Comparison and Construction of Phylogenetic Trees and Networks

Konstantinos Mampentzidis PhD Defense

Aarhus University, Aarhus, Denmark 24 October 2019

Publications

- Gerth Stølting Brodal and Konstantinos Mampentzidis.
 Cache Oblivious Algorithms for Computing the Triplet Distance between Trees.
 In ESA 2017, Vienna, Austria.
- Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-Kin Sung. Computing the Rooted Triplet Distance Between Phylogenetic Networks. In *IWOCA 2019*, Pisa, Italy.
- Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpadan Puthiyaveedu. Building a Small and Informative Phylogenetic Supertree.
 In WABI 2019, Niagara Falls, USA.

Algorithmic Theory and Practice

- Algorithm: sequence of steps for solving a computational problem
- Theory: algorithms are first designed & analyzed in a model of computation
- Practice: then implemented in a programming language (C, C++, python, ...)

Problems in Phylogenetics

- Different available data/construction algorithms can lead to trees/networks that look different
- Quantifying this difference can improve evolutionary inferences

ESA 2017

Given two rooted phylogenetic **trees** T_1 and T_2 over *n* species, <u>how different are they</u>? **IWOCA 2019**

Given two rooted phylogenetic **networks** N_1 and N_2 over *n* species, <u>how different are they</u>?

How are the trees and networks created to begin with?

WABI 2019

Given an input set of biological data, <u>build</u> a rooted phylogenetic **tree** that best represents it

Publications

- Gerth Stølting Brodal and Konstantinos Mampentzidis.
 Cache Oblivious Algorithms for Computing the Triplet Distance between Trees.
 In ESA 2017, Vienna, Austria.
- Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-Kin Sung. Computing the Rooted Triplet Distance Between Phylogenetic Networks. In *IWOCA 2019*, Pisa, Italy.
- Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpadan Puthiyaveedu. Building a Small and Informative Phylogenetic Supertree.
 In WABI 2019, Niagara Falls, USA.

Comparing Phylogenetic Trees

QUESTION

Given two rooted phylogenetic trees T_1 and T_2 over *n* species, how different are they?

- Tree types: rooted/unrooted, binary/arbitrary degree d
- Distance measures: rooted triplet distance, unrooted quartet distance, Robinson-Foulds, ...

Rooted Triplet Distance (Trees)

- A rooted triplet is defined by 3 leaf labels and their induced tree topology
- A triplet is induced by a tree T' if it appears as an embedded subtree in T'

Rooted Triplet Distance (Trees), Dobson [Combinatorial Mathematics III 1975] Let T_1 and T_2 be two rooted trees built on the same leaf label set Λ of size n*Shared triplets* = triplets that are induced by both T_1 and T_2 $S(T_1, T_2) = \#$ shared triplets $\leq {n \choose 3}$ *Rooted triplet distance* $D(T_1, T_2) = {n \choose 3} - S(T_1, T_2) = \#$ non-shared triplets

Rooted Triplet Distance (Trees)

Rooted Triplet Distance (Trees), Dobson [Combinatorial Mathematics III 1975] Let T_1 and T_2 be two rooted trees built on the same leaf label set Λ of size n*Shared triplets* = triplets that are induced by both T_1 and T_2 $S(T_1, T_2) = \#$ shared triplets $\leq {n \choose 3}$ *Rooted triplet distance* $D(T_1, T_2) = {n \choose 3} - S(T_1, T_2) = \#$ non-shared triplets

Example

shared triplets	non-share	d triplets
$a_{3}a_{4} a_{5}$	a_{1}, a_{2}, a_{3}	a ₂ , a ₃ , a ₅
$a_{3}a_{4} a_{1}$	<i>a</i> ₁ , <i>a</i> ₃ , <i>a</i> ₅	a_2, a_4, a_3
$a_1 a_2 a_5$	a_1, a_2, a_4	a ₂ , a ₄ , a ₅
	a_{1}, a_{4}, a_{5}	
	$D(T_1, T_2)$) = 7

Previous and New Results

Reference	Time	I/Os	Space	Non-Binary Trees
Critchlow et al. [Sys. Biology 1996]	O(<i>n</i> ²)	O(<i>n</i> ²)	O(<i>n</i> ²)	no
Bansal et al. [TCS 2011]	O(<i>n</i> ²)	O(<i>n</i> ²)	O(<i>n</i> ²)	yes
Sand <i>et al.</i> [BMC Bioinform. 2013] ★	$O(n \cdot \log^2 n)$	$O(n \cdot \log^2 n)$	O(<i>n</i>)	no
Brodal <i>et al.</i> [SODA 2013] ★	O(n·log n)	O(n·log n)	O(n·log n)	yes
Jansson & Rajaby [JCB 2017] ★	$O(n \cdot \log^3 n)$	O(n·log³n)	O(n·log n)	yes
new [ESA 2017] ★	O(n·log n) O	(n/B·log ₂ (n/M)) O(n)	yes

★ Implementation available

- All previous solutions rely heavily on random memory access
 - Penalized by cache performance
 - Do not scale to external memory
- The new algorithms rely on *scanning* continuous chunks of memory
 - Scanning *s* elements requires O(*s*/*B*) I/Os in the cache oblivious model

• Scale to external memory

Previous Approaches – Quadratic Algorithm

Basis for all $O(n \cdot \text{polylog } n)$ results: $O(n^2)$ algorithm for binary trees in [BMC Bioinform. 2013]

10

Previous Approaches – Subquadratic Algorithms

- For $u \in T_1$ the HDT(T_2) maintains $\sum_{v \in T_2} |s(u) \cap s(v)|$
- Each leaf color change in T_1 yields an update to HDT(T_2)

 $\Theta(n \log n)$ updates, with each update corresponding to a leaf to root path traversal of $HDT(T_2)$ Bad I/O performance

Reference	Time	HDT(T ₂)
Sand et al. [BMC Bioinform. 2013]	$O(n \cdot \log^2 n)$	Static
Brodal <i>et al.</i> [SODA 2013]	O(n·log n)	Dynamic/Contraction
Jansson & Rajaby [JCB 2017]	$O(n \cdot \log^3 n)$	Static (heavy-light decomposition)

The New Algorithm for Binary Trees (ESA 2017)

- New order of visiting nodes of T_1 based on DFS traversal of an $HDT(T_1)$
- HDT(T₁) = modified centroid decomposition

• Lemma 2 height($HDT(T_1)$) $\leq 2 + 2 \cdot \log s = O(\log n)$

Order to visit the nodes in T₁: DFS traversal of HDT(T₁), where the children of a node u are visited from left to right

The New Algorithm for Binary Trees (ESA 2017)

- **RAM model:** O(n) time per level of $HDT(T_1) \rightarrow O(n \cdot \log n)$
- To scale to external memory: store every component/contracted tree in memory following a proper layout such that scanning a component/contracted tree of size s takes O(s/B) I/Os

The New Algorithm for General Trees (ESA 2017)

1. Anchor triplets in edges instead of nodes

2. Capture triplets with 4 colors

RAM Experiments – Time Performance

Source code: https://github.com/kmampent/CacheTD

I/O Experiments – Time Performance

Binary Trees

General Trees

n	[JCB 2017] Previous best	[SODA 2013]	New
2 ¹⁵	1s	1s	1s
2 ¹⁶	1s	2s	1s
2 ¹⁷	1s	4s	1s
2 ¹⁸	2s	1m:03s	1s
2 ¹⁹	4s	1h:21m	1s
2 ²⁰	9s	≥ 10h	1s
2 ²¹	13m:12s	X	3s
2 ²²	≥ 10h	X	9s
2 ²³	X	X	3m:37s
2 ²⁴	X	X	10m:35s

n	[JCB 2017] Previous best	[SODA 2013]	New
2 ¹⁵	1s	1s	1s
2 ¹⁶	1s	1s	1s
2 ¹⁷	1s	3s	1s
2 ¹⁸	3s	7s	1s
2 ¹⁹	7s	5m:20s	1s
2 ²⁰	3m:43s	≥ 10h	2s
2 ²¹	≥ 10h	X	20s
2 ²²	X	X	2m:02s
2 ²³	X	X	10m:42s
2 ²⁴	X	X	42m:06s

Source code: https://github.com/kmampent/CacheTD

Publications

- Gerth Stølting Brodal and Konstantinos Mampentzidis.
 Cache Oblivious Algorithms for Computing the Triplet Distance between Trees.
 In ESA 2017, Vienna, Austria.
- Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-Kin Sung.
 Computing the Rooted Triplet Distance Between Phylogenetic Networks.
 In *IWOCA 2019*, Pisa, Italy.
- Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpadan Puthiyaveedu. Building a Small and Informative Phylogenetic Supertree.
 In WABI 2019, Niagara Falls, USA.

Rooted Phylogenetic Networks

An "example" of a hybrid animal

Rooted Phylogenetic Networks - Example

Marcussen *et al*. From gene trees to a dated allopolyploid network: insights from the angiosperm genus Viola (Violaceae). Systematic Biology 64 (1) (2015) 84–101

Rooted Triplet Distance - Networks

Invented by Dobson for trees [Combinatorial Mathematics III 1975]

3 leaves \rightarrow unique tree topology

- Gambette and Huber extended it to networks [JMB 2012]
 3 leaves → one or more tree topologies
- A rooted triplet is defined by 3 leaf labels and their induced tree topology in the network

- Shared triplets = triplets that appear in both N_1 and N_2
- Different triplets = triplets that appear only in N_1 or only in N_2
- $S(N_1, N_2) = \#$ shared triplets $\leq 4 \cdot \binom{n}{3}$
- Rooted triplet distance $D(N_1, N_2) = \#$ different triplets = $S(N_1, N_1) + S(N_2, N_2) 2 \cdot S(N_1, N_2)$

Rooted Triplet Distance - Networks

- Shared triplets = triplets that appear in both N₁ and N₂
- *Different triplets* = triplets that appear only in N_1 or only in N_2
- $S(N_1, N_2) = \#$ shared triplets $\leq 4 \cdot \binom{n}{3}$

Example

• Rooted triplet distance $D(N_1, N_2) = \#$ different triplets = $S(N_1, N_1) + S(N_2, N_2) - 2 \cdot S(N_1, N_2)$

Previous and New Results

Reference	k (level)	Degrees	Time Complexity
Fortune <i>et al.</i> [TCS 1980]	arbitrary	arbitrary	$\Omega(N^7n^3)$
Byrka <i>et al.</i> [JDA 2010]	arbitrary	binary	$O(N^3 + n^3)$
Byrka et al. [JDA 2010]	arbitrary	binary	$O(N + k^2N + n^3)$
Brodal <i>et al.</i> [SODA 2013, ESA 2017]	0 (trees)	arbitrary	O(n·log n)
Jansson <i>et al.</i> [JCB 2019] ★	1 (galled trees)	arbitrary	O(n·log n)
new [IWOCA 2019]Algorithm I ★	arbitrary	arbitrary	$O(N^2M + n^3)$
new [IWOCA 2019]Algorithm II ★	arbitrary	arbitrary	$O(M + k^3 d^3 n + n^3)$

★ Implementation available

- $N_1 = (V_1, E_1), N_2 = (V_2, E_2), \text{ and } n \text{ is the size of the common leaf label set}$
- d_1 = maximum in-degree of a vertex in N_1 . Similarly, we have d_2 for N_2
- $N = \max(|V_1|, |V_2|), M = \max(|E_1|, |E_2|), \text{ and } d = \max(d_1, d_2)$

k? Measures treelikeness

- A subgraph H of U(N_i) is *biconnected* if it is not possible to remove exactly one vertex from H to make it disconnected
- A subgraph H' is a biconnected component of U(N_i) if it is a maximal biconnected subgraph of U(N_i)
- N_i has level k_i if there are ≤ k_i reticulation vertices in any biconnected component of U(N_i)
- $k = \max(k_1, k_2)$

Previous and New Results

	Reference	k (level)	Degrees	Time Complexity
	Fortune <i>et al.</i> [TCS 1980]	arbitrary	arbitrary	$\Omega(N^7 n^3)$
	Byrka <i>et al.</i> [JDA 2010]	arbitrary	binary	$O(N^3 + n^3)$
	Byrka et al. [JDA 2010]	arbitrary	binary	$O(N + k^2N + n^3)$
	Brodal <i>et al.</i> [SODA 2013, ESA 2017]	0 (trees)	arbitrary	O(<i>n</i> log <i>n</i>)
	Jansson <i>et al.</i> [JCB 2019] ★	1 (galled trees)	arbitrary	O(<i>n</i> log <i>n</i>)
	new [IWOCA 2019]Algorithm I ★	arbitrary	arbitrary	$O(N^2M + n^3)$
	new [IWOCA 2019] Algorithm II ★	arbitrary	arbitrary	$O(M + k^3 d^3 n + n^3)$
k k	= 0 (trees), arbitrary degrees		🛨 Im	plementation available
0(n	²) [TCS 2011] $O(n \cdot \log n)$ [SODA 201	$[3] O(n \cdot \log^3 n)$	n) [JCB 2017]	$O(n \cdot \log n)$ [ESA 2017
k	= 1 (galled trees), arbitrary degrees	idst ill k	Jactice	fastest in practice
	O(<i>n</i> ^{2.687}) [JDA 2014] O	(<i>n</i> ·log <i>n</i>) [JCB 20	019]	
	count triangles in a graph combine the	e outputs of an al	gorithm on O(1)) instances when <i>k</i> = 0
a	rbitrary k, binary degrees			
0	$(N^3 + n^3)$ and $O(N + k^2N + n^3)$ [JDA 201	.0] Construct a d Use it to test	lata structure ir the consistency	1 O(N ³) or O(N + k ² N) time y of any triplet in O(1) time
• a	rbitrary k, arbitrary degrees Ω(N ⁷ n ³) [TCS 1980]	$O(N^2M + n^3)$	and O($M + k^3 d$	d ³ n + n ³) [IWOCA 2019]

 $\Omega(N'n^3)$ [TCS 1980] Use pattern matching algorithm to test the consistency of a triplet in $\Omega(N^7)$ time

Construct a data structure in $O(N^2M)$ or $O(M + k^3d^3n)$ time Use it to test the consistency of any triplet in O(1) time

Algorithm I (IWOCA 2019)

We extend a technique by Shiloach and Perl [J. ACM 1973]

Problem Input DAG G = (V, E) and 4 vertices s_1, t_1, s_2, t_2 Output Are there two disjoint paths in G, one from s_1 to t_1 and one from s_2 to t_2 ?

Solution 1. Build a DAG G' in O($|V| \cdot |E|$) time 2. Return **TRUE** if there exists a path from (s_1, s_2) to (t_1, t_2) in G', **FALSE** o/w

- For a network N_i we define a fan graph N_i^f and a fan table $A_i^f O(|V_i|^2 \cdot |E_i|)$
- We then use A_i^f to determine the consistency of any fan triplet with N_i in O(1) time

Resolved triplets

- For a network N_i we define a resolved graph N_i^r and a resolved table A_i^r O(|V_i|²·|E_i|)
- We then use A_i^r to determine the consistency of any resolved triplet with N_i in O(1) time

Algorithm II (IWOCA 2019)

Implementation and Experiments

 $e \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50$

 $e \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50$

Source code: https://github.com/kmampent/ntd

Model

Build a random binary tree and add *e* random edges from an ancestor to a descendant

Publications

- Gerth Stølting Brodal and Konstantinos Mampentzidis.
 Cache Oblivious Algorithms for Computing the Triplet Distance between Trees.
 In ESA 2017, Vienna, Austria.
- Jesper Jansson, Konstantinos Mampentzidis, Ramesh Rajaby, and Wing-Kin Sung. Computing the Rooted Triplet Distance Between Phylogenetic Networks. In *IWOCA 2019*, Pisa, Italy.
- Jesper Jansson, Konstantinos Mampentzidis, and Sandhya Thekkumpadan Puthiyaveedu. Building a Small and Informative Phylogenetic Supertree.
 In WABI 2019, Niagara Falls, USA.

Phylogenetic Supertrees

- The Supertree Problem Given a set R of small, accurate trees over overlapping subsets of n species, build a tree T that represents R as much as possible
- The output tree T is called a phylogenetic supertree

Example

T = a rooted tree, *if it exists*, that has all trees from *R* as embedded subtrees

q-MAXRTC (q - Maximum Rooted Triplets Consistency)

R = set of resolved triplets over a leaf label set Λ of size n

T = rooted tree with *q* internal nodes over Λ inducing the max # triplets from *R*

Motivation – Related Work

q-MAXRTC (q - Maximum Rooted Triplets Consistency)

R = set of resolved triplets over a leaf label set Λ of size n

T = rooted tree with *q* internal nodes over Λ inducing the max # triplets from *R*

Aho et al. [SICOMP 1981]

R = set of resolved triplets over a leaf label set Λ of size n

T = rooted tree, *if it exists*, over Λ inducing all triplets from R

Solvable in polynomial time by the BUILD algorithm

- BUILD does not always return a tree with the min # internal nodes
- Jansson *et al.* [SICOMP 2012]: BUILD can return a tree with Ω(n) unnecessary internal nodes ⇒ may suggest false groupings of the leaves, also known as *spurious novel clades*
- Scientists typically look for simple explanations for a set of observations

MINRS (Minimally Resolved Supertree), Jansson et al. [SICOMP 2012]

- R = set of resolved triplets over a leaf label set Λ of size n
- T = rooted tree, if it exists, with the min # internal nodes over Λ inducing all triplets from R
- The decision version of MINRS is NP-Hard when # internal nodes is ≥ 4, polynomial time solvable otherwise
- Very sensitive to outliers

Motivation – Related Work

q-MAXRTC (q - Maximum Rooted Triplets Consistency)

R = set of resolved triplets over a leaf label set Λ of size n

T = rooted tree with *q* internal nodes over Λ inducing the max # triplets from *R*

MINRS (Minimally Resolved Supertree), Jansson et al. [SICOMP 2012]

R = set of resolved triplets over a leaf label set Λ of size n

T = rooted tree, if it exists, with the min # internal nodes over Λ inducing all triplets from R

MAXRTC (Maximum Rooted Triplets Consistency), Bryant [PhD Thesis 1997]

- R = set of resolved triplets over a leaf label set Λ of size n
- T = rooted tree over Λ inducing the max # triplets from R
- MAXRTC is NP-Hard
- Polynomial-time approximation algorithms building trees that induce $\geq 1/3|R|$ triplets exist

Reference	Approximation ratio	Т	# internal nodes
Gąsieniec <i>et al.</i> [JCO 1999]	1/3	caterpillar	unbounded
Byrka et al. [Discr. Appl. Math. 2010]	1/3	binary	<i>n</i> -1
Byrka <i>et al.</i> [JDA 2010]	1/3	binary	<i>n</i> -1

q-MAXRTC = MINRS + MAXRTC

Approximation Algorithms for *q***-MAXRTC**

Reference	Deterministic	q	Approximation Ratio	Туре
Gąsieniec <i>et al.</i> [JCO 1999]	yes	unbounded	1/3	abs.
Byrka et al. [Discr. Appl. Math. 2010]	yes	<i>n</i> -1	1/3	abs.
Byrka <i>et al.</i> [JDA 2010]	yes	<i>n</i> -1	1/3	abs.
new [WABI 2019]	no	2	1/2	rel.
new [WABI 2019]	yes	2	1/4	rel.
new [WABI 2019] ★	yes	2	4/27	abs.
new [WABI 2019] ★	yes	≥ 3	$1/3 - 4/(3(q + (q \mod 2))^2)$	abs.

★ Implementation available

- n = size of the input leaf label set
- q = # internal nodes in output tree T
- Absolute approximation ratio r (abs.):
 T induces ≥ r·|R| triplets
- Relative approximation ratio r (rel.):
 T induces ≥ r·OPT triplets
 OPT = value of the optimal solution

Approximation Algorithms for *q***-MAXRTC**

Reference	Deterministic	q	Approx. Ratio	Туре
new [WABI 2019]	no	2	1/2	rel.
new [WABI 2019]	yes	2	1/4	rel.
new [WABI 2019]	yes	2	4/27	abs.
new [WABI 2019]	yes	≥ 3	$1/3 - 4/(3(q + (q \mod 2))^2)$	abs.

Intuitively, the larger the value of q, the better must be the quality of the produced trees

Lemma 4

Let
$$2 \le q' \le q \le n - 1$$
. We have that $opt(q') \le opt(q) \le \left[\frac{q-1}{q'-1}\right]opt(q')$

q = 2

- 1. Build a tree with two internal nodes labelled *a* and *b*
- 2. For each leaf: with probability 2/3 assign it to be the child of *b*, and with probability 1/3 the child of *a*

Expected # triplets consistent with T: 4|R|/27

- The algorithm is derandomized in O(|*R*|) time with the *method of conditional expectations*
- Theorem 8: 4/27 is the best possible absolute ratio

Approximation Algorithms for *q***-MAXRTC**

Reference	Deterministic	q	Approx. Ratio	Туре
new [WABI 2019]	no	2	1/2	rel.
new [WABI 2019]	yes	2	1/4	rel.
new [WABI 2019]	yes	2	4/27	abs.
new [WABI 2019]	yes	≥ 3	1/3 – 4/(3(q + (q mod 2))²)	abs.

q ≥ 3

First case: q = 2k+1 for some $k \in \mathbb{N}$

- 1. Build a binary tree with *q* nodes
- 2. Assignment probability for a node with children: 0
- 3. Assignment probability for a node without children: 1/(k+1)
- 4. Assign all *n* leaves one by one

Expected # triplets consistent with $T: 1/3 - 4/(3(q + 1)^2)$

Second case: q = 2k for some $k \in \mathbb{N}$

- 1. Apply first case for q = q 1 and assign all *n* leaves
- 2. Add an extra internal node in *T* without reducing the total # of triplets induced by *T* from *R*

Expected # triplets consistent with T**:** $1/3 - 4/(3q^2)$

- The algorithm is derandomized in O(q|R|) time with the method of conditional expectations
- Open problem: best possible absolute ratio?

q-MAXRTC – Implementation and Experiments

Experiments on Simulated Datasets

dc model: *R* is defined by all the triplets extracted from a binary tree with *n* leaves

noisy model: R contains random triplets

Source code: https://github.com/kmampent/qMAXRTC

q-MAXRTC – Implementation and Experiments

Experiments on Real Datasets

Use five published **binary trees** from the following two papers:

L. A. Hug et al. A new view of the tree of life. Nature Microbiology, 1, 2016.

J. M. Lang *et al*. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. *PLoS ONE*, 8(4), 2013.

For every tree, extract n² triplets at random and use them to define R

q	poS1(761)	poS2(761)	poS4(841)	nmS4(1869)	nmS2(3082)	Average
2	0.27	0.36	0.43	0.41	0.29	0.35
3	0.67	0.54	0.48	0.41	0.46	0.51
5	0.77	0.81	0.67	0.66	0.72	0.73
7	0.82	0.75	0.76	0.62	0.73	0.74
9	0.86	0.71	0.87	0.80	0.79	0.81
11	0.91	0.89	0.87	0.79	0.87	0.87

ratio = $S(T_1, T_2)/{n \choose 3}$, where $S(T_1, T_2)$ = # triplets that are induced by both T_1 and T_2 and n is inside the parenthesis

• With only 9 internal nodes we can capture on average 80% of the triplets

Source code: https://github.com/kmampent/qMAXRTC

q-MAXRTC – Implementation and Experiments

Experiments on Real Datasets

Use five published **binary trees** from the following two papers:

L. A. Hug et al. A new view of the tree of life. Nature Microbiology, 1, 2016.

J. M. Lang *et al*. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. *PLoS ONE*, 8(4), 2013.

For every tree, extract n² triplets at random and use them to define R

q	poS1(761)	poS2(761)	poS4(841)	nmS4(1869)	nmS2(3082)
2	0.06	0.06	0.07	0.40	1.16
3	0.32	0.32	0.39	1.96	5.38
5	0.47	0.47	0.58	2.92	7.85
7	0.63	0.62	0.76	3.83	10.53
9	0.78	0.79	0.96	4.85	13.15
11	0.94	0.94	1.14	5.71	15.56

Running time in seconds

Source code: https://github.com/kmampent/qMAXRTC

Revisiting the Rooted Triplet Distance (Trees)

Reference	Time	Space	Non-Binary Trees
Critchlow et al. [Sys. Biology 1996]	O(<i>n</i> ²)	O(<i>n</i> ²)	no
Bansal et al. [TCS 2011]	O(<i>n</i> ²)	O(<i>n</i> ²)	yes
Sand <i>et al.</i> [BMC Bioinform. 2013] ★	$O(n \cdot \log^2 n)$	O(<i>n</i>)	no
Brodal <i>et al.</i> [SODA 2013] ★	O(n·log n)	O(n·log n)	yes
Jansson & Rajaby [JCB 2017] ★	$O(n \cdot \log^3 n)$	O(n·log n)	yes
Brodal & Mampentzidis [ESA 2017] ★	O(n·log n)	O(<i>n</i>)	yes
new [WABI 2019] ★	O(q·n)	O(q·n)	yes

★ Implementation available

- n = size of the common leaf label set between the two input trees
- q = # internal nodes in the smaller input tree

Open Problems

- O(n log n/loglog n)? O(n)?
- If q_1 is the total # internal nodes in T_1 and similarly q_2 in T_2 , $O(q_1q_2 + n)$?
- Prove any non-trivial lower bound

Summary

Rooted Triplet Distance (Trees) https://github.com/kmampent/{CacheTD,qtd} Reference I/Os **Non-Binary Trees** Time Space new [ESA 2017] $O(n \cdot \log n)$ $O(n/B \cdot \log_2(n/M))$ O(*n*) yes new [WABI 2019] O(*q* · *n*) O(q·n) O(*q* · *n*) yes

Rooted Triplet Distance (Networks)

https://github.com/kmampent/ntd

Reference	k (level)	Degrees	Time
new [IWOCA 2019]	arbitrary	arbitrary	$O(N^2M + n^3)$
new [IWOCA 2019]	arbitrary	arbitrary	$O(M + k^3 d^3 n + n^3)$

q-MAXRTC	I	https://github.com/kmampent/qMAXRTC			
Reference	Deterministic	q	Approximation Ratio	Туре	
new [WABI 2019]	no	2	1/2	rel.	
new [WABI 2019]	yes	2	1/4	rel.	
new [WABI 2019]	yes	2	4/27	abs.	
new [WABI 2019]	yes	≥ 3	$1/3 - 4/(3(q + (q \mod 2))^2)$	abs.	