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• Heathrow
• Indira Gandhi
• Kastrup
• McCarran
• JFK
• Schiphol
• Gardermoen
• Copernicus
• Keflavik
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11Graph with n vertices
and m edges.

Graph orientation: all edges are
given a direction.

Out-degree of a vertex = number
of out-edges from the vertex

Situation: graph gets updated (edges inserted and
deleted) in an unpredictable way.

Task: flip a small number of edges to ensure all
out-degrees remain low.

α = lowest possible out-degree (any number of flips)
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With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Goal: monkey’s out-degrees are “not much worse than” δ.
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Associate a value to every
edge: depends on its direction
(“correct” or “wrong”), and
on its position in queue (Qv).

The value on a vertex can change,
but with at least 2x+ 2 flips, the
sum of all values does not change.

A vertex has “high” value ⇐⇒
it has many “wrong” out-edges.

Forget about the graph – look only at values!



Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

. . .

c5 c5 c6 c7



Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

. . .

c5 c5 c6 c7



Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

. . .

c5 c5 c6 c7



Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

β

. . .

c5 c5 c6 c7



Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

β

. . .

c5 c5 c6 c7



Counter game

8/26

Edvin Berglin

c1 c2 c3 c4 . . . cn

β

. . .

c5 c5 c6 c7



Counter game

8/26

Edvin Berglin

β

1: β ≈ 6δ sufficient to simulate how values
are moved around by the monkey.



Counter game

8/26

Edvin Berglin

β

1: β ≈ 6δ sufficient to simulate how values
are moved around by the monkey.



Counter game

8/26

Edvin Berglin

β

2: An adversary cannot increase the value of
any counter by more than β log n ≈ 6δ log n.

1: β ≈ 6δ sufficient to simulate how values
are moved around by the monkey.

log 1000000 ≈ 7



Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.



Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Even though monkey has no idea about x, δ, β,
correct/wrong, counter games, adversaries. . .



Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Even though monkey has no idea about x, δ, β,
correct/wrong, counter games, adversaries. . .



Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Even though monkey has no idea about x, δ, β,
correct/wrong, counter games, adversaries. . .



Quick analysis

9/26

Edvin Berglin

With at most x flips, what
is the best you can do?

At least 2x+ 2 flips.

Easy! Every vertex will have
out-degree at most δ.

Proven: every vertex has
out-degree at most ≈ 6δ log n.

Even though monkey has no idea about x, δ, β,
correct/wrong, counter games, adversaries. . .



Quick analysis

10/26

Edvin Berglin

Proven: with at least 2x+ 2 flips, every vertex
has out-degree at most ≈ 6δ log n.

What is x and δ?



Quick analysis

10/26

Edvin Berglin

Proven: with at least 2x+ 2 flips, every vertex
has out-degree at most ≈ 6δ log n.

What is x and δ?

⇒ we get out-degree ≈ 12α log n with
at least 2 log n+ 2 flips.

“I can get out-degree 2α with log n flips.”
Brodal & Fagerberg (1999)



Quick analysis

10/26

Edvin Berglin
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has out-degree at most ≈ 6δ log n.

What is x and δ?

⇒ we get out-degree ≈ 12α log n with
at least 2 log n+ 2 flips.

“I can get out-degree 2α log n with 1 flip.”
Kowalik (2007)

⇒ we get out-degree ≈ 12α(log n)2
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Brodal & Fagerberg (1999)
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Proven: with at least 2x+ 2 flips, every vertex
has out-degree at most ≈ 6δ log n.

What is x and δ?

”I can get out-degree 2α with 1 flip.” (future)

⇒ we get out-degree ≈ 12α log n with 4 flips.

If so, the monkey already gets this (better) out-degree
with 4 flips – we just don’t know it yet.
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I can maintain out-degree δ with at
most x flips on average.

I can maintain out-degree δ with at most
x flips on average.
I decide which edges to flip in a nice way.
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“I want to be as smart as Dexter”

“I want to find a limit on how
smart Dexter can be”

”I want to prove that out-degree 2α
with 1 flip is impossible”
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NP-complete, APX-hard, FPT

Hyperplane Cover: given P in Rd, draw k hyperplanes...
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Instance: points P , budget k.

Result: |P | ≤ k2, no (k + 1)-rich line.

1. Find k + 1 collinear pts, remove them and decrement k.
2. Exhaustively repeat step 1 until only ≤ k collinear points.
3. If |P | > k2, reject instance.

Polytime kernelization algorithm:

Goal: either quickly solve instance, or bound |P | ≤ poly(k).

Obs: If there are k + 1 collinear points, every solution
includes the line through them.
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Näıve Solution

Previous best

(
n2

k

)
≈ (n2/k)k

Algorithm Running Time (in O∗)

KernelisationKernelisation

Best non-parametrized

(
(k2)2

k

)
≈ k3k

(k/1.35)k, Wang et al. ’10

2n, 2k
2

on kernel /

Kratsch et al. ’14: No O(k2−ε) kernel /.

∗but competitive if n ≈ k log k
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Incidence bounds!

Image copyright: Kenny Kiernan
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Szemerédi&Trotter ’83:

Corollary:

#incidences I(P,L) = O
(
(nm)2/3 + n+m

)
.



Incidence bounds

17/26

Edvin Berglin

Arrangement of n points P and m lines L.

n points P .

# of γ-rich candidates m = O
(
n2

γ3 + n
γ

)
.

Pf: m γ-rich candidates ⇒ at least mγ = O(. . . ) incidences.
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Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

S&T: lower richness ⇒ more candidates.

Know S contains k2 not-as-rich lines (fairly high γ2 < γ1).
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Kernel: |P | ≤ k2, no (k + 1)–rich candidate.

Suppose we know solution S contains k1 such “rich” lines.

S&T: few “rich” candidates (some high richness γ1 < k + 1).

Branch in
(
few
k1

)
ways, make very good progress ,.

S&T: lower richness ⇒ more candidates.

Know S contains k2 not-as-rich lines (fairly high γ2 < γ1).

Make progress towards small P ′ even if ki low or 0:
no usable γi-rich candidate, |P ′| ≤ k′γi (same as kernel)

But to cover P ′ with k′ poor lines, |P ′| must be low
(relative to k′)! Switch to non-parametrized algorithm.
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,
/

,

/
k2 k log k O(k) pointsk

√
k

Branching

Non-parametrized

stop branching and switch!
E

ffi
ci

en
cy

= O((ck/ log k)k) for some constant c.
Total running time = # leaves × 2(problem size at switch)
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C is a family of (d, s)-curves if:

1. Two distinct curves intersect in at most s points.
2. For any d points at most s curves pass through them.

d degrees of freedom, multiplicity-type s.

Unit circles are (2,2)-curves in R2 but (3,2)-curves in R3.

Lines are (2,1)-curves.

Degree b polynomials are (b+ 1,b)-curves.

Sine waves are not (d, s)-curves.
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Given n points P and family C of (d, s)-curves.

Pach&Sharir ’98: # γ-rich candidates is O
(

nd

γ2d−1 + n
γ

)
.

Kernel: |P | ≤ sk2, no (sk + 1)-rich candidate.

⇒ O((ck/ log k)(d−1)k) time algorithm. c depends on d, s.

Beats previous bests:

O((k/1.35)(d−1)k) for lines (d = 2), Wang et al. ’10
O((k/1.38)(d−1)k) for conics (d = 5), Tiwari ’12
O((k/1.15)(d−1)k) for parabolas (d = 4), Tiwari ’12
O(kdk) for general (d, s)-curves, Langerman&Morin ’05
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Hyperplane Cover

22/26

Edvin Berglin

Tight for general point sets and d ≥ 2.

Worst-case constructions put very many pts on same line.

Algorithmically easy thanks to kernelization.

• Wait and hope for bounds on kernelized instances.
• Use other specialized bounds that already exist.

Unusable for d ≥ 3; need denominator > numerator.

Tight for general point sets and d ≥ 2.

Need specialized incidence bound.
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Elekes&Tóth ’05: O
(

1
(1−δ)4 ·

n3

γ4

)
γ-rich δ-deg candidates.

δ < 1/3 δ > 4/5



Plane Cover (R3)

23/26

Edvin Berglin

If all candidates have low δ (e.g. ≤ 1/2), no problem!

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

Elekes&Tóth ’05: O
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If all candidates have low δ (e.g. ≤ 1/2), no problem!

Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

Elekes&Tóth ’05: O
(

1
(1−δ)4 ·

n3

γ4

)
γ-rich δ-deg candidates.

δ < 1/3 δ > 4/5

But if P contains high δ candidates, the solution might too.

Deal with these in a different way.
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Plane is δ-degenerate if ≤ δ fraction of its pts on a line.

For δ > 1/2, most points on a line (the degenerate line `).

Removing only the points on ` is “almost as good”.

Leaves ghost points, but few of them.

δ < 1/3 δ > 4/5

We can postpone dealing with them.
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Dealing with too-degenerate plane
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branch
(
few
l1

)
ways among

γiδi-rich lines, remember `

...

ki = li + hi

branch
(
few
h1

)
ways among

γi-rich δi-degenerate planes

few points,
high % red pair li lines ` with points

(forming planes)
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Degeneracy δi = 1− 1

γ
1/5
i

⇒ 1
(1−δi)4 = 1

γ
−4/5
i

.

⇒ O
((

ck2

log1/5k

)k)
running time.

O
(

1
(1−δi)4

n3

γ4
i

)
= O

(
n3

γ
4−4/5
i

)
= O

(
n3

γ
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i

)
candidates.
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Beats O
((

k(d−1)

1.3

)k)
by Wang et al. ’10, when d = 3 (R3).

Degeneracy δi = 1− 1

γ
1/5
i

⇒ 1
(1−δi)4 = 1

γ
−4/5
i

.

⇒ O
((

ck2

log1/5k

)k)
running time.

O
(

1
(1−δi)4

n3

γ4
i

)
= O

(
n3

γ
4−4/5
i

)
= O

(
n3

γ
3+1/5
i

)
candidates.

Special incidence bound does not apply for d > 3.


