
Hardware-Aware
Algorithms and Data Structures

Gabriel Moruz

BRICS
University of Aarhus

1

Hardware /nm./: “the part of the computer that you can kick.”

– Geeky folklore.

Gabriel Moruz: Hardware aware algorithms and data structures 2

Algorithms and Data Structures

• Algorithm:
– A finite sequence of steps to solve a problem
– Is given an input
– Is required to produce an output
– Should be efficient

• Data structure:
– The "way" in which data is stored
– Supports operations

Gabriel Moruz: Hardware aware algorithms and data structures 3

Example – Searching

• The problem
– Input: A sequence of numbers A, an element e

– Output: YES, if e is in A, NO otherwise

• Dictionary – underlying data structure
– Static: Supports only searches

– Dynamic: Supports searches and updates

• Why bother
– Numerous applications: Database systems, search

engines, implementing sets, sorting, interval trees,
orthogonal range searching, line segment intersection, phone
book, the search for the Holy Grail, finding Nemo, the vial of life,
cherchez la femme, the lost city of Atlantis, the bad Mafia guys, the dark Mordor,

pirates’ treasure chest etc.

Gabriel Moruz: Hardware aware algorithms and data structures 4

Linear Search

• Consider sequence A to be an array of size n

• Efficiency - the number of comparisons

0 1 2 4 5 6 7 8 9 10 11 12 14 15

42 7 10 15 12 8 522

3

31 18 24

13

3 133521 28A

• The algorithm
– Compare elements in A against e left-to-right
– Stop upon encountering an element equal to e

• Analysis
– What if e = 13 or e not in A?
– Worst case scenario: need to access all elements in A!!!
– Why avoiding this approach: imagine n = 100, 000, 000

Gabriel Moruz: Hardware aware algorithms and data structures 5

What if A is sorted?

1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 18 21 2422 3528 31 4215

0

3A

← →

The algorithm – binary search:

• Compare e against the middle element in A

• If e is smaller then restrict to the left half of A

• If e is larger then restrict to the right half of A

• Stop when:
– an element in A matching e is found, or
– the sequence in which we search has one element

Gabriel Moruz: Hardware aware algorithms and data structures 6

What if A is sorted?

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423A

→← ←

The algorithm – binary search:

• Compare e against the middle element in A

• If e is smaller then restrict to the left half of A

• If e is larger then restrict to the right half of A

• Stop when:
– an element in A matching e is found, or
– the sequence in which we search has one element

• The searched element e = 13

Gabriel Moruz: Hardware aware algorithms and data structures 6

What if A is sorted?

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423

←→

A

The algorithm – binary search:

• Compare e against the middle element in A

• If e is smaller then restrict to the left half of A

• If e is larger then restrict to the right half of A

• Stop when:
– an element in A matching e is found, or
– the sequence in which we search has one element

• The searched element e = 13

Gabriel Moruz: Hardware aware algorithms and data structures 6

What if A is sorted?

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423

←→ →

A

The algorithm – binary search:

• Compare e against the middle element in A

• If e is smaller then restrict to the left half of A

• If e is larger then restrict to the right half of A

• Stop when:
– an element in A matching e is found, or
– the sequence in which we search has one element

• The searched element e = 13

Gabriel Moruz: Hardware aware algorithms and data structures 6

What if A is sorted?

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423

←→ →

A

The algorithm – binary search:

• Compare e against the middle element in A

• If e is smaller then restrict to the left half of A

• If e is larger then restrict to the right half of A

• Stop when:
– an element in A matching e is found, or
– the sequence in which we search has one element

• The searched element e = 13

Gabriel Moruz: Hardware aware algorithms and data structures 6

Analyzing Binary Search

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423

←→ →

A

• Analysis
– One comparison: search in a sequence of size n/2

– Two comparisons: search in a sequence of size n/4

– k comparisons: search in a sequence of size n/(2k)

– Worst case scenario: stop in a sequence of size 1

– Sequence size n/(2k) = 1, meaning k ≈ log2 n

– Conclusion: we need about log2 n comparisons

Gabriel Moruz: Hardware aware algorithms and data structures 7

Analyzing Binary Search

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 15 18 21 2422 3528 31 423

←→ →

A

• Analysis
– One comparison: search in a sequence of size n/2

– Two comparisons: search in a sequence of size n/4

– k comparisons: search in a sequence of size n/(2k)

– Worst case scenario: stop in a sequence of size 1

– Sequence size n/(2k) = 1, meaning k ≈ log2 n

– Conclusion: we need about log2 n comparisons

• Imagine n = 100, 000, 000: log2 100, 000, 000 ≈ 26.5

Gabriel Moruz: Hardware aware algorithms and data structures 7

Outline

• Hardware factors affecting the running time
– Instructions performed by microprocessor

– Branch mispredictions

– Memory transfers

– Streaming

• Hardware factors affecting the reliability
– Memory corruptions

• Optimal resilient dictionaries

Gabriel Moruz: Hardware aware algorithms and data structures 8

Theory vs Practice

are the same

In theory, theory and practice

Gabriel Moruz: Hardware aware algorithms and data structures 9

Theory vs Practice

are the same

In theory, theory and practice

In practice, theory and practice

may be quite different . . .

Gabriel Moruz: Hardware aware algorithms and data structures 9

Traditional RAM model

CPU Memory

• Consists of a processor and an infinite memory

• Instructions:
– Load/stores of memory cells, assignments,

comparisons, simple math operations
– NO loops!

• Complexity: given by # instructions

• Not always adequate!!!

Gabriel Moruz: Hardware aware algorithms and data structures 10

Branch Mispredictions – Motivation

• Input:
– a – array of size 2× 107, ai ∈ [1, . . . , 100]

– param – a threshold, param ∈ [0, . . . , 101]

• Output:
– g – # elements in a larger than param

– s – # elements in a smaller or equal to param

• Algorithm:
– Compare each element in a against param

– Use a left-to-right scan

72 21 3 45 98 53 87 17 24 33 52 8 81 79 63 48

param = 30, g = 0, s = 0

Gabriel Moruz: Hardware aware algorithms and data structures 11

Branch Mispredictions – Motivation

• Input:
– a – array of size 2× 107, ai ∈ [1, . . . , 100]

– param – a threshold, param ∈ [0, . . . , 101]

• Output:
– g – # elements in a larger than param

– s – # elements in a smaller or equal to param

• Algorithm:
– Compare each element in a against param

– Use a left-to-right scan

72 21 3 45 98 53 87 17 24 33 52 8 81 79 63 48

param = 30, g = 1, s = 0

Gabriel Moruz: Hardware aware algorithms and data structures 11

Branch Mispredictions – Motivation

• Input:
– a – array of size 2× 107, ai ∈ [1, . . . , 100]

– param – a threshold, param ∈ [0, . . . , 101]

• Output:
– g – # elements in a larger than param

– s – # elements in a smaller or equal to param

• Algorithm:
– Compare each element in a against param

– Use a left-to-right scan

72 21 3 45 98 53 87 17 24 33 52 8 81 79 63 48

param = 30, g = 1, s = 1

Gabriel Moruz: Hardware aware algorithms and data structures 11

Branch Mispredictions – Motivation

• Input:
– a – array of size 2× 107, ai ∈ [1, . . . , 100]

– param – a threshold, param ∈ [0, . . . , 101]

• Output:
– g – # elements in a larger than param

– s – # elements in a smaller or equal to param

• Algorithm:
– Compare each element in a against param

– Use a left-to-right scan

72 21 3 45 98 53 87 17 24 33 52 8 81 79 63 48

param = 30, g = 11, s = 5

Gabriel Moruz: Hardware aware algorithms and data structures 11

Running Time

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 ti
m

e

param

Running time

Theory

• The number of instructions is the same regardless of param

Gabriel Moruz: Hardware aware algorithms and data structures 12

Running Time

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 ti
m

e

param

Running time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e

param

No opt
Opt -O3

Theory Practice

Explanation: branch mispredictions!

Gabriel Moruz: Hardware aware algorithms and data structures 12

Pipelining

Gabriel Moruz: Hardware aware algorithms and data structures 13

Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch write

→x=1;

y=y-1;

z=m+n;

if (t==0)

printf(‘‘It’s zero’’);

else

t=0;

Gabriel Moruz: Hardware aware algorithms and data structures 13

Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1

write

→x=1;

y=y-1;

z=m+n;

if (t==0)

printf(‘‘It’s zero’’);

else

t=0;

Gabriel Moruz: Hardware aware algorithms and data structures 13

Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1y=y−1

write

→x=1;

→y=y-1;

z=m+n;

if (t==0)

printf(‘‘It’s zero’’);

else

t=0;

Gabriel Moruz: Hardware aware algorithms and data structures 13

Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1y=y−1z=m+n

write

→x=1;

y=y-1;

→z=m+n;

if (t==0)

printf(‘‘It’s zero’’);

else

t=0;

Gabriel Moruz: Hardware aware algorithms and data structures 13

Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1y=y−1z=m+nif(t==0)

write

→x=1;

y=y-1;

z=m+n;

→if (t==0)

printf(‘‘It’s zero’’);

else

t=0;

Gabriel Moruz: Hardware aware algorithms and data structures 13

Pipelining

• Each instruction is broken into several stages

• The smaller pieces can be executed in the same time

• Significant gains in running time

get opsdecode executefetch

x=1y=y−1z=m+nif(t==0)?

write

→x=1;

y=y-1;

z=m+n;

if (t==0)

→ printf(‘‘It’s zero’’);

else

→ t=0;

Gabriel Moruz: Hardware aware algorithms and data structures 13

Branch Predictor

get opsdecode execute writefetch

x=1y=x+1x=y−2if(y==0)?

Branch predictor

• Modern processors include branch predictors

• Attempts to predict the direction of each branch

• Accurate over 90% of the times

• Significant penalties upon mispredictions

• Pipelines are getting longer
Gabriel Moruz: Hardware aware algorithms and data structures 14

Running Time

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 ti
m

e

param

Running time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100

R
un

ni
ng

 ti
m

e

param

No opt
Opt -O3

Theory Practice

Many branch mispredictions for param ≈ 50!

Gabriel Moruz: Hardware aware algorithms and data structures 15

Memory Transfers and Streaming

Gabriel Moruz: Hardware aware algorithms and data structures 16

Memory Hierarchy – Motivation

Simple algorithm:

• Consider an array of size n

• Perform r element accesses circularly

• n is a parameter, r is fixed

Accesses per element (apm) for r = 20:

1 2 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

n = 2 n = 4 n = 5 n = 10

apm = 10 apm = 5 apm = 4 apm = 2

Gabriel Moruz: Hardware aware algorithms and data structures 17

Running Time

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

log n

Theory

• The number of instructions is the same regardless of n

• The number of memory accesses is also the same

• Branch mispredictions don’t stand in the way

Gabriel Moruz: Hardware aware algorithms and data structures 18

Running Time

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

log n

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

log n

Theory Practice

Explanation: memory hierarchy!

Gabriel Moruz: Hardware aware algorithms and data structures 18

Memory Hierarchy

L1 cacheCPU L2 cache RAM Hard disk

S p e e d

S i z e

• Each level is larger and slower than the previous

• Transfers are done only between consecutive levels

• Transfer large blocks of data at once

• Real bottleneck: between memory and disk

• Bad news: data sets are getting huge

Gabriel Moruz: Hardware aware algorithms and data structures 19

Running Time

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

log n

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

log n

Practice Same chart zoomed

Many memory transfers when n exceeds memory!

Gabriel Moruz: Hardware aware algorithms and data structures 20

Streaming

• Data access is done only sequentially

• Don’t want to store all data, use only small memory

• One pass streaming
– Data comes on the fly: sensor data, IP monitoring
– Use a single pass, get as much use of it as possible

• Multi pass streaming
– Modern disks have high sequential access
– A tempting approach for really massive data sets

Gabriel Moruz: Hardware aware algorithms and data structures 21

Outline

• Hardware factors affecting the running time
– Instructions performed by microprocessor

– Branch mispredictions

– Memory transfers

– Streaming

• Hardware factors affecting the reliability
– Memory corruptions

• Optimal resilient dictionaries

Gabriel Moruz: Hardware aware algorithms and data structures 22

Soft Memory Errors

• Nowadays memories:
– Small, complex, high frequency, low voltage
– Price to pay - reliability

• Soft memory errors:
– Bit flip, implying cell corruption
– Caused by radiation, power failures, cosmic rays

• Good news:
– Doesn’t happen often (every few months)

• Bad news:
– Happen often for large clusters
– Soft memory error rate is increasing

Gabriel Moruz: Hardware aware algorithms and data structures 23

Soft Memory Errors – Applications

[Govindavajhala and Appel ’03]

Gabriel Moruz: Hardware aware algorithms and data structures 24

Soft Memory Errors – Applications

[Govindavajhala and Appel ’03]

Applications:

• Break JVM

• Insecure cryptographic protocols, smart-cards

Gabriel Moruz: Hardware aware algorithms and data structures 24

Outline

• Hardware factors affecting the running time
– Instructions performed by microprocessor

– Branch mispredictions

– Memory transfers

– Streaming

• Hardware factors affecting the reliability
– Memory corruptions

• Optimal resilient dictionaries

Gabriel Moruz: Hardware aware algorithms and data structures 25

Contributions

1. On the Adaptiveness of Quicksort. G. S. Brodal, R. Fagerberg, and G. Moruz. In Proc.
7th Workshop on Algorithm Engineering and Experiments (ALENEX), 2005.

2. Cache-Aware and Cache-Oblivious Adaptive Sorting. G. S. Brodal, R. Fagerberg, and
G. Moruz. In Proc. Int. Colloquium on Automata, Languages, and Programming, 2005.

3. Tradeoffs Between Branch Mispredictions and Comparisons for Sorting
Algorithms. G. S. Brodal and G. Moruz. In Proc. 9th Int. Workshop on Algorithms and
Data Structures (WADS), 2005.

4. Skewed Binary Search Trees. G. S. Brodal and G. Moruz. In Proc. 14th Annual
European Symposium on Algorithms (ESA), 2006.

5. Adapting Parallel Algorithms to the W-Stream Model, with Applications to Graph
Problems. C. Demetrescu, B. Escoffier, G. Moruz, and A. Ribichini. In Proc. 32nd Int.
Symposium on Mathematical Foundations of Computer Science (MFCS), 2007.

6. Resilient Priority Queues. A. G. Jørgensen, G. Moruz, and T. Mølhave. In Proc. 10th
Int. Workshop on Algorithms and Data Structures (WADS), 2007.

7. Optimal Resilient Dynamic Dictionaries. G. S. Brodal, R. Fagerberg, I. Finocchi, F.
Grandoni, G. F. Italiano, A. G. Jørgensen, G. Moruz, and T. Mølhave. In Proc. 15th
Annual European Symposium on Algorithms (ESA), 2007. To appear.

Gabriel Moruz: Hardware aware algorithms and data structures 26

ESA ’07

Optimal resilient dictionaries

Optimal resilient dictionaries Resilient Search Trees: Randomization and Prejudice

Optimal resilient dictionaries Resilient Search Trees: Randomization and Prejudice

G. Moruz, and T. Mølhave
G. S. Brodal, R. Fagerberg, A. G. Jørgensen, I. Finocchi, F. Grandoni, and G. F. Italiano

Submissions:

G. Moruz, and T. Mølhave
G. S. Brodal, R. Fagerberg, A. G. Jørgensen, I. Finocchi, F. Grandoni, and G. F. Italiano

Reviewers deciding:

Acceptance notification:

G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni,G. F. Italiano,
A. G. Jørgensen, G. Moruz, and T. Mølhave

Gabriel Moruz: Hardware aware algorithms and data structures 27

Faulty-Memory RAM

[Finocchi and Italiano ’04]

• A regular RAM with possibly corrupted cells

• Bad news:
– Memory corruptions occur at any time and at any place

– Corruptions are performed by an adversary

– Corrupted and uncorrupted cells can’t be distinguished

– No space increase (asymptotically)

Gabriel Moruz: Hardware aware algorithms and data structures 28

Faulty-Memory RAM

[Finocchi and Italiano ’04]

• A regular RAM with possibly corrupted cells

• Bad news:
– Memory corruptions occur at any time and at any place

– Corruptions are performed by an adversary

– Corrupted and uncorrupted cells can’t be distinguished

– No space increase (asymptotically)

• Good news:
– Assumption: at most δ corruptions

– O(1) corruption-free cells (reliable CPU registers)

Gabriel Moruz: Hardware aware algorithms and data structures 28

Resilient Algorithms

• Work correctly for uncorrupted values

• Searching:

��
��
��
��

��
��
��

��
��
��

41 7 9 12 14 16 18 21 27 3015 32 33 39 42 44 45 4937

1 41 7 9 12 14 16 18 21 27 3015 32 33 39 42 44 45 4913

1 41 7 9 12 13 16 18 21 27 3015 32 33 39 42 44 45 49

1

37

Search key e = 13.

Gabriel Moruz: Hardware aware algorithms and data structures 29

Resilient Results

[Finocchi and Italiano ’04, Finocchi et al. ’06, Finocchi et al. ’07, Jørgensen et al. ’07]

• Sorting: Θ(n log n + δ2)

• Static dictionaries:
– Randomized: Θ(log n + δ) expected time

– Deterministic: Ω(log n + δ), O(log n + δ1+ǫ) worst case

• Search trees: amortized O(log n + δ2) time per operation

• Priority queues: amortized O(log n + δ) time per operation

Our paper:

• Randomized static dictionary: Θ(log n + δ) expected time

• Deterministic static dictionary: O(log n + δ) worst case time

• Deterministic dynamic dictionary: O(log n + δ) worst case
time for search, O(log n + δ) amortized time for updates

Gabriel Moruz: Hardware aware algorithms and data structures 30

Classical Binary Search

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 18 21 2422 3528 31 423 0

Gabriel Moruz: Hardware aware algorithms and data structures 31

Classical Binary Search

0 1 2 4 5 6 7 8 9 10 11 12 14 153 13

75 8 10 12 13 18 21 2422 3528 31 4203

←←

Search key e = 3

Problems

• The adversary can mislead the search

• The answer may be wrong

• The search may end very far from the correct location

• A single corruption suffices!!!

Gabriel Moruz: Hardware aware algorithms and data structures 31

Randomized Static Dictionary

1. Split the input in 2δ disjoint sequences S1, . . . , S2δ

2. Perform a classic binary search on a random Sk

3. Check whether the search was not mislead by corruptions

4. If search was mislead restart from step 2. with a new Sk

4 7 9 12 13 16 18 21 27 3025 32 33 39 42 44 45 4637

1 12 21 32 42

4 13 25 33 44

7 16 27 37 45

46393018

1

9

A

S1

S2

S3

S4

δ = 2

Gabriel Moruz: Hardware aware algorithms and data structures 32

The Magic Step 3

4 7 9 12 13 16 18 21 10 3025 32 33 39 42 44 45 4637

1 12 21 32 42

4 13 25 33 44

7 16 37 45

463930189

1

10

A

S1

S2

S3

S4

︸ ︷︷ ︸ ︸ ︷︷ ︸

L R

e = 13, δ = 2, cl = 1, cr = 5

• |L| = |R| = 2δ + 1

• cl – # keys in L smaller than e

• cr – # keys in R larger than e

• Restart if cl ≤ δ or cr ≤ δ

• Scan all elements between L and R otherwise

Gabriel Moruz: Hardware aware algorithms and data structures 33

Analysis

1. Split the input in 2δ disjoint sequences S1, . . . , S2δ

2. Perform a classic binary search on a random Sk

3. Check whether the search was not mislead by corruptions

4. If search was mislead restart from step 2. with a new Sk

Gabriel Moruz: Hardware aware algorithms and data structures 34

Analysis

1. Split the input in 2δ disjoint sequences S1, . . . , S2δ

2. Perform a classic binary search on a random Sk

3. Check whether the search was not mislead by corruptions

4. If search was mislead restart from step 2. with a new Sk

• Step 2: O(log n) time and O(log δ) random bits

• Step 3: O(δ) time

• Probability theory: expected at most two iterations

• Altogether: O(log n + δ) time, O(log δ) random bits

Gabriel Moruz: Hardware aware algorithms and data structures 34

Analysis

1. Split the input in 2δ disjoint sequences S1, . . . , S2δ

2. Perform a classic binary search on a random Sk

3. Check whether the search was not mislead by corruptions

4. If search was mislead restart from step 2. with a new Sk

• Step 2: O(log n) time and O(log δ) random bits

• Step 3: O(δ) time

• Probability theory: expected at most two iterations

• Altogether: O(log n + δ) time, O(log δ) random bits

Note

• Adaptive adversaries can compute index k of Sk!!!

• For adaptive adversaries: O(δ log n) time
Gabriel Moruz: Hardware aware algorithms and data structures 34

Deterministic Static Dictionary

Gabriel Moruz: Hardware aware algorithms and data structures 35

High Level Picture

• Adapted binary search
– Reuse the sub-sequencing idea

– Perform adapted binary search on subsequences

– Change the subsequence when identifying corruptions

– A corruption forces it to advance one level

• Verification procedure
– Checks whether the search was mislead by corruptions

– Upon success takes O(δ) time

– Upon failure takes O(f) time and identifies Ω(f) errors

• Final scan
– Performed once, check O(δ) elements

Gabriel Moruz: Hardware aware algorithms and data structures 36

Structure

LV RVQ

︷ ︸︸ ︷

2δ
︷ ︸︸ ︷

2δ
︷ ︸︸ ︷

︸ ︷︷ ︸

δ + 1

.
Block

• Use different elements for search and verification

• Query segment Q:
– Used only by the binary search
– Defines subsequences S0, . . . , Sδ+1

– There is at least an Sk corruption-free

• Verification segments LV and RV

– Used only by verification
– Allow the use of a majority argument

Gabriel Moruz: Hardware aware algorithms and data structures 37

Adapted Binary Search

47312523 29 32 35 4110 12 13843 18 21 14−∞

876543210−1 9 10 11 12 13 14 15 16 17

+∞

←→

Sk

The search key e = 21.

• Check the next to last element in the pointed direction

Gabriel Moruz: Hardware aware algorithms and data structures 38

Adapted Binary Search

47312523 29 32 35 4110 12 13843 18 21 14−∞

876543210−1 9 10 11 12 13 14 15 16 17

+∞

←→

Sk

The search key e = 21.

• Check the next to last element in the pointed direction

Gabriel Moruz: Hardware aware algorithms and data structures 38

Adapted Binary Search

47312523 29 32 35 4110 12 13843 18 21 14−∞

876543210−1 9 10 11 12 13 14 15 16 17

+∞

←→ ← ←

Sk

The search key e = 21.

• Check the next to last element in the pointed direction

• A corruption would be identified in the next step (unless
another corruption occurs)

• Big idea: each step in the wrong direction corresponds to a
corruption

• Conflict area: search key must be there or corruption

• Call verification procedure on conflict area:
– Succeeds: search key must be there, scan two blocks
– Fails: Backtrack the search on a different Sk

Gabriel Moruz: Hardware aware algorithms and data structures 38

Verification procedure

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45.
→ ←

cl cr

38 71

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

1 1

Search key e = 45, δ = 3, # corruptions found k = 1

• Performed on LVi and RVi+1

• cl – confidence that e is to the right of LVi

• cr – confidence that e is to the left of RVi+1

Gabriel Moruz: Hardware aware algorithms and data structures 39

Verification procedure

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45.
→→ ←

2cl cr

←
38 71

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

2

Search key e = 45, δ = 3, # corruptions found k = 1

• Performed on LVi and RVi+1

• cl – confidence that e is to the right of LVi

• cr – confidence that e is to the left of RVi+1

Gabriel Moruz: Hardware aware algorithms and data structures 39

Verification procedure

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45.
→→→ ←

23cl cr

→←
38 71

12

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

Search key e = 45, δ = 3, # corruptions found k = 1

• Performed on LVi and RVi+1

• cl – confidence that e is to the right of LVi

• cr – confidence that e is to the left of RVi+1

Gabriel Moruz: Hardware aware algorithms and data structures 39

Verification procedure

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

2 3 5 7 12 14 18 21 23 24 28 49 31 32 35 40 41 45.
→→→→ ←

234cl cr

→→←
38 71

012

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi Qi RVi

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

LVi+1 Qi+1 RVi+1

Search key e = 45, δ = 3, # corruptions found k = 1

• Performed on LVi and RVi+1

• cl – confidence that e is to the right of LVi

• cr – confidence that e is to the left of RVi+1

• Fails if cl = 0 or cr = 0, succeeds otherwise

• 2f elements visited in each segment to detect f errors

• Start 2k positions away from end of the each segment
Gabriel Moruz: Hardware aware algorithms and data structures 39

Analysis

• Adapted binary search:
– Corruption-free: O(log n)

– Time spent in wrong direction: O(f) for f corruptions

• Verification:
– A single verification: O(f) time for f corruptions
– All verifications: O(δ)

• Final scan: O(δ) time to scan two blocks

Altogether:

The resilient static deterministic dictionary supports searches in

O(log n + δ) time.

Gabriel Moruz: Hardware aware algorithms and data structures 40

Dynamic Deterministic Dictionary

Gabriel Moruz: Hardware aware algorithms and data structures 41

Reliable Value

• Stored in unreliable memory, retrieved reliably

• Uses O(δ) time and O(δ) space

• Replicate the given value 2δ + 1 times

• Retrieve during a scan using a majority argument
– Keep in safe memory a candidate element and a

counter

– Increase counter when encountering a matching
element

– Decrease counter when encountering a different
element

– Discard candidate when counter becomes zero

Gabriel Moruz: Hardware aware algorithms and data structures 42

Dynamic Dictionary – Structure

Leaf structureTop tree

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Top tree
– Introduced in [Brodal et al. ’02]
– Stores only guiding elements, not input elements

• Leaf structure
– Consists of Θ(log n) buckets and a top bucket
– Only B0, . . . , Bb−1 contain input elements

Gabriel Moruz: Hardware aware algorithms and data structures 43

Top Tree

[Brodal et al. ’02]

O(1)

• Common knowledge:
– Has height log |T |+ O(1), can be laid in BFS order

– Supports updates in amortized O(log2 |T |) time

• We store it reliably:

– Updates cost becomes amortized O(δ log2 |T |) time

Gabriel Moruz: Hardware aware algorithms and data structures 44

Leaf Structure

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Stores Θ(δ log n) input elements

• Each bucket Bi store Θ(δ) input elements

• Top bucket contains guiding elements stored reliably

Gabriel Moruz: Hardware aware algorithms and data structures 45

Searches

Leaf structureTop tree

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Search the last level of internal nodes in the top-tree, and
identify two consecutive nodes

• Search reliably the O(1) remaining nodes

• Search the top bucket, identify some bucket Bi

• Scan Bi and report result

Gabriel Moruz: Hardware aware algorithms and data structures 46

Searches

Leaf structureTop tree

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Search the last level of internal nodes in the top-tree, and
identify two consecutive nodes

• Search reliably the O(1) remaining nodes

• Search the top bucket, identify some bucket Bi

• Scan Bi and report result

• Time: O(log n + δ) worst case.
Gabriel Moruz: Hardware aware algorithms and data structures 46

Updates

Leaf structureTop tree

O(1)

︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Θ(δ) Θ(δ)

. . .

. . .

Θ(δ)

Θ(log n)

︸ ︷︷ ︸

B

B0 B1 Bb−1

• Use standard bucketing techniques
– Split/merge buckets each Ω(δ) operations
– Insert/delete new elements in B each Ω(δ) operations
– Insert/delete new elements in the top tree each

Ω(δ log n) operations

• Time: O(log n + δ) amortized for insertions and deletions.

Gabriel Moruz: Hardware aware algorithms and data structures 47

Conclusion

Will theory catch practice?

Gabriel Moruz: Hardware aware algorithms and data structures 48

	 	extit {scriptsize Hardware /nm./: ``the part of the computer that you can kick.''}\ �lushright {scriptsize -- Geeky folklore.} vspace {2ex} �egin {center} �egin {tabular}{c c c} scalebox {.25}{includegraphics {images/kick1.eps}}& scalebox {.27}{includegraphics {images/kick2.eps}}& scalebox {.385}{includegraphics {images/kick3.eps}}\ end {tabular}\ end {center}
	Algorithms and Data Structures
	Example -- Searching
	Linear Search
	What if A is sorted?
	Analyzing Binary Search
	Outline
	Theory vs Practice
	Traditional RAM model
	Branch Mispredictions -- Motivation
	Running Time
	Pipelining
	Branch Predictor
	Running Time
	Memory Transfers and Streaming
	Memory Hierarchy -- Motivation
	Running Time
	Memory Hierarchy
	Running Time
	Streaming
	Outline
	Soft Memory Errors
	Soft Memory Errors -- Applications
	Outline
	Contributions
	ESA '07
	Faulty-Memory RAM
	Resilient Algorithms
	Resilient Results
	Classical Binary Search
	Randomized Static Dictionary
	The Magic Step 3
	Analysis
	Deterministic Static Dictionary
	High Level Picture
	Structure
	Adapted Binary Search
	Verification procedure
	Analysis
	Dynamic Deterministic Dictionary
	Reliable Value
	Dynamic Dictionary -- Structure
	Top Tree
	Leaf Structure
	Searches
	Updates
	Conclusion

