
Dynamic Data Structures:
The Interplay of Invariants

and Algorithm Design

Casper Kejlberg-Rasmussen
PhD Defense, 18th of November 2013

Casper Kejlberg-Rasmussen

Outline

● Introduction to Algorithms and Data Structures

● Implicit Working-Set Dictionaries

● Skyline Queries

● Catenable Priority Queues with Attrition

● Conclusion

2/36

Casper Kejlberg-Rasmussen

What are Algorithms and
Data Structures?

3/36

Casper Kejlberg-Rasmussen

What are Algorithms and
Data Structures?

Algorithm

Data

≋ Recipe

≋ Ingredients

3/36

Casper Kejlberg-Rasmussen

What are Algorithms and
Data Structures?

Algorithm

Data

≋ Recipe

≋ Ingredients

Data Structure ≋ Organization of
Ingredients

Updates ≋ Ingredients
Updates

Queries ≋ Follow Recipes

3/36

Casper Kejlberg-Rasmussen

What are Algorithms and
Data Structures?

Algorithm

Data

≋ Recipe

≋ Ingredients

Data Structure ≋ Organization of
Ingredients

Design Criteria

Updates ≋ Ingredients
Updates

Queries ≋ Follow Recipes

3/36

Casper Kejlberg-Rasmussen

What are Algorithms and
Data Structures?

Algorithm

Data

≋ Recipe

≋ Ingredients

Data Structure ≋ Organization of
Ingredients

Design Criteria

Updates ≋ Ingredients
Updates

Queries ≋ Follow Recipes

● Fast

● Low Space Usage

3/36

Casper Kejlberg-Rasmussen

What are Algorithms and
Data Structures?

Algorithm

Data

≋ Recipe

≋ Ingredients

Data Structure ≋ Organization of
Ingredients

Design Criteria

Updates ≋ Ingredients
Updates

Queries ≋ Follow Recipes

● Fast

● Low Space Usage

● Fast queries and updates

● Low Space Usage

3/36

Casper Kejlberg-Rasmussen

What are Computational Models?

4/36

Casper Kejlberg-Rasmussen

What are Computational Models?
Reality

4/36

Casper Kejlberg-Rasmussen

What are Computational Models?
Reality

CPU

L1

L2

L3

Memory

Harddisk

etc.

4/36

Casper Kejlberg-Rasmussen

What are Computational Models?
Reality

CPU

L1

L2

L3

Memory

Harddisk

(CPUSpeed⋅L1⋅⌈
L2
L1

⌉⋅⌈
L3
L2

⌉⋅⌈
n
L3

⌉) log n

Complexity

etc.

4/36

Casper Kejlberg-Rasmussen

What are Computational Models?
Reality Models

CPU

L1

L2

L3

Memory

Harddisk

(CPUSpeed⋅L1⋅⌈
L2
L1

⌉⋅⌈
L3
L2

⌉⋅⌈
n
L3

⌉) log n

RAM ModelCount
operations

CPU Memory

Complexity

etc.

4/36

Casper Kejlberg-Rasmussen

What are Computational Models?
Reality Models

CPU

L1

L2

L3

Memory

Harddisk

(CPUSpeed⋅L1⋅⌈
L2
L1

⌉⋅⌈
L3
L2

⌉⋅⌈
n
L3

⌉) log n

RAM ModelCount
operations

CPU Memory

Complexity

O(n log n)

etc.

4/36

Casper Kejlberg-Rasmussen

What are Computational Models?
Reality Models

CPU

L1

L2

L3

Memory

Harddisk

(CPUSpeed⋅L1⋅⌈
L2
L1

⌉⋅⌈
L3
L2

⌉⋅⌈
n
L3

⌉) log n

RAM ModelCount
operations

CPU Memory

M
B

EM Model

Count
disk accesses

CPU Memory Harddisk

Complexity

O(n log n)

Many more

etc.

4/36

Casper Kejlberg-Rasmussen

Static and Dynamic Problems
Price

Quality

Static

Car offers

Min

Max
Low High

5/36

Casper Kejlberg-Rasmussen

Static and Dynamic Problems

● We want to buy a new car!

● We have a list of offers

● We want to find the
undominated offers, i.e.
unmatched in price and quality

Price

Quality

Static

Car offers

Min

Max
Low High

5/36

Casper Kejlberg-Rasmussen

Static and Dynamic Problems

● We want to buy a new car!

● We have a list of offers

● We want to find the
undominated offers, i.e.
unmatched in price and quality

Price

Quality

Static

Car offers

Dynamic
Price

Quality

Car offers

Min

Max
Low High

Min

Max
Low High

5/36

Casper Kejlberg-Rasmussen

Static and Dynamic Problems

● We want to buy a new car!

● We have a list of offers

● We want to find the
undominated offers, i.e.
unmatched in price and quality

● In the dynamic setting, we
will receive new offers
continously

● New offers might change the
set of undominated offers

Price

Quality

Static

Car offers

Dynamic
Price

Quality

Car offers

Min

Max
Low High

Min

Max
Low High

5/36

Casper Kejlberg-Rasmussen

Static and Dynamic Problems

● We want to buy a new car!

● We have a list of offers

● We want to find the
undominated offers, i.e.
unmatched in price and quality

● In the dynamic setting, we
will receive new offers
continously

● New offers might change the
set of undominated offers

Price

Quality

Static

Car offers

Dynamic
Price

Quality

Car offers

Min

Max
Low High

Min

Max
Low High

5/36

Casper Kejlberg-Rasmussen

Static and Dynamic Problems

● We want to buy a new car!

● We have a list of offers

● We want to find the
undominated offers, i.e.
unmatched in price and quality

● In the dynamic setting, we
will receive new offers
continously

● New offers might change the
set of undominated offers

Price

Quality

Static

Car offers

Dynamic
Price

Quality

Car offers

Min

Max
Low High

Min

Max
Low High

5/36

Casper Kejlberg-Rasmussen

Static and Dynamic Problems

● We want to buy a new car!

● We have a list of offers

● We want to find the
undominated offers, i.e.
unmatched in price and quality

● In the dynamic setting, we
will receive new offers
continously

● New offers might change the
set of undominated offers

Price

Quality

Static

Car offers

Dynamic
Price

Quality

Car offers

Min

Max
Low High

Min

Max
Low High

5/36

Casper Kejlberg-Rasmussen

What are Invariants?
An Invariant is a logical statement about the structural
properties of a data structure

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

● Invariants are designed from observations of the problem we try
to solve

● Consider two cars from the car offers problem from before

An Invariant is a logical statement about the structural
properties of a data structure

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

● Invariants are designed from observations of the problem we try
to solve

● Consider two cars from the car offers problem from before

An Invariant is a logical statement about the structural
properties of a data structure

Price

Car offers

Quality

c
1

c
2

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

● Invariants are designed from observations of the problem we try
to solve

● Consider two cars from the car offers problem from before

An Invariant is a logical statement about the structural
properties of a data structure

Price

Car offers

Quality

c
1

c
2

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

● Invariants are designed from observations of the problem we try
to solve

● Consider two cars from the car offers problem from before

An Invariant is a logical statement about the structural
properties of a data structure

Price

Car offers

Quality

c
1

c
2

c
2
 dominates c

1

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

● Invariants are designed from observations of the problem we try
to solve

● Consider two cars from the car offers problem from before

An Invariant is a logical statement about the structural
properties of a data structure

Price

Car offers

Quality

c
1

c
2

c
3

c
2
 dominates c

1

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

● Invariants are designed from observations of the problem we try
to solve

● Consider two cars from the car offers problem from before

An Invariant is a logical statement about the structural
properties of a data structure

Price

Car offers

Quality

c
1

c
2

c
3

c
2
 dominates c

1

c
1
 and c

3
 are incomparable

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

● Invariants are designed from observations of the problem we try
to solve

● Consider two cars from the car offers problem from before

An Invariant is a logical statement about the structural
properties of a data structure

Price

Car offers

Quality

c
1

c
2

c
3

c
2
 dominates c

1

c
1
 and c

3
 are incomparable

c
2
 and c

3
 are incomparable

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

● Invariants are designed from observations of the problem we try
to solve

● Consider two cars from the car offers problem from before

An Invariant is a logical statement about the structural
properties of a data structure

Price

Car offers

Quality

c
1

c
2

c
3

c
2
 dominates c

1

c
1
 and c

3
 are incomparable

c
2
 and c

3
 are incomparable

● We notice that the undominated (c
2
 and c

3
) offers are sorted both

according to price and quality simultaneously

6/36

Casper Kejlberg-Rasmussen

What are Invariants?

7/36

Casper Kejlberg-Rasmussen

What are Invariants?
● From our observation we store all undominated points in a search

tree sorted simultaneously on price and quality

● This gives us the following data structure and invariant

7/36

Casper Kejlberg-Rasmussen

What are Invariants?
● From our observation we store all undominated points in a search

tree sorted simultaneously on price and quality

● This gives us the following data structure and invariant

Invariant: All undominated offers
are stored in the search tree T
and are sorted simultaneously
on price and quality

7/36

Casper Kejlberg-Rasmussen

What are Invariants?
● From our observation we store all undominated points in a search

tree sorted simultaneously on price and quality

● This gives us the following data structure and invariant

Invariant: All undominated offers
are stored in the search tree T
and are sorted simultaneously
on price and quality Price

Car offers

Quality

T

7/36

Casper Kejlberg-Rasmussen

What are Invariants?
● From our observation we store all undominated points in a search

tree sorted simultaneously on price and quality

● This gives us the following data structure and invariant

Invariant: All undominated offers
are stored in the search tree T
and are sorted simultaneously
on price and quality Price

Car offers

Quality

p

q

q p

T

7/36

Casper Kejlberg-Rasmussen

What are Invariants?
● From our observation we store all undominated points in a search

tree sorted simultaneously on price and quality

● This gives us the following data structure and invariant

Invariant: All undominated offers
are stored in the search tree T
and are sorted simultaneously
on price and quality Price

Car offers

Quality

T

7/36

Casper Kejlberg-Rasmussen

What are Invariants?
● From our observation we store all undominated points in a search

tree sorted simultaneously on price and quality

● This gives us the following data structure and invariant

Invariant: All undominated offers
are stored in the search tree T
and are sorted simultaneously
on price and quality Price

Car offers

Quality

p

q

p q

T

7/36

Casper Kejlberg-Rasmussen

What are Invariants?
● From our observation we store all undominated points in a search

tree sorted simultaneously on price and quality

● This gives us the following data structure and invariant

Invariant: All undominated offers
are stored in the search tree T
and are sorted simultaneously
on price and quality Price

Car offers

Quality

T

7/36

Casper Kejlberg-Rasmussen

What are Invariants?
● From our observation we store all undominated points in a search

tree sorted simultaneously on price and quality

● This gives us the following data structure and invariant

Invariant: All undominated offers
are stored in the search tree T
and are sorted simultaneously
on price and quality

● Where k is the number of undominated
car offers out of all offers

● Inserting a new car offer takes O(log k)
time

● Reporting the undominated offers takes
O(k) time

Price

Car offers

Quality

T

7/36

Casper Kejlberg-Rasmussen

Designing Invariants and Dynamic
Data Structures

8/36

Casper Kejlberg-Rasmussen

Designing Invariants and Dynamic
Data Structures

● Dynamic data structure and invariant
design follows a cycle:

● Observe properties of the problem

● Formulate invariants

● Check if the invariants are strong
enough to support queries

● Check if the invariants can be
maintained under updates

● The process is similarly to suitcase
packing:

1. We place our stuff in the suitcase

2. We check if the lid can be closed

● When everything fits inside the suitcase,
we are done!

8/36

Casper Kejlberg-Rasmussen

Designing Invariants and Dynamic
Data Structures

● Dynamic data structure and invariant
design follows a cycle:

● Observe properties of the problem

● Formulate invariants

● Check if the invariants are strong
enough to support queries

● Check if the invariants can be
maintained under updates

● The process is similarly to suitcase
packing:

1. We place our stuff in the suitcase

2. We check if the lid can be closed

● When everything fits inside the suitcase,
we are done!

1.

8/36

Casper Kejlberg-Rasmussen

Designing Invariants and Dynamic
Data Structures

● Dynamic data structure and invariant
design follows a cycle:

● Observe properties of the problem

● Formulate invariants

● Check if the invariants are strong
enough to support queries

● Check if the invariants can be
maintained under updates

● The process is similarly to suitcase
packing:

1. We place our stuff in the suitcase

2. We check if the lid can be closed

● When everything fits inside the suitcase,
we are done!

1.

2.

8/36

Casper Kejlberg-Rasmussen

Outline

● Introduction to Algorithms and Data Structures

● Implicit Working-Set Dictionaries

● Skyline Queries

● Catenable Priority Queues with Attrition

● Conclusion

9/36

Casper Kejlberg-Rasmussen

Implicit Model

10/36

Casper Kejlberg-Rasmussen

Implicit Model
 All operations from the RAM
 It is not allowed to create words, only to move them

 All n words have to be in contiguous positions

 Often it is assumed that all elements are distinct

 Fundamental trick: encode a bit in a pair of adjacent and
distinct elements

10/36

Casper Kejlberg-Rasmussen

Implicit Model
 All operations from the RAM
 It is not allowed to create words, only to move them

 All n words have to be in contiguous positions

 Often it is assumed that all elements are distinct

 Fundamental trick: encode a bit in a pair of adjacent and
distinct elements

...

n1

10/36

Casper Kejlberg-Rasmussen

Implicit Model
 All operations from the RAM
 It is not allowed to create words, only to move them

 All n words have to be in contiguous positions

 Often it is assumed that all elements are distinct

 Fundamental trick: encode a bit in a pair of adjacent and
distinct elements

...

n1

yx

b

b=
0 if x=min(x,y)

1 if x=max(x,y)

10/36

Casper Kejlberg-Rasmussen

The Working-Set Property

11/36

Casper Kejlberg-Rasmussen

The Working-Set Property

a b c d e

l
x
 : 0 1 2 3 4

f

5

11/36

Casper Kejlberg-Rasmussen

The Working-Set Property

a b c e

l
x
 : 0 1 2 3 4

d f

5

11/36

Casper Kejlberg-Rasmussen

The Working-Set Property
 Element x has a working-set number of l

x
 iff:

l
x
 elements different from x have been searched for since we last

searched for x

 An Implicit Dictionary with the Working-Set Property:
 Insert(x): insert element x into the dictionary and set l

x
 =0

 Delete(x): delete element x from the dictionary
 Search(x): determine if x is in the dictionary and set l

x
 =0

 Predecessor(x): find the address of the predecessor of x
 Successor(x): find the address of the successor of x

a b c e

l
x
 : 0 1 2 3 4

d f

5

11/36

Casper Kejlberg-Rasmussen

Previous and Our Results

Ref. WS
prop.

Insert/Delete(e) Search(e) Predecessor/
Successor(e)

Additional
Words

M1989 - O(log2 n) O(log2 n) None

FGMP2002 - O(log2 n/log log n) O(log2 n/log log n) None

FG2006 - O(log n) amor. O(log n) O(log n) None

FG2003 - O(log n) O(log n) O(log n) None

I2001 + O(log n) O(log l
e
) O(log l

e*
) O(n)

BHM2009 + O(log n) O(log l
e
) exp. O(log n) O(log log n)

BHM2009 + O(log n) O(log l
e
) exp. O(log l

e
) exp. O(√n)

BKT2010 + O(log n) O(log l
e
) O(log n) None

BK2011 + O(log n) O(log min(l
p(e)

,l
e
,l
s(e)

)) O(log l
e*
) None

e* is the predecessor/successor of e

12/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

ji

13/36

Casper Kejlberg-Rasmussen

 A dictionary laid out in memory addresses [i,j]

 Interface:
 Insert-left/right(e): insert element e into the dictionary which

grows to the left/right
 Delete-left/right(e): delete element e from the dictionary which

shrinks from the left/right
 Search(e): finds the address of e if e is in the dictionary
 Predecessor(e): finds the address of the predecessor of e
 Successor(e): finds the address of the successor of e

 Can be constructed from O(1) FG dictionaries used as black boxes

Implicit Moveable Dictionaries

ji

13/36

Casper Kejlberg-Rasmussen

 A dictionary laid out in memory addresses [i,j]

 Interface:
 Insert-left/right(e): insert element e into the dictionary which

grows to the left/right
 Delete-left/right(e): delete element e from the dictionary which

shrinks from the left/right
 Search(e): finds the address of e if e is in the dictionary
 Predecessor(e): finds the address of the predecessor of e
 Successor(e): finds the address of the successor of e

 Can be constructed from O(1) FG dictionaries used as black boxes

Implicit Moveable Dictionaries

ji-1

13/36

Casper Kejlberg-Rasmussen

 A dictionary laid out in memory addresses [i,j]

 Interface:
 Insert-left/right(e): insert element e into the dictionary which

grows to the left/right
 Delete-left/right(e): delete element e from the dictionary which

shrinks from the left/right
 Search(e): finds the address of e if e is in the dictionary
 Predecessor(e): finds the address of the predecessor of e
 Successor(e): finds the address of the successor of e

 Can be constructed from O(1) FG dictionaries used as black boxes

Implicit Moveable Dictionaries

ji

13/36

Casper Kejlberg-Rasmussen

Implicit Working-Set Dictionaries

B
0

B
1

B
2

B
m-1

B
m

B
i... ...

|B
i
|=Θ(22i+k) m=O(log log n)

14/36

Casper Kejlberg-Rasmussen

Implicit Working-Set Dictionaries
 Exponential layout

 B
i
 consists of O(1) moveable dictionaries

 All elements e in B
i
 have l

e
 ≥22i-1+k or l

e
 ≥22i+k

 Searched and inserted elements are moved into B
0
 (overflows)

 These are the ideas we used in the ISAAC 2010 paper
 Only gives O(log n) bounds for predecessor and successor searches

as all B
i
 have to be searched: the invariants do not relate e to its

prede/suc-cessor

B
0

B
1

B
2

B
m-1

B
m

B
i... ...

|B
i
|=Θ(22i+k) m=O(log log n)

l
e
≥22i-1+k l

e
≥22i+k

L
i

C
i

R
i

D
i

14/36

Casper Kejlberg-Rasmussen

Implicit Working-Set Dictionaries
 Exponential layout

 B
i
 consists of O(1) moveable dictionaries

 All elements e in B
i
 have l

e
 ≥22i-1+k or l

e
 ≥22i+k

 Searched and inserted elements are moved into B
0
 (overflows)

 These are the ideas we used in the ISAAC 2010 paper
 Only gives O(log n) bounds for predecessor and successor searches

as all B
i
 have to be searched: the invariants do not relate e to its

prede/suc-cessor

B
0

B
1

B
2

B
m-1

B
m

B
i... ...

|B
i
|=Θ(22i+k) m=O(log log n)

l
e
≥22i-1+k l

e
≥22i+k

L
i

C
i

R
i

D
i

Summary of Invariants

● Blocks of fixed size: easy word/pointer encoding
● Elements in each block are divided according to

working-set number

14/36

Casper Kejlberg-Rasmussen

 Intervals to solve the predecessor and successor problems

Implicit Predecessor/Successor
Working-Set Dictionaries

15/36

Casper Kejlberg-Rasmussen

B
0

..
.

B
1

B
2

B
m-1

B
m

 Intervals to solve the predecessor and successor problems

Implicit Predecessor/Successor
Working-Set Dictionaries

15/36

Casper Kejlberg-Rasmussen

 Divide the key-space into mutually disjoint intervals aligned with the
points/elements

 Invariant: any point/element, intersecting an interval at level i, lies in block B
i

 Predecessor/Successor(e) searches can terminate when an interval at level i is
intersected

B
0

..
.

B
1

B
2

B
m-1

B
m

 Intervals to solve the predecessor and successor problems

Implicit Predecessor/Successor
Working-Set Dictionaries

15/36

Casper Kejlberg-Rasmussen

 Divide the key-space into mutually disjoint intervals aligned with the
points/elements

 Invariant: any point/element, intersecting an interval at level i, lies in block B
i

 Predecessor/Successor(e) searches can terminate when an interval at level i is
intersected

B
0

..
.

B
1

B
2

B
m-1

B
m

 Intervals to solve the predecessor and successor problems

e

Implicit Predecessor/Successor
Working-Set Dictionaries

15/36

Casper Kejlberg-Rasmussen

 Divide the key-space into mutually disjoint intervals aligned with the
points/elements

 Invariant: any point/element, intersecting an interval at level i, lies in block B
i

 Predecessor/Successor(e) searches can terminate when an interval at level i is
intersected

B
0

..
.

B
1

B
2

B
m-1

B
m

 Intervals to solve the predecessor and successor problems

e

Implicit Predecessor/Successor
Working-Set Dictionaries

15/36

Casper Kejlberg-Rasmussen

Implicit Representation of Intervals

B
0

..
.

B
1

B
2

B
m-1

B
m

B
i-1

B
i+1

D
i

A
i

R
i

W
i

H
i

C
i

G
i

Arriving
Resting

Waiting
Helping

Climbing

Guarding

l
e
 ≥22i-1+k l

e
 ≥22i+k l

e
 ≥22max(i,j)-1+k

 Representing the intervals implicitly

... ...

16/36

Casper Kejlberg-Rasmussen

Implicit Representation of Intervals

B
0

..
.

B
1

B
2

B
m-1

B
m

B
i-1

B
i+1

D
i

A
i

R
i

W
i

H
i

C
i

G
i

Arriving
Resting

Waiting
Helping

Climbing

Guarding

l
e
 ≥22i-1+k l

e
 ≥22i+k l

e
 ≥22max(i,j)-1+k

 Representing the intervals implicitly

Arriving Resting Waiting Helping Climbing Guarding

... ...

16/36

Casper Kejlberg-Rasmussen

Implicit Representation of Intervals

B
0

..
.

B
1

B
2

B
m-1

B
m

B
i-1

B
i+1

D
i

A
i

R
i

W
i

H
i

C
i

G
i

Arriving
Resting

Waiting
Helping

Climbing

Guarding

l
e
 ≥22i-1+k l

e
 ≥22i+k l

e
 ≥22max(i,j)-1+k

 Representing the intervals implicitly

... ...

16/36

Casper Kejlberg-Rasmussen

Implicit Representation of Intervals

B
0

..
.

B
1

B
2

B
m-1

B
m

B
i-1

B
i+1

D
i

A
i

R
i

W
i

H
i

C
i

G
i

Arriving
Resting

Waiting
Helping

Climbing

Guarding

l
e
 ≥22i-1+k l

e
 ≥22i+k l

e
 ≥22max(i,j)-1+k

 Representing the intervals implicitly

... ...

16/36

Casper Kejlberg-Rasmussen

Implicit Representation of Intervals

B
0

..
.

B
1

B
2

B
m-1

B
m

B
i-1

B
i+1

D
i

A
i

R
i

W
i

H
i

C
i

G
i

Arriving
Resting

Waiting
Helping

Climbing

Guarding

l
e
 ≥22i-1+k l

e
 ≥22i+k l

e
 ≥22max(i,j)-1+k

 Representing the intervals implicitly

... ...

16/36

Casper Kejlberg-Rasmussen

Implicit Representation of Intervals

B
0

..
.

B
1

B
2

B
m-1

B
m

B
i-1

B
i+1

D
i

A
i

R
i

W
i

H
i

C
i

G
i

Arriving
Resting

Waiting
Helping

Climbing

Guarding

l
e
 ≥22i-1+k l

e
 ≥22i+k l

e
 ≥22max(i,j)-1+k

 Representing the intervals implicitly

... ...

16/36

Casper Kejlberg-Rasmussen

Implicit Representation of Intervals

B
0

..
.

B
1

B
2

B
m-1

B
m

B
i-1

B
i+1

D
i

A
i

R
i

W
i

H
i

C
i

G
i

Arriving
Resting

Waiting
Helping

Climbing

Guarding

l
e
 ≥22i-1+k l

e
 ≥22i+k l

e
 ≥22max(i,j)-1+k

 Representing the intervals implicitly

... ...

16/36

Casper Kejlberg-Rasmussen

Implicit Representation of Intervals

B
0

..
.

B
1

B
2

B
m-1

B
m

B
i-1

B
i+1

D
i

A
i

R
i

W
i

H
i

C
i

G
i

Arriving
Resting

Waiting
Helping

Climbing

Guarding

l
e
 ≥22i-1+k l

e
 ≥22i+k l

e
 ≥22max(i,j)-1+k

 Representing the intervals implicitly

... ...
Summary of Invariants

● Blocks of fixed size: easy word/pointer encoding
● Elements in each block are divided into types

according to their working-set number and
● According to the types of neighboring elements

16/36

Casper Kejlberg-Rasmussen

Outline

● Introduction to Algorithms and Data Structures

● Implicit Working-Set Dictionaries

● Skyline Queries

● Catenable Priority Queues with Attrition

● Conclusion

17/36

Casper Kejlberg-Rasmussen

What are Skyline Queries?

p

q

y

x

18/36

Casper Kejlberg-Rasmussen

What are Skyline Queries?

p

q

y

x

18/36

Casper Kejlberg-Rasmussen

What are Skyline Queries?
● Given two points p,q∈P⊆ℝ2 we

say p dominates q iff px ≥ qx
and py ≥ qy

● The maximal/skyline points of a
point set P⊆ℝ2 are the
undominated points

● Given a dynamic point set P⊆ℝ2
we want to be able to find the
skyline for a given query range
Q = [x1,x2] x [y1,y2]

p

q

y

x
y

x

18/36

Casper Kejlberg-Rasmussen

What are Skyline Queries?
● Given two points p,q∈P⊆ℝ2 we

say p dominates q iff px ≥ qx
and py ≥ qy

● The maximal/skyline points of a
point set P⊆ℝ2 are the
undominated points

● Given a dynamic point set P⊆ℝ2
we want to be able to find the
skyline for a given query range
Q = [x1,x2] x [y1,y2]

p

q

y

x
y

x
y

x

18/36

Casper Kejlberg-Rasmussen

y

x
x1=y1=-∞ x2=y2=∞

Skyline

Special Cases of Skyline Queries

19/36

Casper Kejlberg-Rasmussen

y

x
x1=y1=-∞ x2=y2=∞

Skyline y

x
y2=∞

Top-Open

Special Cases of Skyline Queries

19/36

Casper Kejlberg-Rasmussen

y

x
x1=y1=-∞ x2=y2=∞

Skyline y

x
y2=∞

Top-Open y

x
x2=∞

Right-Open

Special Cases of Skyline Queries

19/36

Casper Kejlberg-Rasmussen

y

x
x1=y1=-∞ x2=y2=∞

Skyline y

x
y2=∞

Top-Open y

x
x2=∞

Right-Open y

x
y1=-∞

Bottom-Open

Special Cases of Skyline Queries

19/36

Casper Kejlberg-Rasmussen

y

x
x1=y1=-∞ x2=y2=∞

Skyline y

x
y2=∞

Top-Open y

x
x2=∞

Right-Open y

x
y1=-∞

Bottom-Open

y

x

x1=-∞

Left-Open

Special Cases of Skyline Queries

19/36

Casper Kejlberg-Rasmussen

y

x
x1=y1=-∞ x2=y2=∞

Skyline y

x
y2=∞

Top-Open y

x
x2=∞

Right-Open y

x
y1=-∞

Bottom-Open

y

x

x1=-∞

Left-Open y

x

x2=y2=∞

Dominance

Special Cases of Skyline Queries

19/36

Casper Kejlberg-Rasmussen

y

x
x1=y1=-∞ x2=y2=∞

Skyline y

x
y2=∞

Top-Open y

x
x2=∞

Right-Open y

x
y1=-∞

Bottom-Open

y

x

x1=-∞

Left-Open y

x

x2=y2=∞

Dominance y

x

x1=y1=-∞

Anti-Dominance

Special Cases of Skyline Queries

19/36

Casper Kejlberg-Rasmussen

y

x
x1=y1=-∞ x2=y2=∞

Skyline y

x
y2=∞

Top-Open y

x
x2=∞

Right-Open y

x
y1=-∞

Bottom-Open

y

x

x1=-∞

Left-Open y

x

x2=y2=∞

Dominance y

x

x1=y1=-∞

Anti-Dominance y

x

x1=y1=-∞ y2=∞

Contour

Special Cases of Skyline Queries

19/36

Casper Kejlberg-Rasmussen

EM Model
CPU Memory

20/36

Casper Kejlberg-Rasmussen

EM Model
CPU Memory

RAM Model

20/36

Casper Kejlberg-Rasmussen

EM Model
CPU Memory

M

B

Count
disk accesses

Hard disk

20/36

Casper Kejlberg-Rasmussen

EM Model

● We count the number of disk accesses, not CPU instructions

● When reading/writing from/to disk, we can access B consecutive
elements in one I/O

● Our algorithms should spent O(1/B) I/Os to access one element

● Scanning uses O(n/B) I/Os and search trees uses O(log
B
 n) I/Os

CPU Memory

M

B

Count
disk accesses

Hard disk

20/36

Casper Kejlberg-Rasmussen

Problem Space Pre-proces Query Query Update Domain Source

Top-Open O(n) O(n log n) O(1+k) - - ℝ YA10

Top-Open O(n) O(n log n) O(log n+k) - O(log n) ℝ BT11

Top-Open O(n) O(n log n/log log n) O(log n/log log n+k) - O(log n/log log n) ℝ BT11

4-sided O(n log n) O(n log n) O(log n+k) - - ℝ KDKS11

4-sided O(n log n/log log n) O(n log n/log log n) O(n log n/log log n+k) - - Rank GKASK97

4-sided O(n log n) O(n log n) O(log2n+k) - O(log2n) ℝ BT11

Top-Open O(n/B) O(n/B logM/B n/B) O(n/B) - - ℝ PTFS05
ST11

Top-Open Heuristics, various update types: HKIT06,PTFS05,TO06,WAEA07 ℝ

Top-Open O(n/B) O(n/B*) O(logB n+k/B) - - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(loglogB U+k/B) - - U KTTTY13

Top-Open O(n/B) O(n/B*) O(1+k/B) - - Rank KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(log2Bεn/B+k/B1-ε) - O(log2Bεn/B) ℝ KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) O(log n/B) ℝ KTTTY13

Previous and Our Results

* Assumes pre-sorting

y

xy2=∞

Top-Open y

x

4-Sided

21/36

Casper Kejlberg-Rasmussen

Problem Space Pre-proces Query Query Update Domain Source

Top-Open O(n) O(n log n) O(1+k) - - ℝ YA10

Top-Open O(n) O(n log n) O(log n+k) - O(log n) ℝ BT11

Top-Open O(n) O(n log n/log log n) O(log n/log log n+k) - O(log n/log log n) ℝ BT11

4-sided O(n log n) O(n log n) O(log n+k) - - ℝ KDKS11

4-sided O(n log n/log log n) O(n log n/log log n) O(n log n/log log n+k) - - Rank GKASK97

4-sided O(n log n) O(n log n) O(log2n+k) - O(log2n) ℝ BT11

Top-Open O(n/B) O(n/B logM/B n/B) O(n/B) - - ℝ PTFS05
ST11

Top-Open Heuristics, various update types: HKIT06,PTFS05,TO06,WAEA07 ℝ

Top-Open O(n/B) O(n/B*) O(logB n+k/B) - - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(loglogB U+k/B) - - U KTTTY13

Top-Open O(n/B) O(n/B*) O(1+k/B) - - Rank KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(log2Bεn/B+k/B1-ε) - O(log2Bεn/B) ℝ KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) O(log n/B) ℝ KTTTY13

Previous and Our Results

* Assumes pre-sorting

Indexability Model
Indivisibility Assumption

y

xy2=∞

Top-Open y

x

4-Sided

21/36

Casper Kejlberg-Rasmussen

Problem Space Pre-proces Query Query Update Domain Source

Top-Open O(n) O(n log n) O(1+k) - - ℝ YA10

Top-Open O(n) O(n log n) O(log n+k) - O(log n) ℝ BT11

Top-Open O(n) O(n log n/log log n) O(log n/log log n+k) - O(log n/log log n) ℝ BT11

4-sided O(n log n) O(n log n) O(log n+k) - - ℝ KDKS11

4-sided O(n log n/log log n) O(n log n/log log n) O(n log n/log log n+k) - - Rank GKASK97

4-sided O(n log n) O(n log n) O(log2n+k) - O(log2n) ℝ BT11

Top-Open O(n/B) O(n/B logM/B n/B) O(n/B) - - ℝ PTFS05
ST11

Top-Open Heuristics, various update types: HKIT06,PTFS05,TO06,WAEA07 ℝ

Top-Open O(n/B) O(n/B*) O(logB n+k/B) - - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(loglogB U+k/B) - - U KTTTY13

Top-Open O(n/B) O(n/B*) O(1+k/B) - - Rank KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(log2Bεn/B+k/B1-ε) - O(log2Bεn/B) ℝ KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) O(log n/B) ℝ KTTTY13

Previous and Our Results

* Assumes pre-sorting

y

xy2=∞

Top-Open y

x

4-Sided

21/36

Casper Kejlberg-Rasmussen

Problem Space Pre-proces Query Query Update Domain Source

Top-Open O(n) O(n log n) O(1+k) - - ℝ YA10

Top-Open O(n) O(n log n) O(log n+k) - O(log n) ℝ BT11

Top-Open O(n) O(n log n/log log n) O(log n/log log n+k) - O(log n/log log n) ℝ BT11

4-sided O(n log n) O(n log n) O(log n+k) - - ℝ KDKS11

4-sided O(n log n/log log n) O(n log n/log log n) O(n log n/log log n+k) - - Rank GKASK97

4-sided O(n log n) O(n log n) O(log2n+k) - O(log2n) ℝ BT11

Top-Open O(n/B) O(n/B logM/B n/B) O(n/B) - - ℝ PTFS05
ST11

Top-Open Heuristics, various update types: HKIT06,PTFS05,TO06,WAEA07 ℝ

Top-Open O(n/B) O(n/B*) O(logB n+k/B) - - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(loglogB U+k/B) - - U KTTTY13

Top-Open O(n/B) O(n/B*) O(1+k/B) - - Rank KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(log2Bεn/B+k/B1-ε) - O(log2Bεn/B) ℝ KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) O(log n/B) ℝ KTTTY13

Previous and Our Results

* Assumes pre-sorting

For Today!

y

xy2=∞

Top-Open y

x

4-Sided

21/36

Casper Kejlberg-Rasmussen

Observation for Top-Open Queries

x
1

x
2

y

22/36

Casper Kejlberg-Rasmussen

Observation for Top-Open Queries

● Consider mirroing the point
set in the y-axis

● Let x represent the insertion
time and y the key space

● When inserting element e it
deletes/attrites all elements
inserted before it with a
larger key

● Non-attrited points and
undominated points are
equivalent

x
1

x
2

y

-y

22/36

Casper Kejlberg-Rasmussen

Observation for Top-Open Queries

● Consider mirroing the point
set in the y-axis

● Let x represent the insertion
time and y the key space

● When inserting element e it
deletes/attrites all elements
inserted before it with a
larger key

● Non-attrited points and
undominated points are
equivalent

x
1

x
2

y

-y

head tail

min

max

22/36

Casper Kejlberg-Rasmussen

Observation for Top-Open Queries

● Consider mirroing the point
set in the y-axis

● Let x represent the insertion
time and y the key space

● When inserting element e it
deletes/attrites all elements
inserted before it with a
larger key

● Non-attrited points and
undominated points are
equivalent

x
1

x
2

y

-y

non-attrited
head tail

min

max

attrited

22/36

Casper Kejlberg-Rasmussen

Priority Queues with Attrition

Key

TimeHead Tail

Max

Min

23/36

Casper Kejlberg-Rasmussen

Priority Queues with Attrition

● DeleteMin(): Deletes the head/minimum element of the queue

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements
before e with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1

with a key larger or equal to min(Q
2
) and appends Q

2

Key

TimeHead Tail

Max

Min

23/36

Casper Kejlberg-Rasmussen

Priority Queues with Attrition

● DeleteMin(): Deletes the head/minimum element of the queue

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements
before e with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1

with a key larger or equal to min(Q
2
) and appends Q

2

Key

TimeHead Tail

Max

Min

23/36

Casper Kejlberg-Rasmussen

Priority Queues with Attrition

● DeleteMin(): Deletes the head/minimum element of the queue

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements
before e with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1

with a key larger or equal to min(Q
2
) and appends Q

2

Key

TimeHead Tail

Max

Min

23/36

Casper Kejlberg-Rasmussen

Priority Queues with Attrition

● DeleteMin(): Deletes the head/minimum element of the queue

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements
before e with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1

with a key larger or equal to min(Q
2
) and appends Q

2

Key

TimeHead Tail

Max

Min

23/36

Casper Kejlberg-Rasmussen

Data Structure and Invariants

PQAs of size [B,2B]

...

Fanout
[2Bε,4Bε]

PQA Buffer
size O(B1-ε)

...

24/36

Casper Kejlberg-Rasmussen

Data Structure and Invariants

● A (2Bε,4Bε)-tree augmented
with PQAs

● Internal node have between
2Bε and 4Bε children and
stores a PQA which is the
concatenation of its childrens
PQAs

● Leafs stores a PQA over the B
to 2B elements it contains

● Updating element e discards
the PQAs on the path to e
and rebuilds them again

PQAs of size [B,2B]

...

Fanout
[2Bε,4Bε]

PQA Buffer
size O(B1-ε)

...

24/36

Casper Kejlberg-Rasmussen

Data Structure and Invariants

● A (2Bε,4Bε)-tree augmented
with PQAs

● Internal node have between
2Bε and 4Bε children and
stores a PQA which is the
concatenation of its childrens
PQAs

● Leafs stores a PQA over the B
to 2B elements it contains

● Updating element e discards
the PQAs on the path to e
and rebuilds them again

PQAs of size [B,2B]

...

Fanout
[2Bε,4Bε]

PQA Buffer
size O(B1-ε)

...

24/36

Casper Kejlberg-Rasmussen

Data Structure and Invariants

● A (2Bε,4Bε)-tree augmented
with PQAs

● Internal node have between
2Bε and 4Bε children and
stores a PQA which is the
concatenation of its childrens
PQAs

● Leafs stores a PQA over the B
to 2B elements it contains

● Updating element e discards
the PQAs on the path to e
and rebuilds them again

PQAs of size [B,2B]

...

Fanout
[2Bε,4Bε]

PQA Buffer
size O(B1-ε)

...

24/36

Casper Kejlberg-Rasmussen

Data Structure and Invariants

● A (2Bε,4Bε)-tree augmented
with PQAs

● Internal node have between
2Bε and 4Bε children and
stores a PQA which is the
concatenation of its childrens
PQAs

● Leafs stores a PQA over the B
to 2B elements it contains

● Updating element e discards
the PQAs on the path to e
and rebuilds them again

PQAs of size [B,2B]

...

Fanout
[2Bε,4Bε]

PQA Buffer
size O(B1-ε)

...

Summary of Invariants

● Nodes have a bounded degree
● All leaves have the same depth
● Nodes are augmented with PQAs

24/36

Casper Kejlberg-Rasmussen

Top-Open Skyline Queries

...

...... ...

...

x
1

x
2

y

y

xy2=∞

Top-Open

25/36

Casper Kejlberg-Rasmussen

Top-Open Skyline Queries

● We find the leafs of x
1
 and x

2

and make two PQAs of the
elements within [x

1
,x

2
] called

Q
1
 and Q

2

● We concatenate Q
1
, all PQAs

of subtrees inside [x
1
,x

2
] and

Q
2
 into one PQA Q (Divide

and conquer)

● We call DeleteMin on Q and
report the returned element
e unless e has y-value larger
than -y

...

...... ...

...

x
1

x
2

y

y

xy2=∞

Top-Open

25/36

Casper Kejlberg-Rasmussen

Top-Open Skyline Queries

● We find the leafs of x
1
 and x

2

and make two PQAs of the
elements within [x

1
,x

2
] called

Q
1
 and Q

2

● We concatenate Q
1
, all PQAs

of subtrees inside [x
1
,x

2
] and

Q
2
 into one PQA Q (Divide

and conquer)

● We call DeleteMin on Q and
report the returned element
e unless e has y-value larger
than -y

...

...... ...

...

x
1

x
2

y

y

xy2=∞

Top-Open

25/36

Casper Kejlberg-Rasmussen

Top-Open Skyline Queries

● We find the leafs of x
1
 and x

2

and make two PQAs of the
elements within [x

1
,x

2
] called

Q
1
 and Q

2

● We concatenate Q
1
, all PQAs

of subtrees inside [x
1
,x

2
] and

Q
2
 into one PQA Q (Divide

and conquer)

● We call DeleteMin on Q and
report the returned element
e unless e has y-value larger
than -y

...

...... ...

...

x
1

x
2

y

Stop

y

xy2=∞

Top-Open

25/36

Casper Kejlberg-Rasmussen

Outline

● Introduction to Algorithms and Data Structures

● Implicit Working-Set Dictionaries

● Skyline Queries

● Catenable Priority Queues with Attrition

● Conclusion

26/36

Casper Kejlberg-Rasmussen

Previous and Our Results

Authors Find-Min Delete-Min Insert-And-Attrite Catenate-And-Attrite Model

Sun89 O(1) O(1) O(1) PM

Sun89 O(1) O(1) O(1) EM

KTTTY13 O(1) O(1) O(1) O(1) PM

KTTTY13 O(1/B) O(1/B) O(1/B) O(1/B) EM

27/36

Casper Kejlberg-Rasmussen

Previous and Our Results

Authors Find-Min Delete-Min Insert-And-Attrite Catenate-And-Attrite Model

Sun89 O(1) O(1) O(1) PM

Sun89 O(1) O(1) O(1) EM

KTTTY13 O(1) O(1) O(1) O(1) PM

KTTTY13 O(1/B) O(1/B) O(1/B) O(1/B) EM

● In External Memory our O(1/B) I/O bounds assume that for k
PQAs we keep O(1) blocks in memory for each PQA

● Hence we require that M = Ω(kB) when maintaining k PQAs

● We can concatenate an arbitrary number of PQAs into one in O(1)
I/Os if we maintain an extra invariant

27/36

Casper Kejlberg-Rasmussen

Key

Max

Min

TimeHead Tail

Observations and Invariants

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

C

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

C B D
1

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

D
1

C B

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

D
2

D
1

C B

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

D
2

D
1

C

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

D
2

C D
1

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

C

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

D
1

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

C

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

D
1

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

C

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

D
2

D
1

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

C D
1

28/36

Casper Kejlberg-Rasmussen

Key

Max

Min

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q

C D
1

Summary of Invariants

● The clean queue holds non-attrited elements and is larger
than the combined size of all dirty queues + #dirty queues

● The buffer queue holds both (non)-attrited elements
● The dirty queues might attrite into each other
● Each element in a dirty queue might contain another PQA

28/36

Casper Kejlberg-Rasmussen

Concatenable PQA: Data Structure

...

C B D1 DkQQ

F L

29/36

Casper Kejlberg-Rasmussen

Concatenable PQA: Data Structure

● A PQA consists of 2+kQ
deques C, B, D1, …, DkQ of

records and buffers F and L

● A record r=(l,p) contains a
buffer l of [b,4b] elements
and a pointer p to a PQA, if p
is nil then r is simple

● A PQA is a tree of unbounded
degree with PQAs as internal
and leaf nodes

...

C B D1 DkQQ

F L

l p

r

29/36

Casper Kejlberg-Rasmussen

Concatenable PQA: Data Structure

● A PQA consists of 2+kQ
deques C, B, D1, …, DkQ of

records and buffers F and L

● A record r=(l,p) contains a
buffer l of [b,4b] elements
and a pointer p to a PQA, if p
is nil then r is simple

● A PQA is a tree of unbounded
degree with PQAs as internal
and leaf nodes

...

C B D1 DkQQ

F L

l p

r

29/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ
C (Q) and B (Q) are simple

DeleteMin

...

C B D1 DkQ1Q

max (F (Q))<min(C (Q))

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

F
L

Invariants and Operations

min (D1(Q))<min(L(Q))

30/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ
C (Q) and B (Q) are simple

DeleteMin

...

C B D1 DkQ1Q

max (F (Q))<min(C (Q))

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

F
L

Invariants and Operations

min (D1(Q))<min(L(Q))

30/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ
C (Q) and B (Q) are simple

DeleteMin

...

C B D1 DkQ1Q

max (F (Q))<min(C (Q))

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

F
L

Invariants and Operations

min (D1(Q))<min(L(Q))

30/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ
C (Q) and B (Q) are simple

DeleteMin

...

C B D1 DkQ1Q

max (F (Q))<min(C (Q))

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

F
L

Invariants and Operations

min (D1(Q))<min(L(Q))

30/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ
C (Q) and B (Q) are simple

DeleteMin

...

C B D1 DkQ1Q

Bias to the rescue!

max (F (Q))<min(C (Q))

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

F
L

Invariants and Operations

min (D1(Q))<min(L(Q))

30/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

...

B D1
Q

...

C B D1 DkQ2

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

...

B D1
Q

...

C B D1 DkQ2

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

...

B D1
Q

...

C B D1 DkQ2

Bias to the rescue!

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

... ...

C B D1
Q

...

C B D1 DkQ2

F

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

... ...

C B D1
Q

...

C B D1 DkQ2

F

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

... ...

C B D1
Q

...

C B D1 DkQ2

F

Bias to the rescue!

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

...

C B D1 DkQ1Q
DkQ1

+1

...

C B D1 DkQ2

F

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

...

C B D1 DkQ1Q
DkQ1

+1

...

C B D1 DkQ2

F

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

CatenateAndAttrite

...

C B D1 DkQ1Q1

F
L

...

C B D1 DkQ2Q2

F
L

...

C B D1 DkQ1Q
DkQ1

+1

...

C B D1 DkQ2

F

Bias to the rescue!

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

31/36

Casper Kejlberg-Rasmussen

B=0 and kQ>1

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias
B>0

...

C B D1 DkQ-1
Q

...

DkQ

L
F

B=0 and kQ=1

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

32/36

Casper Kejlberg-Rasmussen

B=0 and kQ>1

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias
B>0

...

C B D1 DkQ-1
Q

...

DkQ

L
F

B=0 and kQ=1

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

32/36

Casper Kejlberg-Rasmussen

B=0 and kQ>1

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias
B>0

...

C B D1 DkQ-1
Q

...

DkQ

L
F

B=0 and kQ=1

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

32/36

Casper Kejlberg-Rasmussen

B>0

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias

B=0 and kQ>1

B=0 and kQ=1

...

C D1 DkQ-1
Q

... ...

F
L

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

DkQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

32/36

Casper Kejlberg-Rasmussen

B>0

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias

B=0 and kQ>1

B=0 and kQ=1

...

C D1 DkQ-1
Q

... ...

F
L

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

32/36

Casper Kejlberg-Rasmussen

B>0

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias

B=0 and kQ>1

B=0 and kQ=1

...

C D1 DkQ-1
Q

... ...

F
L

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

DkQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

32/36

Casper Kejlberg-Rasmussen

B=0 and kQ=1

B>0

B=0 and kQ>1

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias

B=0 and kQ>1

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

33/36

Casper Kejlberg-Rasmussen

B=0 and kQ=1

B>0

B=0 and kQ>1

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias

B=0 and kQ=1

...

D1
L

...

C
Q

F

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

33/36

Casper Kejlberg-Rasmussen

B=0 and kQ=1

B>0

B=0 and kQ>1

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias

B=0 and kQ=1

...

D1
L

...

C
Q

F

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

33/36

Casper Kejlberg-Rasmussen

B=0 and kQ=1

B>0

B=0 and kQ>1

max (C (Q))<min(B(Q))<min(D1(Q))<min (Di (Q)) , for i>1

Bias

C'

...

B'

...

D'1
...

D'kQ'

B=0 and kQ=1

...

D1
L

...

C
Q

F

Q'

∣C (Q)∣⩾∑
i=1

kQ

∣Di(Q)∣+kQ

Invariants and Operations

C (Q) and B (Q) are simple

max (F (Q))<min(C (Q)) min (D1(Q))<min(L(Q))

33/36

Casper Kejlberg-Rasmussen

Outline

● Introduction to Algorithms and Data Structures

● Implicit Working-Set Dictionaries

● Skyline Queries

● Catenable Priority Queues with Attrition

● Conclusion

34/36

Casper Kejlberg-Rasmussen

Conclusion

35/36

Casper Kejlberg-Rasmussen

Conclusion

● We have seen how invariants are formed and used in dynamic data
structures to give the three data structures:

● Implicit Cache-Oblivious Working-Set Dictionaries

● 2D Skyline Data Structures in External Memory

● Catenable Priority Queues with Attrition in External Memory

● Open problems:

● Can we change the insert(e) operation of the working set
dictionary so that e gets a working set value of n instead of 0?

● In what other problems does attrition occur as a subproblem?

● Can the PQA be modified to solve other skyline related problems
like Top-k Domination and variants?

● Using PQAs for High-dimensional Skyline Structures?

35/36

Casper Kejlberg-Rasmussen

Thank you :)

References
1) A Cache-Oblivious Implicit Dictionary with the Working Set Property

• Gerth Stlting Brodal, Casper Kejlberg-Rasmussen, Jakob Truelsen
• ISAAC 2010
• Available at http://dx.doi.org/10.1007/978-3-642-17514-5_4

2) Cache-Oblivious Implicit Predecessor Dictionaries with the Working-Set Property
• Gerth Stølting Brodal, Casper Kejlberg-Rasmussen
• STACS 2012
• Available at http://dx.doi.org/10.4230/LIPIcs.STACS.2012.112

3) I/O-Efficient Planar Range Skyline and Attrition Priority Queues
• Casper Kejlberg-Rasmussen, Yufei Tao, Konstantinos Tsakalidis, Kostas Tsichlas,

Jeonghun Yoon
• PODS 2013
• Available at http://doi.acm.org/10.1145/2463664.2465225

36/36

Casper Kejlberg-Rasmussen

Extra Slides

37/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

38/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

 Uses O(1) FG dictionaries as black boxes
 Recall the FG interface:

 Insert-right(e): insert element e into the dictionary which
grows to the right

 Delete-right(e): delete element e from the dictionary which
shrinks from the right

 Search(e): finds the address of e if e is in the dictionary
 Predecessor(e): finds the address of the predecessor of e
 Successor(e): finds the address of the successor of e

L C R

38/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

39/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

 L and R will shrink and grow over time
 L/R might get too small or
 L/R might get too large compared to C

 We introduce the notion of jobs
 Grow-left/right – Counters when L/R gets too small
 Shrink-left/right – Counters when L/R gets too large
 Jobs run O(1) steps every operation: searches, updates

L C R

39/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

 L and R will shrink and grow over time
 L/R might get too small or
 L/R might get too large compared to C

 We introduce the notion of jobs
 Grow-left/right – Counters when L/R gets too small
 Shrink-left/right – Counters when L/R gets too large
 Jobs run O(1) steps every operation: searches, updates

L C R

39/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

 L and R will shrink and grow over time
 L/R might get too small or
 L/R might get too large compared to C

 We introduce the notion of jobs
 Grow-left/right – Counters when L/R gets too small
 Shrink-left/right – Counters when L/R gets too large
 Jobs run O(1) steps every operation: searches, updates

L C R

39/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

 L and R will shrink and grow over time
 L/R might get too small or
 L/R might get too large compared to C

 We introduce the notion of jobs
 Grow-left/right – Counters when L/R gets too small
 Shrink-left/right – Counters when L/R gets too large
 Jobs run O(1) steps every operation: searches, updates

L C R

Summary of Invariants

● We ensure that both L and R are not too small/large
● We have queued at most 2 jobs
● All jobs finish before their deadline

39/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

G
ro

w
-le

ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

G
ro

w
-le

ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

G
ro

w
-le

ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’G
ro

w
-le

ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’G
ro

w
-le

ft i j

i i’k’k

Address-mapping

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

G
ro

w
-le

ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

C RL

S
hr

in
k-

le
ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L’ C RL

C RL

S
hr

in
k-

le
ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L C RL’

L’ C RL

C RL

S
hr

in
k-

le
ft

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L C RL’

L’ C RL

C RL

S
hr

in
k-

le
ft

C RL’L

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L C RL’

L’ C RL

C RL

S
hr

in
k-

le
ft

C RL’L

C RL’L

40/36

Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L C RL’

L’ C RL

C RL

S
hr

in
k-

le
ft

C RL’L

C RL’L

C RL

40/36

