Persistent Data Structures (Version Control)

Partial
persistence

version
list

Ephemeral

SSGGGGE

e I! update

2l
query & query

Ajuo A;anb

Full Confluently Purely
persistence persistence functional
version version
car | cdr

never modify
only create new pairs
only DAGs

update/merge/query

updates at leaves .
all versions

any version can be copied
query all versions

Retroactive

AT A S S S

update & query all versions
updates in the past propragate 1

Planar Point Location

| Tl | Tz | T3 | T4 | T5 | T6 | T7 |
A_,A | Aipdat;:A >/\ /\ A Partial persistent
search trees

O(n-log n) preprocessing, O(log n) query

Path copying (trees)

Partial persistence

= Version|ID=time=0,1,2,...

" Fast node (any data structure)
— record all updates in node
(version,value) pairs field,:

— field updates O(1)
— field queries = predecessor wrt version id (search tree/vEB)

field,: (0,x) (3,y) (7,2)
(0,a) (14,c) (16,b)

= Node copying (O(1) degree data structures)
— Persistent node = collection of nodes, each valid for an
interval of versions, with A extra updates, A = max indegree
— pointers must have subinterval of the node pointing to;
otherwise copy and insert pointers (cacading copying)
NB: Needs to keep track of back-pointers

(" 10,8] 8,13[(13,00 A

field,: (0,x) (3,y) field,: (8,z) (10,w) field,: (13,w) (g5,y)
\fieldzz (0,a) (7,c) field,: (8,c)(9,d) field,: (13,e) (14,c)

Full persistence
(D

increasing x e e é e o 0 9 9 e a

version .
preorder traversal Version list

0 9 G (order maintenance data structure)

Version tree
(numbers = version ids)

= Fat node
' Y
— Updates (1,x) (6,y) (7,z) to a field field: (1,x) (7,2) (5,x) (6,y) (2,x)
— Queries = binary search among versions
— Update (7,z): Insert 7 as leftmost child of 4; insert pairs for 7 and 5=succ(7)

= Node Spllttlng (>2A ekstra fields)

[4,3] [4,5]
[0,00] l [0,5] %‘

field,: (1,a) (4,b) (3,a) (2,¢) S|o|itE field,: (1,a) (4,b) field,: (5,b) (3,a) (2,c)
field,: (1,f) (7,g) (5,f) field,: (1,f) (7,8) field,: (5,f)

version 5

Persistence techniques

[N. Sarnak, R.E. Tarjan, Planar point location using persistent search trees,
Communications of the ACM, 29(7), 669-679, 1986]

= Partial persistence, trees, O(1) access, amortized O(1) update

[J.R. Driscoll, N. Sarnak, D.D. Sleator, R.E. Tarjan, Making Data Structures Persistent,
Journal of Computer and System Sciences, 38(1), 86-124, 1989]

= Partial & full persistence, O(1) degree data structures, O(1) access,
amortized O(1) update

[P.F. Dietz, R. Raman, Persistence, Amortization and Randomization. Proceedings 2nd
Annual ACM-SIAM Symposium on Discrete Algorithms, 78-88, 1991]

[G.S. Brodal, Partially Persistent Data Structures of Bounded Degree with Constant
Update Time, Nordic Journal of Computing, volume 3(3), pages 238-255, 1996]

= Partial persistence, O(1) degree data structures, O(1) access & updates
update

[P.F. Dietz, Fully Persistent Arrays. Proceedings 1st Workshop on Algorithms and Data
Structures, LNCS 382, 67-74, 1989]

= Full persistence, RAM structures, O(loglog n) access, O(loglog n) amortized
expected updates

Comparison of persistence techniques

= Copy data structure for each version

— no query overhead, slow updates & wastes a lot of space

= Record updates & keep current version

— fast updates & queries to current version, space efficient, slow queries in the
past

= Path copying

— applies to trees, no query overhead, space overhead = depth of update

= Fat node

— partial persistence: O(1) updates and space optimal, loglog n query overhead

— full persistence: O(loglog n) expected amortized updates and space optimal,
loglog n query overhead

= Node copying/splitting
— fast updates & queries (amortized updates for full persistence)
— only works for pointer-based structures with O(1) degree

