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Planar Convex Hull

Input A set of points S C IR?
Output The points on the convex hull CH(.S) in
clockwise order 7)

n=|S h = |CH(S)
Known results

Optimal O(nlogn) Graham 1972; ...
Output-sensitive O(nlogh) Kirkpatrick, Seidel 1986; Chan 1996
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Graham’s Scan

Andrew’s variant for upper hull

|
sweepline
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Dynamic Planar Convex Hull

Updates
Insert and delete points

Insert(p)

-
Delete(p)

Queries

(a) The extreme point in a direction
(b) Does a line intersect CH(.5)?
(c) Is a point inside CH(S)?

(d) Neighbor points on CH(.S)

(e) Tangent points on CH(S)

(f) The edges of CH(.S) intersected by a line
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Dynamic Planar Convex Hull Results

Insertions only Update Query
Preparata 1979 O(logn) O(logn)
Deletions only

Hershberger, Suri 1992 Op (logn) O(logn)
Offline

Hershberger, Suri 1996 Op (logn) O(logn)
Fully dynamic

Overmars, van Leeuwen 1981 O(log®n) O(logn)
Chan 1999 Op(log'™“n)  O(logn)

Brodal, Jacob 2000

Kaplan, Tarjan, T'sioutsiouliklis '01 } Op(logn -loglogn) O(logn)

Ox=Amortized Query=Queries (a)—(e)
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Dynamic Planar Convex Hull Results

Insertions only Update Query
Preparata 1979 O(logn) O(logn)
Deletions only

Hershberger, Suri 1992 Op (logn) O(logn)
Offline

Hershberger, Suri 1996 Op (logn) O(logn)
Fully dynamic

Overmars, van Leeuwen 1981 O(log” n) O(logn)
Chan 1999 Op(log'™“n)  O(logn)
Brodal, Jacob 2000

Kaplan,Tarjan, T'sioutsiouliklis '01 } Op(logn - loglogn) Oflogn)
this Thesis Op (logn) O(logn)

Ox=Amortized Query=Queries (a)—(e)
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Duality Transformation
p=(a,b) e R* mapsto p* = (a-x—b=y)

primal plane dual plane
* .
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Dynamic Lower Envelope

Insert(£)

-
Delete(¥)

Updates
Insert and delete lines

Queries

(a) Vertical line intersection
(b) Is a point above LE(5)
(c) Is a line above LE(S)

(d) Next segments on LE(S)
(e) The segments of LE(S) intersected by a line ™
(f) The extreme point of LE(SS) in some direction

= Riko Jacob 8



Application: k-level In the plane

Sweep-line algorithm Edelsbrunner and Welzl 1986
Previously O((n 4+ m)a(n)logn) expected time Har-Peled 1998
Now O((n + m)logn) for m segments on the k-level

NS //

The 3-level of the 6 lines is depicted in thick red.
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Overall Structure

Updates Queries

Logarithmic Meth. Interval Tree

_ Secondary Struct.
Geom. Merging

7N\

(Bootstrapping)

2x Bootstrapping:
Insert and Query logn

Delete: n — log®n — logn

log” n explicit hulls,
deletion-only
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Logarithmic Method

Lo
A

Bentley and Saxe 1980
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Static Geometric Merging

Difficult: maintain under deletions of points
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Combining Queries: Interval Tree

~——
==—_>= =— >§¢/\/’<

Task: combine the search on several lower envelopes into one
search.

Follows ideas from Chan 1999; different choice of parameters,
save some work by relaxed placement and lazy movements:

exploit knowledge about the (dynamic of the) intervals
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Semidynamic Merging

Create Set(p) Create singleton set

Merge(A, B) Combine data structures for A
and B into one new for AU B

Delete(r) Delete » from all merging structures

e Maintains list of points on the upper hull
e \Works on binary merging forest
e Performance: Oy (1) per element in the set
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Core Problem

Maintain the equality points of the merging

An equality oracle allows Oy (1) per element hull maintenance

= Riko Jacob 15



Separation Certificate

vertical certificates (sweep line): O(n) per deletion
parallel tangent search: O(logn) per deletion
suspended search: in some variant O(1) per deletion
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Greedy Separation

Greedily choosing tangent lines

Seems too rigid and sensitive for changes
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Truss Bridge

We call the construction Truss
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Shortcuts

shortcut

selected

Shortcuts: Reducing the complexity of the outer hull

= Riko Jacob

19



Dangling search

strong rays

Ogg glelbetlon affects only constantly many strong rays



Splitters

Data structure(s) keeping (family of) sorted sequences
Elements ¢; from a totally ordered universe
Build(eq, ..., e,) Op(n)

Split(t) Oa(1)
Extend(e, 1) Op (1)

Hoffmann, Mehlhorn, Rosenstiehl, Tarjan 1986

Split includes searching;

Dangling searches are suspended searches;
promise to split when finishing the search.
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Splitters

Data structure(s) keeping (family of) sorted sequences

Elements ¢; from a totally ordered universe

Build(eq, ..., e,) Op(n)
Split(t) suspended  Ox(1)
Extend(e,, 1) Op (1)

Hoffmann, Mehlhorn, Rosenstiehl, Tarjan 1986

Split includes searching;

Dangling searches are suspended searches;
promise to split when finishing the search.
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Joining Strips

f

The geometric situation of loosing equality points.
We join the splitter over a dangling search:

Feasible because we promise to split.
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Account: Llfe -cycle of apointp € A

0...
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...... surfacing splitter
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replacement splitter ™~ " "*«.,
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linear exploration’
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dangling searches
*
B -

o

new lasting splitter old lasting splitter

Schematic: the two hulls after one deletion

1. pbecomes partof UH(A). 4. Delete on B: p ¢ UC(B).
p In surfacing splitter.

2. we realize p € UCy(B). . pis hidden by a shortcut.

3. we decide to select p. p gets on UH(C).

5

6. pis hidden by a bridge.

7

8. The point p gets deleted.
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New Techniques

Splitter: suspended (dangling) searches,
restricted join over search

Dynamization: Reuse of existing data structures

Geometric Merging: Focus on equality points,
selected points, dangling search, over-
approximation, shortcuts, truss

Interval Tree: Relaxed placement of intervals,
lazy movement, location justifier

Linear Space: Separators
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Tight Lower Bounds

q(n) be (amortized) query time

I(n) amortized insertion time

q(n) = Q(logn) and I(n) = Q(log ﬁ) .

on algebraic real-RAM, off-line usage of data structure,
reduction based.

Applies to Membership and Predecessor as well.
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Decision Problem

Fork <n

(T1,.. ., Tn, Y1, .., Yx) € DISIOINTSET,,,, C R"*
—

for all ¢, 7 we have z; # y;

DISJOINTSET, ;has €2(k") connected components

An algebraic computation tree has height Q(nlog k).
(Ben-Or 83)
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Summary and Open Problems

Presented
Dynamic Planar Convex Hull Data structure
Query  Of(logn)
Insert  Op (logn)
Delete Op (logn)

and a matching lower bound.
Open Problems
e Make it simple
e worst-case instead of amortized bounds
e Mmore general queries
e explicit maintenance of the hull
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