
AARHUS
UNIVERSITY

More Efficient Algorithms for Graph
Orientations and Geometric Cover

PhD Defence

Edvin Berglin

Topics of today

1/26

Edvin Berglin

Topics of today

1/26

Edvin Berglin

E.B. and G.S. Brodal
International Symposium on Algorithms and Computation 2017

A Simple Greedy Algorithm for
Dynamic Graph Orientation

Topics of today

1/26

Edvin Berglin

E.B. and G.S. Brodal
International Symposium on Algorithms and Computation 2017

P. Afshani, E.B., I. van Duijn, J.S. Nielsen
Symposium on Computational Geometry 2016

Applications of Incidence Bounds in Point
Covering Problems

A Simple Greedy Algorithm for
Dynamic Graph Orientation

AARHUS
UNIVERSITY

A Simple Greedy Algorithm
for Dynamic Graph Orientations

joint work with Gerth Stølting Brodal

ISAAC’17, Phuket

How to keep track of your friends

2/26

Edvin Berglin

• Josh
• Peter
• Bob
• Mark
• Charles
• David
• Francisco
• Zeke
• Aaron

All my friends:

How to keep track of your friends

2/26

Edvin Berglin

All my friends:
• Josh
• Peter
• Bob
• Mark
• Charles
• David
• Francisco
• Zeke
• Aaron

All my friends:

How to keep track of your friends

2/26

Edvin Berglin

How to keep track of your friends

2/26

Edvin Berglin

• Heathrow
• Indira Gandhi
• Kastrup
• McCarran
• JFK
• Schiphol
• Gardermoen
• Copernicus
• Keflavik

All my connections:
flight connections

Graph orientations

3/26

Edvin Berglin

• 44
• 6
• 3
• 31
• 19
• 10
• 4
• 91
• 23

All my connections:

4 3

9
10

55

19

14
23

31

6

99 44

11

Graph orientations

3/26

Edvin Berglin

• 44
• 6
• 3
• 31
• 19
• 10
• 4
• 91
• 23

All my connections:

4 3

9
10

55

19

14
23

31

6

99 44

11

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Situation: graph gets updated (edges inserted and
deleted) in an unpredictable way.

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Situation: graph gets updated (edges inserted and
deleted) in an unpredictable way.

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Situation: graph gets updated (edges inserted and
deleted) in an unpredictable way.

Task: flip a small number of edges to ensure all
out-degrees remain low.

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Situation: graph gets updated (edges inserted and
deleted) in an unpredictable way.

Task: flip a small number of edges to ensure all
out-degrees remain low.

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Situation: graph gets updated (edges inserted and
deleted) in an unpredictable way.

Task: flip a small number of edges to ensure all
out-degrees remain low.

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Situation: graph gets updated (edges inserted and
deleted) in an unpredictable way.

Task: flip a small number of edges to ensure all
out-degrees remain low.

Definitions

4/26

Edvin Berglin

4 3

9
10

55

19

14
23

31

6

99 44

11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Situation: graph gets updated (edges inserted and
deleted) in an unpredictable way.

Task: flip a small number of edges to ensure all
out-degrees remain low.

α = lowest possible out-degree (any number of flips)

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

Each vertex v stores its
out-edges in a queue Qv.

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

19
35
6
77
45

Q10

Each vertex v stores its
out-edges in a queue Qv.

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

19
35
6
77
45

Q10

On every insertion:
• add new edge in any direction
• repeat k times:

– flip the first edge of the longest list

Each vertex v stores its
out-edges in a queue Qv.

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

19
35
6
77
45

Q10

On every insertion:
• add new edge in any direction
• repeat k times:

– flip the first edge of the longest list

Each vertex v stores its
out-edges in a queue Qv.

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

19
35
6
77
45

Q10

On every insertion:
• add new edge in any direction
• repeat k times:

– flip the first edge of the longest list

Each vertex v stores its
out-edges in a queue Qv.

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

19
35
6
77
45

Q10

On every insertion:
• add new edge in any direction
• repeat k times:

– flip the first edge of the longest list

24
13
10

Q6

Each vertex v stores its
out-edges in a queue Qv.

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

19
35
6
77
45

Q10

On every insertion:
• add new edge in any direction
• repeat k times:

– flip the first edge of the longest list

24
13
10

Q6

Each vertex v stores its
out-edges in a queue Qv.

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

19
35
6
77
45

Q10

On every insertion:
• add new edge in any direction
• repeat k times:

– flip the first edge of the longest list

24
13
10

Q6

Each vertex v stores its
out-edges in a queue Qv.

Q24

...
6

Algorithm

5/26

Edvin Berglin

Input: stream of updates, parameter k.

19
35
6
77
45

Q10

On every insertion:
• add new edge in any direction
• repeat k times:

– flip the first edge of the longest list

24
13
10

Q6

Each vertex v stores its
out-edges in a queue Qv.

Q24

...
6

Quick analysis

6/26

Edvin Berglin

Quick analysis

6/26

Edvin Berglin

With at most x flips, what
is the best you can do?

Quick analysis

6/26

Edvin Berglin

With at most x flips, what
is the best you can do?

Easy! Every vertex will have
out-degree at most δ.

Quick analysis

6/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Quick analysis

6/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Quick analysis

6/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Goal: monkey’s out-degrees are “not much worse than” δ.

Quick analysis

7/26

Edvin Berglin

Quick analysis

7/26

Edvin Berglin

Associate a value to every
edge: depends on its direction
(“correct” or “wrong”), and
on its position in queue (Qv).

Quick analysis

7/26

Edvin Berglin

Associate a value to every
edge: depends on its direction
(“correct” or “wrong”), and
on its position in queue (Qv).

A vertex has “high” value ⇐⇒
it has many “wrong” out-edges.

Quick analysis

7/26

Edvin Berglin

Associate a value to every
edge: depends on its direction
(“correct” or “wrong”), and
on its position in queue (Qv).

The value on a vertex can change,
but with at least 2x+ 2 flips, the
sum of all values does not change.

A vertex has “high” value ⇐⇒
it has many “wrong” out-edges.

Quick analysis

7/26

Edvin Berglin

Associate a value to every
edge: depends on its direction
(“correct” or “wrong”), and
on its position in queue (Qv).

The value on a vertex can change,
but with at least 2x+ 2 flips, the
sum of all values does not change.

A vertex has “high” value ⇐⇒
it has many “wrong” out-edges.

Forget about the graph – look only at values!

Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

. . .

c5 c5 c6 c7

Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

. . .

c5 c5 c6 c7

Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

. . .

c5 c5 c6 c7

Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

β

. . .

c5 c5 c6 c7

Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

β

. . .

c5 c5 c6 c7

Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

β

. . .

c5 c5 c6 c7

Counter game

8/26

Edvin Berglin

β

1: β ≈ 6δ sufficient to simulate how values
are moved around by the monkey.

Counter game

8/26

Edvin Berglin

β

1: β ≈ 6δ sufficient to simulate how values
are moved around by the monkey.

Counter game

8/26

Edvin Berglin

β

2: An adversary cannot increase the value of
any counter by more than β log n ≈ 6δ log n.

1: β ≈ 6δ sufficient to simulate how values
are moved around by the monkey.

log 1000000 ≈ 7

Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Even though monkey has no idea about x, δ, β,
correct/wrong, counter games, adversaries. . .

Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Even though monkey has no idea about x, δ, β,
correct/wrong, counter games, adversaries. . .

Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Even though monkey has no idea about x, δ, β,
correct/wrong, counter games, adversaries. . .

Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Even though monkey has no idea about x, δ, β,
correct/wrong, counter games, adversaries. . .

Quick analysis

10/26

Edvin Berglin

Proven: with at least 2x+ 2 flips, every vertex
has out-degree at most ≈ 6δ log n.

What is x and δ?

Quick analysis

10/26

Edvin Berglin

Proven: with at least 2x+ 2 flips, every vertex
has out-degree at most ≈ 6δ log n.

What is x and δ?

⇒ we get out-degree ≈ 12α log n with
at least 2 log n+ 2 flips.

“I can get out-degree 2α with log n flips.”
Brodal & Fagerberg (1999)

Quick analysis

10/26

Edvin Berglin

Proven: with at least 2x+ 2 flips, every vertex
has out-degree at most ≈ 6δ log n.

What is x and δ?

⇒ we get out-degree ≈ 12α log n with
at least 2 log n+ 2 flips.

“I can get out-degree 2α log n with 1 flip.”
Kowalik (2007)

⇒ we get out-degree ≈ 12α(log n)2

with at least 4 flips.

“I can get out-degree 2α with log n flips.”
Brodal & Fagerberg (1999)

Quick analysis

10/26

Edvin Berglin

Proven: with at least 2x+ 2 flips, every vertex
has out-degree at most ≈ 6δ log n.

What is x and δ?

”I can get out-degree 2α with 1 flip.” (future)

⇒ we get out-degree ≈ 12α log n with 4 flips.

Quick analysis

10/26

Edvin Berglin

Proven: with at least 2x+ 2 flips, every vertex
has out-degree at most ≈ 6δ log n.

What is x and δ?

”I can get out-degree 2α with 1 flip.” (future)

⇒ we get out-degree ≈ 12α log n with 4 flips.

If so, the monkey already gets this (better) out-degree
with 4 flips – we just don’t know it yet.

Additional results

11/26

Edvin Berglin

I can maintain out-degree δ with at
most x flips on average.

Additional results

11/26

Edvin Berglin

I can maintain out-degree δ with at
most x flips on average.

I can maintain out-degree δ with at most
x flips on average.
I decide which edges to flip in a nice way.

Additional results

11/26

Edvin Berglin

Additional results

11/26

Edvin Berglin

Additional results

11/26

Edvin Berglin

“I want to be as smart as Dexter”

Additional results

11/26

Edvin Berglin

“I want to be as smart as Dexter”

“I want to find a limit on how
smart Dexter can be”

Additional results

11/26

Edvin Berglin

“I want to be as smart as Dexter”

“I want to find a limit on how
smart Dexter can be”

”I want to prove that out-degree 2α
with 1 flip is impossible”

Additional results

11/26

Edvin Berglin

“I want to be as smart as Dexter”

“I want to find a limit on how
smart Dexter can be”

”I want to prove that out-degree 2α
with 1 flip is impossible”

AARHUS
UNIVERSITY

Applications of incidence bounds
in point covering problems

joint work with Peyman Afshani, Ingo van Duijn, Jesper Sindahl Nielsen

SoCG’16, Boston

Problem definitions

Line Cover: given set of points P , draw k (or min #) lines

so that every point is on a line.

12/26

Edvin Berglin

Problem definitions

Line Cover: given set of points P , draw k (or min #) lines

so that every point is on a line.

12/26

Edvin Berglin

Problem definitions

Line Cover: given set of points P , draw k (or min #) lines

so that every point is on a line.

12/26

Edvin Berglin

NP-complete, APX-hard, FPT

Problem definitions

Line Cover: given set of points P , draw k (or min #) lines

Curve Cover: given P and family of curves C, draw k curves...

so that every point is on a line.

12/26

Edvin Berglin

NP-complete, APX-hard, FPT

Problem definitions

Line Cover: given set of points P , draw k (or min #) lines

Curve Cover: given P and family of curves C, draw k curves...

(circles, hyperbolas, polynomials, splines, etc.)

so that every point is on a line.

12/26

Edvin Berglin

NP-complete, APX-hard, FPT

Problem definitions

Line Cover: given set of points P , draw k (or min #) lines

Curve Cover: given P and family of curves C, draw k curves...

(circles, hyperbolas, polynomials, splines, etc.)

so that every point is on a line.

12/26

Edvin Berglin

NP-complete, APX-hard, FPT

Hyperplane Cover: given P in Rd, draw k hyperplanes...

Known results

13/26

Edvin Berglin

Näıve Solution

Previous best

(
n2

k

)
≈ (n2/k)k

Algorithm Running Time (in O∗)

KernelisationKernelisation

Best non-parametrized

Kernel

14/26

Edvin Berglin

Instance: points P , budget k.

Goal: either quickly solve instance, or bound |P | ≤ poly(k).

Kernel

14/26

Edvin Berglin

Instance: points P , budget k.

Goal: either quickly solve instance, or bound |P | ≤ poly(k).

Obs: If there are k + 1 collinear points, every solution
includes the line through them.

Kernel

14/26

Edvin Berglin

Instance: points P , budget k.

1. Find k + 1 collinear pts, remove them and decrement k.
2. Exhaustively repeat step 1 until only ≤ k collinear points.
3. If |P | > k2, reject instance.

Polytime kernelization algorithm:

Goal: either quickly solve instance, or bound |P | ≤ poly(k).

Obs: If there are k + 1 collinear points, every solution
includes the line through them.

Kernel

14/26

Edvin Berglin

Instance: points P , budget k.

1. Find k + 1 collinear pts, remove them and decrement k.
2. Exhaustively repeat step 1 until only ≤ k collinear points.
3. If |P | > k2, reject instance.

Polytime kernelization algorithm:

Goal: either quickly solve instance, or bound |P | ≤ poly(k).

Obs: If there are k + 1 collinear points, every solution
includes the line through them.

Kernel

14/26

Edvin Berglin

Instance: points P , budget k.

1. Find k + 1 collinear pts, remove them and decrement k.
2. Exhaustively repeat step 1 until only ≤ k collinear points.
3. If |P | > k2, reject instance.

Polytime kernelization algorithm:

Goal: either quickly solve instance, or bound |P | ≤ poly(k).

Obs: If there are k + 1 collinear points, every solution
includes the line through them.

Kernel

14/26

Edvin Berglin

Instance: points P , budget k.

Result: |P | ≤ k2, no (k + 1)-rich line.

1. Find k + 1 collinear pts, remove them and decrement k.
2. Exhaustively repeat step 1 until only ≤ k collinear points.
3. If |P | > k2, reject instance.

Polytime kernelization algorithm:

Goal: either quickly solve instance, or bound |P | ≤ poly(k).

Obs: If there are k + 1 collinear points, every solution
includes the line through them.

Known results

15/26

Edvin Berglin

Näıve Solution

Previous best

(
n2

k

)
≈ (n2/k)k

Algorithm Running Time (in O∗)

KernelisationKernelisation

Best non-parametrized

Known results

15/26

Edvin Berglin

Näıve Solution

Previous best

(
n2

k

)
≈ (n2/k)k

Algorithm Running Time (in O∗)

KernelisationKernelisation

Best non-parametrized

(
(k2)2

k

)
≈ k3k

Known results

15/26

Edvin Berglin

Näıve Solution

Previous best

(
n2

k

)
≈ (n2/k)k

Algorithm Running Time (in O∗)

KernelisationKernelisation

Best non-parametrized

(
(k2)2

k

)
≈ k3k

(k/1.35)k, Wang et al. ’10

Known results

15/26

Edvin Berglin

Näıve Solution

Previous best

(
n2

k

)
≈ (n2/k)k

Algorithm Running Time (in O∗)

KernelisationKernelisation

Best non-parametrized

(
(k2)2

k

)
≈ k3k

(k/1.35)k, Wang et al. ’10

2n, 2k
2

on kernel /

Known results

15/26

Edvin Berglin

Näıve Solution

Previous best

(
n2

k

)
≈ (n2/k)k

Algorithm Running Time (in O∗)

KernelisationKernelisation

Best non-parametrized

(
(k2)2

k

)
≈ k3k

(k/1.35)k, Wang et al. ’10

2n, 2k
2

on kernel /
∗but competitive if n ≈ k log k

Known results

15/26

Edvin Berglin

Näıve Solution

Previous best

(
n2

k

)
≈ (n2/k)k

Algorithm Running Time (in O∗)

KernelisationKernelisation

Best non-parametrized

(
(k2)2

k

)
≈ k3k

(k/1.35)k, Wang et al. ’10

2n, 2k
2

on kernel /

Kratsch et al. ’14: No O(k2−ε) kernel /.

∗but competitive if n ≈ k log k

Our hero

16/26

Edvin Berglin

k2 points /

k log k points ,

Our hero

16/26

Edvin Berglin

k2 points /

k log k points ,

NP-hardness

no better kernel

APX-hardness

Our hero

16/26

Edvin Berglin

Incidence bounds!

Image copyright: Kenny Kiernan

k2 points /

k log k points ,

NP-hardness

no better kernel

APX-hardness

Incidence bounds

17/26

Edvin Berglin

Arrangement of n points P and m lines L.

Incidence bounds

17/26

Edvin Berglin

Arrangement of n points P and m lines L.

Incidence bounds

17/26

Edvin Berglin

Arrangement of n points P and m lines L.

Szemerédi&Trotter ’83:

#incidences I(P,L) = O
(
(nm)2/3 + n+m

)
.

Incidence bounds

17/26

Edvin Berglin

Arrangement of n points P and m lines L.

n points P .

Szemerédi&Trotter ’83:

Corollary:

#incidences I(P,L) = O
(
(nm)2/3 + n+m

)
.

Incidence bounds

17/26

Edvin Berglin

Arrangement of n points P and m lines L.

n points P .

of γ-rich candidates m = O
(
n2

γ3 + n
γ

)
.

Pf: m γ-rich candidates ⇒ at least mγ = O(. . .) incidences.

Szemerédi&Trotter ’83:

Corollary:

#incidences I(P,L) = O
(
(nm)2/3 + n+m

)
.

Incidence bounds

17/26

Edvin Berglin

Arrangement of n points P and m lines L.

n points P .

of γ-rich candidates m = O
(
n2

γ3 + n
γ

)
.

Pf: m γ-rich candidates ⇒ at least mγ = O(. . .) incidences.

Szemerédi&Trotter ’83:

Corollary:

#incidences I(P,L) = O
(
(nm)2/3 + n+m

)
.

Constructing our algorithm

18/26

Edvin Berglin

Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Constructing our algorithm

18/26

Edvin Berglin

Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

Constructing our algorithm

18/26

Edvin Berglin

branch
(
few
k1

)
ways

kill many points

P

P ′1 P ′2 P ′3

Constructing our algorithm

18/26

Edvin Berglin

Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

Constructing our algorithm

18/26

Edvin Berglin

Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

S&T: lower richness ⇒ more candidates.

Know S contains k2 not-as-rich lines (fairly high γ2 < γ1).

Constructing our algorithm

18/26

Edvin Berglin

branch
(
few
k1

)
ways

kill many points

P

P ′1 P ′2 P ′3

Constructing our algorithm

18/26

Edvin Berglin

branch
(
few
k1

)
ways

kill many points

branch
(
slighly more

k2

)
ways

kill slightly fewer points

P

P ′1 P ′2 P ′3

Constructing our algorithm

18/26

Edvin Berglin

branch
(
few
k1

)
ways

kill many points

branch
(
slighly more

k2

)
ways

kill slightly fewer points

branch
(
very many

ki

)
ways

kill very few points

...

P

P ′1 P ′2 P ′3

Constructing our algorithm

18/26

Edvin Berglin

Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

S&T: lower richness ⇒ more candidates.

Know S contains k2 not-as-rich lines (fairly high γ2 < γ1).

Constructing our algorithm

18/26

Edvin Berglin

Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

S&T: lower richness ⇒ more candidates.

Know S contains k2 not-as-rich lines (fairly high γ2 < γ1).

But to cover P ′ with k′ poor lines, |P ′| must be low
(relative to k′)! Switch to non-parametrized algorithm.

Constructing our algorithm

18/26

Edvin Berglin

branch
(
few
k1

)
ways

kill many points

branch
(
slighly more

k2

)
ways

kill slightly fewer points

branch
(
very many

ki

)
ways

kill very few points

...

2n 2n 2n 2n2n 2n 2n 2n 2n 2n 2n 2n

P

P ′1 P ′2 P ′3

Constructing our algorithm

18/26

Edvin Berglin

Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

S&T: lower richness ⇒ more candidates.

Know S contains k2 not-as-rich lines (fairly high γ2 < γ1).

But to cover P ′ with k′ poor lines, |P ′| must be low
(relative to k′)! Switch to non-parametrized algorithm.

Constructing our algorithm

18/26

Edvin Berglin

Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

S&T: lower richness ⇒ more candidates.

Know S contains k2 not-as-rich lines (fairly high γ2 < γ1).

Make progress towards small P ′ even if ki low or 0:
no usable γi-rich candidate, |P ′| ≤ k′γi (same as kernel)

But to cover P ′ with k′ poor lines, |P ′| must be low
(relative to k′)! Switch to non-parametrized algorithm.

Constructing our algorithm

19/26

Edvin Berglin

,
/

,

/
k2 k log k O(k) pointsk

√
k

E
ffi

ci
en

cy

Constructing our algorithm

19/26

Edvin Berglin

,
/

,

/
k2 k log k O(k) pointsk

√
k

Branching

E
ffi

ci
en

cy

Constructing our algorithm

19/26

Edvin Berglin

,
/

,

/
k2 k log k O(k) pointsk

√
k

Branching

Non-parametrized

E
ffi

ci
en

cy

Constructing our algorithm

19/26

Edvin Berglin

,
/

,

/
k2 k log k O(k) pointsk

√
k

Branching

Non-parametrized

stop branching and switch!
E

ffi
ci

en
cy

Constructing our algorithm

19/26

Edvin Berglin

,
/

,

/
k2 k log k O(k) pointsk

√
k

Branching

Non-parametrized

stop branching and switch!
E

ffi
ci

en
cy

Total running time = # leaves × 2(problem size at switch)

Constructing our algorithm

19/26

Edvin Berglin

,
/

,

/
k2 k log k O(k) pointsk

√
k

Branching

Non-parametrized

stop branching and switch!
E

ffi
ci

en
cy

= O((ck/ log k)k) for some constant c.
Total running time = # leaves × 2(problem size at switch)

Curve Cover

20/26

Edvin Berglin

Curve Cover

20/26

Edvin Berglin

C is a family of (d, s)-curves if:

Curve Cover

20/26

Edvin Berglin

C is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.
2. For any d points at most s curves pass through them.

Curve Cover

20/26

Edvin Berglin

C is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.
2. For any d points at most s curves pass through them.

d degrees of freedom, multiplicity-type s.

Curve Cover

20/26

Edvin Berglin

C is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.
2. For any d points at most s curves pass through them.

d degrees of freedom, multiplicity-type s.

Lines are (2,1)-curves.

Curve Cover

20/26

Edvin Berglin

C is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.
2. For any d points at most s curves pass through them.

d degrees of freedom, multiplicity-type s.

Unit circles are (2,2)-curves in R2 but (3,2)-curves in R3.

Lines are (2,1)-curves.

Curve Cover

20/26

Edvin Berglin

C is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.
2. For any d points at most s curves pass through them.

d degrees of freedom, multiplicity-type s.

Unit circles are (2,2)-curves in R2 but (3,2)-curves in R3.

Lines are (2,1)-curves.

Degree b polynomials are (b+ 1,b)-curves.

Curve Cover

20/26

Edvin Berglin

C is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.
2. For any d points at most s curves pass through them.

d degrees of freedom, multiplicity-type s.

Unit circles are (2,2)-curves in R2 but (3,2)-curves in R3.

Lines are (2,1)-curves.

Degree b polynomials are (b+ 1,b)-curves.

Sine waves are not (d, s)-curves.

Curve Cover

21/26

Edvin Berglin

Given n points P and family C of (d, s)-curves.

Pach&Sharir ’98: # γ-rich candidates is O
(

nd

γ2d−1 + n
γ

)
.

Kernel: |P | ≤ sk2, no (sk + 1)-rich candidate.

Curve Cover

21/26

Edvin Berglin

Given n points P and family C of (d, s)-curves.

Pach&Sharir ’98: # γ-rich candidates is O
(

nd

γ2d−1 + n
γ

)
.

Kernel: |P | ≤ sk2, no (sk + 1)-rich candidate.

⇒ O((ck/ log k)(d−1)k) time algorithm. c depends on d, s.

Curve Cover

21/26

Edvin Berglin

Given n points P and family C of (d, s)-curves.

Pach&Sharir ’98: # γ-rich candidates is O
(

nd

γ2d−1 + n
γ

)
.

Kernel: |P | ≤ sk2, no (sk + 1)-rich candidate.

⇒ O((ck/ log k)(d−1)k) time algorithm. c depends on d, s.

Beats previous bests:

O((k/1.35)(d−1)k) for lines (d = 2), Wang et al. ’10
O((k/1.38)(d−1)k) for conics (d = 5), Tiwari ’12
O((k/1.15)(d−1)k) for parabolas (d = 4), Tiwari ’12
O(kdk) for general (d, s)-curves, Langerman&Morin ’05

Agarwal&Aronov ’92: O
(
nd

γ3

)
candidates in Rd.

Hyperplane Cover

22/26

Edvin Berglin

Agarwal&Aronov ’92: O
(
nd

γ3

)
candidates in Rd.

Hyperplane Cover

22/26

Edvin Berglin

Tight for general point sets and d ≥ 2.

Agarwal&Aronov ’92: O
(
nd

γ3

)
candidates in Rd.

Hyperplane Cover

22/26

Edvin Berglin

Tight for general point sets and d ≥ 2.

Unusable for d ≥ 3; need denominator > numerator.

Tight for general point sets and d ≥ 2.

Agarwal&Aronov ’92: O
(
nd

γ3

)
candidates in Rd.

Hyperplane Cover

22/26

Edvin Berglin

Tight for general point sets and d ≥ 2.

Worst-case constructions put very many pts on same line.

Algorithmically easy thanks to kernelization.

Unusable for d ≥ 3; need denominator > numerator.

Tight for general point sets and d ≥ 2.

Agarwal&Aronov ’92: O
(
nd

γ3

)
candidates in Rd.

Hyperplane Cover

22/26

Edvin Berglin

Tight for general point sets and d ≥ 2.

Worst-case constructions put very many pts on same line.

Algorithmically easy thanks to kernelization.

Unusable for d ≥ 3; need denominator > numerator.

Tight for general point sets and d ≥ 2.

Need specialized incidence bound.

Agarwal&Aronov ’92: O
(
nd

γ3

)
candidates in Rd.

Hyperplane Cover

22/26

Edvin Berglin

Tight for general point sets and d ≥ 2.

Worst-case constructions put very many pts on same line.

Algorithmically easy thanks to kernelization.

• Wait and hope for bounds on kernelized instances.
• Use other specialized bounds that already exist.

Unusable for d ≥ 3; need denominator > numerator.

Tight for general point sets and d ≥ 2.

Need specialized incidence bound.

Plane Cover (R3)

23/26

Edvin Berglin

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

Plane Cover (R3)

23/26

Edvin Berglin

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

δ < 1/3 δ > 4/5

Plane Cover (R3)

23/26

Edvin Berglin

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

Elekes&Tóth ’05: O
(

1
(1−δ)4 ·

n3

γ4

)
γ-rich δ-deg candidates.

δ < 1/3 δ > 4/5

Plane Cover (R3)

23/26

Edvin Berglin

If all candidates have low δ (e.g. ≤ 1/2), no problem!

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

Elekes&Tóth ’05: O
(

1
(1−δ)4 ·

n3

γ4

)
γ-rich δ-deg candidates.

δ < 1/3 δ > 4/5

Plane Cover (R3)

23/26

Edvin Berglin

If all candidates have low δ (e.g. ≤ 1/2), no problem!

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

Elekes&Tóth ’05: O
(

1
(1−δ)4 ·

n3

γ4

)
γ-rich δ-deg candidates.

δ < 1/3 δ > 4/5

But if P contains high δ candidates, the solution might too.

Deal with these in a different way.

Dealing with too-degenerate plane

24/26

Edvin Berglin

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

δ < 1/3 δ > 4/5

Dealing with too-degenerate plane

24/26

Edvin Berglin

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

For δ > 1/2, most points on a line (the degenerate line `).

δ < 1/3 δ > 4/5

Dealing with too-degenerate plane

24/26

Edvin Berglin

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

For δ > 1/2, most points on a line (the degenerate line `).

Removing only the points on ` is “almost as good”.

Leaves ghost points, but few of them.

δ < 1/3 δ > 4/5

Dealing with too-degenerate plane

24/26

Edvin Berglin

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

For δ > 1/2, most points on a line (the degenerate line `).

Removing only the points on ` is “almost as good”.

Leaves ghost points, but few of them.

δ < 1/3 δ > 4/5

We can postpone dealing with them.

Dealing with too-degenerate plane

25/26

Edvin Berglin

Dealing with too-degenerate plane

25/26

Edvin Berglin

branch
(
few
l1

)
ways among

γiδi-rich lines, remember `

ki = li + hi

Dealing with too-degenerate plane

25/26

Edvin Berglin

branch
(
few
l1

)
ways among

γiδi-rich lines, remember `

ki = li + hi

Dealing with too-degenerate plane

25/26

Edvin Berglin

branch
(
few
l1

)
ways among

γiδi-rich lines, remember `

ki = li + hi

branch
(
few
h1

)
ways among

γi-rich δi-degenerate planes

Dealing with too-degenerate plane

25/26

Edvin Berglin

branch
(
few
l1

)
ways among

γiδi-rich lines, remember `

ki = li + hi

branch
(
few
h1

)
ways among

γi-rich δi-degenerate planes

Dealing with too-degenerate plane

25/26

Edvin Berglin

branch
(
few
l1

)
ways among

γiδi-rich lines, remember `

...

ki = li + hi

branch
(
few
h1

)
ways among

γi-rich δi-degenerate planes

few points,
high % red pair li lines ` with points

(forming planes)

Dealing with too-degenerate plane

25/26

Edvin Berglin

l1 lines

h1 planes

l2 lines

h2 planes

l3 lines

h3 planes

l4 lines

h4 planes

Dealing with too-degenerate plane

25/26

Edvin Berglin

l1 lines

h1 planes

l2 lines

h2 planes

l3 lines

h3 planes

l4 lines

h4 planes

clean-up

Dealing with too-degenerate plane

25/26

Edvin Berglin

l1 lines

h1 planes

l2 lines

h2 planes

l3 lines

h3 planes

l4 lines

h4 planes

clean-up

l5 lines

h5 planes

clean-up

Dealing with too-degenerate plane

25/26

Edvin Berglin

l1 lines

h1 planes

l2 lines

h2 planes

l3 lines

h3 planes

l4 lines

h4 planes

clean-up

l5 lines

h5 planes

clean-up

l6 lines

h6 planes

clean-up

Dealing with too-degenerate plane

25/26

Edvin Berglin

l1 lines

h1 planes

l2 lines

h2 planes

l3 lines

h3 planes

l4 lines

h4 planes

clean-up

l5 lines

h5 planes

clean-up

l6 lines

h6 planes

clean-up

2n 2n 2n

Wrapping

26/26

Edvin Berglin

Wrapping

26/26

Edvin Berglin

Degeneracy δi = 1− 1

γ
1/5
i

⇒ 1
(1−δi)4 = 1

γ
−4/5
i

.

Wrapping

26/26

Edvin Berglin

Degeneracy δi = 1− 1

γ
1/5
i

⇒ 1
(1−δi)4 = 1

γ
−4/5
i

.

O
(

1
(1−δi)4

n3

γ4
i

)
= O

(
n3

γ
4−4/5
i

)
= O

(
n3

γ
3+1/5
i

)
candidates.

Wrapping

26/26

Edvin Berglin

Degeneracy δi = 1− 1

γ
1/5
i

⇒ 1
(1−δi)4 = 1

γ
−4/5
i

.

⇒ O
((

ck2

log1/5k

)k)
running time.

O
(

1
(1−δi)4

n3

γ4
i

)
= O

(
n3

γ
4−4/5
i

)
= O

(
n3

γ
3+1/5
i

)
candidates.

Wrapping

26/26

Edvin Berglin

Beats O
((

k(d−1)

1.3

)k)
by Wang et al. ’10, when d = 3 (R3).

Degeneracy δi = 1− 1

γ
1/5
i

⇒ 1
(1−δi)4 = 1

γ
−4/5
i

.

⇒ O
((

ck2

log1/5k

)k)
running time.

O
(

1
(1−δi)4

n3

γ4
i

)
= O

(
n3

γ
4−4/5
i

)
= O

(
n3

γ
3+1/5
i

)
candidates.

Special incidence bound does not apply for d > 3.

