Dynamic Planar Convex Hull

Ph.D. Defense Riko Jacob

31st May 2002

■BRICS, University of Aarhus

Outline of the talk

- Planar convex hull
- Duality: Lower Envelope
- Application: *k*-level
- Overall structure of the data structure
- Some key ingredients
- Lower bounds

Planar Convex Hull

Known results

Optimal $O(n \log n)$ Graham 1972; ... Output-sensitive $O(n \log h)$ Kirkpatrick, Seidel 1986; Chan 1996

Graham's Scan

Andrew's variant for upper hull

Dynamic Planar Convex Hull

Queries

- (a) The extreme point in a direction
- (b) Does a line intersect CH(S)?
- (c) Is a point inside CH(S)?
- (d) Neighbor points on CH(S)
- (e) Tangent points on CH(S)

(f) The edges of CH(S) intersected by a line

Dynamic Planar Convex Hull Results

Insertions only	Update	Query
Preparata 1979	$O(\log n)$	$O(\log n)$
Deletions only		
Hershberger, Suri 1992	$O_{\mathbf{A}}(\log n)$	$O(\log n)$
Offline		
Hershberger, Suri 1996	$O_{\mathbf{A}}(\log n)$	$O(\log n)$
Fully dynamic		
Overmars, van Leeuwen 1981	$O(\log^2 n)$	$O(\log n)$
Chan 1999	$O_{\mathbf{A}}(\log^{1+\epsilon} n)$	$O(\log n)$
Brodal, Jacob 2000 Kaplan, Tarjan, Tsioutsiouliklis '01 }	$O_{\mathbf{A}}(\log n \cdot \log \log n)$	$O(\log n)$

 $O_{\rm A}$ =Amortized Query=Queries (a)–(e)

≣ Riko Jacob

Dynamic Planar Convex Hull Results

Insertions only	Update	Query
Preparata 1979	$O(\log n)$	$O(\log n)$
Deletions only		
Hershberger, Suri 1992	$O_{\mathbf{A}}(\log n)$	$O(\log n)$
Offline		
Hershberger, Suri 1996	$O_{\mathbf{A}}(\log n)$	$O(\log n)$
Fully dynamic		
Overmars, van Leeuwen 1981	$O(\log^2 n)$	$O(\log n)$
Chan 1999	$O_{\mathbf{A}}(\log^{1+\epsilon} n)$	$O(\log n)$
Brodal, Jacob 2000 Kaplan, Tarjan, Tsioutsiouliklis '01	$O_{\mathbf{A}}(\log n \cdot \log \log n)$	$O(\log n)$
this Thesis	$O_{\mathbf{A}}(\log n)$	$O(\log n)$
O _A =Amortized Que	ery=Queries (a)–(e)	,
≣ Riko Jacob		6

Duality Transformation

$$p = (a, b) \in \mathbb{R}^2$$
 maps to $p^* := (a \cdot x - b = y)$

≣ Riko Jacob

Dynamic Lower Envelope

Updates

Insert and delete lines

Queries

- (a) Vertical line intersection
- (b) Is a point above LE(S)
- (c) Is a line above LE(S)
- (d) Next segments on LE(S)
- (e) The segments of LE(S) intersected by a line v_a
- (f) The extreme point of LE(S) in some direction

 ℓ_d

Application: *k***-level in the plane**

Sweep-line algorithm Edelsbrunner and Welzl 1986 Previously $O((n+m)\alpha(n)\log n)$ expected time Har-Peled 1998 Now $O((n+m)\log n)$ for *m* segments on the *k*-level

The 3-level of the 6 lines is depicted in thick red.

Overall Structure

Logarithmic Method

Bentley and Saxe 1980

Static Geometric Merging

Combining Queries: Interval Tree

Task: combine the search on several lower envelopes into one search.

Follows ideas from Chan 1999; different choice of parameters, save some work by relaxed placement and lazy movements:

exploit knowledge about the (dynamic of the) intervals

Semidynamic Merging

- **Create Set(***p***)** Create singleton set

Delete(r) **Delete** r from all merging structures

- Maintains list of points on the upper hull
- Works on binary merging forest
- Performance: $O_{\mathbf{A}}(1)$ per element in the set

Core Problem

Maintain the equality points of the merging

An equality oracle allows $O_A(1)$ per element hull maintenance

≣ Riko Jacob

Separation Certificate

vertical certificates (sweep line): O(n) per deletion parallel tangent search: $O(\log n)$ per deletion suspended search: in some variant O(1) per deletion

Greedy Separation

Greedily choosing tangent lines

Seems too rigid and sensitive for changes

Truss Bridge

We call the construction Truss

Shortcuts

Shortcuts: Reducing the complexity of the outer hull

Dangling search

One deletion affects only constantly many strong rays

Splitters

Data structure(s) keeping (family of) sorted sequences

Elements e_i from a totally ordered universe

Build(e_1, \ldots, e_n) $O_A(n)$ Split(t) $O_A(1)$ Extend(e_{n+1}) $O_A(1)$

Hoffmann, Mehlhorn, Rosenstiehl, Tarjan 1986

Split includes searching;

Dangling searches are suspended searches;

promise to split when finishing the search.

Splitters

Data structure(s) keeping (family of) sorted sequences

Elements e_i from a totally ordered universe

Build(e_1, \ldots, e_n) $O_A(n)$ Split(t) suspended $O_A(1)$ Extend(e_{n+1}) $O_A(1)$

Hoffmann, Mehlhorn, Rosenstiehl, Tarjan 1986

Split includes searching;

Dangling searches are suspended searches;

promise to split when finishing the search.

Joining Strips

The geometric situation of loosing equality points. We join the splitter over a dangling search: Feasible because we promise to split.

≣ Riko Jacob

Account: Life-cycle of a point $p \in A$

- **1.** p becomes part of UH(A). p in replacement splitter.
- **2.** we realize $p \in UC_0(B)$. *p* in lasting splitter.
- **3.** we decide to select p.

- **4.** Delete on B: $p \notin UC(B)$. *p* in surfacing splitter.
- **5.** p is hidden by a shortcut.
- **6.** p is hidden by a bridge.
- 7. p gets on UH(C).
- 8. The point p gets deleted.

New Techniques

Splitter: suspended (dangling) searches, restricted join over search

Dynamization: Reuse of existing data structures

Geometric Merging: Focus on equality points, selected points, dangling search, over-approximation, shortcuts, truss

Interval Tree: Relaxed placement of intervals, lazy movement, location justifier

Linear Space: Separators

Tight Lower Bounds

q(n) be (amortized) query time I(n) amortized insertion time

$$q(n) = \Omega(\log n)$$
 and $I(n) = \Omega\left(\log \frac{n}{q(n)}\right)$

on algebraic real-RAM, off-line usage of data structure, reduction based.

Applies to Membership and Predecessor as well.

Decision Problem

For k < n

 $(x_1,\ldots,x_n,y_1,\ldots,y_k) \in \mathsf{DISJOINTSET}_{n,k} \subset \mathbb{R}^{n+k}$

for all *i*, *j* we have $x_i \neq y_j$

DISJOINTSET_{*n*,*k*} has $\Omega(k^n)$ connected components

An algebraic computation tree has height $\Omega(n \log k)$. (Ben-Or 83)

Summary and Open Problems

Presented

Dynamic Planar Convex Hull Data structure

Query $O(\log n)$ Insert $O_A(\log n)$ Delete $O_A(\log n)$

and a matching lower bound.

Open Problems

- Make it simple
- worst-case instead of amortized bounds
- more general queries
- explicit maintenance of the hull