Combinatorial algorithms for graphs and partially ordered sets

Johan Nilsson

BRICS University of Aarhus

PhD defence Aarhus October 15, 2007

Outline

Introduction

- Outline of the thesis
- Poset dimension
- Vertex-edge-face posets and vertex-face posets
- 2 The order dimension of planar maps
 - Brightwell and Trotter's results
 - The dimension of V-E-F posets
 - The dimension of vertex-face posets

Outline of the thesis Poset dimension Vertex-edge-face posets and vertex-face posets

Outline

Introduction

- Outline of the thesis
- Poset dimension
- Vertex-edge-face posets and vertex-face posets

2 The order dimension of planar maps

- Brightwell and Trotter's results
- The dimension of V-E-F posets
- The dimension of vertex-face posets

Introduction	Outline of the thesis
The order dimension of planar maps	Poset dimension
Summary	Vertex-edge-face posets and vertex-face posets

The dissertation consists of four parts:

- Reachability oracles
- Peachability substitutes
- The order dimension of planar maps
- Approximation algorithms for graphs with large treewidth

Introduction	Outline of the thesis
The order dimension of planar maps	Poset dimension
Summary	Vertex-edge-face posets and vertex-face posets

The dissertation consists of four parts:

- Reachability oracles
- Peachability substitutes
- The order dimension of planar maps
- Approximation algorithms for graphs with large treewidth

Outline of the thesis Poset dimension Vertex-edge-face posets and vertex-face posets

Outline

- Outline of the thesis
- Poset dimension
- Vertex-edge-face posets and vertex-face posets
- 2 The order dimension of planar maps
 - Brightwell and Trotter's results
 - The dimension of V-E-F posets
 - The dimension of vertex-face posets

Outline of the thesis Poset dimension Vertex-edge-face posets and vertex-face posets

Partially ordered sets

A partially ordered set (poset) is a pair $\mathbf{P} = (X, P)$ of a ground set X (the elements of the poset) and a binary relation P on X that is

- transitive ($a \le b$ and $b \le c$ implies $a \le c$),
- reflexive $(a \le a)$ and
- antisymmetric ($a \le b$ implies $b \le a$ ($a \ne b$))

 Introduction
 Outline of the thesis

 The order dimension of planar maps
 Poset dimension

 Summary
 Vertex-edge-face posets and vertex-face posets

Diagrams

Posets are often represented by their diagrams.

Outline of the thesis Poset dimension Vertex-edge-face posets and vertex-face posets

Linear extensions

Let
$$\mathbf{P} = (P, X)$$
 be a poset.

Definition

A linear extension *L* of *P* is a linear order that is an extension of *P*, i.e., $x \leq_P y \Rightarrow x \leq_L y$.

Outline of the thesis Poset dimension Vertex-edge-face posets and vertex-face posets

Linear extensions

Example

Introduction	Outline of the thesis
The order dimension of planar maps	Poset dimension
Summary	Vertex-edge-face posets and vertex-face posets
Dimension	

Definition

A family of linear extensions $\mathcal{R} = \{L_1, L_2, \dots, L_t\}$ of *P* is a realizer of **P** if $P = \cap \mathcal{R}$. The dimension of **P** is the minimum cardinality of a realizer of **P**.

Introduction Outline of the thesis The order dimension of planar maps Summary Vertex-edge-face posets ar

Dimension

Vertex-edge-face posets and vertex-face pose

Example

Outline of the thesis Poset dimension Vertex-edge-face posets and vertex-face posets

Why is dimension interesting?

- Measures how close a poset is to being a linear order.
- Low dimension implies a compact representation.

 Introduction
 Outline of the thesis

 The order dimension of planar maps
 Poset dimension

 Summary
 Vertex-edge-face posets and vertex-face posets

Outline

Introduction

- Outline of the thesis
- Poset dimension

Vertex-edge-face posets and vertex-face posets

2 The order dimension of planar maps

- Brightwell and Trotter's results
- The dimension of V-E-F posets
- The dimension of vertex-face posets

 Introduction
 Outline of the thesis

 The order dimension of planar maps
 Poset dimension

 Summary
 Vertex-edge-face posets and vertex-face posets

The dual map M^* of a planar map M is a planar map with a vertex for each face in M and a face for each vertex in M like in this example.

Planar maps

Introduction Outline of the thesis
The order dimension of planar maps
Summary
Vertex-edge-face posets and vertex-face posets

Planar maps

 Introduction
 Outline of the thesis

 The order dimension of planar maps
 Poset dimension

 Summary
 Vertex-edge-face posets and vertex-face posets

Outerplanar maps

If all the vertices are on the outer face, the map is strongly outerplanar.

If there is a different drawing of the same graph where all the vertices are on the outer face, the map is weakly outerplanar.

Outline of the thesis Poset dimension Vertex-edge-face posets and vertex-face posets

Vertex-edge-face and vertex-face posets

Definition

The vertex-edge-face poset \mathbf{P}_M of a planar map M is the poset on the vertices, edges and faces of M ordered by inclusion.

The vertex-face poset \mathbf{Q}_M of M is the subposet of \mathbf{P}_M induced by the vertices and faces of M.

Outline of the thesis Poset dimension Vertex-edge-face posets and vertex-face posets

Vertex-edge-face and vertex-face posets

Example

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Outline

Introduction

- Outline of the thesis
- Poset dimension
- Vertex-edge-face posets and vertex-face posets

2 The order dimension of planar maps

- Brightwell and Trotter's results
- The dimension of V-E-F posets
- The dimension of vertex-face posets

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

The Brightwell-Trotter Theorems

Theorem (Brightwell & Trotter)

Let *M* be a planar map. Then dim(\mathbf{P}_M) ≤ 4 .

Theorem (Brightwell & Trotter)

Let *M* be a 3-connected planar map. Then $dim(\mathbf{Q}_M) = 4$

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

The Brightwell-Trotter Theorems

Theorem (Brightwell & Trotter)

Let *M* be a planar map. Then dim(\mathbf{P}_M) ≤ 4 .

Theorem (Brightwell & Trotter)

Let *M* be a 3-connected planar map. Then $dim(\mathbf{Q}_M) = 4$.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Two questions of Brightwell and Trotter

- For which planar maps is $\dim(\mathbf{P}_M) \leq 3$?
- **2** For which planar maps is $\dim(\mathbf{Q}_M) \leq 3$?

We know when the dimension is at most 2.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Outline

Introduction

- Outline of the thesis
- Poset dimension
- Vertex-edge-face posets and vertex-face posets

2 The order dimension of planar maps

- Brightwell and Trotter's results
- The dimension of V-E-F posets
- The dimension of vertex-face posets

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

3-dimensional V-E-F posets of planar maps

Theorem (Felsner & N.)

Let *M* be a planar map such that $dim(\mathbf{P}_M) \leq 3$. Then both *M* and the dual map M^* are outerplanar.

Introduction Brightwell and Trotter's results The order dimension of planar maps Summary The dimension of vertex-face p

3-dimensional V-E-F posets of planar maps

Observation: If *M* is connected, $\mathbf{P}_{M^*} = (\mathbf{P}_M)^*$.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

3-dimensional V-E-F posets of planar maps

Proof (sketch).

A map is outerplanar if it does not contain a K_4 -subdivision or $K_{2,3}$ -subdivision.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

3-dimensional V-E-F posets of planar maps

Proof (sketch).

If *M* contains a subdivision of K_4 , then the vertex-face poset of some 3-connected map is a subposet of \mathbf{Q}_M . Use the second Brightwell-Trotter Theorem.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

3-dimensional V-E-F posets of planar maps

Proof (sketch).

Suppose *M* contains a subdivision of $K_{2,3}$.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

3-dimensional V-E-F posets of planar maps

Proof (sketch).

The three paths P_1 , P_2 and P_3 induces three mutually disjoint fences in \mathbf{P}_M .

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Critical pairs

Definition

A critical pair is a pair of incomparable elements (a, b) such that x < b if x < a and y > a if y > b for all $x, y \in X \setminus \{a, b\}$.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Dimension, critical pairs

Fact

A family of linear extensions $\mathcal{R} = \{L_1, L_2, ..., L_t\}$ of P is a realizer of \mathbf{P} iff for each critical pair (a, b) there is some $L \in \mathcal{R}$ such that $b <_L a$. We then say that (a, b) is reversed in L.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

3-dimensional V-E-F posets of planar maps

Proof (sketch).

We then show that if $\dim(\mathbf{P}_M) \leq 3$, then all the critical pairs of the poset below must reversed in a single linear extension.

But this poset has dimension 2.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Path-like maps

Definition

A 2-connected strongly outerplanar map with a weakly outerplanar dual is called path-like.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Path-like maps

Definition

A 2-connected strongly outerplanar map with a weakly outerplanar dual is called path-like.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Path-like maps

Definition

A 2-connected strongly outerplanar map with a weakly outerplanar dual is called path-like.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Path-like maps

Definition

A 2-connected strongly outerplanar map with a weakly outerplanar dual is called path-like.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Alternating cycles

Definition

An alternating cycle is a sequence of critical pairs $(a_0, b_0), \ldots, (a_k, b_k)$ such that $a_i \leq b_{i+1 \mod (k+1)}$ for all $i = 0, \ldots, k$.

Johan Nilsson

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Alternating cycles, dimension

Fact

Let **P** be a poset. Then dim(**P**) \leq t iff there exists a t-coloring of the critical pairs of **P** such that no alternating cycle is monochromatic.

Introduction The order dimension of planar maps Summary The dimension of v-E-F posets The dimension of vertex-face po

Path-like maps

We can encode any 3-realizer of the V-E-F poset of a maximal path-like map as an oriented 3-coloring of its chordal edges.

However, not every oriented 3-coloring corresponds to a 3-realizer ...

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

Path-like maps

Theorem (Felsner & N.)

Let *M* be a maximal path-like map. Then $dim(\mathbf{P}_M) \le 3$ if and only if the chordal edges of *M* has a permissible coloring.

Introduction Brightwell and Trotter's results The order dimension of planar maps Summary The dimension of v-E-F posets The dimension of vertex-face posets

Outline

Introduction

- Outline of the thesis
- Poset dimension
- Vertex-edge-face posets and vertex-face posets

2 The order dimension of planar maps

- Brightwell and Trotter's results
- The dimension of V-E-F posets
- The dimension of vertex-face posets

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

- Vertex-face posets of dimension 3 are more complicated.
- We still cannot have a subdivision of *K*₄ contained in the map.
- Even showing the existence of a strongly outerplanar map with dim(Q_M) = 4 is a bit of work.

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

Theorem (Felsner & N.)

There is an outerplanar map M with $\dim(\mathbf{Q}_M) = 4$.

Introduction Brights The order dimension of planar maps Summary The di

Brightwell and Trotter's results The dimension of V-E-F posets The dimension of vertex-face posets

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

- 3-color the critical pairs of type (vertex, bounded face).
- All vertices are on the outer face, so the critical pairs of a bounded face cannot have all 3 colors.
- All 3 colors must appear around a strongly interior face.

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

Introduction The order dimension of planar maps The dimension of vertex-face posets Summary

An example of an outerplanar map with dim(\mathbf{Q}_M) = 4

Introduction The order dimension of planar maps The dimension of vertex-face posets Summary

An example of an outerplanar map with dim(\mathbf{Q}_M) = 4

Introduction Brightwell and Trotter's results The order dimension of planar maps Summary The dimension of vertex-face posets

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

An example of an outerplanar map with $dim(\mathbf{Q}_M) = 4$

• If dim(\mathbf{P}_M) \leq 3, then M and M^* are outerplanar.

- If *M* is a maximal path-like map, dim(P_M) ≤ 3 iff *M* has a permissible coloring.
- There are strongly outerplanar maps *M* with dim(\mathbf{Q}_M) = 4.

- If dim(\mathbf{P}_M) \leq 3, then M and M^* are outerplanar.
- If *M* is a maximal path-like map, dim(P_M) ≤ 3 iff *M* has a permissible coloring.
- There are strongly outerplanar maps *M* with dim(\mathbf{Q}_M) = 4.

- If dim(\mathbf{P}_M) \leq 3, then M and M^* are outerplanar.
- If *M* is a maximal path-like map, dim(P_M) ≤ 3 iff *M* has a permissible coloring.
- There are strongly outerplanar maps M with dim(\mathbf{Q}_M) = 4.