ALGORITHMS FOR MASSIVE TERRAINS AND GRAPHS

- THE PROGRAM OF THE DAY

External Memory Pipelining Made Easy With TPIE
 Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen

— THE PROGRAM OF THE DAY

- External Memory Pipelining Made Easy With TPIE
 Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen
- 1D and 2D Flow Routing on a Terrain
 Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal

— THE PROGRAM OF THE DAY

- External Memory Pipelining Made Easy With TPIE
 Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen
- 1D and 2D Flow Routing on a Terrain
 Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal
- Practical I/O-Efficient Multiway Separators
 Svend C. Svendsen

— THE PROGRAM OF THE DAY

- External Memory Pipelining Made Easy With TPIE
 Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen
- 1D and 2D Flow Routing on a Terrain
 Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal
- Practical I/O-Efficient Multiway Separators
 Svend C. Svendsen
- Learning to Find Hydrological Corrections
 Lars Arge, Allan Grønlund, Svend Christian Svendsen, Jonas Tranberg

Present: Terrain is collected with LiDAR

Source: LiDAR America

- Present: Terrain is collected with LiDAR
- Denmark Shuttle Radar Topography Mission
 90 meter resolution
 4,000,000 points

Source: LiDAR America

- Present: Terrain is collected with LiDAR
- Denmark Shuttle Radar Topography Mission
 90 meter resolution
 4,000,000 points
- Denmark Danish Elevation Model
 40 centimeter resolution
 415,000,000,000 points

Source: LiDAR America

2 meter resolution

90 meter resolution

Source: Scalable algorithms for large high-resolution terrain data, Mølhave et al.

- I/O-EFFICIENT ALGORITHMS

— RAM model

- I/O-EFFICIENT ALGORITHMS

— RAM model

— I/O-Model

- Hard drives moves blocks of data and are slow
- I/O-Efficient Algorithms: Move as few blocks as possible

- I/O-EFFICIENT ALGORITHMS

- I/O-Model by Aggarwal and Vitter (CACM 1988)
- N = # of items in input
- B = # of items in a block
- M = # of items in memory (capacity)
- Reading elements: $Scan(N) = \Theta(N/B)$
- Sorting elements: $\operatorname{Sort}(N) = \Theta(\frac{N}{B} \log_{M/B} \frac{N}{B})$

External Memory Pipelining Made Easy With TPIE

Lars Arge, Mathias Rav, Svend C. Svendsen, Jakob Truelsen
IEEE BigData 2017

- I/O-EFFICIENT ALGORITHMS IN PRACTICE

- TPIE: The Templated Portable I/O Environment
- Hide low-level details while maintaining performance
- File streams: reading and writing to disk
- Provides implementations of fundamental algorithms
- Used both commercially and in research

Imperative-style algorithm

Pipelined Algorithm

- PIPELINING NODES

def transform(input_file, output_file):
 while input_file.can_read():
 x = input_file.read()
 output_file.write(f(x))

class TransformComponent:
 def push(x):
 dest.push(f(x))

- Blocking Components
- Identifying Phases

- Blocking Components
- Identifying Phases

- Blocking Components
- Identifying Phases
- Memory Management

- Blocking Components
- Identifying Phases
- Memory Management
- Parallelisation
- Progress Tracking

1D and 2D Flow Routing on a Terrain

Lars Arge, Aaron Lowe, Svend C. Svendsen, Pankaj K. Agarwal

ACM SIGSPATIAL 2020

Invited to ACM TSAS

- FLOOD MODEL

- Single Flow Direction Model: Water on a vertex \boldsymbol{v} flows to a single neighbor \boldsymbol{u} along an edge
- Multiflow Direction Model: Water on a vertex \boldsymbol{v} flows to multiple neighbors

— THE PROBLEM

- Rain distribution: $\mathcal{R}(v): \mathbb{V} \to \mathbb{R}_{>0}$
- Terrain-flood query: Glven a rain distribution \mathcal{R} and a time t, determine which vertices of Σ are flooded.
- Flood-time query: Glven a rain distribution \mathcal{R} , for each vertex $q \in \Sigma$, determine the time t that q becomes flooded

H: height of the merge tree

X: number of depressions

	Flood-time query	Terrain-flood query	
SFD RAM-model	$O(N\log N)$ [1]	$O(N \log N)$ [1]	[1] 2004, Liu and Snoeyink
SFD I/O-model	$O(\operatorname{Sort}(X) \log \frac{X}{M} + \operatorname{Sort} N)$ [2]	$O(\operatorname{Sort}(N) + \operatorname{Scan}(H \cdot X))$ [3]	[2] 2010, Arge, Revsbæk, Zeh [3] 2017, Arge, Rav, Raza, Revsbæk

- H: height of the merge tree
- X: number of depressions

	Flood-time query	Terrain-flood query	
SFD RAM-model	$O(N\log N)$ [1]	$O(N \log N)$ [1]	[1] 2004, Liu and Snoeyink
SFD I/O-model	$O(\operatorname{Sort}(X)\log \frac{X}{M} + \operatorname{Sort} N)$ [2]	$O(\operatorname{Sort}(N) + \operatorname{Scan}(H \cdot X))$ [3]	[2] 2010, Arge, Revsbæk, Zeh [3] 2017, Arge, Rav, Raza, Revsbæk
	* $O(\operatorname{Sort}(N))$ [2]	* $O(\operatorname{Sort}(N))$ [3]	

*: assuming merge tree fits in memory

- H: height of the merge tree
- X: number of depressions

	Flood-time query	Terrain-flood query	
SFD RAM-model	$O(N\log N)$ [1]	$O(N \log N)$ [1]	[1] 2004, Liu and Snoeyink
SFD I/O-model	$O(\operatorname{Sort}(X)\log \frac{X}{M} + \operatorname{Sort} N)$ [2]	$O(\operatorname{Sort}(N) + \operatorname{Scan}(H \cdot X))$ [3]	[2] 2010, Arge, Revsbæk, Zeh [3] 2017, Arge, Rav, Raza, Revsbæk
	* $O(\operatorname{Sort}(N))$ [2]	* $O(\operatorname{Sort}(N))$ [3]	[4] 2019, Lowe and Agarwal
MFD RAM-model	** $O\Big(Nig(\mathcal{R} k+H^\omega+H^2\log Hig)\Big)$ [4]		assuming merge tree fits in memory $ (O(NX + N \log N)) $ pre-processing

MFD I/O-model

- H: height of the merge tree
- X: number of depressions

	2004, Liu and Snoeyink 2010, Arge, Revsbæk, Zeh
SFD I/O-model $O(\operatorname{Sort}(X)\log\frac{X}{M}+\operatorname{Sort}N)$ [2] $O(\operatorname{Sort}(N)+\operatorname{Scan}(H\cdot X))$ [3] 2	[2] 2010, Arge, Revsbæk, Zen [3] 2017, Arge, Rav, Raza, Revsbæk [4] 2019, Lowe and Agarwal
	2021, Arge, Lowe, Svendsen, Agarwal,
MFD RAM-model ** $O\Big(Nig(\mathcal{R} k+H^\omega+H^2\log Hig)\Big)$ [4] $O(N\log N)$ [4] *: assum	ning merge tree fits in memory
*** $O(\phi \log \phi)$ [5]	$(X+N\log N)$ pre-processing
MFD I/O-model * $O(\operatorname{Sort}(N + \phi))$ [5] * $O(\operatorname{Sort}(N))$ [5] ***: $O(\operatorname{Nort}(N))$	$V\log N)$ preprocessing

- FLOW FUNCTIONS

- Rain distribution: $\mathcal{R}(v,t): \mathbb{V} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$ piece-wise constant changing at times $\{t_0,t_1,\ldots,t_K\}$
- Flow function ϕ_v : the flow rate over a vertex v
- ϕ_v is a piece-wise constant function
- ϕ_v changes only at spill events and when the rain distribution changes

- SADDLES AND NON-SADDLES

- Saddle Vertex: v_i
- Sink Vertex: u_i
- Maximal Depression: α_i
- Non-maximal Depression β_1

- ALGORITHM FOR COMPUTING FLOW FUNCTIONS

- Preprocessing:
 - For all $v \in \Sigma$, compute the maximal depression containing v (Sort(N) [1])
 - For all $v \in \Sigma$, compute the volume of the depression α_v (Sort(N) [2])
 - For each maximal depression β , compute the amount of rain falling directly in β ($O(\operatorname{Sort}(N) + \operatorname{Sort}(|\mathcal{R}|))$)

[1] 2009, Arge and Revsbæk

[2] 2010, Arge, Revsbæk, Zeh

- ALGORITHM FOR COMPUTING FLOW FUNCTIONS

- Sweep:
 - At height l maintain depressions α_i in the sublevel set $h_{< l}$

- ALGORITHM FOR COMPUTING FLOW FUNCTIONS

- Sweep:
 - At height l maintain depressions α_i in the sublevel set $h_{< l}$

$$h_{< l}$$
: $\{\alpha_5, \alpha_6\}$

- ALGORITHM FOR COMPUTING FLOW FUNCTIONS

- Sweep:
 - At height l maintain depressions α_i in the sublevel set $h_{< l}$

$$h_{< l}$$
: $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$

- ALGORITHM FOR COMPUTING FLOW FUNCTIONS

- Sweep:
 - At height l maintain depressions α_i in the sublevel set $h_{< l}$
 - For each α_i : maintain
 - $E(\alpha_i)$: the edges crossing the sweep line into α_i
 - For each $e \in E(\alpha_i)$: maintain $\phi_e(t)$
 - $F_{\alpha_i(t)}$: fill-rate function of α_i

$$h_{< l}$$
: $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$

- NON-SADDLE VERTICES

- For each α_i : maintain
 - $E(\alpha_i)$: the edges crossing the sweep line into α_i
 - For each $e \in E(\alpha_i)$: maintain $\phi_e(t)$
 - $F_{\alpha_i(t)}$: fill-rate function of α_i

- Whenever we cross a non-saddle:
 - Compute $\phi_v = \mathcal{R}(v,t) + \sum_{e \in E(\alpha)} \phi_e(t)$
 - For each outgoing edge e: Compute $\phi_e(t) = w_e \cdot \phi_v(t)$
 - Update $E(\alpha)$: remove incoming edge, add outgoing edges

- SADDLE VERTICES

- For each α_i : maintain
 - $E(\alpha_i)$: the edges crossing the sweep line into α_i
 - For each $e \in E(\alpha_i)$: maintain $\phi_e(t)$
 - $F_{\alpha_i(t)}$: fill-rate function of α_i
- Whenever we cross a saddle:
 - Compute $\phi_e(t)$ for outgoing edges as before
 - Partition $E(\alpha)$ into $E(\beta_1)$ and $E(\beta_2)$

- SADDLE VERTICES

- For each α_i : maintain
 - $E(\alpha_i)$: the edges crossing the sweep line into α_i
 - For each $e \in E(\alpha_i)$: maintain $\phi_e(t)$
 - $F_{\alpha_i(t)}$: fill-rate function of α_i
- Whenever we cross a saddle:
 - Compute $\phi_e(t)$ for outgoing edges as before
 - Partition $E(\alpha)$ into $E(\beta_1)$ and $E(\beta_2)$
 - Compute fill-rate functions for β_1 and β_2

$$F_{\beta_1}(t) = R(\beta_1, t) + \sum_{e \in E(\beta_1)} \phi_e(t)$$

- SADDLE VERTICES

- For each α_i : maintain
 - $E(\alpha_i)$: the edges crossing the sweep line into α_i
 - For each $e \in E(\alpha_i)$: maintain $\phi_e(t)$
 - $F_{\alpha_i(t)}$: fill-rate function of α_i
- Whenever we cross a saddle:
 - Compute $\phi_e(t)$ for outgoing edges as before
 - Partition $E(\alpha)$ into $E(\beta_1)$ and $E(\beta_2)$
 - Compute fill-rate functions for β_1 and β_2
 - $F_{\beta_1}(t) = R(\beta_1, t) + \sum_{e \in E(\beta_1)} \phi_e(t)$
 - Assume β_1 spills first: Add the spill from β_1 to ϕ_v
 - Update ϕ_e for outgoing edges e and update $E(\beta_1)$, and $E(\beta_2)$

- COMBINING EVERYTHING

— Total: $O(\operatorname{Sort}(N + |\phi|))$

- COMBINING EVERYTHING

- Total: $O(\operatorname{Sort}(N + |\phi|))$
- For each $v \in \Sigma$, we precomputed the volume of β_v .
- For each maximal depression α , we computed the fill function $F_{\alpha}(t)$
- We use this to compute the fill-time of v!

- COMBINING EVERYTHING

- Total: $O(\operatorname{Sort}(N + |\phi|))$
- For each $v \in \Sigma$, we precomputed the volume of β_v .
- For each maximal depression α , we computed the fill function $F_{\alpha}(t)$
- We use this to compute the fill-time of v!

- OPEN PROBLEMS

- Can we $O(N \log N)$ instead of $O(|\phi| \log |\phi|)$ in the RAM model?
- Can we get $Sort(\phi)$ in the I/O model with no assumptions on M?
- Output sensitive algorithm for the I/O-model?

Practical I/O-Efficient Multiway Separators

Svend C. Svendsen

Manuscript

Lipton and Tarjan 1979:

$$\frac{1}{3}N \le |A|, |B| \le \frac{2}{3}N$$
$$|S| = O(\sqrt{N})$$

- O(N) time

- Frederickson (1953): r-way separator
 - Divide a graph into r regions
 - Each region has O(N/r) vertices
 - $O(\sqrt{Nr})$ boundary vertices

- Frederickson (1953): r-way separator
 - Divide a graph into r regions
 - Each region has O(N/r) vertices
 - $O(\sqrt{Nr})$ boundary vertices
- Useful in the I/O-model: N/M-separator
- Can solve problems such as SSSP, DFS, finding strongly connected components, and topological sorting [1,2]

[1] 2003, Arge, Toma, and Zeh[2] 2005, Agarwal, Arge, and Yi

- STATE OF THE ART

I/Os Internal Computation

Maheshwari and Zeh (2008) $O(\operatorname{Sort}(N))$

Arge, Walderveen, and Zeh (2013) $O(\operatorname{Sort}(N))$ $O(N \log N)$

- DISK PACKINGS

— Koebe (1936): every planar graph can be embedded as a disk packing

- DISK PACKINGS

- Koebe (1936): every planar graph can be embedded as a disk packing
- Miller, Teng, Thurston, Vavasis (1997):
 - At most $\frac{3}{4}N$ disks inside
 - At most $\frac{3}{4}N$ disks outside
 - At most $O(\sqrt{N})$ disks crossing

- DISK PACKINGS

- Koebe (1936): every planar graph can be embedded as a disk packing
- Miller, Teng, Thurston, Vavasis (1997):
 - At most $\frac{3}{4}N$ disks inside
 - At most $\frac{3}{4}N$ disks outside
 - At most $O(\sqrt{N})$ disks crossing
 - Given a disk packing: $O(\operatorname{Scan}(N))$ I/Os

- How do we compute an r-way separator for $r = \frac{N}{M}$?
- Naively computing an $\frac{N}{M}$ -way separator: $O(\operatorname{Scan}(N)\log\frac{N}{M})$

- How do we compute an r-way separator for $r = \frac{N}{M}$?
- Naively computing an $\frac{N}{M}$ -way separator: $O(\operatorname{Scan}(N)\log\frac{N}{M})$
- We want $O(\operatorname{Sort}(N)) = O(\operatorname{Scan}(N) \log_{M/B} \frac{N}{B})$

- How do we compute an r-way separator for $r = \frac{N}{M}$?
- Naively computing an $\frac{N}{M}$ -way separator: $O(\operatorname{Scan}(N)\log\frac{N}{M})$
- We want $O(\operatorname{Sort}(N)) = O(\operatorname{Scan}(N) \log_{M/B} \frac{N}{B})$
- Solution:
 - Given a disk packing P, sample $S \subseteq P$
 - Compute multiway separator on S
 - Split P using the multiway separator (hopefully)

- How do we compute an r-way separator for $r = \frac{N}{M}$?
- Naively computing an $\frac{N}{M}$ -way separator: $O(\operatorname{Scan}(N)\log\frac{N}{M})$
- We want $O(\operatorname{Sort}(N)) = O(\operatorname{Scan}(N) \log_{M/B} \frac{N}{B})$
- Solution:
 - Given a disk packing P, sample $S \subseteq P$
 - Compute multiway separator on S
 - Split P using the multiway separator (hopefully)
- $O(\operatorname{Sort}(N))$ but no bound on boundary vertices

- How do we compute an r-way separator for $r = \frac{N}{M}$?
- Naively computing an $\frac{N}{M}$ -way separator: $O(\operatorname{Scan}(N)\log\frac{N}{M})$
- We want $O(\operatorname{Sort}(N)) = O(\operatorname{Scan}(N) \log_{M/B} \frac{N}{B})$
- Solution:
 - Given a disk packing P, sample $S \subseteq P$
 - Compute multiway separator on S
 - Split P using the multiway separator (hopefully)
- O(Sort(N)) but no bound on boundary vertices
- Upper bound on boundary vertices if $\log^3 \frac{M}{B} \log \log \frac{M}{B} \log N = O(\sqrt{M})$

- Disk Packings are difficult to compute
- Use circumcircles

- Disk Packings are difficult to compute
- Use circumcircles

- Disk Packings are difficult to compute
- Use circumcircles

- Disk Packings are difficult to compute
- Use circumcircles
- Miller, Teng, Thurston, Vavasis (1997): If at most k disks overlap in one point, the separator has size $O(\sqrt{kN})$

- Disk Packings are difficult to compute
- Use circumcircles
- Miller, Teng, Thurston, Vavasis (1997): If at most k disks overlap in one point, the separator has size $O(\sqrt{kN})$
- This works well in practice on terrain!
- Triangulation are fast to compute (Sort(N) [1][2])

[1] 1993, Goodrich, Tsay, Vengroff, and Vitter[2] 2005, Agarwal, Arge, and Yi

- OPEN PROBLEMS

- Can we get a bound on the boundary size?
- Can we do better on circumcircles?

Learning to Find Hydrological Corrections

Lars Arge, Allan Grønlund, Svend C. Svendsen, Jonas Tranberg
ACM SIGSPATIAL 2019

- WHAT ARE HYDROLOGICAL CORRECTIONS?

- WHAT ARE HYDROLOGICAL CORRECTIONS?

- INPUT DATA

- Digital Elevation Model
 - 415 billion cells
- Road and River Networks
- Terrain Flood-Time Computation
- List of Corrections

- TRAINING THE ALGORITHM

- EFFICIENTLY COMPUTING FILL FUNCTIONS

- Partition $E(\alpha)$ into $E(\beta_1)$ and $E(\beta_2)$
- Assume w.l.o.g. $|E(\beta_1)| < |E(\beta_2)|$
- $F_{\beta_1}(t) = R(\beta_1, t) + \sum_{e \in E(\beta_1)} \phi_e(t)$

$$- F_{\alpha}(t) = F_{\beta_1}(t) + F_{\beta_2}(t)$$

