More Efficient Algorithms for Graph Orientations and Geometric Cover

PhD Defence Edvin Berglin

Danmarks Grundforskningsfond Danish National Research Foundation

Topics of today

Topics of today

A Simple Greedy Algorithm for Dynamic Graph Orientation

E.B. and G.S. Brodal International Symposium on Algorithms and Computation 2017

Topics of today

A Simple Greedy Algorithm for Dynamic Graph Orientation

E.B. and G.S. Brodal International Symposium on Algorithms and Computation 2017

Applications of Incidence Bounds in Point Covering Problems

P. Afshani, E.B., I. van Duijn, J.S. Nielsen Symposium on Computational Geometry 2016

A Simple Greedy Algorithm for Dynamic Graph Orientations

ISAAC'17, Phuket

joint work with Gerth Stølting Brodal

Danmarks Grundforskningsfond Danish National Research Foundation

All my friends:

- Josh
- Peter
- Bob
- Mark
- Charles
- David
- Francisco
- Zeke
- Aaron

All my friends:

- Josh
- Peter
- Bob
- Mark
- Charles
- David
- Francisco
- Zeke
- Aaron

Edvin Berglin

All my connections:

- Heathrow
- Indira Gandhi
- Kastrup
- McCarran
- JFK
- Schiphol
- Gardermoen
- Copernicus
- Keflavik

flight connections

2/26

aic

Graph orientations

Graph orientations

Graph with n vertices \bigcirc and m edges. \checkmark

Graph with *n* vertices ○ and *m* edges. ∕ Graph orientation: all edges are given a direction. ✓

Graph with n vertices \bigcirc and m edges. \checkmark

Graph *orientation*: all edges are given a *direction*.

Out-degree of a vertex = number of *out-edges* from the vertex \checkmark

Graph with n vertices \bigcirc and m edges. \checkmark

Graph *orientation*: all edges are given a *direction*.

Out-degree of a vertex = number of *out-edges* from the vertex \checkmark

Situation: graph gets *updated* (edges inserted and deleted) in an *unpredictable* way.

Graph with n vertices \bigcirc and m edges. \checkmark

Graph *orientation*: all edges are given a *direction*.

Out-degree of a vertex = number of *out-edges* from the vertex \checkmark

Situation: graph gets *updated* (edges inserted and deleted) in an *unpredictable* way.

Graph with n vertices \bigcirc and m edges. \checkmark

Graph *orientation*: all edges are given a *direction*.

Out-degree of a vertex = number of *out-edges* from the vertex \checkmark

Situation: graph gets *updated* (edges inserted and deleted) in an *unpredictable* way.

Graph with n vertices \bigcirc and m edges. \checkmark

Graph *orientation*: all edges are given a *direction*.

Out-degree of a vertex = number of *out-edges* from the vertex \checkmark

Situation: graph gets *updated* (edges inserted and deleted) in an *unpredictable* way.

Graph with n vertices \bigcirc and m edges. \checkmark

Graph *orientation*: all edges are given a *direction*.

Out-degree of a vertex = number of *out-edges* from the vertex

Situation: graph gets *updated* (edges inserted and deleted) in an *unpredictable* way.

Graph with n vertices \bigcirc and m edges. \checkmark

Graph *orientation*: all edges are given a *direction*.

Out-degree of a vertex = number of *out-edges* from the vertex

Situation: graph gets *updated* (edges inserted and deleted) in an *unpredictable* way.

Graph with n vertices \bigcirc and m edges. \checkmark

Graph *orientation*: all edges are given a *direction*.

Out-degree of a vertex = number of *out-edges* from the vertex \checkmark

4/26

Situation: graph gets *updated* (edges inserted and deleted) in an *unpredictable* way.

Task: *flip* a small number of edges to ensure all out-degrees remain low.

 $\alpha =$ lowest possible out-degree (any number of flips)

Edvin Berglin

napalgo -- - -.

Input: stream of updates, parameter k.

Edvin Berglin

Input: stream of updates, parameter k. Each vertex v stores its out-edges in a queue Q_v .

Input: stream of updates, parameter k. Each vertex v stores its out-edges in a queue Q_v .

Input: stream of updates, parameter k.

Each vertex v stores its out-edges in a queue Q_v .

- add new edge in any direction
- repeat k times:
 - flip the first edge of the longest list

Input: stream of updates, parameter k.

Each vertex v stores its out-edges in a queue Q_v .

- add new edge in any direction
- repeat k times:
 - flip the first edge of the longest list

Input: stream of updates, parameter k. Each vertex v stores its

out-edges in a queue Q_v .

- add new edge in any direction
- repeat k times:
 - flip the first edge of the longest list

Input: stream of updates, parameter k.

Each vertex v stores its out-edges in a queue Q_v .

- add new edge in any direction
- repeat k times:
 - flip the first edge of the longest list

Input: stream of updates, parameter k.

Each vertex v stores its out-edges in a queue Q_v .

- add new edge in any direction
- repeat k times:
 - flip the first edge of the longest list

Input: stream of updates, parameter k. Each vertex v stores its out-edges in a queue Q_v .

On every insertion:

- add new edge in any direction
- repeat k times:
 - flip the first edge of the longest list

6

Edvin Berglin

With at most x flips, what is the best you can do?

Edvin Berglin 6/26

With at most x flips, what is the best you can do?

Easy! Every vertex will have out-degree at most δ .

Edvin Berglin

With at most x flips, what is the best you can do?

Easy! Every vertex will have out-degree at most δ .

At least 2x + 2 flips.

With at most x flips, what is the best you can do?

Easy! Every vertex will have out-degree at most δ .

At least 2x + 2 flips.

With at most x flips, what is the best you can do?

Easy! Every vertex will have out-degree at most δ .

At least 2x + 2 flips.

Goal: monkey's out-degrees are "not much worse than" δ .

Associate a value to every edge: depends on its direction ("correct" or "wrong"), and on its position in queue (Q_v) .

Associate a value to every edge: depends on its direction ("correct" or "wrong"), and on its position in queue (Q_v) .

A vertex has "high" value \iff it has many "wrong" out-edges.

Associate a value to every edge: depends on its direction ("correct" or "wrong"), and on its position in queue (Q_v) .

A vertex has "high" value \iff it has many "wrong" out-edges.

The value on a vertex can change, but with at least 2x + 2 flips, the sum of all values does not change.

Associate a *value* to every edge: depends on its direction ("correct" or "wrong"), and on its *position in queue* (Q_v) .

A vertex has "high" value \iff it has many "wrong" out-edges.

The value on a vertex can change, but with at least 2x + 2 flips, the sum of all values does not change.

Forget about the graph – look *only* at values!

 $c_1 \ c_2 \ c_3 \ c_4 \ c_5 \ c_5 \ c_6 \ c_7$

1: $\beta\approx 6\delta$ sufficient to simulate how values are moved around by the monkey.

1: $\beta\approx 6\delta$ sufficient to simulate how values are moved around by the monkey.

1: $\beta\approx 6\delta$ sufficient to simulate how values are moved around by the monkey.

2: An adversary cannot increase the value of any counter by more than $\beta \log n \approx 6\delta \log n$.

 $\log 1000000 \approx 7$

With at most x flips, what is the best you can do? Easy! Every vertex will have out-degree at most δ .

At least 2x + 2 flips.

Proven: every vertex has out-degree at most $\approx 6\delta \log n$.

With at most x flips, what is the best you can do? Easy! Every vertex will have out-degree at most δ .

At least 2x + 2 flips.

Proven: every vertex has out-degree at most $\approx 6\delta \log n$.

With at most x flips, what is the best you can do? Easy! Every vertex will have out-degree at most δ .

At least 2x + 2 flips.

Proven: every vertex has out-degree at most $\approx 6\delta \log n$.

At least 2x + 2 flips.

Proven: every vertex has out-degree at most $\approx 6\delta \log n$.

At least 2x + 2 flips.

Proven: every vertex has out-degree at most $\approx 6\delta \log n$.

Proven: with at least 2x + 2 flips, every vertex has out-degree at most $\approx 6\delta \log n$.

What is x and δ ?

Proven: with at least 2x + 2 flips, every vertex has out-degree at most $\approx 6\delta \log n$.

What is x and δ ?

"I can get out-degree 2α with $\log n$ flips." Brodal & Fagerberg (1999) \Rightarrow we get out-degree $\approx 12\alpha \log n$ with

at least $2\log n + 2$ flips.

Proven: with at least 2x + 2 flips, every vertex has out-degree at most $\approx 6\delta \log n$.

What is x and δ ?

"I can get out-degree 2α with $\log n$ flips." Brodal & Fagerberg (1999)

 \Rightarrow we get out-degree $\approx 12\alpha\log n$ with at least $2\log n+2$ flips.

"I can get out-degree $2\alpha \log n$ with 1 flip." Kowalik (2007) \Rightarrow we get out-degree $\approx 12\alpha (\log n)^2$

with at least 4 flips.

Edvin Berglin

mapalgo -- --

Proven: with at least 2x + 2 flips, every vertex has out-degree at most $\approx 6\delta \log n$.

What is x and δ ?

"I can get out-degree 2α with 1 flip." (future) \Rightarrow we get out-degree $\approx 12\alpha \log n$ with 4 flips.

Proven: with at least 2x + 2 flips, every vertex has out-degree at most $\approx 6\delta \log n$.

What is x and δ ?

"I can get out-degree 2α with 1 flip." (future) \Rightarrow we get out-degree $\approx 12\alpha \log n$ with 4 flips.

If so, the monkey *already* gets this (better) out-degree with 4 flips – we just don't know it yet.

I can maintain out-degree δ with at most x flips on average.

I can maintain out-degree δ with at most x flips on average.

I can maintain out-degree δ with at most x flips on average.

I decide which edges to flip in a nice way.

Edvin Berglin naico ___

"I want to be as smart as Dexter"

Edvin Berglin

mapalgo----.

"I want to be as smart as Dexter"

"I want to find a limit on how smart Dexter can be"

Edvin Berglin

mapalgo -- - -

Edvin Berglin

"I want to be as smart as Dexter"

"I want to find a limit on how smart Dexter can be"

"I want to prove that out-degree 2α with 1 flip is impossible"

Edvin Berglin

"I want to be as smart as Dexter"

"I want to find a limit on how smart Dexter can be"

"I want to prove that out-degree 2α with 1 flip is impossible"

Applications of incidence bounds in point covering problems

SoCG'16, Boston

joint work with Peyman Afshani, Ingo van Duijn, Jesper Sindahl Nielsen

Danmarks Grundforskningsfond Danish National Research Foundation

Problem definitions

Line Cover: given set of points P, draw k (or min #) lines so that every point is on a line.

Line Cover: given set of points P, draw k (or min #) lines so that every point is on a line.

Line Cover: given set of points P, draw k (or min #) lines so that every point is on a line.

NP-complete, APX-hard, FPT

Line Cover: given set of points P, draw k (or min #) lines so that every point is on a line.

NP-complete, APX-hard, FPT

Curve Cover: given P and family of curves C, draw k curves...

Line Cover: given set of points P, draw k (or min #) lines so that every point is on a line.

NP-complete, APX-hard, FPT

Curve Cover: given P and family of curves C, draw k curves... (circles, hyperbolas, polynomials, splines, etc.)

Line Cover: given set of points P, draw k (or min #) lines so that every point is on a line.

NP-complete, APX-hard, FPT

Curve Cover: given P and family of curves C, draw k curves... (circles, hyperbolas, polynomials, splines, etc.)

Hyperplane Cover: given P in \mathbb{R}^d , draw k hyperplanes...

Edvin Berglin

Known resultsAlgorithmRunning Time (in \mathcal{O}^*)

Naïve Solution

 $\binom{n^2}{k} \approx (n^2/k)^k$

- Kernelisation
- Previous best
- Best non-parametrized

Instance: points P, budget k. Goal: *either* quickly solve instance, *or* bound $|P| \le poly(k)$.

Edvin Berglin mapalgo -- - - 14/26

Instance: points P, budget k.

Goal: either quickly solve instance, or bound $|P| \le poly(k)$.

Obs: If there are k + 1 collinear points, every solution includes the line through them.

Instance: points P, budget k.

Goal: either quickly solve instance, or bound $|P| \leq poly(k)$.

Obs: If there are k + 1 collinear points, every solution includes the line through them.

Polytime kernelization algorithm:

1. Find k + 1 collinear pts, remove them and decrement k.

Instance: points P, budget k.

Goal: either quickly solve instance, or bound $|P| \le poly(k)$.

Obs: If there are k + 1 collinear points, every solution includes the line through them.

Polytime kernelization algorithm:

- 1. Find k + 1 collinear pts, remove them and decrement k.
- 2. Exhaustively repeat step 1 until only $\leq k$ collinear points.

Instance: points P, budget k.

Goal: either quickly solve instance, or bound $|P| \leq poly(k)$.

Obs: If there are k + 1 collinear points, every solution includes the line through them.

Polytime kernelization algorithm:

- 1. Find k + 1 collinear pts, remove them and decrement k.
- 2. Exhaustively repeat step 1 until only $\leq k$ collinear points.
- 3. If $|P| > k^2$, reject instance.

Instance: points P, budget k.

Goal: either quickly solve instance, or bound $|P| \le poly(k)$.

Obs: If there are k + 1 collinear points, every solution includes the line through them.

Polytime kernelization algorithm:

1. Find k + 1 collinear pts, remove them and decrement k.

2. Exhaustively repeat step 1 until only $\leq k$ collinear points. 3. If $|P| > k^2$, reject instance.

Result: $|P| \leq k^2$, no (k+1)-rich line.

Edvin Berglin

naico

Known resultsAlgorithmRunning Time (in \mathcal{O}^*)

Naïve Solution

$$\binom{n^2}{k} \approx (n^2/k)^k$$

- Kernelisation
- Previous best
- Best non-parametrized

Known resultsAlgorithmRunning Time (in \mathcal{O}^*)

- Naïve Solution
- Kernelisation

$$\binom{n^2}{k} \approx (n^2/k)^k$$
$$\binom{(k^2)^2}{k} \approx k^{3k}$$

- Previous best
- Best non-parametrized

Known resultsAlgorithmRunning Time (in \mathcal{O}^*)Naïve Solution $\binom{n^2}{k} \approx (n^2/k)^k$ Kernelisation $\binom{(k^2)^2}{k} \approx k^{3k}$ Previous best $(k/1.35)^k$, Wang et al. '10

Edvin Berglin

Best non-parametrized

Known resultsAlgorithmRunning Time (in \mathcal{O}^*)Naïve Solution $\binom{n^2}{k} \approx (n^2/k)^k$ Kernelisation $\binom{(k^2)^2}{k} \approx k^{3k}$ Previous best $(k/1.35)^k$, Wang et al. '10Best non-parametrized 2^n , 2^{k^2} on kernel \odot

Known results Running Time (in \mathcal{O}^*) Algorithm $\binom{n^2}{k} \approx (n^2/k)^k$ Naïve Solution $\binom{(k^2)^2}{k} \approx k^{3k}$ Kernelisation $(k/1.35)^k$, Wang et al. '10 Previous best 2^n , 2^{k^2} on kernel \odot Best non-parametrized *but competitive if $n \approx k \log k$

Known results Running Time (in \mathcal{O}^*) Algorithm $\binom{n^2}{k} \approx (n^2/k)^k$ Naïve Solution $\binom{(k^2)^2}{k} \approx k^{3k}$ Kernelisation $(k/1.35)^k$, Wang et al. '10 Previous best 2^n , 2^{k^2} on kernel \odot Best non-parametrized *but competitive if $n \approx k \log k$ Kratsch et al. '14: No $\mathcal{O}(k^{2-\varepsilon})$ kernel \odot .

Edvin Berglin

Our hero

Edvin Berglin

Our hero

 $k \log k$ points \odot

Edvin Berglin

MaddalGo -- - - 16/26

Arrangement of n points P and m lines L.

Arrangement of n points P and m lines L.

Arrangement of n points P and m lines L. Szemerédi&Trotter '83:

#incidences $I(P, L) = \mathcal{O}((nm)^{2/3} + n + m)$.

Arrangement of n points P and m lines L. Szemerédi&Trotter '83:

#incidences $I(P, L) = \mathcal{O}((nm)^{2/3} + n + m).$

Corollary: n points P.

Arrangement of n points P and m lines L. Szemerédi&Trotter '83:

#incidences $I(P, L) = \mathcal{O}((nm)^{2/3} + n + m)$. Corollary: n points P. # of γ -rich candidates $m = \mathcal{O}\left(\frac{n^2}{\gamma^3} + \frac{n}{\gamma}\right)$. Pf: $m \gamma$ -rich candidates \Rightarrow at least $m\gamma = \mathcal{O}(\dots)$ incidences.

Arrangement of n points P and m lines L. Szemerédi&Trotter '83:

#incidences $I(P, L) = \mathcal{O}((nm)^{2/3} + n + m)$. Corollary: n points P. # of γ -rich candidates $m = \mathcal{O}\left(\frac{n^2}{\gamma^3} + \gamma\right)$. Pf: $m \gamma$ -rich candidates \Rightarrow at least $m\gamma = \mathcal{O}(\dots)$ incidences.

Kernel: $|P| \le k^2$, no (k+1)-rich candidate. S&T: few "rich" candidates (some high richness $\gamma_1 < k+1$).

Kernel: $|P| \leq k^2$, no (k+1)-rich candidate.

S&T: few "rich" candidates (some high richness $\gamma_1 < k + 1$). Suppose we know solution S contains k_1 such "rich" lines. Branch in $\binom{\text{few}}{k_1}$ ways, make very good progress \Im .

branch $\binom{\text{few}}{k_1}$ ways kill many points

Kernel: $|P| \leq k^2$, no (k+1)-rich candidate.

S&T: few "rich" candidates (some high richness $\gamma_1 < k + 1$). Suppose we know solution S contains k_1 such "rich" lines. Branch in $\binom{\text{few}}{k_1}$ ways, make very good progress \Im .

Kernel: $|P| \leq k^2$, no (k+1)-rich candidate.

S&T: few "rich" candidates (some high richness $\gamma_1 < k + 1$). Suppose we know solution S contains k_1 such "rich" lines. Branch in $\binom{\text{few}}{k_1}$ ways, make very good progress \bigcirc . Know S contains k_2 not-as-rich lines (fairly high $\gamma_2 < \gamma_1$). S&T: lower richness \Rightarrow more candidates.

branch $\binom{\text{few}}{k_1}$ ways kill many points

branch $\binom{\text{few}}{k_1}$ ways kill many points

branch $\binom{\text{slighly more}}{k_2}$ ways kill slightly fewer points

branch $\binom{\text{few}}{k_1}$ ways kill many points

branch $\binom{\text{slighly more}}{k_2}$ ways kill slightly fewer points

branch $\binom{\text{very many}}{k_i}$ ways kill very few points

Edvin Berglin **madalgo -_ - - - -** 18/26

Kernel: $|P| \leq k^2$, no (k+1)-rich candidate.

S&T: few "rich" candidates (some high richness $\gamma_1 < k + 1$). Suppose we know solution S contains k_1 such "rich" lines. Branch in $\binom{\text{few}}{k_1}$ ways, make very good progress \bigcirc . Know S contains k_2 not-as-rich lines (fairly high $\gamma_2 < \gamma_1$). S&T: lower richness \Rightarrow more candidates.

Kernel: $|P| \leq k^2$, no (k+1)-rich candidate.

S&T: few "rich" candidates (some high richness $\gamma_1 < k + 1$). Suppose we know solution S contains k_1 such "rich" lines. Branch in $\binom{\text{few}}{k_1}$ ways, make very good progress \odot . Know S contains k_2 not-as-rich lines (fairly high $\gamma_2 < \gamma_1$). S&T: lower richness \Rightarrow more candidates. But to cover P' with k' poor lines, |P'| must be low (relative to k')! Switch to non-parametrized algorithm.

18/26

Kernel: $|P| \leq k^2$, no (k+1)-rich candidate.

S&T: few "rich" candidates (some high richness $\gamma_1 < k + 1$). Suppose we know solution S contains k_1 such "rich" lines. Branch in $\binom{\text{few}}{k_1}$ ways, make very good progress \odot . Know S contains k_2 not-as-rich lines (fairly high $\gamma_2 < \gamma_1$). S&T: lower richness \Rightarrow more candidates. But to cover P' with k' poor lines, |P'| must be low (relative to k')! Switch to non-parametrized algorithm.

Kernel: $|P| \leq k^2$, no (k+1)-rich candidate.

S&T: few "rich" candidates (some high richness $\gamma_1 < k + 1$). Suppose we know solution S contains k_1 such "rich" lines. Branch in $\binom{\text{few}}{k_1}$ ways, make very good progress \odot . Know S contains k_2 not-as-rich lines (fairly high $\gamma_2 < \gamma_1$). S&T: lower richness \Rightarrow more candidates. But to cover P' with k' poor lines, |P'| must be low (relative to k')! Switch to non-parametrized algorithm.

Make progress towards small P' even if k_i low or 0: no usable γ_i -rich candidate, $|P'| \leq k' \gamma_i$ (same as kernel)

Edvin Berglin

Total running time = # leaves $\times 2^{(\text{problem size at switch})}$

Edvin Berglin **mapalgo -_- -** 19

Edvin Berglin

 \mathcal{C} is a family of (d, s)-curves if:

Edvin Berglin

 \mathcal{C} is a family of (d, s)-curves if:

- 1. Two distinct curves intersect in at most s points.
- 2. For any d points at most s curves pass through them.

 \mathcal{C} is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.

2. For any d points at most s curves pass through them.

d degrees of freedom, multiplicity-type s.

 ${\mathcal C}$ is a family of (d,s)-curves if:

1. Two distinct curves intersect in at most s points.

2. For any d points at most s curves pass through them. d degrees of freedom, multiplicity-type s.

Lines are (2,1)-curves.

 \mathcal{C} is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.

2. For any d points at most s curves pass through them. d degrees of freedom, multiplicity-type s.

Lines are (2,1)-curves. Unit circles are (2,2)-curves in \mathbb{R}^2 but (3,2)-curves in \mathbb{R}^3 .

 ${\mathcal C}$ is a family of (d,s)-curves if:

1. Two distinct curves intersect in at most s points.

2. For any d points at most s curves pass through them. d degrees of freedom, multiplicity-type s.

Lines are (2,1)-curves. Unit circles are (2,2)-curves in \mathbb{R}^2 but (3,2)-curves in \mathbb{R}^3 . Degree *b* polynomials are (b + 1,b)-curves.

 ${\mathcal C}$ is a family of (d,s)-curves if:

1. Two distinct curves intersect in at most s points.

2. For any d points at most s curves pass through them. d degrees of freedom, multiplicity-type s.

Lines are (2,1)-curves. Unit circles are (2,2)-curves in \mathbb{R}^2 but (3,2)-curves in \mathbb{R}^3 . Degree *b* polynomials are (b + 1,b)-curves. Sine waves are not (d, s)-curves.

Given n points P and family C of (d, s)-curves.

Pach&Sharir '98: # γ -rich candidates is $\mathcal{O}\left(\frac{n^d}{\gamma^{2d-1}} + \frac{n}{\gamma}\right)$. Kernel: $|P| \leq sk^2$, no (sk+1)-rich candidate.

Given n points P and family C of (d, s)-curves.

Pach&Sharir '98: # γ -rich candidates is $\mathcal{O}\left(\frac{n^d}{\gamma^{2d-1}} + \frac{n}{\gamma}\right)$. Kernel: $|P| \leq sk^2$, no (sk+1)-rich candidate.

 $\Rightarrow \mathcal{O}((ck/\log k)^{(d-1)k})$ time algorithm. c depends on d, s.

Given n points P and family C of (d, s)-curves.

Pach&Sharir '98: # γ -rich candidates is $\mathcal{O}\left(\frac{n^d}{\gamma^{2d-1}} + \frac{n}{\gamma}\right)$. Kernel: $|P| \leq sk^2$, no (sk+1)-rich candidate.

 $\Rightarrow \mathcal{O}((ck/\log k)^{(d-1)k}) \text{ time algorithm. } c \text{ depends on } d,s.$

Beats previous bests:

 $\mathcal{O}((k/1.35)^{(d-1)k})$ for lines (d = 2), Wang et al. '10 $\mathcal{O}((k/1.38)^{(d-1)k})$ for conics (d = 5), Tiwari '12 $\mathcal{O}((k/1.15)^{(d-1)k})$ for parabolas (d = 4), Tiwari '12 $\mathcal{O}(k^{dk})$ for general (d, s)-curves, Langerman&Morin '05

Agarwal&Aronov '92: $\mathcal{O}\left(\frac{n^d}{\gamma^3}\right)$ candidates in \mathbb{R}^d .

Agarwal&Aronov '92: $\mathcal{O}\left(\frac{n^d}{\gamma^3}\right)$ candidates in \mathbb{R}^d . Tight for general point sets and $d \ge 2$.

Agarwal&Aronov '92: $\mathcal{O}\left(\frac{n^d}{\gamma^3}\right)$ candidates in \mathbb{R}^d . Tight for general point sets and $d \ge 2$. Unusable for $d \ge 3$; need denominator > numerator.

- Agarwal&Aronov '92: $\mathcal{O}\left(\frac{n^d}{\sqrt{3}}\right)$ candidates in \mathbb{R}^d . Tight for general point sets and $d \ge 2$. Unusable for $d \ge 3$; need denominator > numerator.
- Worst-case constructions put very many pts on same line. Algorithmically *easy* thanks to kernelization.

- Agarwal&Aronov '92: $\mathcal{O}\left(\frac{n^d}{\sqrt{3}}\right)$ candidates in \mathbb{R}^d . Tight for general point sets and $d \ge 2$. Unusable for $d \ge 3$; need denominator > numerator.
- Worst-case constructions put very many pts on same line. Algorithmically *easy* thanks to kernelization.

Need *specialized* incidence bound.

Agarwal&Aronov '92: $\mathcal{O}\left(\frac{n^d}{\sqrt{3}}\right)$ candidates in \mathbb{R}^d . Tight for general point sets and $d \ge 2$. Unusable for $d \ge 3$; need denominator > numerator.

Worst-case constructions put very many pts on same line. Algorithmically *easy* thanks to kernelization.

Need *specialized* incidence bound.

- Wait and hope for bounds on kernelized instances.
- Use other specialized bounds that already exist.

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

Edvin Berglin

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

Elekes&Tóth '05: $\mathcal{O}\left(\frac{1}{(1-\delta)^4} \cdot \frac{n^3}{\gamma^4}\right) \gamma$ -rich δ -deg candidates. If all candidates have low δ (e.g. $\leq 1/2$), no problem!

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

Elekes&Tóth '05: $\mathcal{O}\left(\frac{1}{(1-\delta)^4} \cdot \frac{n^3}{\gamma^4}\right) \gamma$ -rich δ -deg candidates. If all candidates have low δ (e.g. $\leq 1/2$), no problem! But if P contains high δ candidates, the solution might too. Deal with these in a different way.

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

For $\delta > 1/2$, most points on a line (the degenerate line ℓ).

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

For $\delta > 1/2$, most points on a line (the degenerate line ℓ). Removing only the points on ℓ is "almost as good". Leaves *ghost points*, but *few* of them.

Plane is δ -degenerate if $\leq \delta$ fraction of its pts on a line.

For $\delta > 1/2$, most points on a line (the degenerate line ℓ). Removing only the points on ℓ is "almost as good". Leaves ghost points, but few of them.

We can postpone dealing with them.

 $k_i = l_i + h_i$

branch $\binom{\text{few}}{l_1}$ ways among $\gamma_i \delta_i$ -rich lines, remember ℓ

 $k_i = l_i + h_i$

branch $\binom{\text{few}}{l_1}$ ways among $\gamma_i \delta_i$ -rich lines, remember ℓ

 $k_i = l_i + h_i$

branch $\binom{\mathrm{few}}{l_1}$ ways among $\gamma_i \delta_i$ -rich lines, remember ℓ

branch $\binom{\text{few}}{h_1}$ ways among γ_i -rich δ_i -degenerate planes

 $k_i = l_i + h_i$

branch $\binom{\mathrm{few}}{l_1}$ ways among $\gamma_i \delta_i$ -rich lines, remember ℓ

branch $\binom{\text{few}}{h_1}$ ways among γ_i -rich δ_i -degenerate planes

X

Edvin Berglin

mapalgo -- - -

Edvin Berglin

- - _ - _ 25/26

Edvin Berglin

Degeneracy
$$\delta_i = 1 - \frac{1}{\gamma_i^{1/5}} \Rightarrow \frac{1}{(1-\delta_i)^4} = \frac{1}{\gamma_i^{-4/5}}$$
.

Degeneracy
$$\delta_i = 1 - \frac{1}{\gamma_i^{1/5}} \Rightarrow \frac{1}{(1-\delta_i)^4} = \frac{1}{\gamma_i^{-4/5}}.$$

$$\mathcal{O}\left(\frac{1}{(1-\delta_i)^4} \frac{n^3}{\gamma_i^4}\right) = \mathcal{O}\left(\frac{n^3}{\gamma_i^{4-4/5}}\right) = \mathcal{O}\left(\frac{n^3}{\gamma_i^{3+1/5}}\right) \text{ candidates.}$$

Degeneracy
$$\delta_i = 1 - \frac{1}{\gamma_i^{1/5}} \Rightarrow \frac{1}{(1-\delta_i)^4} = \frac{1}{\gamma_i^{-4/5}}.$$

 $\mathcal{O}\left(\frac{1}{(1-\delta_i)^4} \frac{n^3}{\gamma_i^4}\right) = \mathcal{O}\left(\frac{n^3}{\gamma_i^{4-4/5}}\right) = \mathcal{O}\left(\frac{n^3}{\gamma_i^{3+1/5}}\right) \text{ candidates.}$
 $\Rightarrow \mathcal{O}\left(\left(\frac{ck^2}{\log^{1/5}k}\right)^k\right) \text{ running time.}$

Degeneracy
$$\delta_i = 1 - \frac{1}{\gamma_i^{1/5}} \Rightarrow \frac{1}{(1-\delta_i)^4} = \frac{1}{\gamma_i^{-4/5}}.$$

 $\mathcal{O}\left(\frac{1}{(1-\delta_i)^4} \frac{n^3}{\gamma_i^4}\right) = \mathcal{O}\left(\frac{n^3}{\gamma_i^{4-4/5}}\right) = \mathcal{O}\left(\frac{n^3}{\gamma_i^{3+1/5}}\right) \text{ candidates.}$
 $\Rightarrow \mathcal{O}\left(\left(\frac{ck^2}{\log^{1/5}k}\right)^k\right) \text{ running time.}$
Beats $\mathcal{O}\left(\left(\frac{k^{(d-1)}}{1.3}\right)^k\right)$ by Wang et al. '10, when $d = 3 \ (\mathbb{R}^3).$
Special incidence bound does not apply for $d > 3.$

