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The Working-Set Property
 Element x has a working-set number of l

x
 iff:

l
x
 elements different from x have been searched for since we last 

searched for x

 An Implicit Dictionary with the Working-Set Property:
 Insert(x): insert element x into the dictionary and set l

x
 =0

 Delete(x): delete element x from the dictionary
 Search(x): determine if x is in the dictionary and set l

x
 =0

 Predecessor(x): find the address of the predecessor of x
 Successor(x): find the address of the successor of x
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Previous and Our Results

Ref. WS 
prop.

Insert/Delete(e) Search(e) Predecessor/
Successor(e)

Additional 
Words

M1989 - O(log2 n) O(log2 n) None

FGMP2002 - O(log2 n/log log n) O(log2 n/log log n) None

FG2006 - O(log n) amor. O(log n) O(log n) None

FG2003 - O(log n) O(log n) O(log n) None

I2001 + O(log n) O(log l
e
) O(log l

e*
) O(n)

BHM2009 + O(log n) O(log l
e
) exp. O(log n) O(log log n)

BHM2009 + O(log n) O(log l
e
) exp. O(log l

e
) exp. O(√n)

BKT2010 + O(log n) O(log l
e
) O(log n) None

BK2011 + O(log n) O(log min(l
p(e)

,l
e
,l
s(e)

)) O(log l
e*
) None

e* is the predecessor/successor of e
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Summary of Invariants

● Blocks of fixed size: easy word/pointer encoding
● Elements in each block are divided into types 

according to their working-set number and
● According to the types of neighboring elements
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What are Skyline Queries?
● Given two points p,q∈P⊆ℝ2 we 

say p dominates q iff px ≥ qx 
and py ≥ qy

● The maximal/skyline points of a 
point set P⊆ℝ2 are the 
undominated points

● Given a dynamic point set P⊆ℝ2 
we want to be able to find the 
skyline for a given query range 
Q = [x1,x2] x [y1,y2]
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EM Model

● We count the number of disk accesses, not CPU instructions

● When reading/writing from/to disk, we can access B consecutive 
elements in one I/O

● Our algorithms should spent O(1/B) I/Os to access one element

● Scanning uses O(n/B) I/Os and search trees uses O(log
B
 n) I/Os

CPU Memory

M

B

Count
disk accesses

Hard disk
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Problem Space Pre-proces Query Query Update Domain Source

Top-Open O(n) O(n log n) O(1+k) - - ℝ YA10

Top-Open O(n) O(n log n) O(log n+k) - O(log n) ℝ BT11

Top-Open O(n) O(n log n/log log n) O(log n/log log n+k) - O(log n/log log n) ℝ BT11

4-sided O(n log n) O(n log n) O(log n+k) - - ℝ KDKS11

4-sided O(n log n/log log n) O(n log n/log log n) O(n log n/log log n+k) - - Rank GKASK97

4-sided O(n log n) O(n log n) O(log2n+k) - O(log2n) ℝ BT11

Top-Open O(n/B) O(n/B logM/B n/B) O(n/B) - - ℝ PTFS05
ST11

Top-Open Heuristics, various update types: HKIT06,PTFS05,TO06,WAEA07 ℝ

Top-Open O(n/B) O(n/B*) O(logB n+k/B) - - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(loglogB U+k/B) - - U KTTTY13

Top-Open O(n/B) O(n/B*) O(1+k/B) - - Rank KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) - ℝ KTTTY13

Top-Open O(n/B) O(n/B*) O(log2Bεn/B+k/B1-ε) - O(log2Bεn/B) ℝ KTTTY13

4-sided O(n/B) O(n/B*) O((n/B)ε+k/B) Ω((n/B)ε+k/B) O(log n/B) ℝ KTTTY13

Previous and Our Results

* Assumes pre-sorting
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Observation for Top-Open Queries

● Consider mirroing the point 
set in the y-axis

● Let x represent the insertion 
time and y the key space

● When inserting element e it 
deletes/attrites all elements 
inserted before it with a 
larger key

● Non-attrited points and 
undominated points are 
equivalent
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Priority Queues with Attrition

● DeleteMin(): Deletes the head/minimum element of the queue

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements 
before e with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 

with a key larger or equal to min(Q
2
) and appends Q

2
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Data Structure and Invariants

PQAs of size [B,2B]

...

Fanout
[2Bε,4Bε]

PQA Buffer 
size O(B1-ε)

...
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Data Structure and Invariants

● A (2Bε,4Bε)-tree augmented 
with PQAs

● Internal node have between 
2Bε and 4Bε children and 
stores a PQA which is the 
concatenation of its childrens 
PQAs

● Leafs stores a PQA over the B 
to 2B elements it contains

● Updating element e discards 
the PQAs on the path to e 
and rebuilds them again
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Data Structure and Invariants

● A (2Bε,4Bε)-tree augmented 
with PQAs

● Internal node have between 
2Bε and 4Bε children and 
stores a PQA which is the 
concatenation of its childrens 
PQAs

● Leafs stores a PQA over the B 
to 2B elements it contains

● Updating element e discards 
the PQAs on the path to e 
and rebuilds them again

PQAs of size [B,2B]

...

Fanout
[2Bε,4Bε]

PQA Buffer 
size O(B1-ε)

...

Summary of Invariants

● Nodes have a bounded degree
● All leaves have the same depth
● Nodes are augmented with PQAs
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Top-Open Skyline Queries

● We find the leafs of x
1
 and x

2
 

and make two PQAs of the 
elements within [x

1
,x

2
] called 

Q
1
 and Q

2

● We concatenate Q
1
, all PQAs 

of subtrees inside [x
1
,x

2
] and 

Q
2
 into one PQA Q (Divide 

and conquer)

● We call DeleteMin on Q and 
report the returned element 
e unless e has y-value larger 
than -y
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Outline

● Introduction to Algorithms and Data Structures

● Implicit Working-Set Dictionaries

● Skyline Queries

● Catenable Priority Queues with Attrition

● Conclusion
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Previous and Our Results

Authors Find-Min Delete-Min Insert-And-Attrite Catenate-And-Attrite Model

Sun89 O(1) O(1) O(1) PM

Sun89 O(1) O(1) O(1) EM

KTTTY13 O(1) O(1) O(1) O(1) PM

KTTTY13 O(1/B) O(1/B) O(1/B) O(1/B) EM
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KTTTY13 O(1/B) O(1/B) O(1/B) O(1/B) EM

● In External Memory our O(1/B) I/O bounds assume that for k 
PQAs we keep O(1) blocks in memory for each PQA

● Hence we require that M = Ω(kB) when maintaining k PQAs

● We can concatenate an arbitrary number of PQAs into one in O(1) 
I/Os if we maintain an extra invariant
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Key

Max

Min

C

TimeHead Tail

Observations and Invariants

● InsertAndAttrite(e): Inserts e and deletes/attrites all elements before e 
with a key larger or equal to e

● ConcatenateAndAttrite(Q
1
,Q

2
): Deletes/attrites all elements in Q

1
 with a 

key larger or equal to min(Q
2
) and appends Q

2

● DeleteMin(Q): Deletes the head/minimum element e of the queue Q
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Summary of Invariants

● The clean queue holds non-attrited elements and is larger 
than the combined size of all dirty queues + #dirty queues

● The buffer queue holds both (non)-attrited elements
● The dirty queues might attrite into each other
● Each element in a dirty queue might contain another PQA
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● A PQA consists of 2+kQ 
deques C, B, D1, …, DkQ of 

records and buffers F and L

● A record r=(l,p) contains a 
buffer l of [b,4b] elements 
and a pointer p to a PQA, if p 
is nil then r is simple

● A PQA is a tree of unbounded 
degree with PQAs as internal 
and leaf nodes
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Invariants and Operations

min (D1(Q))<min(L(Q))
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Conclusion

● We have seen how invariants are formed and used in dynamic data 
structures to give the three data structures:

● Implicit Cache-Oblivious Working-Set Dictionaries

● 2D Skyline Data Structures in External Memory

● Catenable Priority Queues with Attrition in External Memory

● Open problems:

● Can we change the insert(e) operation of the working set 
dictionary so that e gets a working set value of n instead of 0?

● In what other problems does attrition occur as a subproblem?

● Can the PQA be modified to solve other skyline related problems 
like Top-k Domination and variants?

● Using PQAs for High-dimensional Skyline Structures?
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Thank you :)
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Implicit Moveable Dictionaries

 Uses O(1) FG dictionaries as black boxes
 Recall the FG interface:

 Insert-right(e): insert element e into the dictionary which 
grows to the right

 Delete-right(e): delete element e from the dictionary which 
shrinks from the right

 Search(e): finds the address of e if e is in the dictionary
 Predecessor(e): finds the address of the predecessor of e
 Successor(e): finds the address of the successor of e

L C R

38/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

39/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

 L and R will shrink and grow over time
 L/R might get too small or
 L/R might get too large compared to C

 We introduce the notion of jobs
 Grow-left/right – Counters when L/R gets too small
 Shrink-left/right – Counters when L/R gets too large
 Jobs run O(1) steps every operation: searches, updates

L C R
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 We introduce the notion of jobs
 Grow-left/right – Counters when L/R gets too small
 Shrink-left/right – Counters when L/R gets too large
 Jobs run O(1) steps every operation: searches, updates

L C R

Summary of Invariants

● We ensure that both L and R are not too small/large
● We have queued at most 2 jobs
● All jobs finish before their deadline

39/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

G
ro

w
-le

ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

G
ro

w
-le

ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

G
ro

w
-le

ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’G
ro

w
-le

ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’G
ro

w
-le

ft i j

i i’k’k

Address-mapping

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

G
ro

w
-le

ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

C RL

S
hr

in
k-

le
ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L’ C RL

C RL

S
hr

in
k-

le
ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L C RL’

L’ C RL

C RL

S
hr

in
k-

le
ft

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L C RL’

L’ C RL

C RL

S
hr

in
k-

le
ft

C RL’L

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L C RL’

L’ C RL

C RL

S
hr

in
k-

le
ft

C RL’L

C RL’L

40/36



Casper Kejlberg-Rasmussen

Implicit Moveable Dictionaries

L C R

L C RL’

L C RL’

L C RL’

L’ C RL

C RL

G
ro

w
-le

ft

L C RL’

L’ C RL

C RL

S
hr

in
k-

le
ft

C RL’L

C RL’L

C RL

40/36


