
ALGORITHMS FOR
MASSIVE TERRAINS AND GRAPHS

SVEND CHRISTIAN SVENDSEN

THE PROGRAM OF THE DAY

1

External Memory Pipelining Made Easy With TPIE
Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen

THE PROGRAM OF THE DAY

1

External Memory Pipelining Made Easy With TPIE
Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen

1D and 2D Flow Routing on a Terrain
Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal

THE PROGRAM OF THE DAY

1

External Memory Pipelining Made Easy With TPIE
Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen

1D and 2D Flow Routing on a Terrain
Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal

Practical I/O-Efficient Multiway Separators

Svend C. Svendsen

THE PROGRAM OF THE DAY

1

External Memory Pipelining Made Easy With TPIE
Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen

Learning to Find Hydrological Corrections
Lars Arge, Allan Grønlund, Svend Christian Svendsen, Jonas Tranberg

1D and 2D Flow Routing on a Terrain
Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal

Practical I/O-Efficient Multiway Separators

Svend C. Svendsen

TERRAIN AND BIG DATA

2

Present: Terrain is collected with LiDAR

Source: LiDAR America

TERRAIN AND BIG DATA

2

Present: Terrain is collected with LiDAR

Source: LiDAR America

Denmark - Shuttle Radar Topography Mission

90 meter resolution
4, 000, 000 points

TERRAIN AND BIG DATA

2

Present: Terrain is collected with LiDAR

Denmark - Danish Elevation Model

Source: LiDAR America

40 centimeter resolution
415, 000, 000, 000 points

Denmark - Shuttle Radar Topography Mission

90 meter resolution
4, 000, 000 points

TERRAIN AND BIG DATA

3

Source: Scalable algorithms for large high-resolution terrain data, Mølhave et al.

2 meter resolution 90 meter resolution

I/O-EFFICIENT ALGORITHMS

4

RAM model

CPU

Internal Memory
(RAM)

Random Access

Capacity: ∞

I/O-EFFICIENT ALGORITHMS

4

RAM model

CPU

Internal Memory
(RAM)

Random Access

Capacity: ∞

I/O-Efficient Algorithms: Move as few blocks as possible

I/O-Model

CPU

Internal Memory External Memory
(Disk)(RAM)

Block I/ORandom Access

Capacity: M Capacity: ∞
Size: B

Hard drives moves blocks of data and are slow

I/O-EFFICIENT ALGORITHMS

5

N = # of items in input

CPU

Internal Memory External Memory
(Disk)(RAM)

Block I/ORandom Access

Capacity: M Capacity: ∞
Size: B

B = # of items in a block

M = # of items in memory (capacity)

I/O-Model by Aggarwal and Vitter (CACM 1988)

Reading elements: Scan(N) = Θ(N/B)

Sorting elements: Sort(N) = Θ(N
B
logM/B

N
B
)

6

External Memory Pipelining Made Easy With TPIE
Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen

IEEE BigData 2017

I/O-EFFICIENT ALGORITHMS IN PRACTICE

7

TPIE: The Templated Portable I/O Environment

Hide low-level details while maintaining performance

Provides implementations of fundamental algorithms

Used both commercially and in research

File streams: reading and writing to disk

TPIE PIPELINING

8

Read input

Transform

Output

Sort

Sort

Imperative-style algorithm

TPIE PIPELINING

8

Read input

Transform

Output

Standard components

Sort

Sort

Imperative-style algorithm

TPIE PIPELINING

8

Read input

Transform

Output

Sort

Sort

O(Scan(N))

O(Sort(N))

O(Scan(N))

O(Scan(N))

O(Sort(N))

Imperative-style algorithm

TPIE PIPELINING

8

Read input

Transform

Output

Sort

Sort

O(Scan(N))

O(Sort(N))

O(Scan(N))

O(Scan(N))

O(Sort(N))

O(Sort(N))

Imperative-style algorithm

TPIE PIPELINING

8

Read input

Transform

Output

Sort

Sort

O(Scan(N))

O(Sort(N))

O(Scan(N))

O(Scan(N))

O(Sort(N))

O(Sort(N))

Read input

Sort

Transform

Sort

Output

Imperative-style algorithm Pipelined Algorithm

PIPELINING NODES

9

def transform(input_file, output_file):
while input_file.can_read():

x = input_file.read()
output_file.write(f(x))

class TransformComponent:
def push(x):

dest.push(f(x))

TPIE PIPELINING

10

Blocking Components Read input

Transform

Transform

Produce Output

Identifying Phases

Sort

Sort

TPIE PIPELINING

10

Blocking Components Read input

Transform

Transform

Produce Output

Identifying Phases

Sort runs

Merge runs

Sort runs

Merge runs

TPIE PIPELINING

10

Blocking Components Read input

Transform

Transform

Produce Output

Identifying Phases

Sort runs

Merge runs

Sort runs

Merge runs

Memory Management

TPIE PIPELINING

10

Blocking Components Read input

Transform

Transform

Produce Output

Identifying Phases

Sort runs

Merge runs

Sort runs

Merge runs

Memory Management

Progress Tracking

Parallelisation

11

1D and 2D Flow Routing on a Terrain
Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal

ACM SIGSPATIAL 2020

Invited to ACM TSAS

FLOOD MODEL

12

Single Flow Direction Model: Water on a vertex v flows to a single neighbor u along an edge

Multiflow Direction Model: Water on a vertex v flows to multiple neighbors

13

THE PROBLEM

Flood-time query: GIven a rain distributionR, for each vertex q ∈ Σ, determine the time t that q becomes flooded

Terrain-flood query: GIven a rain distributionR and a time t, determine which vertices of Σ are flooded.

Rain distribution: R(v) : V → R≥0

STATE OF THE ART

14

SFD RAM-model

SFD I/O-model

Flood-time query Terrain-flood query

O(N logN) [1] O(N logN) [1] [1] 2004, Liu and Snoeyink

O(Sort(X) log X
M + SortN) [2] O(Sort(N) + Scan(H ·X)) [3]

[2] 2010, Arge, Revsbæk, Zeh
[3] 2017, Arge, Rav, Raza, Revsbæk

H: height of the merge tree

X: number of depressions

STATE OF THE ART

14

SFD RAM-model

SFD I/O-model

Flood-time query Terrain-flood query

O(N logN) [1] O(N logN) [1] [1] 2004, Liu and Snoeyink

O(Sort(X) log X
M + SortN) [2] O(Sort(N) + Scan(H ·X)) [3]

[2] 2010, Arge, Revsbæk, Zeh
[3] 2017, Arge, Rav, Raza, Revsbæk

* O(Sort(N)) [2] * O(Sort(N)) [3]

*: assuming merge tree fits in memory

H: height of the merge tree

X: number of depressions

STATE OF THE ART

14

SFD RAM-model

MFD RAM-model

SFD I/O-model

MFD I/O-model

Flood-time query Terrain-flood query

O(N logN) [1] O(N logN) [1] [1] 2004, Liu and Snoeyink

O(Sort(X) log X
M + SortN) [2] O(Sort(N) + Scan(H ·X)) [3]

O(N logN) [4]

[2] 2010, Arge, Revsbæk, Zeh
[3] 2017, Arge, Rav, Raza, Revsbæk
[4] 2019, Lowe and Agarwal

* O(Sort(N)) [2] * O(Sort(N)) [3]

*: assuming merge tree fits in memory

H: height of the merge tree

X: number of depressions

**O
(
N
(
|R|k +Hω +H2 logH

))
[4]

**: O(NX +N logN) pre-processing

STATE OF THE ART

14

SFD RAM-model

MFD RAM-model

SFD I/O-model

MFD I/O-model

Flood-time query Terrain-flood query

O(N logN) [1] O(N logN) [1] [1] 2004, Liu and Snoeyink

O(Sort(X) log X
M + SortN) [2] O(Sort(N) + Scan(H ·X)) [3]

O(N logN) [4]

[2] 2010, Arge, Revsbæk, Zeh
[3] 2017, Arge, Rav, Raza, Revsbæk
[4] 2019, Lowe and Agarwal

* O(Sort(N + |ϕ|)) [5]

[5] 2021, Arge, Lowe, Svendsen, Agarwal,

* O(Sort(N)) [5]

* O(Sort(N)) [2] * O(Sort(N)) [3]

*: assuming merge tree fits in memory

H: height of the merge tree

X: number of depressions

*** O(|ϕ| log |ϕ|) [5]

**O
(
N
(
|R|k +Hω +H2 logH

))
[4]

***: O(N logN) preprocessing

**: O(NX +N logN) pre-processing

15

FLOW FUNCTIONS

ϕv is a piece-wise constant function

ϕv changes only at spill events and when the rain distribution changes

Rain distribution: R(v, t) : V× R → R≥0

piece-wise constant changing at times {t0, t1, . . . , tK}

Flow function ϕv : the flow rate over a vertex v

SADDLES AND NON-SADDLES

16

u1

α1 β1

α2

α3 α5

α4

u2
u3 u4

v1

v2

v3w

Saddle Vertex: vi

Sink Vertex: ui

Maximal Depression: αi

Non-maximal Depression β1

αu
v

u

17

ALGORITHM FOR COMPUTING FLOW FUNCTIONS

Preprocessing:

[1] 2009, Arge and Revsbæk

[2] 2010, Arge, Revsbæk, Zeh

For all v ∈ Σ, compute the volume of the depression αv (Sort(N) [2])

For all v ∈ Σ, compute the maximal depression containing v (Sort(N) [1])

αvFor each maximal depression β, compute the amount

of rain falling directly in β (O(Sort(N) + Sort(|R|)))

18

ALGORITHM FOR COMPUTING FLOW FUNCTIONS

Sweep:

At height lmaintain depressions αi in the sublevel set h<l

α1 α2 α3 α4

α6α5

α7
h<l: {α7}

18

ALGORITHM FOR COMPUTING FLOW FUNCTIONS

Sweep:

At height lmaintain depressions αi in the sublevel set h<l

α1 α2 α3 α4

α6α5

α7
h<l: {α5, α6}

18

ALGORITHM FOR COMPUTING FLOW FUNCTIONS

Sweep:

At height lmaintain depressions αi in the sublevel set h<l

α1 α2 α3 α4

α6α5

α7
h<l: {α1, α2, α3, α4}

18

ALGORITHM FOR COMPUTING FLOW FUNCTIONS

Sweep:

At height lmaintain depressions αi in the sublevel set h<l

α1 α2 α3 α4

α6α5

α7
h<l: {α1, α2, α3, α4}

For each αi: maintain

E(αi): the edges crossing the sweep line into αi

Fαi(t): fill-rate function of αi

For each e ∈ E(αi): maintain ϕe(t)

19

NON-SADDLE VERTICES

For each αi: maintain

E(αi): the edges crossing the sweep line into αi

Fαi(t): fill-rate function of αi

For each e ∈ E(αi): maintain ϕe(t)
v

α3 α4

α6

α7

Whenever we cross a non-saddle:

Compute ϕv = R(v, t) +
∑

e∈E(α) ϕe(t)

α

For each outgoing edge e: Compute ϕe(t) = we · ϕv(t)

Update E(α): remove incoming edge, add outgoing edges

20

SADDLE VERTICES

For each αi: maintain

E(αi): the edges crossing the sweep line into αi

Fαi(t): fill-rate function of αi

For each e ∈ E(αi): maintain ϕe(t)
v

α3 α4

α6

α7

Whenever we cross a saddle:

α

Partition E(α) into E(β1) and E(β2)

β1 β2

Compute ϕe(t) for outgoing edges as before

20

SADDLE VERTICES

For each αi: maintain

E(αi): the edges crossing the sweep line into αi

Fαi(t): fill-rate function of αi

For each e ∈ E(αi): maintain ϕe(t)
v

α3 α4

α6

α7

Whenever we cross a saddle:

α

Partition E(α) into E(β1) and E(β2)

β1 β2

Fβ1
(t) = R(β1, t) +

∑
e∈E(β1)

ϕe(t)

Compute fill-rate functions for β1 and β2

Compute ϕe(t) for outgoing edges as before

20

SADDLE VERTICES

For each αi: maintain

E(αi): the edges crossing the sweep line into αi

Fαi(t): fill-rate function of αi

For each e ∈ E(αi): maintain ϕe(t)
v

α3 α4

α6

α7

Whenever we cross a saddle:

α

Partition E(α) into E(β1) and E(β2)

β1 β2

Fβ1
(t) = R(β1, t) +

∑
e∈E(β1)

ϕe(t)

Compute fill-rate functions for β1 and β2

Assume β1 spills first: Add the spill from β1 to ϕv

Update ϕe for outgoing edges e and update E(β1), and E(β2)

Compute ϕe(t) for outgoing edges as before

21

COMBINING EVERYTHING
Total: O(Sort(N + |ϕ|))

21

COMBINING EVERYTHING
Total: O(Sort(N + |ϕ|))

For each v ∈ Σ, we precomputed the volume of βv .

For each maximal depression α, we computed the fill function Fα(t)

We use this to compute the fill-time of v !

21

COMBINING EVERYTHING
Total: O(Sort(N + |ϕ|))

For each v ∈ Σ, we precomputed the volume of βv .

For each maximal depression α, we computed the fill function Fα(t)

We use this to compute the fill-time of v !

22

OPEN PROBLEMS
Can we O(N logN) instead of O(|ϕ| log |ϕ|) in the RAM model?

Can we get Sort(ϕ) in the I/O model with no assumptions onM?

Output sensitive algorithm for the I/O-model?

23

Practical I/O-Efficient Multiway Separators
Svend C. Svendsen

Manuscript

24

PLANAR SEPARATOR THEOREM

24

PLANAR SEPARATOR THEOREM

24

PLANAR SEPARATOR THEOREM

A B

24

PLANAR SEPARATOR THEOREM
Lipton and Tarjan 1979:

A B
S

1
3N ≤ |A|, |B| ≤ 2

3N

|S| = O(
√
N)

O(N) time

25

MULTIWAY SEPARATOR

25

MULTIWAY SEPARATOR

25

MULTIWAY SEPARATOR

25

MULTIWAY SEPARATOR

25

MULTIWAY SEPARATOR

Frederickson (1953): r-way separator

Divide a graph into r regions

Each region has O(N/r) vertices

O(
√
Nr) boundary vertices

25

MULTIWAY SEPARATOR

Frederickson (1953): r-way separator

Divide a graph into r regions

Each region has O(N/r) vertices

O(
√
Nr) boundary vertices

Useful in the I/O-model: N/M-separator

Can solve problems such as SSSP, DFS, finding
strongly connected components, and topological

sorting [1,2]

[1] 2003, Arge, Toma, and Zeh
[2] 2005, Agarwal, Arge, and Yi

26

STATE OF THE ART

Maheshwari and Zeh (2008)

Arge, Walderveen, and Zeh (2013)

I/Os Internal Computation

O(Sort(N))

O(Sort(N)) O(N logN)

27

DISK PACKINGS

Koebe (1936): every planar graph can be embedded as a disk packing

27

DISK PACKINGS

Miller, Teng, Thurston, Vavasis (1997):

At most 3
4
N disks inside

At most 3
4
N disks outside

At most O(
√
N) disks crossing

Koebe (1936): every planar graph can be embedded as a disk packing

27

DISK PACKINGS

Miller, Teng, Thurston, Vavasis (1997):

At most 3
4
N disks inside

At most 3
4
N disks outside

At most O(
√
N) disks crossing

Koebe (1936): every planar graph can be embedded as a disk packing

Given a disk packing: O(Scan(N)) I/Os

28

COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS
How do we compute an r-way separator for r = N

M
?

Naively computing an N
M
-way separator: O(Scan(N) log N

M
)

28

COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS
How do we compute an r-way separator for r = N

M
?

Naively computing an N
M
-way separator: O(Scan(N) log N

M
)

We want O(Sort(N)) = O
(
Scan(N) logM/B

N
B

)

28

COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS
How do we compute an r-way separator for r = N

M
?

Naively computing an N
M
-way separator: O(Scan(N) log N

M
)

We want O(Sort(N)) = O
(
Scan(N) logM/B

N
B

)
Solution:

Given a disk packing P , sample S ⊆ P

Compute multiway separator on S

Split P using the multiway separator (hopefully)

28

COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS
How do we compute an r-way separator for r = N

M
?

Naively computing an N
M
-way separator: O(Scan(N) log N

M
)

We want O(Sort(N)) = O
(
Scan(N) logM/B

N
B

)
Solution:

Given a disk packing P , sample S ⊆ P

Compute multiway separator on S

Split P using the multiway separator (hopefully)

O(Sort(N)) but no bound on boundary vertices

28

COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS
How do we compute an r-way separator for r = N

M
?

Naively computing an N
M
-way separator: O(Scan(N) log N

M
)

We want O(Sort(N)) = O
(
Scan(N) logM/B

N
B

)
Solution:

Given a disk packing P , sample S ⊆ P

Compute multiway separator on S

Split P using the multiway separator (hopefully)

O(Sort(N)) but no bound on boundary vertices

log3 M
B
log log M

B
logN = O(

√
M)

Upper bound on boundary vertices if

29

APPLYING TO TRIANGULATIONS
Disk Packings are difficult to compute

Use circumcircles

29

APPLYING TO TRIANGULATIONS
Disk Packings are difficult to compute

Use circumcircles

29

APPLYING TO TRIANGULATIONS
Disk Packings are difficult to compute

Use circumcircles

29

APPLYING TO TRIANGULATIONS
Disk Packings are difficult to compute

Use circumcircles

If at most k disks overlap in one point,

the separator has size O(
√
kN)

Miller, Teng, Thurston, Vavasis (1997):

29

APPLYING TO TRIANGULATIONS
Disk Packings are difficult to compute

Use circumcircles

If at most k disks overlap in one point,

the separator has size O(
√
kN)

Miller, Teng, Thurston, Vavasis (1997):

This works well in practice on terrain!

Triangulation are fast to compute (Sort(N) [1][2])

[1] 1993, Goodrich, Tsay, Vengroff, and Vitter
[2] 2005, Agarwal, Arge, and Yi

30

OPEN PROBLEMS

Can we get a bound on the boundary size?

Can we do better on circumcircles?

31

Learning to Find Hydrological Corrections
Lars Arge, Allan Grønlund, Svend C. Svendsen, Jonas Tranberg

ACM SIGSPATIAL 2019

32

WHAT ARE HYDROLOGICAL CORRECTIONS?

32

WHAT ARE HYDROLOGICAL CORRECTIONS?

33

INPUT DATA
Digital Elevation Model

415 billion cells

Road and River Networks

Terrain Flood-Time Computation

List of Corrections

34

CREATING TILE DATA

34

CREATING TILE DATA

34

CREATING TILE DATA

34

CREATING TILE DATA

35

TRAINING THE ALGORITHM

36

EFFICIENTLY COMPUTING FILL FUNCTIONS

Partition E(α) into E(β1) and E(β2)

Fβ1
(t) = R(β1, t) +

∑
e∈E(β1)

ϕe(t)

Fα(t) = Fβ1(t) + Fβ2(t)

Assume w.l.o.g. |E(β1)| < |E(β2)|

v
α3 α4

α6

α7
α

β1 β2

