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Partially ordered sets

A partially ordered set (poset) is a pair P = (X , P) of a ground
set X (the elements of the poset) and a binary relation P on X
that is

transitive (a ≤ b and b ≤ c implies a ≤ c),
reflexive (a ≤ a) and
antisymmetric (a ≤ b implies b 6≤ a (a 6= b))
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Diagrams

Posets are often represented by their diagrams.

Example

c ≤ a,
d ≤ a,
e ≤ d ,
d ≤ b

e

a

c d

b
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Linear extensions

Let P = (P, X ) be a poset.

Definition
A linear extension L of P is a linear order that is an extension of
P, i.e., x ≤P y ⇒ x ≤L y .
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Example

e

a

c

b

d

a

c

b

d

e

9 Johan Nilsson Combinatorial algorithms for graphs and partially ordered sets



Introduction
The order dimension of planar maps

Summary

Outline of the thesis
Poset dimension
Vertex-edge-face posets and vertex-face posets

Dimension

Definition
A family of linear extensions R = {L1, L2, . . . , Lt} of P is a
realizer of P if P = ∩R. The dimension of P is the minimum
cardinality of a realizer of P.
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Dimension

Example
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Why is dimension interesting?

Measures how close a poset is to being a linear order.
Low dimension implies a compact representation.

Example

a → (5, 4)
b → (3, 5)
c → (4, 1)

d → (2, 3)
e → (1, 2)
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Planar maps

A planar map is the sets of vertices (points), edges (lines) and
faces (regions) of a crossing-free drawing of a graph in the
plane and the incidences between those sets.

The dual map M∗ of a planar map M is a planar map with a
vertex for each face in M and a face for each vertex in M like in
this example.
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Planar maps

Example

M
∗

M
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Outerplanar maps

If all the vertices are on the outer face, the map is strongly
outerplanar.

If there is a different drawing of the same graph where all the
vertices are on the outer face, the map is weakly outerplanar.

Example
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Vertex-edge-face and vertex-face posets

Definition
The vertex-edge-face poset PM of a planar map M is the poset
on the vertices, edges and faces of M ordered by inclusion.

The vertex-face poset QM of M is the subposet of PM induced
by the vertices and faces of M.
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Vertex-edge-face and vertex-face posets

Example

F∆

F∞

M

F∆ F∞

QM

PM
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The Brightwell-Trotter Theorems

Theorem (Brightwell & Trotter)

Let M be a planar map. Then dim(PM) ≤ 4.

Theorem (Brightwell & Trotter)

Let M be a 3-connected planar map. Then dim(QM) = 4.
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Two questions of Brightwell and Trotter

1 For which planar maps is dim(PM) ≤ 3?

2 For which planar maps is dim(QM) ≤ 3?

We know when the dimension is at most 2.
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3-dimensional V-E-F posets of planar maps

Theorem (Felsner & N.)

Let M be a planar map such that dim(PM) ≤ 3. Then both M
and the dual map M∗ are outerplanar.
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3-dimensional V-E-F posets of planar maps

Observation: If M is connected, PM∗ = (PM)∗.

PM∗

M

M
∗

PM

24 Johan Nilsson Combinatorial algorithms for graphs and partially ordered sets



Introduction
The order dimension of planar maps

Summary

Brightwell and Trotter’s results
The dimension of V-E-F posets
The dimension of vertex-face posets

3-dimensional V-E-F posets of planar maps

Proof (sketch).
A map is outerplanar if it does not contain a K4-subdivision or
K2,3-subdivision.

K4K2,3
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3-dimensional V-E-F posets of planar maps

Proof (sketch).
If M contains a subdivision of K4, then the vertex-face poset of
some 3-connected map is a subposet of QM . Use the second
Brightwell-Trotter Theorem.
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3-dimensional V-E-F posets of planar maps

Proof (sketch).
Suppose M contains a subdivision of K2,3.

P3

P2
vu

P1
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3-dimensional V-E-F posets of planar maps

Proof (sketch).
The three paths P1, P2 and P3 induces three mutually disjoint
fences in PM .

vu
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Critical pairs

Definition
A critical pair is a pair of incomparable elements (a, b) such
that x < b if x < a and y > a if y > b for all x , y ∈ X \ {a, b}.

Example
b

d

e

ab

d

e

a

c c
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Dimension, critical pairs

Fact
A family of linear extensions R = {L1, L2, . . . , Lt} of P is a
realizer of P iff for each critical pair (a, b) there is some L ∈ R
such that b <L a. We then say that (a, b) is reversed in L.

Example

dc

b

e

a

c

b

d

e

b

a

d

e

c

a
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3-dimensional V-E-F posets of planar maps

Proof (sketch).

We then show that if dim(PM) ≤ 3, then all the critical pairs of
the poset below must reversed in a single linear extension.

But this poset has dimension 2.
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Path-like maps

Definition
A 2-connected strongly outerplanar map with a weakly
outerplanar dual is called path-like.

Example

A 2-connected simple outerplanar map has a unique Hamilton
cycle. We can partition the edges into cycle edges and chordal
edges.
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Alternating cycles

Definition
An alternating cycle is a sequence of critical pairs
(a0, b0), . . . , (ak , bk ) such that ai ≤ bi+1 mod (k+1) for all
i = 0, . . . , k .

Example
a

c

b

d

e

a

c

b

d

e

(b, a),(c, b) is an alternating cycle since b ≤ b and c < a.
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Alternating cycles, dimension

Fact
Let P be a poset. Then dim(P) ≤ t iff there exists a t-coloring of
the critical pairs of P such that no alternating cycle is
monochromatic.
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Path-like maps

We can encode any 3-realizer of the V-E-F poset of a maximal
path-like map as an oriented 3-coloring of its chordal edges.

Example

However, not every oriented 3-coloring corresponds to a
3-realizer . . .
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Path-like maps

Theorem (Felsner & N.)

Let M be a maximal path-like map. Then dim(PM) ≤ 3 if and
only if the chordal edges of M has a permissible coloring.
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An example of an outerplanar map with dim(QM) = 4

Vertex-face posets of dimension 3 are more complicated.
We still cannot have a subdivision of K4 contained in the
map.
Even showing the existence of a strongly outerplanar map
with dim(QM) = 4 is a bit of work.
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An example of an outerplanar map with dim(QM) = 4

Theorem (Felsner & N.)

There is an outerplanar map M with dim(QM) = 4.
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An example of an outerplanar map with dim(QM) = 4

3-color the critical pairs of type
(vertex, bounded face).
All vertices are on the outer
face, so the critical pairs of a
bounded face cannot have all
3 colors.
All 3 colors must appear
around a strongly interior face.
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Summary

If dim(PM) ≤ 3, then M and M∗ are outerplanar.

If M is a maximal path-like map, dim(PM) ≤ 3 iff M has a
permissible coloring.

There are strongly outerplanar maps M with dim(QM) = 4.
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