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Hardware /nm./: “the part of the computer that you can kick.”

– Geeky folklore.
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Algorithms and Data Structures

• Algorithm:
– A finite sequence of steps to solve a problem
– Is given an input
– Is required to produce an output
– Should be efficient

• Data structure:
– The "way" in which data is stored
– Supports operations
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Example – Searching

• The problem
– Input: A sequence of numbers A, an element e

– Output: YES, if e is in A, NO otherwise

• Dictionary – underlying data structure
– Static: Supports only searches

– Dynamic: Supports searches and updates

• Why bother
– Numerous applications: Database systems, search

engines, implementing sets, sorting, interval trees,
orthogonal range searching, line segment intersection, phone
book, the search for the Holy Grail, finding Nemo, the vial of life,
cherchez la femme, the lost city of Atlantis, the bad Mafia guys, the dark Mordor,

pirates’ treasure chest etc.
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Linear Search

• Consider sequence A to be an array of size n

• Efficiency - the number of comparisons

0 1 2 4 5 6 7 8 9 10 11 12 14 15

42 7 10 15 12 8 522

3

31 18 24

13

3 133521 28A

• The algorithm
– Compare elements in A against e left-to-right
– Stop upon encountering an element equal to e

• Analysis
– What if e = 13 or e not in A?
– Worst case scenario: need to access all elements in A!!!
– Why avoiding this approach: imagine n = 100, 000, 000
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What if A is sorted?

1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 18 21 2422 3528 31 4215

0

3A

← →

The algorithm – binary search:

• Compare e against the middle element in A

• If e is smaller then restrict to the left half of A

• If e is larger then restrict to the right half of A

• Stop when:
– an element in A matching e is found, or
– the sequence in which we search has one element
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What if A is sorted?

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423A

→← ←

The algorithm – binary search:

• Compare e against the middle element in A

• If e is smaller then restrict to the left half of A

• If e is larger then restrict to the right half of A

• Stop when:
– an element in A matching e is found, or
– the sequence in which we search has one element

• The searched element e = 13
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What if A is sorted?

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13
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– the sequence in which we search has one element

• The searched element e = 13
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Analyzing Binary Search

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423

←→ →

A

• Analysis
– One comparison: search in a sequence of size n/2

– Two comparisons: search in a sequence of size n/4

– k comparisons: search in a sequence of size n/(2k)

– Worst case scenario: stop in a sequence of size 1

– Sequence size n/(2k) = 1, meaning k ≈ log2 n

– Conclusion: we need about log2 n comparisons
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Analyzing Binary Search

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423

←→ →

A

• Analysis
– One comparison: search in a sequence of size n/2

– Two comparisons: search in a sequence of size n/4

– k comparisons: search in a sequence of size n/(2k)

– Worst case scenario: stop in a sequence of size 1

– Sequence size n/(2k) = 1, meaning k ≈ log2 n

– Conclusion: we need about log2 n comparisons

• Imagine n = 100, 000, 000: log2 100, 000, 000 ≈ 26.5
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Outline

• Hardware factors affecting the running time
– Instructions performed by microprocessor

– Branch mispredictions

– Memory transfers

– Streaming

• Hardware factors affecting the reliability
– Memory corruptions

• Optimal resilient dictionaries
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Theory vs Practice

are the same

In theory, theory and practice
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Theory vs Practice

are the same

In theory, theory and practice

In practice, theory and practice

may be quite different . . .
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Traditional RAM model

CPU Memory

• Consists of a processor and an infinite memory

• Instructions:
– Load/stores of memory cells, assignments,

comparisons, simple math operations
– NO loops!

• Complexity: given by # instructions

• Not always adequate!!!
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Branch Mispredictions – Motivation

• Input:
– a – array of size 2× 107, ai ∈ [1, . . . , 100]

– param – a threshold, param ∈ [0, . . . , 101]

• Output:
– g – # elements in a larger than param

– s – # elements in a smaller or equal to param

• Algorithm:
– Compare each element in a against param

– Use a left-to-right scan

72 21 3 45 98 53 87 17 24 33 52 8 81 79 63 48

param = 30, g = 0, s = 0
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Branch Mispredictions – Motivation

• Input:
– a – array of size 2× 107, ai ∈ [1, . . . , 100]

– param – a threshold, param ∈ [0, . . . , 101]

• Output:
– g – # elements in a larger than param

– s – # elements in a smaller or equal to param

• Algorithm:
– Compare each element in a against param

– Use a left-to-right scan

72 21 3 45 98 53 87 17 24 33 52 8 81 79 63 48

param = 30, g = 1, s = 0
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Branch Mispredictions – Motivation

• Input:
– a – array of size 2× 107, ai ∈ [1, . . . , 100]

– param – a threshold, param ∈ [0, . . . , 101]

• Output:
– g – # elements in a larger than param

– s – # elements in a smaller or equal to param

• Algorithm:
– Compare each element in a against param

– Use a left-to-right scan

72 21 3 45 98 53 87 17 24 33 52 8 81 79 63 48

param = 30, g = 1, s = 1
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Branch Mispredictions – Motivation

• Input:
– a – array of size 2× 107, ai ∈ [1, . . . , 100]

– param – a threshold, param ∈ [0, . . . , 101]

• Output:
– g – # elements in a larger than param

– s – # elements in a smaller or equal to param

• Algorithm:
– Compare each element in a against param

– Use a left-to-right scan

72 21 3 45 98 53 87 17 24 33 52 8 81 79 63 48

param = 30, g = 11, s = 5
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Theory

• The number of instructions is the same regardless of param
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Explanation: branch mispredictions!
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Pipelining
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Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch write

→x=1;

y=y-1;

z=m+n;

if (t==0)

printf(‘‘It’s zero’’);

else

t=0;
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Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1

write

→x=1;

y=y-1;

z=m+n;

if (t==0)

printf(‘‘It’s zero’’);

else

t=0;
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Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1y=y−1

write

→x=1;

→y=y-1;

z=m+n;

if (t==0)

printf(‘‘It’s zero’’);

else

t=0;
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Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1y=y−1z=m+n

write

→x=1;

y=y-1;

→z=m+n;

if (t==0)

printf(‘‘It’s zero’’);

else

t=0;

Gabriel Moruz: Hardware aware algorithms and data structures 13



Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1y=y−1z=m+nif(t==0)

write

→x=1;

y=y-1;

z=m+n;

→if (t==0)

printf(‘‘It’s zero’’);

else

t=0;
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Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1y=y−1z=m+nif(t==0)?

write

→x=1;

y=y-1;

z=m+n;

if (t==0)

→ printf(‘‘It’s zero’’);

else

→ t=0;
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Branch Predictor

get opsdecode execute writefetch

x=1y=x+1x=y−2if(y==0)?

Branch predictor

• Modern processors include branch predictors

• Attempts to predict the direction of each branch

• Accurate over 90% of the times

• Significant penalties upon mispredictions

• Pipelines are getting longer
Gabriel Moruz: Hardware aware algorithms and data structures 14
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Many branch mispredictions for param ≈ 50!
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Memory Transfers and Streaming
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Memory Hierarchy – Motivation

Simple algorithm:

• Consider an array of size n

• Perform r element accesses circularly

• n is a parameter, r is fixed

Accesses per element (apm) for r = 20:

1 2 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

n = 2 n = 4 n = 5 n = 10

apm = 10 apm = 5 apm = 4 apm = 2
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Theory

• The number of instructions is the same regardless of n

• The number of memory accesses is also the same

• Branch mispredictions don’t stand in the way
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Memory Hierarchy

L1 cacheCPU L2 cache RAM Hard disk

S p e e d

S i z e

• Each level is larger and slower than the previous

• Transfers are done only between consecutive levels

• Transfer large blocks of data at once

• Real bottleneck: between memory and disk

• Bad news: data sets are getting huge
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Many memory transfers when n exceeds memory!
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Streaming

• Data access is done only sequentially

• Don’t want to store all data, use only small memory

• One pass streaming
– Data comes on the fly: sensor data, IP monitoring
– Use a single pass, get as much use of it as possible

• Multi pass streaming
– Modern disks have high sequential access
– A tempting approach for really massive data sets
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Outline

• Hardware factors affecting the running time
– Instructions performed by microprocessor

– Branch mispredictions

– Memory transfers

– Streaming

• Hardware factors affecting the reliability
– Memory corruptions

• Optimal resilient dictionaries
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Soft Memory Errors

• Nowadays memories:
– Small, complex, high frequency, low voltage
– Price to pay - reliability

• Soft memory errors:
– Bit flip, implying cell corruption
– Caused by radiation, power failures, cosmic rays

• Good news:
– Doesn’t happen often (every few months)

• Bad news:
– Happen often for large clusters
– Soft memory error rate is increasing
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Soft Memory Errors – Applications

[Govindavajhala and Appel ’03]
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Soft Memory Errors – Applications

[Govindavajhala and Appel ’03]

Applications:

• Break JVM

• Insecure cryptographic protocols, smart-cards
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Outline

• Hardware factors affecting the running time
– Instructions performed by microprocessor

– Branch mispredictions

– Memory transfers

– Streaming

• Hardware factors affecting the reliability
– Memory corruptions

• Optimal resilient dictionaries
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Faulty-Memory RAM

[Finocchi and Italiano ’04]

• A regular RAM with possibly corrupted cells

• Bad news:
– Memory corruptions occur at any time and at any place

– Corruptions are performed by an adversary

– Corrupted and uncorrupted cells can’t be distinguished

– No space increase (asymptotically)
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Faulty-Memory RAM

[Finocchi and Italiano ’04]

• A regular RAM with possibly corrupted cells

• Bad news:
– Memory corruptions occur at any time and at any place

– Corruptions are performed by an adversary

– Corrupted and uncorrupted cells can’t be distinguished

– No space increase (asymptotically)

• Good news:
– Assumption: at most δ corruptions

– O(1) corruption-free cells (reliable CPU registers)
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Resilient Algorithms

• Work correctly for uncorrupted values

• Searching:

��
��
��
��

��
��
��

��
��
��

41 7 9 12 14 16 18 21 27 3015 32 33 39 42 44 45 4937

1 41 7 9 12 14 16 18 21 27 3015 32 33 39 42 44 45 4913

1 41 7 9 12 13 16 18 21 27 3015 32 33 39 42 44 45 49

1

37

Search key e = 13.
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Resilient Results

[Finocchi and Italiano ’04, Finocchi et al. ’06, Finocchi et al. ’07, Jørgensen et al. ’07]

• Sorting: Θ(n log n + δ2)

• Static dictionaries:
– Randomized: Θ(log n + δ) expected time

– Deterministic: Ω(log n + δ), O(log n + δ1+ǫ) worst case

• Search trees: amortized O(log n + δ2) time per operation

• Priority queues: amortized O(log n + δ) time per operation

Our paper:

• Randomized static dictionary: Θ(log n + δ) expected time

• Deterministic static dictionary: O(log n + δ) worst case time

• Deterministic dynamic dictionary: O(log n + δ) worst case
time for search, O(log n + δ) amortized time for updates
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Classical Binary Search

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 18 21 2422 3528 31 423 0
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Classical Binary Search

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 18 21 2422 3528 31 4203

←←

Search key e = 3

Problems

• The adversary can mislead the search

• The answer may be wrong

• The search may end very far from the correct location

• A single corruption suffices!!!
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Randomized Static Dictionary

1. Split the input in 2δ disjoint sequences S1, . . . , S2δ

2. Perform a classic binary search on a random Sk

3. Check whether the search was not mislead by corruptions

4. If search was mislead restart from step 2. with a new Sk

4 7 9 12 13 16 18 21 27 3025 32 33 39 42 44 45 4637

1 12 21 32 42

4 13 25 33 44

7 16 27 37 45

46393018

1

9

A

S1

S2

S3

S4

δ = 2
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The Magic Step 3

4 7 9 12 13 16 18 21 10 3025 32 33 39 42 44 45 4637

1 12 21 32 42

4 13 25 33 44

7 16 37 45

463930189

1

10

A

S1

S2

S3

S4

︸ ︷︷ ︸ ︸ ︷︷ ︸

L R

e = 13, δ = 2, cl = 1, cr = 5

• |L| = |R| = 2δ + 1

• cl – # keys in L smaller than e

• cr – # keys in R larger than e

• Restart if cl ≤ δ or cr ≤ δ

• Scan all elements between L and R otherwise
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Analysis

1. Split the input in 2δ disjoint sequences S1, . . . , S2δ

2. Perform a classic binary search on a random Sk

3. Check whether the search was not mislead by corruptions

4. If search was mislead restart from step 2. with a new Sk
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Analysis

1. Split the input in 2δ disjoint sequences S1, . . . , S2δ

2. Perform a classic binary search on a random Sk

3. Check whether the search was not mislead by corruptions

4. If search was mislead restart from step 2. with a new Sk

• Step 2: O(log n) time and O(log δ) random bits

• Step 3: O(δ) time

• Probability theory: expected at most two iterations

• Altogether: O(log n + δ) time, O(log δ) random bits
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Analysis

1. Split the input in 2δ disjoint sequences S1, . . . , S2δ

2. Perform a classic binary search on a random Sk

3. Check whether the search was not mislead by corruptions

4. If search was mislead restart from step 2. with a new Sk

• Step 2: O(log n) time and O(log δ) random bits

• Step 3: O(δ) time

• Probability theory: expected at most two iterations

• Altogether: O(log n + δ) time, O(log δ) random bits

Note

• Adaptive adversaries can compute index k of Sk!!!

• For adaptive adversaries: O(δ log n) time
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Deterministic Static Dictionary
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High Level Picture

• Adapted binary search
– Reuse the sub-sequencing idea

– Perform adapted binary search on subsequences

– Change the subsequence when identifying corruptions

– A corruption forces it to advance one level

• Verification procedure
– Checks whether the search was mislead by corruptions

– Upon success takes O(δ) time

– Upon failure takes O(f) time and identifies Ω(f) errors

• Final scan
– Performed once, check O(δ) elements
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Structure

LV RVQ

︷ ︸︸ ︷

2δ
︷ ︸︸ ︷

2δ
︷ ︸︸ ︷

︸ ︷︷ ︸

δ + 1

. . . . . .
Block

• Use different elements for search and verification

• Query segment Q:
– Used only by the binary search
– Defines subsequences S0, . . . , Sδ+1

– There is at least an Sk corruption-free

• Verification segments LV and RV

– Used only by verification
– Allow the use of a majority argument
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Adapted Binary Search

47312523 29 32 35 4110 12 13843 18 21 14−∞

876543210−1 9 10 11 12 13 14 15 16 17

+∞

←→

Sk

The search key e = 21.

• Check the next to last element in the pointed direction
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Adapted Binary Search

47312523 29 32 35 4110 12 13843 18 21 14−∞

876543210−1 9 10 11 12 13 14 15 16 17

+∞

←→

Sk

The search key e = 21.

• Check the next to last element in the pointed direction
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Adapted Binary Search

47312523 29 32 35 4110 12 13843 18 21 14−∞

876543210−1 9 10 11 12 13 14 15 16 17

+∞

←→ ← ←

Sk

The search key e = 21.

• Check the next to last element in the pointed direction

• A corruption would be identified in the next step (unless
another corruption occurs)

• Big idea: each step in the wrong direction corresponds to a
corruption

• Conflict area: search key must be there or corruption

• Call verification procedure on conflict area:
– Succeeds: search key must be there, scan two blocks
– Fails: Backtrack the search on a different Sk
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Verification procedure

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45. . . . . .
→ ←

cl cr

38 71

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

1 1

Search key e = 45, δ = 3, # corruptions found k = 1

• Performed on LVi and RVi+1

• cl – confidence that e is to the right of LVi

• cr – confidence that e is to the left of RVi+1
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Verification procedure
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2cl cr

←
38 71

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

2

Search key e = 45, δ = 3, # corruptions found k = 1

• Performed on LVi and RVi+1

• cl – confidence that e is to the right of LVi

• cr – confidence that e is to the left of RVi+1
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Verification procedure
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→→→ ←

23cl cr

→←
38 71
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︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

Search key e = 45, δ = 3, # corruptions found k = 1

• Performed on LVi and RVi+1

• cl – confidence that e is to the right of LVi

• cr – confidence that e is to the left of RVi+1
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Verification procedure

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45. . . . . .
→→→→ ←

234cl cr
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012

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

Search key e = 45, δ = 3, # corruptions found k = 1

• Performed on LVi and RVi+1

• cl – confidence that e is to the right of LVi

• cr – confidence that e is to the left of RVi+1

• Fails if cl = 0 or cr = 0, succeeds otherwise

• 2f elements visited in each segment to detect f errors

• Start 2k positions away from end of the each segment
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Analysis

• Adapted binary search:
– Corruption-free: O(log n)

– Time spent in wrong direction: O(f) for f corruptions

• Verification:
– A single verification: O(f) time for f corruptions
– All verifications: O(δ)

• Final scan: O(δ) time to scan two blocks

Altogether:

The resilient static deterministic dictionary supports searches in

O(log n + δ) time.
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Dynamic Deterministic Dictionary

Gabriel Moruz: Hardware aware algorithms and data structures 41



Reliable Value

• Stored in unreliable memory, retrieved reliably

• Uses O(δ) time and O(δ) space

• Replicate the given value 2δ + 1 times

• Retrieve during a scan using a majority argument
– Keep in safe memory a candidate element and a

counter

– Increase counter when encountering a matching
element

– Decrease counter when encountering a different
element

– Discard candidate when counter becomes zero
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Dynamic Dictionary – Structure

Leaf structureTop tree

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Top tree
– Introduced in [Brodal et al. ’02]
– Stores only guiding elements, not input elements

• Leaf structure
– Consists of Θ(log n) buckets and a top bucket
– Only B0, . . . , Bb−1 contain input elements
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Top Tree

[Brodal et al. ’02]

O(1)

• Common knowledge:
– Has height log |T |+ O(1), can be laid in BFS order

– Supports updates in amortized O(log2 |T |) time

• We store it reliably:

– Updates cost becomes amortized O(δ log2 |T |) time
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Leaf Structure

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Stores Θ(δ log n) input elements

• Each bucket Bi store Θ(δ) input elements

• Top bucket contains guiding elements stored reliably
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Searches

Leaf structureTop tree

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Search the last level of internal nodes in the top-tree, and
identify two consecutive nodes

• Search reliably the O(1) remaining nodes

• Search the top bucket, identify some bucket Bi

• Scan Bi and report result
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Searches

Leaf structureTop tree

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Search the last level of internal nodes in the top-tree, and
identify two consecutive nodes

• Search reliably the O(1) remaining nodes

• Search the top bucket, identify some bucket Bi

• Scan Bi and report result

• Time: O(log n + δ) worst case.
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Updates

Leaf structureTop tree

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Use standard bucketing techniques
– Split/merge buckets each Ω(δ) operations
– Insert/delete new elements in B each Ω(δ) operations
– Insert/delete new elements in the top tree each

Ω(δ log n) operations

• Time: O(log n + δ) amortized for insertions and deletions.
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Conclusion

Will theory catch practice?
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