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— THE PROGRAM OF THE DAY

— External Memory Pipelining Made Easy With TPIE

Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen

— 1D and 2D Flow Routing on a Terrain

Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal

— Practical I/0-Efficient Multiway Separators
Svend C. Svendsen

— Learning to Find Hydrological Corrections

Lars Arge, Allan Granlund, Svend Christian Svendsen, Jonas Tranberg
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— TERRAIN AND BIG DATA

— Present: Terrain is collected with LIDAR
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— TERRAIN AND BIG DATA

— Present: Terrain is collected with LIDAR

— Denmark - Shuttle Radar Topography Mission

?0 meter resolution
4,000, 000 points
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— TERRAIN AND BIG DATA

— Present: Terrain is collected with LIDAR

— Denmark - Shuttle Radar Topography Mission

?0 meter resolution
4,000, 000 points

— Denmark - Danish Elevation Model

40 centimeter resolution
415,000, 000, 000 points
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Source: LIDAR America
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— TERRAIN AND BIG DATA

Imagery ©2010 DigitalGlobe, Scankort, GeoEye, COWI A/S, DDO, Map data @2010 Tele Atlas - Terms of Use

2 meter resolution
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Imagery ©2010 DigitalGlobe, Scankort, GeoEye, COW| AJS, DDO, Map data ©2010 Tele Atlas - Terms of Use

90 meter resolution




— |I/O-EFFICIENT ALGORITHMS

— RAM model

N
CPU

/v
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— |I/O-EFFICIENT ALGORITHMS

RAM model

N
CPU

— |/O-Model

/v

Random Access

Internal Memory
(RAM)

Capacity: oo

N
CPU

Hard drives moves blocks of data and are slow
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Random Access

Internal Memory
(RAM)

Capacity: M

Block I/O

— |/0O-Efficient Algorithms: Move as few blocks as possible

_—
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External Memory

(Disk)

Capacity: oo
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— |I/O-EFFICIENT ALGORITHMS

— T
\ /
N Random Access | nternal Memory Block 170 External Memory
777777777777777777777777777777777 RAM ] DiSk
CPU ( ) Size: B Diskd
Capacity: M Capacity: oo
\ /

— |/0O-Model by Aggarwal and Vitter (CACM 1988)

— N =# of items In Input
— B =# of tems in a block

— M = # of items in memory (capacity)
— Reading elements: Scan(N) = O(N/B)

— Sorting elements: Sort(N) = @(% 109 /5 %)
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External Memory Pipelining Made Easy With TPIE
Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen
IEEE BigData 2017




— |I/O-EFFICIENT ALGORITHMS IN PRACTICE

— TPIE: The Templated Portable |/O Environment

— Hide low-level details while maintaining performance
— File streams: reading and writing to disk

— Provides implementations of fundamental algorithms

— Used both commercially and in research
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— TPIE PIPELINING

/v

Imperative-style algorithm

Read input
v
Sort
v
Transform
v
Sort
v
Output
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— TPIE PIPELINING

/v

Imperative-style algorithm

Read input
Y
Sort

¥
Transform > Standard components
I
Sort

V
Output
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— TPIE PIPELINING

Imperative-style algorithm

Read input O(Scan(N))
Si/)rt O(Sort(N))

Tron:/form O(Scan(N))
Sc\,;rt O(Sort(N))

Ou:,t/put O(Scan(N))

AARHUS
/ P UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE




— TPIE PIPELINING

Imperative-style algorithm
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Read input O(Scan(N))
Sg)rt O(Sort(N))
Tronl/form O(Scan(N))
Sc\,;rt O(Sort(N))
Ou:,t/put O(Scan(N))
O(Sort(N))
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— TPIE PIPELINING

Imperative-style algorithm Pipelined Algorithm
Read input O(Scan(N)) Read input
i v
Sort O(Sort(NV)) Sort
i v
Transform O(Scan(N)) | Transform ‘
Y v
Sort O(Sort(N)) Sort
i v
Output O(Scan(N)) | Output ‘
O(Sort(N))
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— PIPELINING NODES
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def transform(input_file, output_file):
while input_file.can_read():
x = input_file.read()
output_file.write(f(x))

class TransformComponent;
def push(x):

dest.push(f(x))




— TPIE PIPELINING

— Blocking Components

— |dentifying Phases

/v
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Read input
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Transform
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Transform

Sort
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Produce Output
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— TPIE PIPELINING

— Blocking Components

— |dentifying Phases
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Read input

!

Transform

/\

Transform
Sonruns‘ i

Sort runs

Merge runs

\ | Merge runs

—

Produce Output
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— TPIE PIPELINING

— Blocking Components
— |dentifying Phases

— Memory Management
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Read input

!

Transform

/\

Transform
Sonruns‘ i

Sort runs

Mergeruns | ST ——

\ | Merge runs

—

Produce Output
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— TPIE PIPELINING

— Blocking Components
— |dentifying Phases
— Memory Management

— Parallelisation

— Progress Tracking
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Read input

!

Transform

/

Sonruns‘

Merge runs

>
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Transform

V

Sort runs

D ——

| Merge runs
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1D and 2D Flow Routing on a Terrain

Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal

ACM SIGSPATIAL 2020
Invited to ACM TSAS
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— FLOOD MODEL

— JSingle Flow Direction Model: Water on a vertex v flows to a single neighbor v along an edge
— Multiflow Direction Model: Water on a vertex v flows to multiple neighbors
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— THE PROBLEM

— Rain distribution: R(v) : V — R

— TJerrain-flood query: Glven a rain distribution R and a time ¢, determine which vertices of X are flooded.

— Flood-time query: Glven a rain distribution ‘R, for each vertex g € ., determine the time t that ¢ becomes flooded
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— STATE OF THE ART

— H: height of the merge tree
— X:number of depressions

/v

SFD RAM-model

SFD I/O-model
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Flood-time query Terrain-flood query

O(Nlog N) [1] O(NlogN) [1]

O(Sort(X)log = + Sort N) [2] O(Sort(N) + Scan(H - X)) [3]

14

(1] 2004, Liu and Snoeyink
2] 2010, Arge, Revsbeek, Zeh
3] 2017, Arge, Rav, Raza, Revsbaek

S @

w

SiTas ARR®

>

~ (@)

Vsis. o\

<

N



— STATE OF THE ART

— H: height of the merge tree
— X:number of depressions

Flood-time query Terrain-flood query
SFD RAM-model O(NlogN) [1] O(NlogN) [1] 11 2004, Liu and Snoeyink
2] 2010, Arge, Revsbeek, Zeh
SFD 1/0O-model O(Sort(X)log = + Sort N) [2] O(Sort(N) + Scan(H - X)) [3]  [312017, Arge, Rav, Raza, Revsbaek
* O(Sort(N)) [2] * O(Sort(N)) [3]
*. assuming merge tree fits In memory
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— STATE OF THE ART

— H: height of the merge tree
— X:number of depressions

SFD RAM-model

SFD I/O-model

MFD RAM-model

MFD |I/O-model
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Flood-time query

O(N log N) [1]

O(Sort(X)log = + Sort N) [2]
* O(Sort(N)) [2]

“O(N(|RJk+ H* + Hlog H) ) [4]

Terrain-flood query
O(NlogN) [1] ] 2004, Liu and Snoeyink
1 2010, Arge, Revsbcek, Zeh

12017, Arge, Rav, Raza, Revsbcek
12019, Lowe and Agarwal

O(Sort(N) + Scan(H - X)) [3]

N W N —

“ O(Sort(N)) [3]

O(N log N) [4] *: assuming merge tree fits in memory

** O(NX 4+ Nlog N) pre-processing
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— STATE OF THE ART

— H: height of the merge tree
— X:number of depressions

Flood-time query Terrain-flood query
SFD RAM-model O(NlogN) [1] O(NlogN) [1] 11 2004, Liu and Snoeyink
2] 2010, Arge, Revsbeek, Zeh
SFD 1/0O-model O(Sort(X)log = + Sort N) [2] O(Sort(N) + Scan(H - X)) [3]  [312017, Arge, Rav, Raza, Revsbaek
4] 2019, Lowe and Agarwal
*O(Sort(N)) [2] *O(Sort(N)) [3] 5] 2021, Arge, Lowe, Svendsen, Agarwal,
MFD RAM-model **O (N(\RUC + HY + H?log H)) [4]  O(NlogN) [4] *: assuming merge tree fits in memory
**O(|o|log|e|) [5] *** O(NX + N log N) pre-processing
MFD |I/O-model *O(Sort(N + |¢|)) [5] *O(Sort(N)) [5] *** O(N log N) preprocessing
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— FLOW FUNCTIONS

— Rain distribution: R(v,t) : V x R — R
Diece-wise constant changing at times {tg, t1,...,tx}

— Flow function ¢, the flow rate over a vertex v

— ¢, IS a plece-wise constant function

— ¢, changes only at spill events and when the rain distribution changes
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— SADDLES AND NON-SADDLES

— Saddle Vertex: v,
— Sink Vertex: u;
— Maximal Depression: «;

— Non-maximal Depression 3,

Ul -------------- O W US

1 @7
51 3 o

ul u2 (]
u |
3 Uy
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— ALGORITHM FOR COMPUTING FLOW FUNCTIONS

— Preprocessing:
— For all v € ¥, compute the maximal depression containing v (Sort(N) [1])

— For dll v € %, compute the volume of the depression «,, (Sort(V) [2])

— For each maximal depression 5, compute the amount
of rain falling directly in 5 (O(Sort(N) + Sort(|R])))

[1] 2009, Arge and Revsbaek
[2] 2010, Arge, Revsbeek, Zeh
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— ALGORITHM FOR COMPUTING FLOW FUNCTIONS

— Sweep:

— At height [ maintain depressions «; in the sublevel set h

\ ---------------------------------------------- T / h<i: {or}
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— ALGORITHM FOR COMPUTING FLOW FUNCTIONS

— Sweep:

— At height [ maintain depressions «; in the sublevel set h

h<l: {&5, 046}
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— ALGORITHM FOR COMPUTING FLOW FUNCTIONS

— Sweep:

— At height [ maintain depressions «; in the sublevel set h

hap: {on, g, 03, a4}
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— ALGORITHM FOR COMPUTING FLOW FUNCTIONS

— Sweep:
— At height [ maintain depressions «; in the sublevel set h

— For each a5 maintain

— F(«;): the edges crossing the sweep line into «;

— Foreach e € E(a;): maintain ¢.(t)

— Iy, fill-rate function of ¢

hap: {on, g, 03, a4}
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— NON-SADDLE VERTICES

— For each a;: maintain

— F(«;): the edges crossing the sweep line into «;
— Foreach e € E(«;): maintain ¢.(t)

— Iy, @) fill-rate function of o

— Whenever we cross a non-saddle:

— Compute ¢, = R(v,1) + D cp(a) Pe(t)
— For each outgoing edge e: Compute ¢.(t) = w, - ¢, (t)

— Update E(a): remove incoming edge, add outgoing edges

AARHUS
/ ¥ UNIVERSITY
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— SADDLE VERTICES

— For each a;: maintain

— FE(«;): the edges crossing the sweep line into «;
— Foreach e € E(q;): maintain ¢.(t)
— Iy, @) fill-rate function of ¢

— Whenever we cross a saddle:

— Compute ¢.(t) for outgoing edges as before
— Partition E(«) into E(6;) and E(f3s)
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— SADDLE VERTICES

— For each a;: maintain

— FE(«;): the edges crossing the sweep line into «;

— Foreach e € E(«;): maintain ¢.(t)

— Iy, @) fill-rate function of ¢

— Whenever we cross a saddle:

— Compute ¢.(t) for outgoing edges as before
— Partition E(«) into E(6;) and E(f3s)

— Compute fill-rate functions for 5; and [,

— Fp, (1) = B(B1:t) + D eemp,) Pelt)
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— SADDLE VERTICES

— For each a;: maintain

— FE(«;): the edges crossing the sweep line into «;

— Foreach e € E(«;): maintain ¢.(t)

— Iy, @) fill-rate function of ¢

— Whenever we cross a saddle:

— Compute ¢.(t) for outgoing edges as before
— Partition E(«) into E(6;) and E(f3s)

— Compute fill-rate functions for 5; and [,

— Fp, (1) = B(B1:t) + D eemp,) Pelt)

— Assume (35 spills first: Add the spill from 3, to ¢,

— Update ¢, for outgoing edges e and update E(5;), and E(5s)
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— COMBINING EVERYTHING
— Total: O(Sort(N + |¢|))
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— COMBINING EVERYTHING
— Total: O(Sort(N + |¢|))

— Foreach v € X, we precomputed the volume of 5,

— For each maximal depression a, we computed the fill function F,(t)

—  We use this to compute the fill-time of v |
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— COMBINING EVERYTHING
— Total: O(Sort(N + |¢|))

— Foreach v € X, we precomputed the volume of 5,

— For each maximal depression a, we computed the fill function F,(t)

—  We use this to compute the fill-time of v |
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— OPEN PROBLEMS

— Canwe O(N log N) instead of O(|¢|log |¢|) in the RAM model?
— Can we get Sort(¢) in the 17O model with no assumptions on M?

— Output sensitive algorithm for the |/O-model?
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Practical |/O-Efficient Multiway Separators

Svend C. Svendsen

Manuscript
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— PLANAR SEPARATOR THEOREM
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— PLANAR SEPARATOR THEOREM
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— PLANAR SEPARATOR THEOREM
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— PLANAR SEPARATOR THEOREM

— Lipton and Tarjan 19/79:
sN <|A],|B| < 2N
S| = O(VN)

— O(N) time
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— MULTIWAY SEPARATOR
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— MULTIWAY SEPARATOR
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— MULTIWAY SEPARATOR
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— MULTIWAY SEPARATOR

\ITIN
@ "o

€T
AARHUS >
/ ¥ UNIVERSITY 25 NZE.

DEPARTMENT OF COMPUTER SCIENCE

™

“\\“\ Lip

D
0y
Vsis

N
SITas Aa‘f\os



— MULTIWAY SEPARATOR

— Frederickson (1953): r-way separator
— Divide a graph into r regions
— Eachregion has O(N /r) vertices
— O(V/Nr) boundary vertices

¢
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— MULTIWAY SEPARATOR

— Frederickson (1953): r-way separator
— Divide a graph into r regions
— Eachregion has O(N /r) vertices
— O(v/Nr) boundary vertices
— Useful in the I7O0-model: N /M -separator
— Can solve problems such as SSSP, DFS, finding &/

strongly connected components, and topological

sorting [1,2]

[1] 2003, Arge, Toma, and Zeh
[2] 2005, Agarwal, Arge, and Yi
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— STATE OF THE ART

1/Os Internal Computation
Maheshwari and Zeh (2008) O(Sort(N))
Arge, Walderveen, and Zeh (2013) O(Sort(N)) O(Nlog N)
AARHUS S0,
/v [L)JEIF\’IA!I:'/I'I\E’IERI\I? l(-)l—FYCOM PUTER SCIENCE 2 6 %@



— DISK PACKINGS

— Koebe (1936): every planar graph can be embedded as a disk packing
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— DISK PACKINGS

— Koebe (1936): every planar graph can be embedded as a disk packing
— Miller, Teng, Thurston, Vavasis (1997):

— At most %N disks inside

— At most %N disks outside

— At most O(v/N) disks crossing
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— DISK PACKINGS

— Koebe (1936): every planar graph can be embedded as a disk packing
— Miller, Teng, Thurston, Vavasis (1997):

— At most 2N disks inside

— At most 2N disks outside

— At most O(v/N) disks crossing
— Given a disk packing: O(Scan(N)) I/Os

AARHUS
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— COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS

— How do we compute an r-way separator for r = %’?

— Naively computing an 3--way separator: O(Scan(N) log <)
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— COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS

— How do we compute an r-way separator for r = %’?

— Naively computing an 3--way separator: O(Scan(N) log <)

— Wewant O(Sort(N)) = O(Scon(N) 109/ N)

B
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COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS

How do we compute an r-way separator for r = %’?

Naively computing an <--way separator: O(Scan(N) log 1)
We want O(Sort(N)) = O( Scan(N)log,,/p %)
Solution:

— Given a disk packing P, sample S C P
— Compute multiway separator on .S

— Split P using the multiway separator (hopefully)

AARHUS
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COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS

How do we compute an r-way separator for r = %’?

Naively computing an <--way separator: O(Scan(N) log 1)
We want O(Sort(N)) = O( Scan(N)log,,/p %)
Solution:

— Given a disk packing P, sample S C P
— Compute multiway separator on .S

— Split P using the multiway separator (hopefully)

O(Sort(N)) but no bound on boundary vertices
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COMPUTING MULTIWAY SEPARATORS ON DISK PACKINGS

How do we compute an r-way separator for r = %’?

Naively computing an <--way separator: O(Scan(N) log 1)
We want O(Sort(N)) = O( Scan(N)log,,/p %)
Solution:

— Given a disk packing P, sample S C P

— Compute multiway separator on .S

— Split P using the multiway separator (hopefully)

O(Sort(N)) but no bound on boundary vertices

Upper bound on boundary vertices if

log® & loglog £ log N = O(V M)
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— APPLYING TO TRIANGULATIONS

— Disk Packings are difficult to compute

— Use circumcircles
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APPLYING TO TRIANGULATIONS

Disk Packings are difficult to compute

Use circumcircles

Miller, Teng, Thurston, Vavasis (1997):
It at most & disks overlap in one point,

the separator has size O(vVEN)
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— APPLYING TO TRIANGULATIONS

— Disk Packings are difficult to compute

— Use circumcircles

— Miller, Teng, Thurston, Vavasis (1997):
It at most &k disks overlap in one point,

the separator has size O(vVEN)

— This works well in practice on terrain!

— Triangulation are fast to compute (Sort(NV) [1][2])

[1] 1993, Goodrich, Tsay, Vengroff, and Vitter
[2] 2005, Agarwal, Arge, and Yi
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— OPEN PROBLEMS

Can we get a bound on the boundary size”?

Can we do better on circumcircles?
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Learning to Find Hydrological Corrections

Lars Arge, Allan Grenlund, Svend C. Svendsen, Jonas Tranberg

ACM SIGSPATIAL 2019
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— WHAT ARE HYDROLOGICAL CORRECTIONS?
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INPUT DATA

Digital Elevation Model

— 415 billion cells

Road and River Networks

Terrain Flood-Time Computation

List of Corrections
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— CREATING TILE DATA
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— TRAINING THE ALGORITHM
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— EFFICIENTLY COMPUTING FILL FUNCTIONS

— Partition E(«) into E(8;) and E(3,)
— Assume w.lo.g. |[E(81)| < |E(Bs)
— Fﬁl (t) — R(ﬁlat) + ZGEE(ﬁl) Qbe(t)

— F(t) = Fy, (t) + Fa, (0
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