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Outline of the talk

• Planar convex hull

• Duality: Lower Envelope

• Application: k-level

• Overall structure of the data structure

• Some key ingredients

• Lower bounds
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Planar Convex Hull

Input A set of points S ⊆ IR2

Output The points on the convex hull

��

(S) in
clockwise order

n = |S| h = |

��

(S)|

Known results

Optimal O(n log n) Graham 1972; ...
Output-sensitive O(n log h) Kirkpatrick, Seidel 1986; Chan 1996
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Graham’s Scan
Andrew’s variant for upper hull

sweepline
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Dynamic Planar Convex Hull

Updates
Insert and delete points

Delete(p)

Insert(p)

p

Queries

`b

pe

pc

pd

~a

(a) The extreme point in a direction
(b) Does a line intersect

� �
(S)?

(c) Is a point inside

��
(S)?

(d) Neighbor points on
��

(S)
(e) Tangent points on

��

(S)

(f) The edges of
��

(S) intersected by a line
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Dynamic Planar Convex Hull Results
Insertions only Update Query

Preparata 1979 O(log n) O(log n)

Deletions only
Hershberger, Suri 1992 O �(log n) O(log n)

Offline
Hershberger, Suri 1996 O �(log n) O(log n)

Fully dynamic
Overmars, van Leeuwen 1981 O(log2 n) O(log n)

Chan 1999 O �(log1+ε n) O(log n)
Brodal, Jacob 2000
Kaplan,Tarjan,Tsioutsiouliklis ’01

}

O �(log n · log log n) O(log n)

this Thesis O (log n) O(log n)

O � =Amortized Query=Queries (a)–(e)
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Duality Transformation

p = (a, b) ∈

�

2 maps to p∗ := (a · x− b = y)

a

b

c

ly

x

primal plane

d

e

q

dual plane
a∗

b∗

c∗

l∗

x

y

d∗

e∗

q∗
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Dynamic Lower Envelope

Updates
Insert and delete lines

Delete(`)

Insert(`)

`

Queries

va

`c

`e

~f

pb

`d

(a) Vertical line intersection
(b) Is a point above

� �

(S)
(c) Is a line above

� �

(S)
(d) Next segments on

� �

(S)
(e) The segments of

� �

(S) intersected by a line
(f) The extreme point of

� �

(S) in some direction
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Application: k-level in the plane

Sweep-line algorithm Edelsbrunner and Welzl 1986
Previously O((n + m)α(n) log n) expected time Har-Peled 1998
Now O((n + m) log n) for m segments on the k-level

The 3-level of the 6 lines is depicted in thick red.
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Overall Structure

Geom. Merging

Queries

Secondary Struct.

Logarithmic Meth. Interval Tree

Updates

(Bootstrapping)

log2 n explicit hulls,
deletion-only

2× Bootstrapping:
Insert and Query log n

Delete: n → log5 n → log n
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Logarithmic Method

Bentley and Saxe 1980
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Static Geometric Merging

Difficult: maintain under deletions of points
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Combining Queries: Interval Tree

Task: combine the search on several lower envelopes into one
search.
Follows ideas from Chan 1999; different choice of parameters,
save some work by relaxed placement and lazy movements:

exploit knowledge about the (dynamic of the) intervals
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Semidynamic Merging

Create Set(p) Create singleton set

Merge(A,B) Combine data structures for A
and B into one new for A ∪B

Delete(r) Delete r from all merging structures

• Maintains list of points on the upper hull

• Works on binary merging forest

• Performance: O �(1) per element in the set
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Core Problem

Maintain the equality points of the merging

B

B

B

B
A

A
A

A

=

A

B

An equality oracle allows O �(1) per element hull maintenance
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Separation Certificate

A

B

vertical certificates (sweep line): O(n) per deletion
parallel tangent search: O(log n) per deletion
suspended search: in some variant O(1) per deletion
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Greedy Separation

A

B

Greedily choosing tangent lines

Seems too rigid and sensitive for changes
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Truss Bridge

We call the construction Truss
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Shortcuts

A

B

B

selected

shortcut

Shortcuts: Reducing the complexity of the outer hull
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Dangling search

p q

B

strong rays

A

c

One deletion affects only constantly many strong rays
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Splitters

Data structure(s) keeping (family of) sorted sequences

Elements ei from a totally ordered universe

Build(e1, . . . , en) O �(n)

Split(t)

suspended

O �(1)

Extend(en+1) O �(1)

Hoffmann, Mehlhorn, Rosenstiehl, Tarjan 1986

Split includes searching;

Dangling searches are suspended searches;

promise to split when finishing the search.
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Joining Strips

we select one of these points later

gr

q

gl

p

guard-rays

f ′

e′

A

β

ef

r

The geometric situation of loosing equality points.
We join the splitter over a dangling search:
Feasible because we promise to split.
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Account: Life-cycle of a point p ∈ A

A

A

B

B

obsolete equality
surfacing splitter

new lasting splitter old lasting splitter

replacement splitter

linear exploration
dangling searches

r

Schematic: the two hulls after one deletion

1. p becomes part of

��

(A).
p in replacement splitter.

2. we realize p ∈

� �

0(B).
p in lasting splitter.

3. we decide to select p.

4. Delete on B: p /∈

� �

(B).
p in surfacing splitter.

5. p is hidden by a shortcut.

6. p is hidden by a bridge.

7. p gets on UH(C).

8. The point p gets deleted.
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New Techniques

Splitter: suspended (dangling) searches,
restricted join over search

Dynamization: Reuse of existing data structures

Geometric Merging: Focus on equality points,
selected points, dangling search, over-
approximation, shortcuts, truss

Interval Tree: Relaxed placement of intervals,
lazy movement, location justifier

Linear Space: Separators

Riko Jacob 24



Tight Lower Bounds

q(n) be (amortized) query time

I(n) amortized insertion time

q(n) = Ω(log n) and I(n) = Ω
(

log
n

q(n)

)

.

on algebraic real-RAM, off-line usage of data structure,
reduction based.

Applies to Membership and Predecessor as well.
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Decision Problem

For k < n

(x1, . . . , xn, y1, . . . , yk) ∈ DISJOINTSETn,k ⊂

�n+k

⇐⇒

for all i, j we have xi 6= yj

DISJOINTSETn,khas Ω(kn) connected components

An algebraic computation tree has height Ω(n log k).
(Ben-Or 83)
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Summary and Open Problems

Presented

Dynamic Planar Convex Hull Data structure

Query O(log n)

Insert O �(log n)

Delete O �(log n)

and a matching lower bound.

Open Problems
• Make it simple

• worst-case instead of amortized bounds

• more general queries

• explicit maintenance of the hull
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