary vertex

ba

A B

4 C is a point cluster with boundary vertices a and
children A, B. A and B are point clusters with a as
their boundary vertex.

a
A B

5 C is a point cluster with no boundary vertex and
children A, B. A and B are point clusters with a as
their boundary vertex.

a
A B

Table 3: All cases combine can come across when computing the cluster information

Some problems, i.e. 2-edge connectivity and bi-connectivity, require large amounts of information
stored in each summary along with a more complex combine operation, which we will see in Sec-
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tion 4 when the problem of 2-edge connectivity is considered. These problems may also require
that information be passed down the tree. This is supported in the original top tree implemen-
tation with the user-defined operation split, used by Holm et al. in their 2-edge connectivity
algorithm[8]. Thus, throughout the analysis, combine and split have been reintroduced in
preparation for the 2-edge connectivity algorithm.

3.1 Orientation invariant
In this section, an orientation invariant is introduced. The orientation invariant simplifies the
analysis, reducing the number of cases that need to be considered.

When considering the children of an internal node representing C, it is convenient to consider
one child as the left and the other as the right. This allows us to treat boundary vertices as left,
middle or right boundary vertices of C by considering which child it comes from. A left boundary
vertex of a C must also be a boundary vertex of the cluster represented by the left child, with
a similar definition for right boundary vertices. A boundary vertex can only be considered a
middle boundary vertex if it is the central vertex shared between both children.

From the above orientation on boundary vertices, we can define a cluster to have a leftmost
boundary vertex if a left or middle boundary vertex exists. If both a left and middle boundary
vertex exists, the leftmost boundary vertex is the left boundary vertex. Let the definition of the
rightmost boundary vertices be similar.

The orientation of boundary vertices in leaf nodes with only 1 edge e is a bit special. Since there
are no children, the left and rightmost boundary vertices are defined based on the endpoints of e.
Let the left and right boundary vertex be the left and right endpoint of e, respectively. Finally,
middle boundary vertices are undefined for leaf nodes.

With the above defined, the orientation invariant proposed by Holm et al. is ”For any internal
node C, the leftmost boundary vertex of the right child B and the rightmost boundary vertex of
the left child A must both exist and be equal to the central vertex of C”[9]. Throughout this
thesis, this orientation invariant will be used as well. For an example of a top tree satisfying the
orientation invariant, see Figure 7. Leaf nodes a and b must be connected through vertex w, the
rightmost boundary vertex of a, and the leftmost boundary vertex of b. The cluster A must have
a rightmost boundary vertex, which is the middle boundary vertex w since the other endpoint x
of b has no other incident edge. With A having a middle boundary vertex, it also has a leftmost
boundary vertex. Thus, A could be the right child as well.

B

A c

a b

(a) Top tree

v w x

y

a b

c

(b) Spanning tree

Figure 7: Orientation invariant example
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3.2 Data structure
This section outlines the required information stored for nodes in the top tree and some require-
ments for the spanning tree.

The data structure for the top tree should must the following information in each node.

• A pointer to the parent node

• For internal nodes, pointers to its children

• For leaf nodes, a pointer to the edge

• A counter storing the number of boundary vertices

• A boolean or flip bit storing whether the subtree should be flipped.

• User-defined cluster information

Finally, the spanning tree itself must be stored and support a set of operations. It should be
possible to insert and delete edges in the spanning tree, retrieve an arbitrary edge incident to a
vertex v, and a way to determine if degree(v) ≥ 2. These operations can be supported in O(1)
time.

3.3 Interface of top tree
This section first outlines external operations for top trees and then presents the internal opera-
tions needed to implement the external ones. The format for presenting the operations is heavily
inspired by Holm et al. [9].

Let Tv refer to the spanning tree containing vertex v, Tv refer to the top tree built on Tv and
e an edge with endpoints u and v. The interface for interacting with top trees consists of the
following operation.

• expose(v): Mark v as exposed and returns the root of Tv. Requires that Tv have at most
1 exposed vertex and v is not currently exposed.

This operation may cause a restructuring of Tv to ensure no cluster contains more than 2
boundary vertices.

• deExpose(v): Mark v as not exposed and returns the root of Tv. Requires that v is
currently exposed.

This operation may cause a restructuring of Tv.

• link(u, v): u and v are newly connected in the spanning forest by edge e. link creates a
leaf node representing e, and returns the root of the new tree. Requires 0 exposed vertices
in both Tu and Tv, which needs to be different trees.

• cut(e): Deletes the leaf node representing edge e, which is newly deleted in the spanning
tree. Requires that the tree Tu = Tv contains no exposed vertices.

In the original top tree interface, cut returns the roots of Tu and Tv. This is not required
for 2-edge connectivity. Thus, let cut return nothing or both roots.

All external operations may force some clusters to be recomputed by combine. Thus, all of
them should ensure that any information stored further up the tree is propagated downwards
using split beforehand. The expose, deExpose and link immediately call the same operation
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findConsumingNode, which will be defined soon. For simplicity, let findConsumingNode
handle the split calls for those operations.

cut also causes recomputations of some clusters. Let cut ensure all required information is
correctly propagated downwards for itself.

Consider the following internal operations. Those defined from hasLeftBoundary and onwards
will be considered in greater detail throughout the analysis. Let node be some node in Tv.

• isPoint(node) / isPath(node): Returns information about whether node is a point or
path cluster.

• flip(node): To maintain the orientation invariant when the structure changes, we may
sometimes flip entire subtrees. This can be implemented in many ways, but for efficiency,
let it be represented by the flip bit or boolean, allowing the subtree to be considered flipped
without actually flipping it.

• pushFlip(node): This ensures that the flip bit or boolean is false. The flip is performed
by swapping the children and calling flip on both of them. This can be performed in O(1)
time.

• hasLeftBoundary(node)/ hasMiddleBoundary(node)/ hasRightBoundary(node):
Returns whether a node has a left, middle or right boundary vertex respectively.

• rotateUp(node): This rotation operation differs from the rotation seen as part of splay
trees. We only allow rotateUp to be called if it results in a valid top tree, which requires
all clusters to be valid. A cluster is considered valid if it is a connected set of edges, with
at most 2 boundary vertices.

rotateUp also makes no guarantees that the ordering of leaves is preserved.

Finally, the rotation itself is defined differently. rotateUp swaps the position of node and
sibling(parent(node)) as seen in Figure 8 and adjusts other necessary values and pointers
to ensure everything is satisfied.

grandparent

parent uncle

node sibling

grandparent

parentnode

unclesibling

rotateUp(node)

Figure 8: Example of rotation

• semiSplayStep(node): This operation calls rotateUp(·) one or two times to restructure
the top tree reducing the depth of node by 1. Finally, it returns the root of the changed
subtree.

This operation is a central part of splay trees. Conceptually, it can be thought of as the
rotation, as it decreases the depth of node by 1. As part of the analysis, it is shown that
if depth(node) ≥ 5, this operation always succeeds and reduces the depth.

With the result of semiSplayStep always succeeding if depth(node) ≥ 5, it is possible to
implement splay-like behaviour. Intuitively, if we repeatedly call semiSplayStep(node),
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node is moved towards the root. Unfortunately, similar to splay trees, more caution is
required to make the amortized analysis work.

• semiSplay(node): This operation is inspired by the semi-splay concept of splay trees. The
depth of node is reduced by some constant by repeated calls to semiSplayStep.

The potential change is O(log n)−Ω(depth(node)), where depth(node) is the original depth
of node. Thus, this operation allows for O(depth) work to be performed by other operations
for free.

• fullSplay(node): This operation has the same potential change as semiSplay, but guar-
entees the depth(node) is reduced to ≤ 4.

This operation considers two calls to semiSplayStep at a time, which can be compared
to how zig-zig and zig-zag are used in splay trees.

• findConsumingNode(v): Returns the consuming node of the vertex v, defined as the
first cluster containing all edges incident to v.

Recall that this operation has been assigned the additional task of calling split as it tries
to locate the consuming node. This was chosen as all operations calling this can force
recomputations on the path between the consuming node and the root.

3.4 Detecting boundary vertices
In this section, a correctness argument for hasLeftBoundary, hasMiddleBoundary and
hasRightBoundary is given, as these operations are central for maintaining the orientation
invariant.

The process of detecting boundary vertices is identical for the left and right vertices. Thus, only
hasLeftBoundary(node) is included.

Let node be a leaf node and recall that left boundary vertices were defined as the left endpoint
being exposed or incident to something else. Thus, we can check if the left endpoint of node
satisfies one of these requirements. The operation should consider if node is conceptually flipped
by its flip bit/boolean.

Consider the case where node is an internal node. node can only have a left boundary vertex if
the left child is a path cluster. For contradiction, assume the left child was a point cluster and
a left boundary vertex existed. By the orientation invariant, we require a rightmost boundary
vertex to exist for the left child and be shared with its sibling. Thus, a contradiction is reached,
as the only boundary vertex was assumed to be a left boundary vertex, which can not be the
rightmost boundary vertex. Thus, a left boundary vertex can not exist if the left child is a point
cluster.

Assume the left child is a path cluster. Then the rightmost boundary vertex is again shared with
its sibling. Thus, the remaining boundary vertex must be a left boundary vertex for node as it
comes from the left child.
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Algorithm 4 hasLeftBoundary(node)
1: if isLeafNode(node) then
2: if node.flip then
3: endpoint = node.edge.endpoints[1]
4: return endpoint.exposed || degree(endpoint) ≥ 2
5: else
6: endpoint = node.edge.endpoints[0]
7: return endpoint.exposed || degree(endpoint) ≥ 2
8: else
9: if node.flip then

10: return isPath(node.children[1])
11: else
12: return isPath(node.children[0])

Let node be a leaf node or an internal node with 0 boundary vertices. In both these cases, no
middle boundary vertices can exist. Thus, consider the case where node contains at least one
boundary vertex. Each path child of node contributes a non-middle boundary vertex by the
same argument used for left boundary vertices in internal nodes.

Thus, by subtracting 1 from node.numBoundary for each path child, we can check for the
existence of a middle boundary node using the following expression, with false = 0 and true = 1.

node.numBoundary − isPath(left child) − isPath(right child) > 0

Algorithm 5 hasMiddleBoundary(node)
1: if node.isLeaf || node.numBoundary == 0 then
2: return false
3: else
4: return node.numBoundary - isPath(left child) - isPath(right child) > 0

By a quick observation of Algorithm 4 and Algorithm 5, the operations do not change the top
tree and run in O(1) actual time. Thus, the amortized cost of these operations is O(1) with no
potential change.

3.5 Rotations
In this section, the rotateUp operation is first considered through a correctness argument,
followed by an analysis of when rotations are valid in the top tree. The correctness of rotateUp
is only shown for rotations proven valid in Section 3.5.3

rotateUp plays a significant role in top trees, allowing other internal operations to modify the
top tree. These modifications are performed by swapping a node with its parent’s sibling. As
briefly stated in the introduction to the rotateUp operation, it is only allowed when all clusters
remain valid, with the only new cluster being sibling(node) ∪ sibling(parent(node)). Finally,
the ordering of nodes may shift throughout the modification of the top tree. Thus, there is no
guarantee for the orientations of the nodes after a call to rotateUp, except that they satisfy
the orientation invariant.

16 of 80



3.5 Rotations 3 TOP TREES

Algorithm 6 rotateUp(node)
1: parent = node.parent
2: grandparent = parent.parent
3: sibling = sibling(node)
4: uncle = sibling(parent)
5:
6: pushFlip(grandparent)
7: pushFlip(parent)
8:
9: uncle is left child = grandparent.children[0] == uncle

10: sibling is left child = parent.children[0] == sibling
11: to same side = uncle is left child == sibling is left child
12: sibling is path = isPath(sibling)
13: uncle is path = isPath(uncle)
14: grandparent is path = isPath(grandparent)
15:
16: if to same side and sibling is path then
17: // Rotation on path
18: grandparent middle = hasMiddleBoundary(grandparent)
19: new parent is path = grandparent middle or uncle is path
20: flip new parent = false
21: new parent is path = false
22: if grandparent middle and !grandparent is path then
23: ggp = grandparent.parent
24: if ggp != null then
25: gp is left child = ggp.children[0] == grandparent
26: flip grandparent = gp is left child == uncle is left child
27: else
28: // Rotation on star
29: if !to same side then
30: new parent is path = sibling is path or uncle is path
31: flip new parent = sibling is path
32: flip grandparent = sibling is path
33: node.flip = !node.flip
34: else
35: new parent is path = uncle is path
36: flip new parent = false
37: flip grandparent = false
38: sibling.flip = !sibling.flip
39: // Update pointers
40: if uncle is left child then
41: parent.children[1] = sibling
42: parent.children[0] = uncle
43: grandparent.children[1] = node
44: grandparent.children[0] = parent
45: else
46: parent.children[0] = sibling
47: parent.children[1] = uncle
48: grandparent.children[0] = node
49: grandparent.children[1] = parent

50: parent.flip = flip new parent
51: parent.boundary = if new parent is path {2} else {1}
52:
53: grandparent.flip = flip grandparent
54:
55: node.parent = grandparent
56: uncle.parent = parent
57:
58: combine(parent)
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3.5.1 Correctness

Let the configurations presented in Figure 9 and Figure 10 be those considered for the rota-
teUp algorithm. Let the top tree representations be considered as they are, meaning no nodes
are considered flipped when calling rotateUp. The goal is to argue how an implementation
of rotateUp could handle combinations of these configurations. The combinations of these
configurations will be handled on a case-by-case basis throughout this section.

The combination of Figure 9a and Figure 10b is impossible.

node

sibling

uncle

(a) Rotation on a path

node

sibling

uncle

(b) Rotation on a star

Figure 9: Spanning tree configurations that can be observed during a rotation. Each edge may
be a larger cluster consisting of multiple edges

grandparent

parent uncle

node sibling

(a) Sibling and uncle to the same side

grandparent

parent uncle

sibling node

(b) Sibling and uncle to different sides

Figure 10: Top tree configurations that can be observed during rotations.

When performing a rotation, rotateUp needs to determine how many boundary vertices the
new cluster sibling(node) ∪ sibling(parent(node)) has and maintain the orientation invariant of
all nodes. Finally, the parent and children pointers should be updated accordingly.

Impossibility of combining Figure 9a and Figure 10b

Consider the combination of Figure 9a and Figure 10b. This case is impossible, as node and
uncle can not avoid being connected. Assume node is a path cluster, then uncle must connect
to the rightmost boundary vertex of parent, which comes from node. Instead, let node be a
point cluster. In this case, the parent must have a middle boundary vertex, which the uncle is
connected to because the middle boundary vertex is the rightmost boundary vertex of parent.
The middle boundary vertex of parent is the node shared between node and sibling, which means
node and uncle are connected.
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Path structure

Case 1: This case considers the combination of Figure 9a and Figure 10a. Let Figure 11 show
how the rotation impacts the top tree.

Assume sibling was a point cluster. Then both node and uncle must be connected to the same
endpoint of sibling. However, this contradicts the layout assumed in Figure 9a. Thus, sibling
must be a path cluster in this case.

With this knowledge of sibling, consider how many boundary vertices the new parent′ cluster
has. Because sibling is a path cluster, it must contribute a boundary vertex to parent′. If uncle
is a path cluster, it also contributes a boundary vertex. Finally, if uncle is a point cluster, the
vertex v shared by sibling and uncle may be a boundary vertex if it is incident to something
outside the cluster. This is only the case if v was a middle boundary vertex of grandparent
before the rotation. Thus, parent′ is a path cluster if the uncle is or if grandparent had a
middle boundary vertex before the rotation.

Finally, rotateUp should maintain the orientation invariant. The order of node, sibling and
uncle was maintained. Thus, the orientation of node, sibling, uncle and parent′ is maintained
without flipping any of them.

Assume the grandparent had a single middle boundary vertex before the rotation, the vertex
shared by sibling and uncle. After the rotation, the central vertex of grandparent is shared
by node and sibling. Thus, the boundary vertex of grandparent is now either a left or right
boundary vertex. Therefore, rotateUp must ensure that a leftmost boundary vertex exists if
grandparent is a right child; otherwise, a rightmost boundary vertex should exist.

grandparent

parent uncle

node sibling

grandparent

parent′node

unclesibling

rotateUp(node)

Figure 11: Rotation with sibling and uncle to the same side

Star structure

The analysis for the spanning tree configuration shown in Figure 9b is split into three separate
cases.

Case 2: Consider first the case where the top tree looks like Figure 10a. The impact on the top
tree is visualized in Figure 11.

If sibling were a path cluster, node and uncle would connect to different endpoints giving a path
structure instead. Thus, let sibling be a point cluster.

The vertex shared by node, sibling and uncle is a middle boundary vertex of the new parent′, as
node is located outside the cluster. Only the other endpoint of uncle can contribute an additional
boundary vertex to parent′, which only happens if uncle is a path cluster. Thus parent′ is a
path cluster exactly when uncle is.

The order of node, sibling and uncle is maintained. However, sibling was a right child before
the rotation, which meant it was connected to node through its leftmost boundary vertex. After
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the rotation, it is a left child and should be connected through its rightmost boundary vertex.
This is solved by flipping sibling.

To satisfy the orientation invariant, the new parent′ must have a leftmost boundary vertex as
it is a right child connected to node, however, since it has a middle boundary vertex, both a
leftmost and rightmost boundary vertex exist. The orientation invariant of the grandparent
remains satisfied, as the central vertex of grandparent remains the same. The other possible
boundary vertices come from node and uncle, which are left and right children, respectively,
before and after the rotation.

Case 3: Consider a combination of Figure 9b and Figure 10b, the performed rotation can be
seen in Figure 12. This case is split into two, and the first assumes sibling is a point cluster.

Assume node was a path cluster, which means sibling and uncle must connect to different
endpoints, causing a path-like structure. Thus, both node and sibling are point clusters. The
new parent′ is a path cluster only if uncle is, as they share boundary vertices.

node changes from a right to a left child. Thus, it must be flipped to maintain the orientation
invariant. sibling and uncle are left and right children, respectively, before and after the rotation.
Therefore, the orientation invariant remains satisfied for them.

The new parent must have a leftmost boundary vertex, which it does, as it is guaranteed to have
a middle boundary vertex. Finally, the orientation invariant of grandparent is maintained, as
the endpoints of uncle remains in the same position. The left endpoint is the middle boundary
before and after the rotation, with the right endpoint being the right boundary vertex, if it exists.

grandparent

parent uncle

sibling node

grandparent

parent′node

unclesibling

rotateUp(node)

Figure 12: Rotation with sibling and uncle to different sides

Case 4: Consider the same combination of Figure 9b and Figure 10b, with sibling as a path
cluster. The rotation is visualized in Figure 12.

node must be a point cluster to avoid sibling and uncle connecting to different endpoints. If
uncle is a path cluster, the new parent′ has 3 boundary vertices. Thus, let uncle be a point
cluster as well.

With node and uncle being point clusters, the new parent′ has the same boundary vertices as
sibling, meaning parent′ is a path cluster when sibling is.

Similarly to case 3, we must flip node to maintain the orientation invariant. As the boundary
vertices of grandparent only come from endpoints of sibling, these endpoints must remain in the
same place. However, as seen in Figure 12, this isn’t the case, but by flipping both parent′ and
grandparent, the desired result is achieved. The effect of flipping both parent′ and grandparent
can be seen in Figure 13
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grandparent

parent’node

unclesibling

grandparent

parent′ node

sibling uncle

flip parent′

flip grandparent

Figure 13: Flip grandparent and parent′

3.5.2 Supported rotations

The rotations supported by rotateUp are summed up in Figure 14, where all the supported
top tree configurations are visualised, except for mirrored ones, and which case supports them.
Let x denote support for both point and path clusters in those positions.

x

x x

node = x path

(a) Case 1

x

x x

point node = x

(b) Case 2
x

point x

point node = point

(c) Case 3

x

path x

path node = point

(d) Case 4

Figure 14: The top tree configurations supported by rotateUp, let x denote support for both
point and path clusters

3.5.3 Analysis for when rotations are allowed

As mentioned at the start of Section 3.5, rotations are only valid if all clusters remain valid. As
stated, the only new cluster is sibling(node) ∪ sibling(parent(node)). The grandparent is still
the union of node, sibling and uncle and thus remains valid. However, explicitly checking if the
new cluster is valid is inconvenient. Therefore, Holm et al. showed a few top tree configurations
that lead to valid clusters[9].

Before these configurations are considered, a few helping lemmas are proven.

Lemma 3.1. (Lemma 4.1 from [9]) If A and B are valid clusters of a top tree whose intersection
is a single vertex v, then the cluster A ∪ B is invalid if and only if the following three conditions
hold: A is a path cluster, B is a path cluster, and v is a boundary vertex of A ∪ B.
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v
A B

Figure 15: The spanning tree representation of Lemma 3.1

Proof. The boundary vertices of an internal node can be expressed as the union of boundary
vertices of its children, with or without the central vertex, depending on the scenario.

First, consider why both A and B must be path clusters. Assuming A is a point cluster. Then
it must have a single boundary vertex shared with B. Thus, the union of A ∪ B can contain at
most 2 boundary vertices if the shared vertex v is included.

Therefore, it must be the case that both A and B are path clusters. v must be a boundary
vertex of the internal node as well. Otherwise, at most, 1 boundary vertex is contributed from
each child.

Lemma 3.2. (Lemma 4.2 from [9]) If A, B, and C are valid clusters with C the parent of A
and B. If A is a point cluster, then all boundary vertices of C are also boundary vertices of B.

A B

Figure 16: The spanning tree representation of Lemma 3.2

Proof. If A is a point cluster, it only contains a single boundary vertex that it shares with its
sibling B. Thus, the boundary vertex of A is also a boundary vertex of B. Since the boundary
vertices of C must also be boundary vertices of one of its children, all of them must be part of
B.

Lemma 3.3. (Lemma 4.3 from [9]) Let X, Y, Z, A, B be valid clusters in a top tree with Y the
parent of X and A, and Z the parent of Y and B. If A is a path cluster and X, Y are both left
or right children, then X ∪ B is not a connected set of edges.
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Z

Y B

X A

(a) Top tree configuration of Lemma 3.3

v

wX A B

(b) Spanning tree configuration of Lemma 3.3

Figure 17: One possible configuration for Lemma 3.3

Proof. WLOG assume the case shown in Figure 17. Because A is a path cluster with two
boundary vertices, then by the orientation invariant, it must be the case that X and B are
connected to different vertices. Let v be the vertex shared by X and A, and w the vertex shared
by A and B.

Now assume X ∪B was a connected set of edges, implying that a vertex u exists that was shared
between X and B. However, this would create a cycle in the spanning tree, as we could move
from A to B through w, to X by u and back to A with v. Thus, no such u can exist, and X ∪ B
is not a connected set of edges.

Lemma 3.4. (Lemma 4.4 from [9]) Let X be a valid cluster in a top tree. If X and its grand-
parent Z are both point clusters, then it is valid to call rotateUp(X).

Z

Y B

X A

(a) Configuration 1

Z

Y B

A X

(b) Configuration 2

Figure 18: Top tree representations of Lemma 3.4

Proof. When ignoring mirrored versions, the tree must be structured in one of the two ways
pictured in Figure 18. The goal is to prove A ∪ B is a valid cluster. Recall a valid cluster is a
connected set of edges with at most 2 boundary vertices.

Because X is a point cluster, then by Lemma 3.2, all boundary vertices of Y = X ∪ A are also
boundary vertices of A. Y and B share a boundary vertex as they are siblings. Thus, A shares
a vertex with B, meaning A ∪ B is a connected set of edges.

What remains is to show that A ∪ B has at most 2 boundary vertices. Point cluster X has a
single boundary vertex that it shares with A. This boundary vertex would be shared with A ∪ B
post rotation. Thus A ∪ B can have at most 1 boundary vertex more than X ∪ (A ∪ B), which
is the point cluster Z. Thus, A ∪ B can have at most 2 boundary vertices.

Lemma 3.5. (Lemma 4.5 from [9]) Let X, Y, Z, A, B be valid clusters in a top tree with Z the
parent of Y and B and Y the parent of X and A. If Y is a path cluster, with both X and Y
being left or right children, then it is valid to call rotateUp(X).
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Postcondition 1: If Z is a path cluster and not the root, then A ∪ B and Z are both left or right
children if and only if they both were left or right children before the rotation.
Postcondition 2: If Z is a point cluster, then A ∪ B is a point cluster after the rotation.

Z

Y B

X A

Figure 19: Top tree representation of Lemma 3.5

Proof. Without loss of generality, let A and B be right children, thus both X and Y being left
children. An example of this configuration can be seen in Figure 19. First, we wish to prove that
A ∪ B is connected. Let v be the boundary vertex between Y and B and the central vertex of
Z. v is the rightmost boundary vertex of Y , which means that A and B are connected.

Because Y is a path cluster, it has another boundary vertex w, which due to the orientation
invariant and the assumption about X and Y being left children, must be a boundary vertex of
X.

It remains to show that A ∪ B has at most 2 boundary vertices. Assume either A or B is a point
cluster, then the union is a valid cluster by Lemma 3.1. Thus, assuming both A and B are path
clusters, then Lemma 3.1 implies that the shared vertex v of A and B is not a boundary vertex.
Since Z = (A ∪ B) ∪ X is a valid cluster, the only way v can be a boundary vertex of A ∪ B is if
X and B share this vertex. If v were shared with something outside the cluster, Z would have
three boundary vertices as Y and B are path clusters. However, X and B are disconnected by
Lemma 3.3. Thus, v is not a boundary vertex of A ∪ B; thus, the cluster is valid.

Postcondition 1: To maintain the orientation invariant for Z when it is not the root, the sibling
and parent of Z may need to be considered. Thus, assume Z is a path cluster with sibling C.
By the assumption that Z is a path cluster, it has a boundary vertex which is not a non-middle
boundary vertex. Assume, for simplicity, this was a left boundary vertex u, shared with C before
the rotation. This boundary vertex should remain the left boundary vertex after the rotation to
maintain the orientation invariant. If u was not shared with C, it must remain a left boundary
vertex, so the rightmost boundary vertex of Z does not change. The non-middle vertex can never
originate solely from a as its boundary vertices are connected to x and b before and after the
rotation. Thus, any left or right boundary vertex must come exclusively from x or b, meaning x
and a ∪ b must be children to the same side as x ∪ a and b were before.

Postcondition 2: Assuming Z is a point cluster with X and Y both being left or right children,
the boundary vertex of Z must be w, which is not the vertex shared by Y and B. As w is not
the central vertex of Z, it must come exclusively from Y and be a boundary vertex of X. If
A ∪ B is a path cluster after the rotation, then Z must also be a path cluster.

By comparing the valid rotations seen in Figure 20 to the ones supported by rotateUp visu-
alised in Figure 14, we can see which cases handle the valid rotations argued in Lemma 3.4 and
Lemma 3.5. Let x denote support for both point and path clusters.

Lemma 3.4 and Lemma 3.5 will be used used in Section 3.6.1 and Section 3.8.1 to argue that
only valid rotations are performed.
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point

x x

node = point x

(a) Lemma 3.4 handled by case 1 and 2

point

x x

x node = point

(b) Lemma 3.4 handled by case 3 and 4
x

path x

node = x x

(c) Lemma 3.5 handled by case 1 and 2

Figure 20: The valid top tree configurations for rotations

3.6 Analysis of splay operations
This section analyses the amortized cost of semiSplay and fullSplay. semiSplay and full-
Splay make a series of calls to semiSplayStep, which searches for a valid top tree structure to
call rotateUp on. Thus, the analysis initially focuses on semiSplayStep, where it is shown
that rotations can be made sufficiently often that only a constant number of nodes needs to
be considered. Additionally, it is argued that all rotations performed are valid according to
Lemma 3.4 and Lemma 3.5.

The amortized cost of semiSplay and fullSplay are equivalent when ignoring constants. The
stronger depth guarantees from fullSplay are sometimes required. Otherwise, semiSplay is
used whenever possible as Holm et al. conjecture the usage of semiSplay to be a significant
speed-up[9].

For the amortized analysis, the following potential function is used, ϕ =
∑

T
∑

x∈T r(x), with
r(x) = log2(s(x)) and s(x) as the number of leaves in the subtree rooted in x.

For the simplicity of the analysis, let each potential be able to pay for a constant number of
combine and split operations. Unfortunately, to handle this throughout the analysis, a factor
of O(COST (combine) + COST (split)) should be carried along in the amortized cost of each
operation. To simplify these expressions significantly, assume for the analysis that combine and
split runs in O(1).

3.6.1 semiSplayStep

This operation is designed to handle rotations when splaying a node, as calling rotateUp is
only allowed sometimes. Thus, the entire goal of this operation is to detect when such calls are
allowed, moving the node one level up in the tree.
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Algorithm 7 semiSplayStep(b0)
1: b1 = b0.parent
2: b2 = b1.parent
3: if b1 is null OR b2 is null then // No rotation possible, uncle can not exist
4: return null
5: if isPoint(b0) AND isPoint(b2) then
6: rotateUp(b0)
7: return b2
8: b3 = b2.parent
9: if b3 is null then

10: return null
11: if isPath(b1) AND (isPath(b2) OR isPoint(b3)) then
12: pushFlip(b2)
13: pushFlip(b1)
14: nodeIsLeft = b1.children[0] == b0
15: parentIsLeft = b2.children[0] == b1
16: gparentIsLeft = b3.children[0] == b2
17: if nodeIsLeft == parentIsLeft then
18: rotateUp(b0)
19: return b2
20: if parentIsLeft == gparentIsLeft then
21: rotateUp(b1)
22: return b3
23: // At this point nodeIsLeft == gparentIsLeft is true
24: rotateUp(sibling(b0)) // swaps sibling(b0) and sibling(b1)
25: rotateUp(b1)
26: return b3
27: return semiSplayStep(b1)

The semiSplayStep operation will follow the path b0, b1, b2, . . . , bk where bk is the root, while
it tries to match the current structure of the tree to a set of allowed patterns for rotations. Once
it finds a match, it calls rotateUp and returns the root of the modified subtree.

The operation prefers to rotate nodes further down the tree, thus, patterns of b0, b1, b2 are chosen
over b1, b2, b3. The patterns checked for are:

1. b0, b1, b2 = point, path, point (line 5)

2. b0, b1, b2 = point, point, point (line 5)

3. b1, b2, b3 = path, path, point (line 11)

4. b1, b2, b3 = path, point, point (line 11)

5. b1, b2, b3 = path, path, path (line 11)

If none of these patterns matches semiSplayStep calls itself with b0 = b1 and tries again.

Lemma 3.6. (Lemma 5.1 from [9]) The semiSplayStep operation only makes valid calls to
rotateUp.
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Proof. For simplicity, we will consider the rotateUp calls made throughout the Algorithm 7
and argue why they are valid.

Consider the rotateUp call made on line 6. This only happens if b0 and b2 are point clusters
and is a legal call by Lemma 3.4.

The rotateUp call made on line 18 of Algorithm 7 only happens if b1 is a path cluster with b0
and b1 both being left or right children. Thus, calling rotateUp on b0 is allowed by Lemma 3.5.

The rotateUp call on line 21 is slightly more complicated. If both b1 and b2 are left or right
children, then it must be the case that b2 is a path cluster, thus allowing rotateUp to be called
on b1 by Lemma 3.5. Assume for contradiction that b2 is a point cluster, and both b1 and b2 are
left children as visualised in Figure 21. The only boundary vertex of b2 must be the rightmost
boundary vertex it shares with sibling(b2). However, since b1 is a path cluster, it contributes a
left boundary vertex to b2. Thus, reaching a contradiction as b2 must have 2 boundary vertices
and, thus, be a path cluster.

b3

b2 sibling(b2)

sibling(b0)b1

sibling(b1) b0

Figure 21: Configuration where both b1 and b2 are left children

Finally, consider the rotations on lines 24 and 25, where both b0 and b2 are left or right children.
An example of this case is visualised in the left part of Figure 22. Since b1 is a path cluster,
with b1 and sibling(b0) both being right children, calling rotateUp on sibling(b0) is valid per
Lemma 3.5. If b2 is a path cluster, the first post-condition of Lemma 3.5 states that b1 and b2
are both left or right children after the rotation, as seen in Figure 22. Since b2 is a path cluster,
with both b1 and b2 as left or right children, it is valid to call rotateUp with b1 by Lemma 3.5.

Otherwise, if b2 is a point cluster, then b′
1 is a point cluster after the rotation by the second

post-condition of Lemma 3.5. The only way to reach this is for b3 to be a point cluster to satisfy
the check on line 11. Thus, calling rotateUp with b1 by Lemma 3.4 is valid.

b3

b2 sibling(b2)

b1sibling(b1)

sibling(b0)b0

rotateUp(sibling(b0))

b3

b2 sibling(b2)

sibling(b0)b′
1

sibling(b1) b0

Figure 22: One configuration where both b0 and b2 are left or right children
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Lemma 3.7. (Lemma 5.2 from [9]) If d = depth(b0) ≥ 5, then the semiSplayStep always
succeeds in finding a valid rotation and reduces the height of b0 by 1, and returns a node b′ with
depth d − 5 ≥ depth(b′) ≥ d − 2 such that all modified nodes are in the subtree rooted in b′.

Proof. Consider the path b0, b1, b2, b3, b4, b5 on the way to the root. The goal is to argue that a
pattern is matched on b3, b4, b5 at the latest.

In Table 4, the patterns checked by the initial and first recursive call to semiSplayStep are
shown, with the double lines separating the two iterations. Notice, all 5 patterns will be checked
on b1, b2, b3 and onward due to the recursive nature of semiSplayStep. This implies that both
b3 and b4 must be path clusters to avoid matching any patterns, as everything ending in a point
cluster is valid. Finally, we notice both path, path, path and path, path, point patterns are
accepted. Thus, independently of what b5 is b3, b4, b5 is accepted, and thus, a match is found no
later than this.

b0 b1 b2 b3 b4 b5
point point point
point path point

path path point
path point point
path path path
point point point
point path point

path path point
path point point
path path path

Table 4: The patterns matched through two iterations of semiSplayStep, with the double line
separating the two iterations.

To argue that the depth of the returned node has the desired depth, consider the algorithm shown
in Algorithm 7. Patterns matched on b0, b1, b2 all return b2. Whereas patterns for b1, b2, b3 return
either b2 or b3, thus we must return either b2, b3, b4 or b5. All of which have a depth satisfying
the requirement.

Finally, to argue that the depth of the node is reduced by 1, we may consider the different
rotations performed. The rotations performed directly on node swap it with its uncle, located
one layer up the tree. The other cases call rotation on an ancestor of node, which moves the
subtree in which the node is located one layer up, achieving the same result.

Lemma 3.8. (Lemma 5.3 from [9]) If semiSplayStep(b0) fails to find a matching pattern then
depth(b0) ≤ 4. Furthermore, if b0 is a point cluster, then the depth(b0) ≤ 3. If the root is a point
cluster, then the depth(b0) ≤ 2, and if both b0 and the root are a point cluster, then depth(b0) ≤ 1.

Proof. From Lemma 3.7, we are given that for any node b0 with depth(b0) ≥ 5 semiSplayStep
would succeed. Thus we have depth(b0) ≤ 4.
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Consider the case where b0 is a point cluster, and the root is a path cluster. We want to find a
scenario where b4 exists, and it fails to find a matching pattern. Because b0 is a point cluster,
b2 must be a path cluster not to match one of the patterns on b0, b1, b2. The same goes for b3,
which means both b2 and b3 are path clusters, and thus, if b4 is a point or path cluster, it will
match one of the checked patterns. Therefore, b4 can not exist and depth(b0) ≤ 3 in this case.

Because we match all patterns ending in a point cluster, failure to find a match when the root is
a point cluster must be because b3 does not exist. Thus, depth(b0) ≤ 2. If both the b0 and the
root is a point cluster, then the two first patterns will match for any b1, which means b2 does
not exist, meaning depth(b0) ≤ 1.

Lemma 3.9. (Lemma 5.4 from [9]) Consider the operation semiSplayStep(pk(x)) with pi(x)
the ith ancestor of x or the root if i ≥ depth(x). Let x′ be the node x after the operation. Let
0 ≤ k < b and 0 ≤ a ≤ k + 1 be such that semiSplayStep(pk(x)) returns pl(x′) for some l ≤ b,
which is the same node as pl+1(x). Then the semi-splay step changes the amortization potential
by ∆ϕ = r(sibling(pl−1(x′))) +

∑b−1
i=a r(pi(x′)) −

∑b
i=a r(pi(x)).

Proof. The semiSplayStep operation performs one or two rotations depending on the matched
pattern. If the semiSplayStep rotate once as seen in Figure 23, where semiSplayStep found
a matching pattern calling rotateUp(b3). semiSplayStep returns b5 the direct ancestor of b′

3.
This means that l = 1, the potential of b4 has been replaced with the b′

4, which can be written
as ∆ϕ = r(sibling(pl−1(b′

3)) − r(pl(b3)). This is the same expression as the one in the lemma
with l ≤ b and 0 ≤ a ≤ b.

Let k = 0 in 0 ≤ k ≤ b and 0 ≤ a ≤ k + 1 because the call to semiSplayStep went through 0
recursions. Choose b = 1 and a = 0, satisfying the inequalities to get the following.

∆ϕ = r(sibling(pl−1(b′
3))) +

b−1∑
i=a

r(pi(b′
3)) −

b∑
i=a

r(pi(b3))

= r(sibling(p0(b′
3))) +

0∑
i=0

r(pi(b′
3)) −

1∑
i=0

r(pi(b3))

= r(sibling(p0(b′
3))) + r(p0(b′

3)) − r(p0(b3)) − r(p1(b3))
= r(sibling(p0(b′

3))) − r(p1(b3))

The terms r(p0(b′
3)) − r(p0(b3)) cancel out as the rotation did not change anything about the

subtree rooted in b3. Thus, a = 1 would obtain the same result. Simiarly, r(pc(b′
3)) cancels out

with r(pc+1(b3)) for any c ≥ l, which can be observed in Figure 23 too, where the leaves of b5
and b6 are the same before and after the rotation. The only difference is that b5 is the parent of
b′

3 but the grandparent of b3. Thus, choosing a greater b will not change anything.

If semiSplayStep did not immediately find a matching pattern, or the rotateUp call was
made on an ancestor to b3, the expression would still be the same, only swapping out b3 for the
ancestor rotateUp was called on.
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b6

c6 b5

b4 c5

b3 c4

c3 b2

b1 c2

c1 c0

b6

c6 b5

b′
3 b′

4

c3 c4 c5b2

b1 c2

c1 c0

rotateUp(b3)

Figure 23: semiSplayStep(b3) matches on the pattern point,point,point as b3, b4 and b5 are
point clusters. The top tree example is taken from [9], and the corresponding spanning tree can
be seen in Figure 42 in Appendix D

If instead, two rotates are performed as seen in Figure 24 where semiSplayStep(b1) was called.
Then the outputted node is b4, the 2nd ancestor of b′

1 in the final tree. Thus, let l = 2 and
observe that the potential change is ∆ϕ = r(sibling(p1(b′

1))) + r(p1(b′
1)) − r(p2(b1)) − r(p1(b1))

by observing the tree. This is equivalent to the expression in the lemma with l ≤ b. The
semiSplayStep finds a match in the first iteration. Thus, k = 0. WLOG let a = 1 and b = 2.

∆ϕ = r(sibling(pl−1(b′
1))) +

1∑
i=1

r(pi(b′
1)) −

2∑
i=1

r(pi(b1))

= r(sibling(pl−1(b′
1))) + r(p1(b′

1)) − r(p2(b1)) − r(p1(b1)) writing out the sums

If a larger b is chosen, the terms cancel out. The same goes for choosing a = 0.
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b6

c6 b5

b4 c5

b3 c4

c3 b2

b1 c2

c1 c0

b6

c6 b5

b4 c5

b3 c4

b′
2 c2

b1c3

c1 c0

b6

c6 b5

b4 c5

b′
2 b′

3

c3 b′
1

c1 c0

c2 c4

rotateUp(c2) rotateUp(b′
2)

Figure 24: semiSplayStep(b1) matches the pattern on path,point,point because b2 is path, and
both b3 and b4 are point clusters. The top tree example is taken from [9], and the corresponding
spanning tree can be seen in Figure 42 in Appendix D

3.6.2 semiSplay

In this section, the potential change and amortized cost of the semiSplay operation is considered,
along with the reduction in depth it provides for the splayed node. It reduces the depth of a
node x by at least 1

5 depth(x) by repeatably calling semiSplayStep.

Algorithm 8 semiSplay(x)
1: top = x
2: while top is not null do
3: top = semiSplayStep(top)

A supporting result is required before considering the amortized cost of semiSplay.

Lemma 3.10. (Lemma 5.5 from [9]) Let a, b, c > 0, if a + b ≤ c then log2(a) + log2(b) ≤
2 log2(c) − 2.

Proof. By the arithmetic-geometric mean inequality we have
√

ab ≤ a+b
2 ≤ c

2 , this gives us
ab ≤ ( c

2 )2 and log2(a) + log2(b) = log2(ab) ≤ 2 log2( c
2 ) = 2(log2(c) − 1) = 2 log2(c) − 2.

Lemma 3.11. (Lemma 5.6 from [9]) Calling semiSplay on a node x does O(depth(x)) work,
changes the potential by ∆ϕ ≤ O(1 + r(root(x)) − r(x)) − Ω(depth(x)) and reduces the depth of
x to at most ⌈ 4

5 depth(x)⌉.

Proof. Consider a single successful iteration of semiSplay which calls semiSplayStep with
node x. The semiSplayStep returns pl(x′), with x′ being x after the rotation. semiSplayStep
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always returns a node higher in the tree. Thus we get 1 ≤ l, and due to Lemma 3.7, the returned
node of semiSplayStep can be at most 4 levels higher in the tree compared to x′. Thus, we
know that 1 ≤ l ≤ 4. Choose a = 0 and b = l to satisfy the requirements of Lemma 3.9, which
gives the following potential change for a single iteration.

∆ϕ = r(sibling(pl−1(x′))) +
l−1∑
i=0

r(pi(x′)) −
l∑

i=0
r(pi(x))

The expression is simplified before considering the potential change of the entire semiSplay
operation. First, recall that r(x′) = log(s(x′)), with s(x′) being the number of leaves in the
subtree rooted in x′. Lemma 3.10 states that r(sibling(pl−1(x′))) + r(pl−1(x′)) ≤ 2r(pl(x′)) − 2,
because sibling(pl−1(x′)) and pl−1(x′) have disjoint subtrees, which means s(sibling(pl−1(x′)))+
s(pl−1(x′)) ≤ s(pl(x′)).

∆ϕ = r(sibling(pl−1(x′))) +
l−1∑
i=0

r(pi(x′)) −
l∑

i=0
r(pi(x))

≤ 2r(pl(x′)) − 2 +
l−2∑
i=0

r(pi(x′)) −
l∑

i=0
r(pi(x))

Then by analysing the possible values for l, we can rewrite the sums. If l = 1, the first sum was
already consumed for Lemma 3.10. The second sum has two terms, which can be lower bounded
by r(x) as all parents of x must contain more leaves.

∆ϕ ≤ 2r(pl(x′)) − 2r(x) − 2 ≤ 4r(pl(x′)) − 4r(x) − 2

If l ≥ 2, the terms p0(x′) = p0(x) cancel out as the children of x are unchanged. This leaves us
with 1 or 2 terms in the first sum and 3 or 4 in the second, respectively. The first sum is upper
bounded by r(pl(x′)), and the second sum is lower bounded by r(x).

∆ϕ ≤ 2r(pl(x′)) − 2 +
l−2∑
i=0

r(pi(x′)) −
l∑

i=0
r(pi(x))

≤ 4r(pl(x′)) − 4r(x) − 2

The analysis can likely be improved to 2r(pl(x′)) − 2r(x) − 2 by carefully considering which
subtrees are modified.

The next iteration of the while loop in Algorithm 8 uses the returned node pl(x′) for the next
call to semiSplayStep. Thus, the 4r(pl(x′)) gets cancelled if the next call succeeds.

Now consider the full potential change by semiSplay. First, by considering that any call to
semiSplayStep is successful if the depth is at least 5 per Lemma 3.7, there must be at least
⌊ 1

5 depth(x)⌋ ≥ 1
5 (depth(x) − 4) successful iterations. By summing over all iterations, the change
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in potential is, at most:

∆ϕ ≤ 4(r(root(x)) − r(x)) − 2
5(depth(x) − 4)

= 4(r(root(x)) − r(x)) − 2
5depth(x) + 8

5
= 4( 8

20 + r(root(x)) − r(x)) − 2
5depth(x)

= O(1 + r(root(x)) − r(x)) − Ω(depth(x))
= O(log n) − Ω(depth(x))

The semiSplay operation itself has O(depth(x)) iterations. Where the cost of each iteration
is constant except for the calls to combine during the rotations, for each semiSplayStep, a
constant number of calls to combine are made, and thus, we make at most O(depth(x)) combine
calls. Recall each freed potential can pay for some constant amount of combine calls. Thus,
achieving an amortized cost of O(log n) − Ω(depth(x)).

Any call to semiSplayStep reduces the depth of x by 1. Thus, the new depth of x is at most
depth(x) − ⌊ 1

5 depth(x)⌋ = ⌈ 4
5 depth(x)⌉.

3.6.3 fullSplay

In this section, the potential change and amortized cost of the fullSplay operation is consid-
ered, along with the reduction in depth it provides for the splayed node. When fullSplay(x)
terminates depth(x) satisfies the same bounds as Lemma 3.8.

If the only requirement was to reduce the depth of x within a constant of the root, repeatably
calling semiSplayStep(x) suffices. This strategy can not achieve the desired runtime.

Algorithm 9 fullSplay(x)
1: while true do
2: top = semiSplayStep(x)
3: if top is null then
4: return
5: semiSplayStep(top)

Lemma 3.12. (Lemma 5.7 from [9]) Calling fullSplay on a node x does O(depth(x)) work,
changes the potential by ∆ϕ ≤ O(log n) − Ω(depth(x)), and reduces the depth of x so it satisfies
the same bounds as in Lemma 3.8

Proof. Consider an iteration of fullSplay where both semiSplaySteps succeeds and let x
denote the node before the first semiSplayStep, x′ and x′′ the same node after the first and
second call, respectively. Let pl1−1(x′) and pl2−1(x′′) denote the nodes returned from the semiS-
playStep calls. From the proof of Lemma 3.11, we have 1 ≤ l1 ≤ 4, and through similar
reasoning, we have l1 ≤ l2 ≤ 8. Let ∆ϕ1 and ∆ϕ2 represent the potential change induced by the
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first and second semiSplayStep call, respectively.

∆ϕ1 = r(sibling(pl1−1(x′))) +
b−1∑
i=a

r(pi(x′)) −
b∑

i=a

r(pi(x))

∆ϕ2 = r(sibling(pl2−1(x′′))) +
d−1∑
i=c

r(pi(x′′)) −
d∑

i=c

r(pi(x′))

Thus, the potential change for a single iteration where both semiSplayStep calls succeed is

∆ϕdouble = ∆ϕ1 + ∆ϕ2

= r(sibling(pl1−1(x′))) +
b−1∑
i=a

r(pi(x′)) −
b∑

i=a

r(pi(x))+

r(sibling(pl2−1(x′′))) +
d−1∑
i=c

r(pi(x′′)) −
d∑

i=c

r(pi(x′))

Let d = b − 1 and a = c.

∆ϕdouble = r(sibling(pl1−1(x′))) + r(sibling(pl2−1(x′′))) +
b−2∑
i=a

r(pi(x′′)) −
b∑

i=a

r(pi(x))

By Lemma 3.9 we have l2 ≤ d ⇒ d ≥ 8, therefore let d = 8 and a = 1 with b = 9 satisfying
d = b − 1.

∆ϕdouble = r(sibling(pl1−1(x′))) + r(sibling(pl2−1(x′′))) +
7∑

i=1
r(pi(x′′)) −

9∑
i=1

r(pi(x))

sibling(pl1−1(x′)) and sibling(pl2−1(x′′)) have disjoint subtrees because pl2−1(x′′) is an ances-
tor of pl1−1(x′) and sibling(pl1−1(x′)). Since both pl2−1(x′′) and pl1−1(x′) are decendents of
p8(x′′), we have s(sibling(pl2−1(x′′))) + s(sibling(pl1−1(x′))) ≤ s(p8(x′′)). Thus, by Lemma 3.10
r(sibling(pl2−1(x′′))) + r(sibling(pl1−1(x′))) ≤ 2r(p8(x′′)) − 2.

∆ϕdouble ≤ 2r(p8(x′′)) − 2 +
7∑

i=1
r(pi(x′′)) −

9∑
i=1

r(pi(x))

≤ −2 +
9∑

i=1
r(pi(x′′)) −

9∑
i=1

r(pi(x))

The final inequality follows from 2r(p8(x′′)) ≤ r(p8(x′′)) + r(p9(x′′)).

Now consider the case where only a single semiSplayStep succeeds, then the following change
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in potential is observed. Let a = 1 and b = 9 satisfying Lemma 3.9.

∆ϕsingle = ∆ϕ1

= r(sibling(pl1−1(x′))) +
b−1∑
i=a

r(pi(x′)) −
b∑

i=a

r(pi(x))

= r(sibling(pl1−1(x′))) +
8∑

i=1
r(pi(x′)) −

9∑
i=1

r(pi(x))

=
9∑

i=1
r(pi(x′)) −

9∑
i=1

r(pi(x))

The final equality follows from (sibling(pl1−1(x′))) ≤ r(p9(x′)).

When both semiSplaySteps succeed, the depth of x is reduced by 2. Thus, there must be at
least 1

2 (depth(x) − 9) iterations where this occurs.

Now consider how many iterations where both semiSplaySteps succeed, there must at least
1
2 (depth(x) − 9). This gives the following potential change when considering these iterations.

∆ϕ ≤
1
2 (depth(x)−9)∑

j=0

Å
− 2 +

9∑
i=1

r(pi(x′′)) −
9∑

i=1
r(pi(x))

ã
For the next iteration of the while loop, x = x′′. Thus, all but the first and last terms cancel
out. Finally, a few iterations may occur with only 1 succeeding semiSplayStep, which cancels
out similarly.

When semiSplayStep terminates, let x be the node before any rotations and x∗ be the same
node after all rotations.

∆ϕ ≤
9∑

i=1
r(pi(x∗)) −

9∑
i=1

r(pi(x)) − depth(x) + 9

≤ 9(1 + r(root(x)) − r(x)) − depth(x)
= O(log n) − Ω(depth(x))

The second inequality follows by upper bounding and lower bounding the sums.

The fullSplay operation has O(depth(x)) iterations, where each iteration requires constant
work, except for the O(1) calls to combine. Thus, similarly to semiSplay, O(depth(x)) calls
to combine is made, which is paid off by the freed potential. This gives an amortized cost of
O(log n) − Ω(depth(x)).

The depth of x is constant and satisfies Lemma 3.8, as fullSplay terminates when the semiS-
playStep on line 2 returns null, which only happens when depth(x) ≤ 5 as argued in Lemma 3.7
and Lemma 3.8.

3.7 Finding the consuming node of vertex
This section considers the correctness and amortized cost of findConsumingNode.

Let the consuming node of a vertex v be the lowest cluster in the top tree that contains all edges
adjacent to v. If v is not exposed, then the consuming node is the smallest cluster that contains
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v without having it as a boundary vertex. When combining two clusters, their boundary vertices
can only become non-boundary if they are the central vertex and, thus, shared between both
clusters. Therefore, the operation should return the first cluster C with v as the central vertex
without a middle boundary vertex.

C is also the largest cluster with the v as a central vertex. Assume for contradiction that an
ancestor D of C had v as a central vertex. Then it must be the case that v is shared between
the decedents of D, which means that v was still a boundary vertex in C. If v is exposed, it will
remain a boundary vertex; thus, the largest cluster where v is the central vertex is returned.

Recall that this operation had been assigned the task of handling split calls for expose, de-
Expose and link.

Algorithm 10 findConsumingNode(v)
1: if v has no neighbors then
2: return null
3: node = any edge incident to v
4: x = root(node)
5: while x is not node do
6: split(x)
7: x = next node on path between x and node

8: semiSplay(node)
9: if v has at most one incident edge then

10: return node
11: // Where is v a boundary vertex in node?
12: isLeft = (is v left endpoint of node) != node.flip
13: isMiddle = false
14: isRight = (is v right endpoint of node) != node.flip
15: lastMiddleNode = null
16: while node is not root do
17: parent = node.parent
18: isLeftChild = parent.children[0] == node
19: // Compute where v is in the parent, takings the parents flip into account
20: if isLeftChild then
21: isMiddle = isRight || (isMiddle AND !hasRightBoundary(node))
22: else
23: isMiddle = isLeft || (isMiddle AND !hasLeftBoundry(node))
24: isLeft = (isLeftChild != parent.flip) AND !isMiddle
25: isRight = (isLeftChild == parent.flip) AND !isMiddle
26: node = parent
27: if isMiddle then
28: if !hasMiddleBoundary(node) then
29: // Only happens if the vertex is not exposed
30: return node
31: lastMiddleNode = node

// This only happens when the vertex is exposed
32: return lastMiddleNode

First, consider which split calls are required. The operations expose, deExpose and link
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only makes changes to the consuming node and above. However, semiSplay(node) may cause
recomputations of any cluster between node and the root. Thus, split has to be called on the
entire path between node and the root, which includes the consuming node and its ancestors.

Now let us consider the correctness of the returned node. If v has no neighbours, it is an
unconnected vertex with no edges represented in T . Therefore, no node can be returned. A
special case is when v only has a single edge adjacent to it, as the leaf node representing this
edge contains all edges adjacent to v, but it has no central vertex and, thus, needs to be handled
independently. Algorithm 10 handles this by checking the degree of v if it is 1, the leaf node is
returned.

The operation checks when v becomes the central vertex by tracking whether it is a left, middle or
right boundary vertex at each level in T . This is done with respect to the parent’s orientation;
thus, left and right may be flipped if parent.flip is true. Initially, v can not be the middle
boundary vertex, as a leaf node only consists of a single edge.

The while loops recompute whether v is a left, middle or right boundary vertex in the parent
for each iteration. v can only become the central vertex and middle boundary of parent, if node
is the left child and v is the rightmost boundary vertex of node. Similarly, if node is the right
child, v must be the leftmost boundary vertex.

v is a left boundary vertex if and only if it comes from the left child and is not the central vertex.
The same goes for v being a right boundary vertex.

Lastly, the returned value is correct when v is not exposed, as line 23 of Algorithm 10 checks
that v is the central vertex and not a boundary vertex. If this never happens, it must be the
case that v is exposed, and we return the last and largest cluster in which v was a central node.

Lemma 3.13. The amortized cost of findConsumingNode is O(log n) − Ω(depth(node∗)),
where node∗ is the returned node.

Proof. The actual work done by semiSplay is O(depth(node)), and it changes the potential by
O(log n)−Ω(depth(node)) per Lemma 3.11. The second while loop runs for at most depth(node′),
where node′ is the node after the semiSplay call. Each iteration requires a constant amount of
work. Thus, let the freed potential pay for the O(depth(node)) split calls along with the work
performed in semiSplay and the second while loop.

Let node∗ be the output of findConsumingNode, with depth(node∗) ≤ depth(node). This
means that the potential freed can continue paying for additional work required for nodes on the
path between node∗ and the root by choosing a sufficiently large constant for the potential.

Thus, the actual cost of findConsumingNode is O(depth(node)). But with the sufficiently
large constant for the potential, the amortized cost is O(log n) − Ω(depth(node∗)).

The amortized cost must be O(log n) − Ω(depth(node∗)), as it allows for depth(node∗) work to
be performed later for free. This is used in both expose and deExpose to obtain the desired
runtimes.

3.8 External operations
In this section, the external top tree operations are considered. Initially, expose and deExpose
are analysed, as they are used in the implementations of link and cut.
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3.8.1 expose

This section shows the correctness of the simple expose operation proposed by Holm et al. is
shown. The amortized cost of expose is also considered[9].

The expose operation takes a vertex v and makes it a boundary vertex for all clusters it is part
of. As v may be part of clusters that already have 2 boundary vertices, a few steps must be
taken to avoid creating invalid clusters.

First, we are only interested in increasing the number of boundary vertices in clusters containing
v, which does not already have v as a boundary vertex. The consuming node is the first cluster
which contains v without having it as a boundary vertex. The final step is to use rotations
to ensure no node between the consuming node and the root contains more than 2 boundary
vertices. Once this has been prepared, we can finally expose v and recompute the information
stored in the affected clusters.

A requirement of expose is for T to have < 2 exposed vertices currently.

Holm et al. also propose an advanced version of expose, which avoids using fullSplay. This
version is conjectured to be a significant speed-up in practice. Theoretically, they provide the
same guarantees; thus, the simpler version is considered here[9]. An experimental comparison
between the two expose operations is included in Section 5.

Algorithm 11 expose(v)
1: node = findConsumingNode(v)
2: if node is null then // v has degree zero
3: v.expose = true
4: return null
5: while isPath(node) do
6: parent = node.parent
7: pushFlip(node)
8: nodeIDX = index of node in parent.children
9: rotateUp(node.children[nodeIDX])

10: node = parent
fullSplay(node)

11: // Now depth(node) ≤ 1, and node is the consuming point cluster
12: root = null
13: while node is not null do
14: root = node
15: root.numBoundaryVertices += 1
16: combine(root)
17: node = root.parent
18: vertex.exposed = true
19: return root

Let the starting point for the expose operation be the consuming node node by calling findCon-
sumingNode. The while loop on line 5 − 10 ensures that node is a point cluster by performing
a series of rotations. The rotations are called on a child of node to ensure the rotation is legal
with respect to Lemma 3.5. Once a rotation has been performed, the parent of node is the
new consuming node of v, as it is the lowest common ancestor of nodes children as visualised in
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Figure 25.

The consuming node node has to become a point cluster for two reasons. First, it is a requirement
before increasing the number of boundary vertices. Secondly, fullSplay provides a better
guarantee when called on a point cluster. In particular, when both the node and root are point
clusters, fullSplay ensures depth(node) ≤ 1, which allows us to expose v and increase the
number of boundaries in both nodes.

Finally, we must argue that the orientation invariant is not broken when exposing v. The
rotations are designed to preserve the orientation invariant as argued in Section 3.5. Thus, only
the orientation invariant of the root can be broken by exposing v. After the fullSplay call,
node is a point cluster with v as its central node, which means it connects to sibling(node) by
a left or right boundary vertex. Assume node is a left child with a rightmost boundary vertex.
By making v a middle boundary vertex, the rightmost boundary vertex is unchanged; thus, the
root’s orientation invariant remains satisfied.

parent

node sibling

child1 child2

parent

node′child1

siblingchild2

rotateUp(child1)

Figure 25: One possible rotation called in the while loop

Lemma 3.14. The amortized cost of expose is O(log n).

Proof. The call to findConsumingNode has an amortized cost of O(log n) − Ω(depth(node)),
where node is the returned node, per Lemma 3.13.

The while loops run for at most depth(node) iterations, as the consuming node of v moves 1 layer
up T for each rotation. Each iteration of the while loop calls rotateUp, making O(1) work,
except for the combine calls, which can be paid for by the potential freed during findConsum-
ingNode.

Each while loop iteration also changes the potential of T through the rotations. The change in
each iteration can be observed in Figure 25 and is the following.

r(node′) − r(node) ≤ r(parent) − r(node)

The first expression is upper bounded by the parent to make the telescoping sum work. In the
next iteration of the while loop, we have node = parent. Thus, the terms cancel out. This gives
a total potential change of r(node∗) − r(node) ≤ log n where node and node∗ are the consuming
node before and after the while loop.

Thus, up until the fullSplay, the amortized cost is O(log n). As stated in Lemma 3.12, the
actual runtime of fullSplay(node) is O(depth(node)), with a potential change of O(log n) −
Ω(depth(node)). The final while loop runs for at most 2 iterations, as depth(node) ≤ 1 after
the full splay, this adds a constant number of combine calls which can be paid off by either
semiSplay or fullSplay.

Thus, the amortized cost for the entire expose operation is O(log n).

39 of 80



3.8 External operations 3 TOP TREES

3.8.2 deExpose

In this section, the correctness of the deExpose operation is shown along with its amortized
cost.

This operation takes an exposed vertex v and ensures v only counts as a boundary vertex in
clusters where v is incident to something outside the cluster.

As discussed in Section 3.8.1, v is only a boundary in the consuming node and above if it is
exposed. Thus, updating the number of boundary vertices in these clusters and recomputing
the cluster information is everything Algorithm 12 has to do. The orientation invariant of the
changed clusters remains satisfied, as the vertex shared with a sibling can never be v as that
would imply the consuming node is found further up the tree.

A requirement of deExpose is that the provided vertex is currently exposed.

Algorithm 12 deExpose(v)
1: root = null
2: node = findConsumingNode(v)
3: while node is not null do
4: root = node
5: root.numBoundaryVertices -= 1
6: combine(root)
7: node = root.parent
8: v.exposed = false
9: return root

Lemma 3.15. deExpose takes O(log n) amortized time.

Proof. The call to findConsumingNode has an amortized cost of O(log n) − Ω(depth(node))
as described in Lemma 3.13, with node being the node returned by findConsumingNode.
The rest of the operation runs in depth(node) time. Thus, the amortized cost for deExpose is
O(log n).

3.8.3 link

This section shows the correctness of the link operation along with its amortized cost.

The link operation takes two vertices u and v, newly connected in the spanning forest, and
combines Tu and Tv into a single top tree.

If u was an unconnected vertex in the spanning forest before adding (u, v), it is added to the top
tree of Tv, similarly for v. If both u and v are unconnected vertices, we create a new top tree
with only one node representing the new edge.

It is a requirement that no vertices are currently exposed in Tu and Tv.

The expose ensures that a vertex is considered a boundary vertex of all clusters it is part of
and returns the tree’s root. At first, consider expose(u), all clusters containing u now consider
it a boundary vertex. This is desired as the edge (u, v) is outside these clusters. Thus, when a
leaf node representing (u, v) is added alongside an internal node at the top of Tu, u should be a
boundary vertex of every cluster it is part of, as the consuming node of u is the new root. This
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also allows us to efficiently de-expose u by setting u.exposed = false and manually updating the
number of boundary vertices in the root. The same idea is used for v, which is merged with the
new root.

To ensure that the orientation invariant is maintained, we make sure to flip Tu such that u is a
right boundary vertex of the root in Tu as it will be the left child of the new root, and u will be
the shared vertex with the right child. Similarly, v is ensured to be a left boundary vertex for
the same reason.

Algorithm 13 link(u, v)
1: tu = expose(u)
2: if if tu is not null AND hasLeftBoundary(tu) then
3: tu.flip = !tu.flip
4: u.exposed = false
5: tv = expose(v)
6: if tv is not null AND hastRightBoundary(tv) then
7: tv.flip = !tv.flip
8: v.exposed = false
9: T = new leaf node corresponding to the edge (u,v)

10: T.numBoundaryVertices = (tu is not null) + (tv is not null)
11: combine(T)
12: if tu is not null then
13: T = new node with children tu and T
14: T.numBoundaryVertices = (tv is not null)
15: combine(T)
16: if tv is not null then
17: T = new node with children T and tv
18: T.numBoundaryVertices = 0
19: combine(T)
20: return T

Lemma 3.16. The amortized runtime of link is O(log n) while increasing the by O(log n).

Proof. We make two calls to expose, which have an amortized runtime of O(log n) as stated in
Lemma 3.14; the rest of the operation runs in constant time, except for the O(1) combine calls.
The combine calls can be paid for by the potential change induced by semiSplay or fullSplay
in expose.

The potential change of link is the addition of up to three new nodes. The new leaf node
changes the potential by r(1) = log 1 = 0, while the two internal nodes are upper bounded by
r(root(Tnew)) = log n. Thus, the potential change is ∆ϕ ≤ log 1 + 2(log n) ≤ O(log n).

Thus, the amortized cost of link is O(log n).

3.8.4 cut

In this section, the correctness of the cut operation is shown along with its amortized cost.

The cut operation takes an edge e = (u, v), which was recently removed or is being removed from
the spanning forest, and updates the top tree data structure such that the top tree T containing
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u and v is split into Tu and Tv. If u becomes an unconnected vertex once (u, v) is removed, Tu

is an empty tree. Similarly, for v and Tv.

We require that no vertices are exposed in T when calling the cut operation.

A supporting operation deleteAllAncestors is defined in Algorithm 14. It takes a node and
deletes the ancestors starting with the root.

Algorithm 14 deleteAllAncestors(node)
1: p = node.parent
2: if p is not null then
3: s = sibling(node)
4: deleteAllAncestors(p)
5: s.parent = null
6: delete node

Algorithm 15 cut(e)
1: node = leaf node representing e
2: x = root(node)
3: while x is not node do
4: split(x)
5: x = next node on path between x and node

6: u = e.vertices[0]
7: v = e.vertices[1]
8: fullSplay(node)
9: // now depth(e) ≤ 2, if u and v are boundary vertices of the leaf node, otherwise depth(e) ≤

1
10: deleteAllAncestors(e)
11: u.exposed = true
12: v.exposed = true
13: tu = deExpose(u)
14: tv = deExpose(v)

As part of the cut operation, fullSplay is called on node, which is the leaf node representing
(u, v). As fullSplay may cause cluster information to be recomputed, any information currently
stored further up in the tree should be propagated downwards. Thus, let cut start with a
sequence of split calls to handle this exact scenario.

With no exposed vertices in T , the root must be a point cluster, which means that full-
Splay(node) ensured depth(node) ≤ 2. Specifically, the depth is 2 if node is a path cluster;
otherwise, it is 1 per Lemma 3.8.

If node is a path cluster, both u and v must be connected to something else than (u, v), thus,
cut should generate Tu and Tv. A node is left without a parent for each of the two parents
deleted in deleteAllAncestors. These nodes become the new roots for Tu and Tv as they
are now in disjoint top trees.

In case node is a point cluster, only a single parent is deleted in deleteAllAncestors, which
is the new root for Tu or Tv depending on which vertex is connected to something else. The
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other vertex becomes unconnected, and since leaf nodes in the top tree only represent edges, an
unconnected vertex isn’t part of any top tree. Thus, the cut operation only generates a single
top tree T corresponding to the spanning tree T \ (u, v).

When deleting (u, v) after calling fullSplay on node, u and v may be incorrectly counted as
a boundary vertex of clusters in which they are not a boundary vertex anymore. Thus, set
u.exposed and v.exposed to true, and call deExpose on them to correctly update the boundary
vertices of these clusters.

Lemma 3.17. The amortized runtime of cut is O(log n), and the potential decreases.

Proof. Let node be the leaf node representing e, then depth(node) split calls are made, which
can be paid for by the potential freed in the fullSplay call.

The cut operation decreases the potential by deleting a few nodes. At most, 2 internal nodes with
at most n leaves are deleted alongside a leaf node. Thus, O(log n) potential is freed throughout
the cut operation.

The rest of the runtime follows directly from Lemma 3.12 and Lemma 3.15.

Theorem 3.18. The external operations of splay top trees run in O(log n · (COST (combine) +
COST (split))) amortized time.

Proof. Recall that throughout the analysis, combine and split were assumed to run in O(1)
time to avoid a factor of O(COST (combine) + COST (split)) in the amortized cost for each
operation. Thus, by multiplying COST (combine) + COST (split) on the achieved amortized
cost of each operation, the amortized cost for non-constant combine and split is achieved.
Thus, the rest follows directly from the results of Lemma 3.14, Lemma 3.15, Lemma 3.16 and
Lemma 3.17.

3.9 Implementation
The implementation is written in Java and took inspiration from the C implementation provided
by Holm et al. in their paper on splay top trees [9]. Their implementation included an operation
which checked if the orientation invariant was maintained in the top tree. Expanding this idea,
additional checks were implemented, i.e. to ensure expose was never called on the same node
twice. Finally, a method was added to check that no cluster information stored was incorrect
due to a restructuring of the tree. This was particularly useful when debugging the 2-edge
connectivity algorithm presented in Section 4.

The correctness of the Java implementation was validated by implementing different problems
using the top tree and verifying against static solutions, e.g. a minimum spanning tree imple-
mentation inspired by Holm et al.[9], which was compared against a Kruskal implementation
found on geeksforgeeks.org [2].
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4 2-edge Connectivity
In this section, we will consider the problem of 2-edge connectivity for undirected graphs G. The
issue boils down to whether a graph remains connected if one edge is removed. In Figure 26, two
graphs are visualised. The leftmost graph is 2-edge connected, while the rightmost graph is not.
The graph on the right has a bridge marked in red, which is a single edge that can be removed
to generate two disjoint components. Thus, detecting whether a graph contains bridges solves
the problem.

Figure 26: Example of a 2-edge connected graph and one which is not 2-edge connected

Deciding whether an edge e is a bridge can be done by removing e and running a Breadth-first-
search(BFS) or Depth-first-search(DFS) on the remaining graph. If all vertices in the graph
can be reached, e was not a bridge. While this is a simple solution, it is far from optimal, as
determining whether a graph is 2-edge connected would take O(|E| · (|V | + |E|)), which for all
interesting graphs is O(|E|2), as a graph can never be 2-edge connected if |E| < |V |. Improved
bridge detection algorithms have been proposed, such as the linear time algorithm by Robert
Tarjan in 1974 that finds bridges in O(V + E) time [18]. Both of these solutions, however, are
static. Thus, any change to the graph and the answer must be recomputed entirely from scratch.

A generalised version of this problem exists called k-edge connectivity, where a graph is k-edge
connected if removing up to k − 1 edges leaves the graph connected. Another version of this
problem asks whether two vertices u and v in the graph are 2-edge connected instead of the
entire graph, allowing bridges to exist as long as u and v are not connected through a bridge.

This problem is closely related to bi-connectivity, where a graph should remain connected even
if a vertex and all its edges are deleted.

4.1 Dynamic solutions
The fully dynamic algorithm using top trees was initially published by Holm et al. at STOC98
[7]. In the same year, Jacob Holm and Kristian de Lichtenberg completed their masters with
the title ’Top-trees and dynamic graph algorithms’, where additional details were given on the
2-edge connectivity algorithm [6]. In 2001 Holm et al. published a new paper with additional
information and improvements over the STOC98 paper[8], e.g. achieving a reduced memory
footprint.

The dynamic 2-edge connectivity algorithm can be used to answer whether two vertices are 2-
edge connected or if any bridges exist in the top tree data structure. The focus throughout this
section will be to answer queries about two vertices.

The goal of Section 4.1.1, Section 4.1.2 and Section 4.1.3 is to prove Theorem 4.1 and provide
additional details required to implement the algorithm.
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Theorem 4.1. (Theorem 17 from [8]) A deterministic, fully dynamic algorithm exists for main-
taining 2-edge connectivity in a graph, using O(log4 n) amortized time per update operation, and
O(log3 n) for queries.

4.1.1 High-level overview

In this section, a theoretical version of the dynamic 2-edge connectivity algorithm is proven.
The implementation requires additional details to achieve the desired runtimes, which will be
considered in Section 4.1.2.

The 2-edge connectivity algorithm uses a top tree T to store information about clusters in the
dynamic graph G. Using a top tree requires an explicitly maintained spanning tree T of the
graph, as mentioned in Section 3. Let tree edges refer to edges in T , and non-tree edges refer to
edges in G. By the nature of spanning trees only being a subset of edges in a graph, one of the
major challenges will be maintaining the spanning tree under edge deletions. Let vertices u and
v be connected through edge e in the spanning tree. When deleting e from T and G, the graph
may remain connected, and when this is the case, T should reflect this, and a replacement edge
should be inserted into T .

To efficiently find these replacement edges, the algorithm stores them as part of the cluster
information. Consider the graph G and spanning tree T shown in Figure 27, (u, v) can not be
inserted into T as a cycle would be formed. Therefore, (u, v) can instead be used as a replacement
edge for any of (y, u), (y, w) and (w, v), so let an edge e be covered by another edge e′, if the
insertion of e′ would create a cycle O in T , with e ∈ O. Let e′ be a cover edge of e.

Recall the π(C) definition as the path between the boundary vertices of C. π(C) is only defined
for path clusters, as point clusters only have a single boundary vertex. The cover edge is stored
in the cluster information as C.coverEdge if C is a leaf node or all edges on π(C) are covered by
another edge.

w

y v

x u

(a) Dynamic graph G

w

y v

x u

(b) Spanning tree T of G

Figure 27: An example of a graph with a possible spanning tree

The addition of cover information makes the deletions of edges more complicated. If an edge e
not part of T is used as a cover edge, e.g. (u, v) in Figure 27, it may be stored as the coverEdge
in some clusters. These clusters should be updated to reflect the removal of e, as the edges of
the cluster are no longer covered by e. Let C be a cluster previously covered by e; C.coverEdge
must be updated with a new edge e′ if possible. The e′ used to cover C may not cover all edges
that e did. Thus, multiple edges may have to be considered, which may be expensive if too many
edges are considered before finding all the new cover edges. The cost of considering multiple
edges will be paid for by introducing a new concept of levels to edges only in G. Let l(e) be the
level of e, with 0 ≤ l(e) ≤ lmax = ⌈log2 n⌉. Now let G = G0 ⊇ G1 ⊇ . . . ⊇ Glmax ⊇ T where
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Gi denote a subgraph of edges f with l(f) ≥ i. The following invariant should be maintained in
each graph.

1. The maximum number of vertices of a 2-edge connected component of Gi is ⌈n/2i⌉.

The goal is to amortize the cost of finding new cover edges over level increases. We can amortize
the cost of all but 2 of the edges considered with careful selection.

With the additional information about edge levels, update the cluster information stored in C to
also include C.cover = l(C.coverEdge), where C.coverEdge is the edge e ∈ π(C) with the lowest
level. Let C.cover = −1 indicate that C isn’t covered by any edge. C.cover and C.coverEdge is
the only information required for the theoretical version of 2-edge connectivity.

Let combine and split be the first operations considered as the top tree calls them. The the-
oretical version of 2-edge connectivity does not require the split operation, as other methods
will handle the propagation of information for simplicity. However, to achieve the desired amor-
tized runtimes, split is introduced in Section 4.1.2. Thus, consider the combine operation,
which ensures the top tree operations update the cluster information as needed throughout any
restructuring.

Since only path clusters store C.cover and C.coverEdge information, the number of cases we
must consider for combine is reduced. Let C be a path cluster with children A and B and
boundary vertices a and b. The cases that need to be considered are visualised in Figure 28.

c

a

b
A

B

(a) Case 1

a b
A

B

(b) Case 2

Figure 28: combine cases

Case 1: Let A and B be a path clusters, with boundary vertices a, c and b, c respectively as
seen in Figure 28a. If A and B are covered, then the entire path a, . . . , c, . . . , b must be covered,
which means C is covered. If either A or B is uncovered, then so is C. Therefore, we can set
C.cover = min(A.cover, B.cover) and update C.coverEdge = A.coverEdge if A.cover < B.cover
otherwise C.coverEdge = B.coverEdge.

Case 2: Let A be a point cluster with boundary vertex a. It must be the case that B is a path
cluster with boundary vertices a, b; otherwise, C can not be a path cluster. In this case, C is
covered if and only if B is. This can easily be seen in Figure 28b, where π(B) = π(C). The case
is similar for B as a point cluster. Set C.cover = B.cover and C.coverEdge = B.coverEdge.

Finally, if C is a point cluster set, C.cover = −1 and C.coverEdge = nil.
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Algorithm 16 combine(C)
1: A = left child of C
2: B = right child of C
3: if isPath(C) then
4: if isPoint(B) then
5: C.cover = A.cover
6: C.coverEdge = A.coverEdge
7: else if isPoint(A) then
8: C.cover = B.cover
9: C.coverEdge = B.coverEdge

10: else
11: C.cover = min(A.cover, B.cover)
12: if A.cover < B.cover then
13: C.coverEdge = A.coverEdge
14: else
15: C.coverEdge = B.coverEdge

16: else
17: C.cover = −1
18: C.coverEdge = nil

With the combine method handled, we can start considering operations specific to the 2-edge
connectivity algorithm, beginning with the query. To compute whether u and v are 2-edge
connected, expose both and check if C.cover ≥ 0. This gives the desired result as C.cover ≥ 0 if
and only if all edges e ∈ π(C) are covered.

Algorithm 17 twoEdgeConnectivity(u, v)
1: expose(u)
2: C = expose(v)
3: result = C.cover ≥ 0
4: deExpose(u)
5: deExpose(v)
6: return result

What remains to be shown is how edges are inserted and deleted from the graph while correctly
updating the cluster information.

Inserts

A few operations are required before considering the insert operation shown in Algorithm 20.
Let cover(C, i, e) be used to update cover and coverEdge for edges in π(C). The new infor-
mation is only inserted into C and must then be propagated downwards to all path clusters. In
Section 4.1.2, this will be done using split, but for simplicity, use the recursiveCover opera-
tion shown in Algorithm 19, which propagates the information immediately. By propagating the
information to all path clusters, the edges along π(C) are updated, while the cover information
of all other edges in C is left unchanged.
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Algorithm 18 cover(u, v, i)
1: expose(u)
2: C = expose(v)
3: e = edge between u and v
4: if C.cover < i then
5: C.cover = i
6: C.coverEdge = e

7: recursiveCover(C, i, e)
8: deExpose(v)
9: deExpose(u)

The recursiveCover operation takes a starting cluster C, along with a cover level i and
edge e. It then checks if path descendent D has D.cover < i; if so, update D.cover = i and
D.coverEdge = e. If D.cover ≥ i, then D is already covered at level i, and we don’t have to
update it. Finally, recursively call recursiveCover(D, i, e), so path descendants of D are also
updated.

Algorithm 19 recursiveCover(C, i, e)
1: if C.isLeaf then
2: return
3: else
4: for each path descendent D of C do
5: if D.cover < i then
6: D.cover = i
7: D.coverEdge = e

8: recursiveCover(D, i, e)

Let e = (u, v) be a newly inserted edge in G; then, there are two scenarios for insert to handle.
If the endpoints of e are in two different components of T , insert e in T and call link(u, v). The
call to link handles the creation of a new leaf node along with the merger of Tu and Tv. The
cover information is also updated for the new nodes created as part of link, none of which are
covered, as they all contain the newly inserted uncovered edge.

If u and v are already connected in T , the new edge e can be used as a cover edge for all edges
in the cycle generated by inserting e into T . Let u and v be exposed with root cluster C. The
cycle generated by (u, v) goes through the edges in {π(C) ∪ (u, v)}, thus by calling cover on C,
the cover information of the desired edges are updated.

Finally, the graph invariant should be maintained. Notably, the newly inserted edge has l(e) = 0.
By the orientation invariant, G0 can contain all vertices in a 2-edge connected component.
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Algorithm 20 insert(u, v)
1: if u and v in same spanning tree then
2: cover(u, v, 0)
3: else
4: add (u, v) to T
5: link(u, v)

Deletes

The most difficult part of dynamic 2-edge connectivity comes from deleting edges. In particular,
difficulties arise when deleting covered spanning tree edges or edges currently used to cover edges
in the spanning tree.

Let c(e) be defined for any tree edge e as the level e is covered at. Then consider the problem
of deleting an uncovered tree edge e from T . Since c(e) = −1, no edge e′ ∈ G exists, which can
replace e such that T remains a connected component. Thus, we can remove e from T and call
cut to split T correctly into multiple top trees.

If c(e) ≥ 0, some edge e′ can replace e in T . By swapping e′ and e, the problem is reduced to
deleting a non-tree edge in G, which may have been used to cover edges in T . Deleting the now
non-tree edge e from the graph can be done by first uncovering any edges in T that may have
been covered by e. This may leave some of the edges with cover levels that are incorrect. Thus,
a recovery phase is required to restore the cover levels to the correct values. Finally, the edge e
should be deleted from the graphs Gi with i ≤ l(e), handled by a deleteEdge operation.

The swap, uncover, and recover operations will be explored in greater detail throughout the
rest of this section.

Algorithm 21 delete(u, v)
1: if (u,v) is an edge in the spanning tree then
2: if (u,v) is a bridge then
3: remove (u, v) from T
4: cut(u,v)
5: else
6: swap(u,v)
7: i = l(u, v)
8: uncover(u,v,i)
9: deleteEdge(u,v)

10: recover(u,v,i)
11: else
12: i = l(u,v)
13: uncover(u,v,i)
14: deleteEdge(u,v)
15: recover(u,v,i)

The swap operation finds the edge e′ that covers (u, v) and use it to replace (u, v) in T . The
cover edge is found by exposing u and v, with path cluster C being the new root. With (u, v) ∈ T ,
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the only edge in π(C) is (u, v) itself, thus, C.coverEdge can be used as e′. The swap of (u, v)
and e′ can be implemented by calling cut and link and using (u, v) to cover the new edge.

Algorithm 22 swap(u, v)
1: expose(u)
2: C =expose(v)
3: if C.Cover ≥ 0 then
4: e′ = C.coverEdge
5: swap (u, v) with e′ in T
6: cut(u, v)
7: link(e′)
8: cover(u, v, C.cover)

swap should correctly update the cover information of T , and maintain the graph invariant.
Consider the graph invariant first, before the swap call it is satisfied, which means that no 2-
edge connected component in Gj contains more than ⌈n/2j⌉ vertices. The invariant must be
maintained if all the 2-edge connected components stay the same. Let i be the cover level of
the swapped edge. Then for j ≤ i, both edges are already in Gj , which means the connected
components do not change. For j > i, only the edge (u, v) is in Gj and is a bridge. When
swapping the edges, e′ becomes a bridge in Gj , and since bridges do not impact 2-edge connected
components, they remain unchanged in Gj .

Finally, it should be shown that the cover levels are correctly updated. If an edge was covered by
(q, r) at level i before the swap, it is covered by e = (u, v) afterwards. The call to cover(u, v, i)
updates the cover edges of the relevant cluster. The call also updates the cover edge and level of
the newly inserted edge e′. Thus, all the cover levels are correctly updated. An example of how
the cover edges are updated can be seen in Figure 29.

q

u v

r

(q,r)

(q,r)

(q,r)

(a) T before swap with cover edges

q

u v

r
(u,v)

(u,v) (u,v)

(b) T after swap with cover edges

Figure 29: Example of swap, with cover edges shown

The next operation is uncover. Let e be a non-tree edge, eg. the edge e = (u, v) in Figure 29b.
Before deleting e, uncover must ensure e is not used as the cover edge for any clusters. This
is done by removing all cover information for edges e′ between u and v if c(e′) ≤ i with i = l(e).
This may leave some edges with cover = −1 and coverEdge = nil, even though some edge in
Gj covers them. The cover levels of these edges will be recovered in the recovery phase.

Similarly to cover, the information is deleted in the root C and propagated down to its path
descendants. The information is propagated downwards using recursiveUncover, which works
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similarly to resursiveCover. The graph invariant can never be broken when removing edges
from Gi since it can only decrease the size of the 2-edge connected components.

Algorithm 23 uncover(u, v, i)
1: expose(u)
2: C =expose(v)
3: if C.cover ≤ i then
4: C.cover = −1
5: C.coverEdge = nil
6: recursiveUncover(C, i)
7: deExpose(v)
8: deExpose(u)

Algorithm 24 recursiveUncover(C, i)
1: if c.isLeaf then
2: return
3: else
4: for each path descendent D of C do
5: if D.cover ≤ i then
6: D.cover = −1
7: D.coverEdge = nil
8: recursiveUncover(D, i)

Before considering the recovery phase, a new definition is required. Let C be a cluster with
boundary vertices u and v, then π(C) = u, . . . , v is considered fine on level i if the cover value is
correct for edges e ∈ π(C) = u, . . . , v, that are covered by an edge e′ with l(e′) ≥ i. If e is only
covered by an edge e′ with l(e′) < i, c(e) may have an incorrect lower value. Additionally, let
meet(u, v, w) return the unique vertex, where the paths of u, . . . , v, u, . . . , w and v, . . . , w meets.

The goal for recover(u, v, i) is then to restore u, . . . , v to be fine on level i after the deletion
of edge (u, v). Unfortunately, this means after a call to recover, only level i is corrected, and
thus, u, . . . , v might not be fine on i−1. Therefore, recover(u, v, j) must be called for all values
0 ≤ j ≤ i, starting at j = i, then j = i − 1 and so on.

The most straightforward implementation of recover would be to consider all edges f = (q, r)
of level i and call cover(q, r, i). However, by considering all edges, the recover operation will
be very expensive; instead, a more complex recover operation is used.

The recover algorithm is two-phased. The first phase starts with w = u, while the second
starts with w = v. Then consider all edges f = (q, r) only in G, with meet(u, v, q) == w, and
c(e) == i. For each of these edges, check if the level of f can be increased without breaking the
graph invariant. If so, do it and call cover(q, r, i + 1). If not, call cover(q, r, i) and exit the
phase. If all edges with meet(u, v, q) == w were increased, let w be the next vertex on the path
between u and v and repeat.
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Algorithm 25 recover(u, v, i)
1: // Phase 1
2: for Vertex w on the path from u to v do
3: for Edge f =(q, r) with meet(u, v, q) == w and c(e) == i do
4: if increasing the level of e is legal then
5: l(e) = i + 1
6: cover(q, r, i + 1)
7: else
8: cover(q, r, i)
9: Exit both for loops

10: // Phase 2
11: for Vertex w on the path from v to u do
12: // Same as phase 1, but starting from v

13:
...

What remains to be shown is that recover correctly restores the cover information without
breaking the graph invariant. The stopping condition of each phase in recover is exactly when
increasing the level would break the graph invariant. Thus, the invariant is satisfied at the end
of all the recover calls.

Lemma 4.2. (Lemma 16 from [8]) Assume u, . . . , v is fine on level i + 1. Then after a call to
recover(v, u, i), it is fine on level i.

Proof. First, consider the impact recover may have on level i+1. By the assumption, all edges
which should be covered at i + 1 contain correct information already. Throughout the recover
operation, cover may be called with i or i + 1. Calls with i can not impact level i + 1. Finally,
calling cover with i + 1 updates the cover levels of edges covered by the newly increased edge.
Thus, u, . . . , v remains fine on level i + 1.

Let a relevant edge be defined as follows. Let (q, r) be an edge in Gi, but not in T shown in
Figure 30. (q, r) is relevant if q, . . . , r ∩ u, . . . , v ̸= ∅. The intersected edge has been marked in
red. By calling either cover(q, r, i) or cover(q, r, i + 1), the cover level of the red edge would
be corrected.

q

u r

v

Figure 30: Showcasing of a relevant edge (q, r) in T

To argue that u, . . . , v is fine on level i when recover terminates, we must show that for all
edges along u, . . . , v whose cover level should be ≥ i is updated to reflect that.

Consider at first that phase 1 does not stop, then all relevant non-tree edges have been considered,
and thus, the cover levels of edges on the path between u and v have been updated to i + 1 if
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possible. The edges whose cover level was unchanged are not covered by any edges at level i
and have cover < i as the path was fine on level i + 1 before the recover call. Thus, the path
between u and v is fine on level i if the phase does not stop.

Now consider the case where phase 1 stops. Let w1 be the last vertex considered along the path,
and let (q1, r1) be the edge whose level could not be increased. If phase 1 stops, then phase
2 must also stop at some vertex w2. If phase 2 completes, it must have gone through w1 and
increased the level of (q1, r1), which was illegal. Thus, (q2, r2) is the last edge considered in phase
2.

The part of phases 1 and 2 that are completed ensures that the cover level of u, . . . , w1 are
correct, similarly with w2, . . . , v. Thus, we have to show that w1, . . . , w2 are fine on level i.

Due to the illegality of increasing the level of (q1, r1), the 2-edge connected component H1
containing q1 in Gi+1 ∪ (q1, r1) must have > ⌈n/2i+1⌉ vertices. The same goes for H2 = Gi+1 ∪
(q2, r2). Before deleting (u, v), H1 and H2 were part of the same 2-edge connected component
H in Gi. H had at most ⌈n/2i⌉ vertices, thus H1 ∩ G2 ̸= ∅. This means H1 and H2 shares
vertices and must be contained in the same 2-edge connected component H ′ of Gi+1 ∪ (q1, r1) ∪
(q2, r2). Since the covering has been performed for i + 1 edges, the calls to cover(q1, r1, i) and
cover(q2, r2, i) ensures that edges in H ′ are covered with cover ≥ i.

Finally, we have that T ⊆ Glmax
⊆ . . . ⊆ Gi. If q1 and r1 are connected through w1 in T , which

must be the case for phase 1 to end on (q1, r1), it must be the case that w1 ∈ H1. The same goes
for w2 ∈ H2, which implies that w1, . . . , w2 ∈ H ′, which means all edges on the path between w1
and w2 have the desired cover level of ≥ i.

To reiterate, it requires multiple calls to recover(u, v, j) to correct the cover information that
may have been left incorrectly by uncover. When a recover operation terminates, there is
only a guarantee that the path between u and v is fine on level j. This is solved by calling
reover with all values from 0 ≤ j ≤ i, then only values < 0 can be incorrect. But with −1
being the lowest value, all cover values are correct, and so is the theoretical 2-edge connectivity
algorithm.

4.1.2 Implementation details

In this section, the operations and cluster information discussed in Section 4.1.1 is modified to
support an efficient implementation of 2-edge connectivity.

Consider the cover and uncover operations described in Algorithm 18 and Algorithm 23,
respectively. The new information was only inserted at the root and then propagated down the
tree. This propagation may be expensive if most of the edges in T are on the path between the
exposed vertices. Therefore, the propagation is delayed until the cluster information changes
by adding lazy information in cover and uncover. The delayed propagation is handled by
implementing the top tree operation split[8].

The following information, cover+, cover−, coverEdge+, is added to the cluster information.
Similarly to cover and coverEdge, they are only defined for path clusters C, as they still depend
on the path π(C). The cover+ and coverEdge+ are used as lazy cover information, while
cover− is used for uncovering. Let split be defined to propagate information to the direct path
descendants D of C in a similar way to recursiveCover and recursiveUncover used in
Section 4.1.1. The biggest difference is the removal of the recursive call. Thus, if D.cover ≤
max{C.cover−, C.cover+} set D.cover = C.cover+ and D.coverEdge = C.coverEdge+, and
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update the lazy cover information. The simplest implementation is done by reusing parts of the
soon-to-be-updated cover and uncover operations. Let coverInner and uncoverInner be
operations which handled the updating of cluster information during cover and uncover calls.

If cover+ = cover− = −1, the lazy information can be ignored, as the cluster holds no information
about new coverings or uncoverings that is yet to be propagated down.

Algorithm 26 split(C)
1: for child D of C do
2: if isPath(D) then
3: uncoverInner(D, C.cover−)
4: coverInner(D, C.cover+, C.coverEdge+)
5: C.cover+ = −1
6: C.cover− = −1
7: C.coverEdge+ = nil

The lazy cover information allows for efficient implementations of cover and uncover. The
recover operation remains slow for finding relevant edges and checking if the graph invariant is
broken if an edge level is increased. To solve these challenges, add two types of counters, incident
and size. These counters will be stored in vertices and clusters, with different information stored
at each place. For each vertex and point cluster, O(log n) counters are introduced, whereas, for
each path cluster, O(log2 n) counters are added.

First, for any vertex v and level i, introduce incidentv,i, which is the number of non-tree edges
in Gi incident to v. For simplicity, sizev,i is also defined but is always 1.

Let C be a point cluster, and let IC,v,i be the set of internal vertices u in C, reachable by a path
P with c(e) ≥ i for all edges e ∈ P . The following counters are then stored.

• sizeC,v,i = |IC,v,i|
sizeC,v,i denotes the size of the 2-edge connected component of C in Gi containing v.

• incidentC,v,i =
∑

w∈IC,v,i
incidentw,i

incidentC,v,i denotes the number of non-tree edges (q, r) with q ∈ IC,v,i.

Now consider C as a path cluster. Let IC,v,i,j be the set of internal vertices that are reachable
by some path P in T , where P starts in v, with c(e) ≥ i for edges e in P ∩ π(C) and c(e) ≥ j for
edges e in P \ π(C).

Finally, for the path clusters store:

• sizeC,v,i,j = |IC,v,i,j |
sizeC,v,i,j denotes the size of the 2-edge connected components in C containing v.

• incidentC,v,i,j =
∑

w∈IC,v,i,j
incidentw,i

incidentC,v,i,j denotes the number of non-tree edges (q, r) with q ∈ IC,v,i,j

There is a set of size and incident counters stored for each boundary vertex v of the path cluster.

Updated operations: We are ready to revisit the operations with the added cluster infor-
mation. At first, consider the operations that change the spanning tree and graphs, insert,
delete, recover and swap. These operations should update the incident counters of vertices,
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as they can add edges, remove edges or both from the graphs. For insert, delete and swap,
these are the only changes. Thus, they have been left out of this section.

Instead, consider cover, for reusability parts of the cover operation are extracted into cov-
erInner. The cover operation shown in Algorithm 27 updates the cluster information of C
obtained by exposing u and v and calling coverInner. C.cover and C.coverEdge is updated
similarly to Algorithm 18. Thus, the focus will be on maintaining the newly introduced lazy
information and counters.

Algorithm 27 cover(u, v, i)
1: expose(u)
2: C =expose(v)
3: e = edge between (u, v)
4: coverInner(C, i, e)
5: deExpose(u)
6: deExpose(v)

Algorithm 28 coverInner(C, i, e)
1: if C.cover < i then
2: C.cover = i
3: C.coverEdge = e

4: if i < C.cover+ then // Do nothing
5: if C.cover+ ≤ i ≤ C.cover− then
6: C.cover+ = i
7: C.coverEdge+ = e

8: if C.cover− < i then
9: C.cover− = i

10: C.cover+ = i
11: C.coverEdge+ = e

12: for −1 ≤ k ≤ i do
13: for −1 ≤ j ≤ lmax do
14: for v in boundaryVertices(C) do
15: sizeC,v,k,j = sizeC,v,−1,j

16: incidentC,v,k,j = incidentC,v,−1,j

Let e be the new cover edge with i = l(e). If i < C.cover+, C is already covered by some edge e′

with i < l(e′). If C.cover+ ≤ i ≤ C.cover−, C.cover+ and C.coverEdge+ is updated to reflect
the new cover edge with cover level i. Finally, if C.cover− < i, the C.cover− value can effectively
be ignored by setting C.cover− = C.cover+ = i, as the new edge covers all clusters whose level
should have been decreased.

Consider the value sizeC,v,−1,j to see that the counter values are correctly updated. All vertices
on π(C) are included in the internal set of reachable vertices IC,v,−1,j as all edges are covered
at ≥ −1 at all times. Thus, when increasing the cover levels of all edges on π(C), the same
vertices should be included in IC,v,i,j and all values between −1 and i. This means sizeC,v,−1,j

and incidentC,v,−1,j can be used directly instead of recomputing anything.
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Thus, all the information remains correct after a call to cover.

Lemma 4.3. The amortized cost of O(log n(COST (combine) + COST (split)) + log2 n) is
achieved for cover.

Proof. The runtime follows directly from the calls to expose, deExpose and updating of the
counters. In the worst case, i = lmax, which makes it O(log2 n) counters to update.

Similarly to cover, parts of uncover are extracted. The uncover operation shown in Al-
gorithm 29 updates the cluster information of C obtained by exposing u and v and calling
uncoverInner. C.cover and C.coverEdge is updated similarly to Algorithm 23. Thus, the
focus will be on maintaining the newly introduced lazy information and counters.

Algorithm 29 uncover(u, v, i)
1: expose(u)
2: C = expose(v)
3: uncoverInner(C, i)
4: deExpose(u)
5: deExpose(v)

Algorithm 30 uncoverInner(C, i)
1: if C.cover ≤ i then
2: C.cover = −1
3: C.coverEdge = nil
4: if i < C.cover+ then
5: do nothing
6: if C.cover+ ≤ i then
7: C.cover+ = −1
8: C.cover− = max(C.cover−, i)
9: C.coverEdge+ = nil

10: for 0 ≤ k ≤ i do
11: for 0 ≤ j ≤ lmax do
12: for v in c.boundaryVertices do
13: sizeC,v,k,j = sizeC,v,i+1,j

14: incidentC,v,k,j = incidentC,v,i+1,j

If i < C.cover+, the cluster is covered by some edge e with c(e) > i, and thus, the lazy information
should still reflect that e is covering this cluster. Otherwise, if C.cover+ ≤ i, the cluster should
be considered uncovered.

Similarly to cover, the counters should be updated when uncover is called. For any value,
0 ≤ j ≤ i, the edges are now uncovered if the cluster was previously covered at i or below; in this
case, the values should reflect those stored in sizeC,v,i+1,k and incidentC,v,i+1,k. Importantly,
the values for j = −1 are not updated, as those values should include all vertices even if nothing
is covered. In the original paper, these values are incorrectly updated as well [8].

Thus, all the information remains correct after a call to uncover.
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Lemma 4.4. The amortized cost of O(log n(COST (combine) + COST (split)) + log2 n) is
achieved for uncover.

Proof. The runtime follows directly from the calls to expose, deExpose and updating of the
counters. In the worst case, i = lmax, which makes it O(log2 n) counters to update.

Before considering the updated recover operation. Let us define a find operation used to
find relevant edges in the top tree. Assume incidentC,w,−1,i > 0, then some internal vertex u is
reachable through a path P , with incidentu,i > 0. The goal is the find the non-tree edge incident
to u efficiently.

The reason −1 is used in incidentC,w,−1,i is to account for find only being called in recover.
When working with the counter values in recover, they may be incorrect due to the uncover
call. If incidentC,w,i,i were used, only vertices reachable by edges covered at i + 1 before the
latest deletion would be included.

Algorithm 31 find(w, C, i)
1: if incidentw,i > 0 then
2: return non-tree edge e incident to u with c(e) = i

3: split(C)
4: Let A and B be children of C
5: Let w be a boundary of A
6: if isPath(A) and incidentA,w,−1,i > 0 then
7: find(w, A, i)
8: else if isPoint(A) and incidentA,w,i > 0 then
9: find(w, A, i)

10: else
11: Let v be the boundary vertex closest to w in B
12: find(v, B, i)

If incidentw,i > 0, w is incident to some edge e with c(e) = i and find can immediately return
e.

Thus, consider the case where incidentw,i = 0, but incidentC,w,−1,i > 0. To locate one of the
edges e with c(e) = i, let w be a boundary vertex of A and A a child of C. Check incidentA,w,i > 0
and incidentA,w,−1,i > 0 for point and path clusters respectively and call find(A, w, i) to narrow
the search space if either is true. At some point, incidentA,w,i = 0 or incidentA,w,−1,i = 0 is
true, which means the incident edge is located in B, the other child of C. In this case, call
find(B, b, i) with b being the boundary vertex closest to w in B, by continuing this recursion at
some point a boundary vertex b is found with incidentb,i > 0, and an edge is returned.

Lemma 4.5. The amortized cost of find is O(depth(d) · log2 n), where d where the recursion
depth terminated and an edge e is found.

Proof. Each recursive call takes at most O(log2 n) time due to the split call and moves one level
down the tree.
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The updated recover operation is also two-phased. The first phase corresponds to running
Algorithm 32 with w = u, and the second phase with w = v. recover still has to be called for
all values of −1 ≤ j ≤ i, starting with j = i.

Algorithm 32 recover(u, v, w, i)
1: expose(u)
2: C = expose(v)
3: while incidentC,w,−1,i + indidentu,i > 0 do
4: (q, r) = find(w, C, i) // returns an edge
5: deExpose(v)
6: deExpose(u)
7: expose(q)
8: D = expose(r)
9: if sizeD,q,−1,i+1 + 2 > ⌈n/2i+1⌉ then // +2 is the external boundary vertices

10: coverInner(D, i, (q, e))
11: break
12: else
13: l(q, r) = i + 1
14: update incident counters of q and r at level i and i + 1
15: coverInner(D, i + 1, (q, r))
16: deExpose(r)
17: deExpose(q)
18: expose(u)
19: C = expose(v)
20: deExpose(v)
21: deExpose(u)

recover does not change the cluster information directly, as all cluster information is updated
through coverInner, expose and deExpose. Only the vertex counters are updated directly
on line 14. Therefore, assume the user-defined information is updated correctly, and focus on
maintaining the invariant.

Recall from the delete operation in Algorithm 21, recover is only called after uncovering the
path between u and v. Thus, the incidentC,w,j,k counters may have been affected for any j ≤ i if
C.cover was ≤ i before the uncover call. But the goal is to recover the cover level of u, . . . , v to
i; thus, incidentC,w,−1,i is used, as this value correctly reflects the ideal world where u, . . . , v was
covered at level i. In particular, incidentC,w,−1,i tells us if any internal vertex, with a non-tree
edge e with l(e) = i, could be reached through a path P covered at i before the uncover call.
If this is the case, the find operation is used to find and return such an edge.

Once an edge e has been found, the recover operations call deExpose and expose to re-
structure the tree such that the endpoints of e are exposed. Let D be the new root, and
sizeD,q,−1,i+1 denote the size of the 2-edge connected component containing q in Gi+1 created
by increasing the level of e to l(e) = i + 1. If sizeD,q,−1,i+1 + 2 ≤ ⌈n/2i+1⌉, the level of e can be
increased without breaking the graph invariant, followed by a call to coverInner. 2 must be
added to account for the boundary vertices of D, as size only includes the internal vertices. If
sizeD,q,−1,i+1 + 2 > ⌈n/2i+1⌉, immediately call coverInner and terminate the phase.
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The correctness of stopping after failing to increase l(e) follows through a similar proof as
Lemma 4.2.

Lemma 4.6. The amortized cost of recover is at most O(log n+t · log n) ·(COST (combine)+
COST (split)), where t is the number of edges whose level was increased.

Proof. Independently of whether any iteration of the while loop is run, the recover operation
makes calls to expose and deExpose. These operations take O(log n · (COST (combine) +
COST (split)) each.

The while loop runs until it is stopped or no relevant edges exist. To achieve the desired runtime,
some of the iterations must be paid for by the edge-level increases. Therefore, any iteration that
increases the level of an edge is counted and paid for separately. This means, at most, a single
iteration has to be paid for directly in each recover call.

Each while loop iteration makes multiple calls to expose and deExpose. The call to find
takes O(depth(x) · log2 n) time, where x is the node in which the relevant edge (q, r) is found.
However, the top tree operations can pay for find, as both the split and combine operations
take O(log2 n) time in 2-edge connectivity(The updated combine operation is considered next).
Thus, by the assumption that each free potential can pay for c(COST (combine+COST (split)))
work each, the Ω(depth(node)) potential freed by the calls to fullSplay in expose can pay for
the find operation. To support this claim, a small experiment was performed to ensure node
had a greater depth than the recursion depth of find.

Combine

The only remaining function to update is the combine(C) operation. The combine operation
updates cover and coverEdge similarly to the version considered in Section 4.1.1. Thus, let the
focus be on how the counters are updated for path and point clusters, respectively. The lazy
information is ignored completely, as it is only used to push information down the tree, which it
should already have been before combine is called on a node.

The counters will be considered independently for point and path clusters as they are computed
differently and update different counters. Noteworthy, the computations for size and incident
counters are equal in all cases. Thus, only the computation for size is included.

Point Let C be a point cluster with boundary vertices a and child clusters A and B. Consider
the case where A is a path cluster with boundary vertices a, b, and B is a point cluster with
boundary vertex b. This case can be seen in Figure 31, where the boundary vertices of A and B
are marked with a and b.

Let sizeC,a,j be the current counter to update. sizeA,a,j,j contains the number of internal vertices
reachable from a by only traversing edges covered at level j. Thus, we can use this as a baseline
value. However, if A.cover ≥ j, all edges on π(A) are covered at level j. Thus, it is possible to
reach vertices in B as well. The number of reachable vertices in B is already stored in sizeB,b,j ;
thus, we can add this onto our baseline. Finally, sizeb,j must be added as it isn’t considered
internal in either A or B.

Therefore, the final computation is

sizeC,a,j = sizeA,a,j,j + (sizeB,b,j + sizeb,j if A.cover ≥ j)
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b

a

A

B

Figure 31: Combine cluster example

The case above and the others with C being a point cluster have been inserted into Table 5.

Case Computation Drawing
Let A be a path cluster with
boundary vertices a, b and B
a point cluster with boundary
b

sizeC,a,j = sizeA,a,j,j + (sizeB,b,j + sizeb,j if A.cover ≥ j)

b

a

A

B

Let A amd B be point clus-
ters with boundary vertex a

sizeC,a,j = sizeA,a,j + sizeB,b,j

a
A

B

Table 5: combine computations of point cluster C

Path Let C be a path cluster with boundary vertices a and b and child clusters A and B. The
possible cases for path clusters can be seen in Table 6. The cases are only shown for computation
of sizeC,a,i,j . However, they are equivalent for sizeC,b,i,j .
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Case Computation Drawing
Let both A and B be path
clusters with boundary ver-
tices a, c ∈ A and b, c ∈ B

sizeC,a,i,j = sizeA,a,i,j + (sizeB,c,i,j + sizec,i if A.cover ≥ i)

c

a

b
A

B

Let A be a path cluster with
a, b ∈ A, and B a point clus-
ter with b ∈ B

sizeC,a,i,j = sizeA,a,i,j + (sizeB,c,i,j if A.cover ≥ i)

b

a

A

B

Let A be a point cluster with
a ∈ A, and B a path cluster
with a, b ∈ B

sizeC,a,i,j = sizeA,a,j + sizeB,a,i,j

a b
A

B

Table 6: combine computations of path cluster C

4.1.3 Runtime analysis

Theorem 4.1. (Theorem 17 from [8]) A deterministic, fully dynamic algorithm exists for main-
taining 2-edge connectivity in a graph, using O(log4 n) amortized time per update operation, and
O(log3 n) for queries.

Proof. Let us consider the runtime of the top tree operations cut, link, expose and deExpose
first. They all have a runtime of O(log3 n) when factoring in the combine and split runtimes
of O(log2 n).

Throughout the delete operations, calls may be made to deleteEdge, cut, swap, uncover
and recover. The deleteEdge operation takes O(1) time if an edge e with l(e) = i is only
stored in Gi. The amortized cost of cut, swap and uncover is O(log3 n). Finally, recover
may be called O(log n) times with an amortized cost of O(log3 n + t log3 n), where t denotes the
number of edges whose level was increased. Because each edge can only be increased ⌈log n⌉
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times, at most O(log4 n) time can be spent increasing a single edge between its insertions and
deletion. Thus, if insert pays for O(log4 n) work up front, the edge increases can be paid
off separately. Thus, the recover calls contribute at most O(log4 n) to the actual runtime of
delete. Thus, the amortized cost of delete is O(log4 n).

The actual runtime of insert is O(log3 n) as a call is made to either cover or link. Thus, the
advanced payment for level increases is the dominant factor of insert. Thus, an amortized cost
of O(log4 n) is achieved for insert.

The twoEdgeConnectivity query has an amortized runtime of O(log3 n) due to the expose
and deExpose calls.

4.1.4 Space analysis

Theorem 4.7. The space usage of the 2-edge connectivity graph is O(m + n log2 n)

Proof. Consider at first the space used by the top tree. Each node may store at most O(log2 n)
counters, with O(n) nodes. Therefore, the top tree uses O(n log2 n) space.

Besides the top tree, the spanning tree and the graphs Gi must be stored. The spanning tree
takes up O(n) space, compared to the graphs whose total size is O(m + n log n). The space
complexity is achieved by only storing each edge e in Gi for i = l(e).

Finally, each vertex stores O(log n) counters for an additional O(n log n) counters. Thus, the
total space usage for the 2-edge connectivity graph is O(n log2 n + m + n log n + n log n + n) =
O(m + n log2 n).

4.1.5 Improvements

Shortly after the first publication, Thorup improved the runtime from O(log4 n) to O(log3 n log log n).
This speedup is achieved by observing that it suffices to approximate the size and incident coun-
ters stored in each cluster. Each approximate could be stored in only O(log log n) bits compared
to O(log n) bits, which meant Ω(log n/ log log n) counters could fit into a single Ω(log n) bit word.
This reduced the cost of adding two vectors of approximate values from O(log n) to O(log log n).
This trick also reduced the space usage to O(m + n log n log log n) [19].

Holm et al. improved the space complexity to O(m + n log n) by using a more complicated com-
bine operation. Unfortunately, this improvement could not be combined with the improvement
above. They briefly mention an improved query time of O(log n) as well[8].

Holm et al. improved the update time to O(log2 n log log2), along with a O(log n/ log log n)
query time. This is achieved through multiple tricks. They first show a new approach to obtain
a O(log3 n log log n) update time algorithm by splitting the top tree data structure into three,
one for the cover level and one for the size. The final data structure was used to find candidates
for replacement edges efficiently by introducing a new concept of labels. Each operation on these
data structures costs at most O(log2 log log n) with at most O(log n) repeated calls throughout
a call to insert or delete. Essentially, this improved the worst-case situation of O(log n) calls
to the recover operation running in O(log3 n) [10].

The update time was further improved by the same trick Thorup initially used, which gave the
final update time of O(log2 n log log2 n). The application of this trick was mentioned as a major
challenge in the development of this result.
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Finally, by splitting the data structures, they also reduced the number of counters stored, pro-
viding an improvement over O(log2 n) counters stored in the original. Along with this reduction
in counters, they presented a general technique to reduce the space usage of top trees, which
reduced the total space usage to O(m + n).

5 Experiment
This section explores the runtime of the dynamic 2-edge connectivity implementation. The
runtime is also compared when using the simple and advanced versions of expose. Finally, a
brief discussion of when the dynamic algorithm may outperform the static version.

The static 2-edge connectivity algorithm, taken from GeekForGeeks, could not run on large
graphs due to recursion depth issues in Java[16]. This means the static algorithm would fail on
graphs with 5000 vertices and 25000 edges. The dynamic algorithm managed to run on larger
graphs, but the runtime grew rather quickly. Thus, a direct comparison of runtimes has been
omitted.

5.1 Experimental setup
The algorithms were implemented and tested using Java and tested on randomly generated
undirected graphs. The edge generation was created such that no duplicate edges were added.

This simple graph generation strategy should give edges evenly spread among the vertices, which
may not reflect all real-world usages. Thus, the experiments would benefit from running on
real-world graphs such as a dynamic road network or social media connections.

The data fit in RAM for all experiments, which positively affects the runtimes. This was chosen
to shift the dominating factors around, to make calculations the dominating factor instead of
I/O delay.

All experiments were run on OpenJDK 11.0.10 on version 10.0.19045 of Windows 10 Home, with
an Intel® Core™ i7-10750H @ 2.60GHz and 16 GB of 2933 MHz ram.

5.2 2-edge connectivity experiments
This section performs a series of experiments on the dynamic 2-edge connectivity algorithm.
First, the average runtime for a sequence of insert and delete operations are considered.
This is followed by an individual assessment of the average runtime for insertions, deletions and
queries. Finally, a very crude lower bound is found for the required hidden constant in the O
notation.

The 2-edge connectivity algorithm was tested on graphs of varying size, with the largest consisting
of 25600 vertices and 102400. The first experiment is used to verify the O(log4 n) amortized
runtime for a sequence of insert and delete operations. The average runtime over a sequence of
operations should trend towards O(log4 n). The total runtime is divided by t log4 n in Figure 32,
where t denotes the total number of operations.
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Figure 32: Average runtime divided by O(log4 n) for sequence of 4n inserts, and
n deletes

Importantly, the insert operations actual runtime is only O(log3 n), which may skew the experi-
ment, as some edges may not be increased the log n times which are paid upfront by the O(log4 n)
amortized cost of insert. Thus, consider the runtime of delete visualised in Figure 33. The
runtime of delete also trends towards O(log4 n). Theoretically, even if the level of all edges
was increased log n times the recover operations add at most c · 4n log4 n = O(n log4 n) work
split over the n delete operations.

Figure 33: Average runtime of delete divided by O(log4 n) for sequence of n deletes
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Figure 34: Average runtime of insert divided by log3 n and log4 n respectively for sequence of
4n inserts

Consider the runtime of insert individually as well. The actual runtime of the operation is
O(log3 n), while the amortized cost is O(log4 n). The average runtime divided by both has been
plotted in Figure 34, where both trend towards a constant. The difference between the constants
is log n, which for the values of n considered here is in the range of ≈ [7, 15].

Lastly, the average runtime of n random queries in the dynamic 2-edge connected data structure
trends towards the expected O(log3 n) as visualised in Figure 35.

Figure 35: Average runtime of queries divided by log3 n for a sequence of n
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The average runtimes of the operations indicate that the amortized analysis is correct. However,
it does not state anything about the worst-case performance of a single operation. Therefore,
consider a graph with 1600 vertices and the runtime of 6400 insertions visualised in Figure 36.
The early insertions are performed on mostly empty trees. Thus, their runtimes are quicker
compared to those occurring later.

A few insertions run considerably slower compared to the rest, likely due to loads of clusters being
recomputed throughout the expose calls made in insert, as it was consistent over multiple runs
on the same graph, which was checked to ensure it was not due to background interference.

Figure 36: Runtime (ms) of the insert operation

When observing the runtime of the delete operation, the runtime of the first deletions stands
out in Figure 37. They are substantially slower than the later deletions caused by the recover
operation. When the first edge is deleted, all edges e has l(e) = 0, increasing many edges to
the next level. The runtime seems to stabilize quickly, supported by theory, as the edges can
only be increased at most log n times. Furthermore, as edges are spread across different levels,
increasing them without breaking the graph invariant becomes increasingly hard.

Theoretically, the slow delete operation can happen multiple times throughout the lifetime of
a top tree. If most edges are deleted, followed by insertions of new edges, a similar state can
be achieved where nearly all edges have a low level. However, it is also possible if a large batch
of new edges were inserted that the next recover call for level 0 find loads of edges whose
endpoints belong to the same 2-edge connected component of G1. However, it is rather unlikely
that the recover algorithm doesn’t stumble upon an edge which would increase the size of the
2-edge connected component breaking the invariant. The final claim is supported by Figure 38,
where 6400 edges were inserted after the 100th delete without a huge increase in runtime for the
following deletes.
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Figure 37: Runtime (ms) of the delete operation

Figure 38: Runtime (ms) of the delete operation. 6400 insertions → 100 deletions → 6400
insertions → 100 deletions

One could consider a sequence of operations in an attempt to find a crude lower bound on
the constant required for the O(log4 n) amortized runtime of insert and delete of the 2-edge
connectivity algorithm. The goal would be finding a constant c such that i·log4 n·c is greater than
the accumulative runtime ti of the sequence after i operations. The constant can be computed as
the c ≥ maxi

ti

i log4 n
. Unfortunately, a different sequence of operations could impact the constant.

Thus, this is only provide a slight insight into which operations are expensive.
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Consider a sequence of 6400 insertions followed by 6400 deletions. The constant required for
the insert operation seems to stabilise just short of 100, as seen in Figure 39. Unfortunately,
the delete operations require a higher constant, making it rise quickly. This is then followed
by a steady increase, which peaks at ≈ 350. The required constant then starts dropping, which
happens as the delete operations become quicker when the spanning tree becomes disconnected
as < 1600 edges are left in the graph.

Figure 39: Lower bound for c in dynamic 2-edge connectivity, using 1600 vertices with 6400
insertions followed by 6400 deletions

The analysis made in Section 3 and Section 4 provides no constant as O-notation is heavily used
to simplify expressions. Even if the analysis provided a constant for the lower bound, it would
hardly be comparable to the measured constant, which is based on runtime. Thus, the result of
this experiment is very unreliable, as no comparison can be made with the theory. Furthermore,
both the implementation and language used can heavily impact the runtime. Thus, this is only
a very crude lower bound.

Holm et al. present two different expose implementations[9]. The simpler version considered
in Section 3.8.1 uses fullSplay, with the more advanced version omitting this call. They
conjectured the advanced version to be a significant speed in practice. However, as observed
in Figure 40, the constants required in O(log4 n) are very similar for a sequence of insert and
delete.

This similarity was also observed when comparing the average runtime of the operations for
different graph sizes as visualised in Figure 41.
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Figure 40: Comparison of expose operations for a graph with 1600 vertices. 6400 insertions
followed by 6400 deletions

Figure 41: Comparison of expose operations for graphs with varying size. 4n insertions followed
by n deletions

Even if a comparison between the performance of the static and dynamic 2-edge connectivity
algorithms were performed, the results would be highly situational. The static algorithm pro-
posed by Tarjan has a theoretical query runtime of O(m + n), with O(1) update time[18]. This
is compared to the dynamic algorithm’s O(log4 n) update times and O(log3 n) query time. Con-
sider a graph with loads of edge insertions. As they are inserted, the query time of the static

69 of 80



6 CONCLUSION

algorithm becomes slower, whereas the query time of the dynamic algorithm is unaffected. The
runtime of the entire sequence for the dynamic algorithm is instead affected by the slow edge
insertions. As the algorithms are impacted differently, it becomes hard to say one solution is
generally preferred over the other. For example, consider the static query run on a graph with
n = 1000 and m = 4000; theoretically, this should take the same time as n = 2000 and m = 3000.
Now consider the same graphs for the dynamic algorithm, where both the update and query time
of these graphs differs. Here it is extremely unlikely that the runtime of the entire sequence takes
the same amount of time, as the theoretical runtime of insertions only is 4000(log4 1000) ≈ 40000
and 3000(log4 2000) ≈ 33000 when ignoring the constants, which would require a rather specific
number of queries for these graphs to perform equivalently over the entire sequence. Thus, even
if the dynamic solution experimentally outperformed the static solution for a sequence of oper-
ations performed on a graph, generalising it is hard as even other sequences on the same graph
may lead to another result. A query-heavy sequence of operations is more likely to run faster on
the dynamic 2-edge connectivity than a sequence of mostly insertions and deletions.

The above considerations also make a theoretical comparison hard. Even though it may be
possible to estimate how often queries have to be run in a sequence of operations for a graph of
a given size, it is hardly useful as it requires a pretty specific use case.

6 Conclusion
In this thesis, we wanted to study data structures and algorithms for dynamic graph prob-
lems. We looked at the theory behind splay top trees, first by considering splay trees to
gain familiarity with the concepts of splaying and amortized analysis. Splay top trees were
then analysed, incorporating the user-defined operations combine and split since they are
central to all dynamic graph algorithms using top trees. This lead to an amortized cost of
O(log n(COST (combine) + COST (split)) compared to O(log n) by Holm et al. for the inter-
face operations expose, deExpose, cut and link.

Splay top trees were implemented using Java, and the implementation’s correctness was verified
through assertions and experiments. A simple incremental minimum spanning tree was imple-
mented and checked against Kruskal, verifying the correct result was computed every time. No
experimental evaluation was made to compare the incremental minimum spanning tree algo-
rithm’s performance to Kruskal.

A dynamic 2-edge connectivity algorithm by Holm et al. was chosen as a more advanced al-
gorithm using top trees, as it required both combine and split, compared to the incremental
minimum spanning tree, which only used combine. The 2-edge connectivity algorithm was
verified against a static version to ensure correctness. Unfortunately, the off-the-shelf static
algorithm could not run on larger graphs making it impossible to get any relevant runtime
comparisons. Thus, only the theoretical runtimes of 2-edge connectivity were tested. The ex-
periments supported the theoretical runtimes of O(log4 n) for updates and O(log3 n) for queries.
The experiments are only run on randomly generated graphs. Ideally, this was expanded to real
use cases like road networks or social media connections. Holm et al. proposed two different
expose operations, conjecturing one of them to be a significant speed-up in practice [9]. This
was not supported by the experiments where both versions had nearly identical runtimes for the
2-edge connected algorithm.
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6.1 Future work
A direct continuation of this thesis would be to expand the experiments to include real use cases
with a comparison between the static and dynamic algorithms. The comparisons could also be
made for other dynamic algorithms using top trees, such as Bi-connectivity, closely related to
the 2-edge connectivity algorithm. Ideally, these comparisons would be run on optimised imple-
mentations written in a low-level language such as C or C++. The current implementation may
suffer from early sub-optimal decisions, which were not rectified throughout the optimisations
ahead of the experimental process.

Holm et al. improved the 2-edge connectivity algorithm by using degree d top trees, which could
be another continuation of this thesis[10]. To my knowledge, splay top trees have not been
modified to support degree d internal nodes. If generalising splay top trees is possible, it may
require a significant amount of work, i.e. the orientation invariant is heavily dependent on only
two children per node. The same goes for internal operations such as rotateUp operation.

The generalisation of splay top trees would ideally end with implementing degree d splay top
trees and the improved 2-edge connectivity algorithm.

A small survey was made on dynamic graph algorithms as part of the early stages of planning
and preparing for this project. The goal for this survey was to both gain an overview of current
results and to determine a specific topic to explore in further detail, hopefully, find something
interesting to write about. Shortly before the official start of the thesis, I became aware of
the newly published paper on splay top trees by Holm et al.[9], which became the focus. The
unfinished survey is included in Section 6.1, and a continuation of this project could be researching
the extent top trees are used in state-of-the-art graph algorithms.

Lastly, it would be interesting to explore if quantum algorithms can achieve any significant theo-
retical improvements for dynamic graph algorithms. When performing a brief survey of the field,
I was unable to find any results on quantum algorithms for dynamic graph problems. However,
some static graph problems have been improved using quantum algorithms, e.g. computing a
minimum spanning tree in O(

√
nm) using quantum computing, which is an improvement over

the randomised classical algorithm, which runs in O(n)[4, 13]. However, in recent times the
interest in quantum computing has increased. Thus, the likelihood of discovering new quantum
graph algorithms has also increased.
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APPENDIX A APPENDIX

Appendix
Appendix A: Symbols and Dictionary

Notation/Symbol Description
G(V, E) Used to describe a graph with vertex set V and edge set E
n Number of vertices in the spanning tree/graph
m Number of edges in the graph
Nodes Used to describe elements in the top tree
Vertex/Vertices Used to describe elements in the spanning tree
Tree edges Used to describe edges in the spanning tree
Non-tree edges Used to describe edges in the graph
p(u) or parent(u) Used to describe parent node of u
sibling(u) Used to describe the sibling of u
ϕ The potential function
s(u) Used to describe the size or number of leaves in the subtree rooted in u
r(u) r(u) = log2(s(u)) used in the potential function of both splay trees and the

splay top tree
Cluster C A cluster is a connected set of edges in the underlying spanning tree/forest

with at most 2 boundary vertices. The cluster represented in the top tree as
nodes. Leaf nodes represent clusters of size 1, while internal nodes represent
the union of its children.

Point cluster A cluster with 0 or 1 boundary vertices
Path cluster A cluster with 2 boundary vertices
π(C) Used to describe the path between the boundary vertices of C in the top tree
Exposed vertex A vertex can be marked as exposed through the top tree interface, when done

it is considered boundary for all clusters it is in
Boundary vertices A vertex is a boundary vertex for a cluster if it is incident to something outside

the cluster or it is exposed
T This notation is used to refer to a spanning tree or splay tree
Tv is used to refer to the spanning tree or splay tree containing vertex v
T This notation is used for top trees
Tv is used to refer to a top tree with vertex v
boundary(u) The set of boundary vertices of u
Left/Right boundary vertex These boundary vertices come exclusively from the left or right child
Central vertex The vertex shared between the children of an internal node
Middle boundary vertex Only the central node can be a middle boundary vertex.
Leftmost boundary vertex The leftmost boundary vertex is the left boundary vertex if it exists, otherwise,

it is the middle boundary. If neither exists, the leftmost boundary vertex is
undefined.

Rightmost boundary vertex See definition above.
Orientation invariant For any internal node C, the leftmost boundary vertex of the right child B and

the rightmost boundary vertex of the left child A must both exist and be equal
to the central vertex of C[9]

Table 7: Notation/Symbol with descriptions
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APPENDIX B APPENDIX

Appendix B: Code
The code is accessible in the following GitHub repository.
https://github.com/Andr9172/au-masters
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APPENDIX C APPENDIX

Appendix C: Graph algorithms survey table

Directed graphs Update Query Space
Reachability
Deterministic [15]

Amortized: O(m
√

n) Worst case:
O(

√
n) = O(n1/2)

?

Reachability
Probabilistic[15]

Amortized:
O(m0.58n)

Worst case: O(m0.43) ?

APSP uni-cost
Deterministic [5]

Worst case:
O(n2+2/3(log n)2/3)

? Õ(n2)

APSP weighted
distance
Deterministic [5]

Worst case:
O(n2+3/4(log n)2/3)

? Õ(n2)

APSP uni-cost
Probabilistic1 [5]

Worst case:
O(n2+1/2(log n)3)

? Õ(n2)

APSP weighted
distance
Probabilistic1 [5]

Worst case:
O(n2+2/3(log n)3)

? Õ(n2)

General undirected
Graph

Update Query Space

Randomized
Connnectivity [12]

Expected Amortized:
O(log n(log log n)2)

log(n)/ log log log(n) ?

Deterministic
Connnectivity

Amortized
[20]O(log2 n/ log log n)

log(n)/ log log(n) ?

Minimum spanning
trees/forest
randomized [11]

Amortized:
O(log4 n/ log log n)

? ?

Minimum spanning
trees/forest
Deterministic [11]

Amortized:
O( log4 n log log log n

log log n )
? ?

Minimum spanning
trees/forest
randomized 2 [21]

worst case:
O(n1/2−c)

worst case: O(1) ?

Minimum spanning
trees/forest
randomized2 [14]

worst case:
O(nO(1))3

? ?

1 the ranndomized APSP is Las vegas style, against a non-oblivious adversary
2 Las vegas style
3 O(1) hides a O(log log log n/ log log n) factor

Table 8: Fully dynamic algorithms
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Appendix D: Top tree and Spanning tree

b6

c6 b5

b4 c5

b3 c4

c3 b2

b1 c2

c1 c0
(a) Top tree

c0 c2 c4 c6

c1

c3

c5

(b) Spanning tree

Figure 42: Top tree and the spanning tree
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