Distribution Sorting with Multiple Disks

Jeff Vitter

Department of Computer Science
Center for Geometric & Biological Computing
Duke University

EEF Summer School on Massive Data Sets

C T)

N &g o/

Center for Geometric & Biological Computing

Review of Distribution Sort?

S-way Distribution Sort:

(] 1. If the input stream (bucket) fits into memory,
sort it and quit;

L] 2. Otherwise
e |Splitter Selection Phase] Choose S — 1 splitters.

e |Distribution Phase] Read the input and distribute data into
buckets as determined by the splitters.

e Sort each bucket recursively.

J eﬂ‘ Vit t er Center for Geometric & Biological Computing 2

Parallel Disk Model

[Vitter & Shriver 90, 94]

= problem data size.

N

> : :

E E M = size of internal memory.
B

size of disk block.

Block {I/O D = number of independent disks.

Distribution sort requires a (double) buffer

Mem in internal memory for each bucket.
—> Optimal choice of S is Ai\mvgc

If each pass can be done in O(N/DB) 1/0s

N N

CPU
— 0 A% log /B Mv I/Os total.

- eW 8 o
NI &' ,CAK

nu. mm. ./\.m.d d @H. Center for Geometric & Biological Computing w

Distribution Paradigm

Example: D = 3 disks, S = 3 buckets:

Internal Bucket 1

Memory / (blocks)
Bucket 2
oo TN 1

o [——

Data streams through internal memory and is partitioned online.

Challenge: Each bucket must be distributed among the disks in an
online manner. How can we prevent write bottlenecks at the disks?
That is, how should we lay out each bucket on the disks?

= N
K e/
J eﬂ‘ Vit t er Center for Geometric & Biological Computing 4

What is the Challenge ?

Input
Bucket l]

vl I
Bucket

Output
Bucket

Output

Bucket . .

Disk 1 Disk 2

Jeff Vitter

Disk 3

1 Read D blocks (one block per disk) in each input operation.
Write D blocks (one block per disk) in each write operation.
(1 Buckets fill at different rates (no problem if only one disk).

-

ﬁ

ﬁ

-\

o
o/

nter for Geol

metric & Biological Computing

5

Gilbreath Principle

Writing is also no problem if we have only two buckets (streams).

I We can achieve perfect balance for writing two buckets:

Disk 1 Disk 2 Disk 3 Disk4

Bucket 1: A B C D
E F G H
I J K L
Bucket 2: (striped in reverse order)
D C B A
H G F E
L K J I

I Each write of four blocks from the two blocks is guaranteed to
be perfectly striped across the disks!

] Reduces necessary buffer space by half.

] Cannot be generalized to R > 2.

Jeff Vitter

The Power of Queueing the Writes

Blocks formed
by Distribution
process
(labeled by disk
destination)

Disk 1 Disk 2 Disk 3
(1 Need pool of D queue buffers (one per disk) in internal memory.
[Write cycle: For each nonempty queue, write a block to its disk.

1 After each write cycle, bring in (1 — €) - D block arrivals.

Problem: If the queues fill up memory, we need to flush them,
which takes many I/Os.

The challenge is to show that the total queue space stays small.

- oW 8 o
N &g o/

J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 7

Randomized Distribution on Parallel Disks

FRD: Fully Randomized Distribution: For each block,

randomly select a destination disk.

SRD: Simple Randomized Distribution: For each bucket,
randomly select a starting disk then allocate the bucket’s blocks to

the disks in round-robin order.

RSD: Randomized Striping Distribution: For each bucket,
for each successive set of D blocks allocated to that bucket,
choose a new random starting disk and allocate the D blocks to

disks in round-robin order.

RCD: Randomized Cycling Distribution: For each bucket,

use a different random permutation of the disk numbers.

The analyses are complicated by dependencies among the sizes of the

individual queues.

R oW =
N &g | e/
nu. mm. ./\.m.d ,ﬂ @H. Center for Geometric & Biological Computing m

Bucket Distribution Variants

Input
Bucket

Output
Bucket

Output
Bucket

Output
Bucket

Each crosshatched disk block involves a random placement decision.

Jeff Vitter

S — —

— —

-~ -~ -~
Disk 1 Disk 2 Disk 3

- oW w

NI &'

ﬁ
-

~
[/

Center for Geometric & Biological Computing

9

FRD (Fully Randomized Distribution)

— T
—

<

H

Jeff Vitter

SRD (Simple Randomized Distribution)

Jeff Vitter

— T
\\/

— T
—

9-b

RSD (Randomized Striping Distribution)

Jeff Vitter

— T
\\/

— =

— T
—

RCD (Randomized Cycling Distribution)

Jeff Vitter

9-d

Previous Work and Our Results

1 SRM: Simple Randomized Mergesort [Barve and Vitter].

1 Analysis of FRD recently given by [Sanders,Egner,Korst
SODA’00] using negative dependence property.

[In this talk we reduce RCD (practical) to FRD (not practical)
and thus bound the write I/Os of RCD by that of FRD.
e (Expected) I/O complexity is optimal.
e only a constant number of queued blocks per disk are

required (on average).
[] RCD read complexity is optimal; but not FRD’s.

[] RCD is simple to implement.

[] Experiments confirm theoretical indications.

J eﬂ‘ Vit t er Center for Geometric & Biological Computing 1 O

Outline

1. Analysis of FRD, RCD
I FRD guarantees and drawbacks
I RCD reduction to FRD
1 RCD I/0O bounds
2. Experiments
I FRD, RCD, SRD, RSD
3. Non-sorting Applications
4. Future Work

J eﬂ‘ Vit t er Center for Geometric & Biological Computing 1 1

Analysis of Queue Space Needed

Blocks formed
by Distribution
process
(labeled by disk
destination)

Example: D = 3 disks, S = 3 buckets

Perform write cycle
every (1 —¢)-D
block arrivals.

, Disk 1 Disk 2 Disk 3
QZ() = size of queue ¢ (in blocks) at time ¢
QWY = total queue space = Z Q,Et)

(/

We use Q\gt) and Q® as corresponding terms for FRD.

ﬁ

ﬁ
-

~
[/

ﬁ
-y
f

Jeff Vitter

or Geometric & Biological Computing

12

Total Queue Size is W = O(D/€) blocks

At each read step,

Each nonempty queue writes one block to its disk.

A total of (1 — €)D blocks arrive in queues.

If ever the total queue size is > W,

flush the queues (expensive operation).

Jeff Vitter

- e

3

3

~

N &g

-

[/

Center for Geometric & Biological Computing

13

Theorem 1

Theorem 1:
Let total queue size be W = (In(2) +) /¢, for some d > 0.

Let n) be the number of write steps for the t" read step.
Then E(n'") < 14 9,

Lemma 2:
Let @%& be the length of Q; at the t'" read step.

— 1 ~ ‘
Then HA@NSV < o and wwovﬁ@%v > q} < 2e 7 for all g > 0.
€
Arrival rate of (1 — €)D represents a fraction of the peak
bandwidth D for writing. It allows the total queue size to stay

bounded as t — o0.

Flushing the queues at very end may be nonoptimal for FRD, it
N =~ D.

- eW 8 o
N &g ,CAK

nu. om. ./\.m.d d @H. Center for Geometric & Biological Computing H &”

Binomial Distribution

Let X S.S be the number of blocks arriving in @@ in the t*" read step.
X @.E“ X @@“ X @@ ... are independent binomially distributed

random variables B((1 —¢€)D,1/D)
with (1 — €)D trials and probability 1/D of occurrence per trial.

ﬁw@d%@?fw& — ww — @wﬁ B @vzlw

One block can leave per time unit. The number of blocks that
arrive at each time unit is distributed as a B((1 —€)D,1/D)

random variable.

- eW 8 o
N &g ,CAK

nu. om. ./\.m.d ,ﬂ @H. Center for Geometric & Biological Computing H m‘v

Probability Generating Functions

Gx(z) =) Prob{X = k}z"

k>0

encodes complete information about the distribution of random
variable X.

Properties:

1. G’y (1) = > Prob{X = k}kz""" = > kProb{X =k} = E(X)
k>0 k>0

z=1

2. Gx(1) =1
3. Gx4+v(2) = Gx(2)Gy(z) if the RVs X and Y are independent.

Gx(z) = M@www

k>0
Gy(z) = > awz"
k>0
Gxiv(z) = > (Podk+P1ak—1+---+Prdo)z"
k>0

N oW e i
NG 'S L .\

nu. om. ./\.m.d d @H. Center for Geometric & Biological Computing H @

Probability Generating Functions

> 4
‘ 0 otherwise

The recurrence for queue size is

G, — y) | x4,

v (t+1)
um?r:

= # blocks still in queue from previous time step, and

= # newly arriving blocks for queue ¢.

By independence of NS.S and M\@S“

Q@&?.TCANV = Qu\.ﬁ.:v ANV X QNQ.TC ANV

- eW 8 o
N &g ,CAK

nu. om. ./\.m.d d @H. Center for Geometric & Biological Computing H ﬂ

Newly Arriving Blocks

X @.@.TCANV = the number of newly arriving blocks for queue

= Ti(z) +To(2) +... +T1_e)p(2)
(sum of independent 0-1 RVs)

- eW 8 o
N &g ,Cﬁ&

nu. om. ./\.m.d d @H. Center for Geometric & Biological Computing H m

Blocks still in queue

Let M\.:Jrc =

If Ga(z)
then Ga_1(2)

Ga-1+[a=0] (#)

— QM@:LLV (2)

Jeff Vitter

QY -1 QY >1

0 otherwise

= QW —14+[QY =0

@owo +§NH +ENM + ...

_ 1
poz L 41z’ F ezt ... = MQ>ANV

1 1
poz’ + 12’ +pezt 4+ ... = MQ\;NV + A(0) — m\ﬁov

“Ga(2) + Gal (0) — - Ga (0)

WQ&& (2) + Gg(» (0) AH - wv

A

- oW w)

N &g | o/

Center for Geometric & Biological Computing H @

Result of Lemma 2

QANV — QM\@‘AooVANV X QN,Moov ANV
5 B (1—e)D
= AWQANV + G(0) — WQASV X A ._lw Hv
G(0)1 - 3)
— G(z) = AN+%IHVIGI®U B W

- eW 8 o
N &g ,Cﬁ&

nu. mm. ./\.m.,ﬁ ,ﬁ @H. Center for Geometric & Biological Computing N O

Result of Lemma 2

To solve for G(0), we know that G(1) = 1. By L’Hopital’s rule,

. G(0)(1-3) G(0)
— G0) = €
— QANV _ AH_. — Nvm where Q.X‘ANV — AEVAHlmVU
1—-Gx,(2)" 12 s b
BOY) < E0,)=a¢(1) < mw (by L’Hopital’s rule)

- eW 8 o
N &g ,CAK

nu. om. ./\.m.d ,ﬂ @H. Center for Geometric & Biological Computing M ”_.

Result of Lemma 2

We now show WHOUA@%V > q} < wwow,ﬁ@uo& > q} for all ¢ > 0: .

Consider two queues processing identical input but with different

initial lengths.

In any step the difference in length remains the same or gets
reduced by one. This continues until lengths become equal at

which point they remain the same forever.

The queues are initially empty at time ¢ = 0 (i.e., @Ms = 0),
but in steady state the queues are not empty.

Therefore, the tail probability WHOUA@%V > q} is

< the steady-state tail probability WHOUA@@.AOOV > q}.

- eW 8 o
NI &' o/

pu. mm. ./\.m..ﬁ .ﬁ @H. Center for Geometric & Biological Computing M M

Result of Lemma 2

1 — € 1 — €
Glee) = L= Al) <2
H|% H_.|®N@Am|AH_.|mVA®m|H_.Vv
r? oz
using the bound In(1+x) = x — 5 + g < for |x| < 1.

General Tail Inequality:

Prob{X >r} = p.+prei1+...
< 27"Gx(z2), for all z > 1
= poz "+ piz "+ p2Y +?+HNH + ...

Substituting z = e >1and r = ¢
— Prob{Q;(® > ¢} < G(e)e™ = 2~

- eW 8 o
N &g ,CAK

nu. om. ./\.m.d d @H. Center for Geometric & Biological Computing N w

Lemma 3

At each read step,
Each nonempty queue writes one block to its disk.

(1 — €)D blocks arrive in queues.

Let @S — Qms +...+ @mv with @Ms“ as in Lemma 2.
Then if the total queue capacity is W = (In2 + §)D /e, we have

BOY) < 2.
2€
Prob{Q") > ¢D} < e %P,
W :
where 0 = mw — In 2 is a parameter that can be set.

—> Buffer overflow is exponentially improbable.
0 gives a tradoff between queue space and likelihood of overflow.

- eW 8 o
NI &' ,CAK

pu. mm. ./\.m.d d @H. Center for Geometric & Biological Computing M %

Proof of Lemma 3

Negative Association (NA)

If an item is placed in a queue then it cannot be placed in any of
the other queues. The sizes of the other queues will then be
shorter. This is, in a sense, better than independence. Placing an

item in one queue affects the other queues negatively.

- eW 8 o
N &g ,CAK

nu. om. ./\.m.d d @H. Center for Geometric & Biological Computing N m‘v

Proof of Lemma 3

Let W = ©(0D/s) be the allowable total memory space (in blocks):
Prob{Q") > W} = wHOU?m@S > eV}
< e W MA@.,,@:VV by tail inequality

If the queue sizee ﬁ@%vw were independent, we would get a

Chernoft bound on total queue space:

HA@@@:J — EA Mqu@AUm@S A—h mmmw:vv

0<1<D

= “_[_“ mAmm@Msv — Amﬁmm@msvvb

0<i<D

W /o independence, negative association gives Chernoff-like bound:

HA%@:J < —h MA%@M:V _ AMA%&SVVU
0<i<D

- eW 8 o
NI &' ,CAK

nu. mm. ./\.m.d ,ﬂ @H. Center for Geometric & Biological Computing M @

Proof of Lemma 3

5(t) . .
mx@m@m) is the moment generating function

Prob{Q: = k}e* = G(¢?).
From Lemma 2 , we know mﬁmmﬁsv = G(ef) < 2

Choose s = €:

m|ms\m?m@3v

mlmS\ AmAmm@/mS va
ImS\AMUV

Prob{Q® > W}

ANVANVAN

€
ml?%l_b 2)D

QIQU

~ D ~
E(Q®) < — since HAQMsv <

1
— 2¢ 2€

(linearity of expected value)

- e

3

3

~

N &g

o/

nu. om. ./\.m.d d @H. Center for Geometric & Biological Computing

27

Theorem 1 Result

Lemma 3 gives the probability that the queues are flushed.
p = Prob{Q® > W} < ¢=9P

In the worst case it takes W + D write steps to flush the queues.

The expected number n®) of write steps at time ¢ is

E(n) < 1+4p(W + D)

= 1+0 Amv g 0D
€

14 e 2P)

<

- eW 8 o
N &g ,CAK

nu. om. ./\.m.d ,ﬂ @H. Center for Geometric & Biological Computing M m

Main Theorem

[1 The Main Theorem states that RCD has the same performance
guarantees as does FRD. (In fact, they’re better, because of the

final emptying of the queues is guaranteed to be balanced.)

[] The challenge is to show that the expected exponential of the
total queue space E(est) in RCD is at most that of FRD:

that is, E(esc‘w}) < E(esém)

[We would then inherit the desired tail bound on the total
queue size of RCD:

Prob{eSQ(t) > 5V

Prob{Q") > W}

e_SWE(est) by tail inequality

<
< e_SWE(e_S@m)
_ 6D

N
st/
J eﬂ‘ Vit t er Center for Geometric & Biological Computing 2 9

Reduction of RCD to FRD

singleton bucket bucket that contains a total of one block

FRD = RCD in which all buckets are singletons
(each block is randomly assigned to a disk)

for r .=1to t do
while there is a nonsingleton bucket b that
issues at least one block at time step r
do the following transformation step
Remove one block from bucket b at time step r;

Create a new singleton bucket with its block at time step r

enddo
enddo

Key Lemma: Fach transformation step causes the quantity
HA@W@:J to increase or stay the same. At the end, it is HA%@A\J.

- eW 8 o
NI &' ,CAK

nu. mm. ./\.m.d d @H. Center for Geometric & Biological Computing w O

Layout of Bucket b on the Disks

What is the effect of removing the first block issued by bucket b at
time step r?
(Assume WLOG that the other blocks can stay where they are and
that the disks are arranged in cycle order.)

Disks

- eW 8 o
N &g ,CAK

nu. om. ./\.m.d ,ﬂ @H. Center for Geometric & Biological Computing w ”_.

Analogy with a Lake

[] Suppose each day the sun removes a gallon of water from the
lake.

[] Then, later in the day, it may or may not rain.

If it rains, the lake gets some added water.

(] If the lake always has at least two gallons at the start of each
day, then if we remove a gallon of water in April, it will have a

gallon less in September.

[] If on the other hand, the lake has only one gallon at the start
of June 28, then the sun will empty the lake. Therefore, if we
remove a gallon in April, there will be no change in September.

N
st/
J eﬂ‘ Vit t er Center for Geometric & Biological Computing 3 2

A Critical Queue (a Sufficiently Full Lake)

t’ r | r+1]... t—1
QY) | >2| >2 | ... |>2]>2| >2
Item

o o o
Arrivals

[The size of the ¢th queue Q,Et/) is at least 2 for r <t < t.

[] Q,L(t) will remain at least 1 even without the arrival at time
step r, and a block will continue to be consumed at each time

step.

(] Hence, if there is no arrival of a block into the ¢th queue at
time r (keeping all other block arrivals the same),

the final size Qgt) of the queue will be one less than before.

- oW 8 o
NI &' o/

J eﬂ‘ Vit t er Center for Geometric & Biological Computing 3 3

Proof

1 QW is the sum of queues at time t.
Q) ®) is the sum of queues at time ¢ after the block is removed.

Q") is the sum of queues at time t after bucket b has been
transformed.

Then

Q”(t) = Q’(t) + [new bucket increases queue size]

We want to show

E(£(Q"")) > E(£(Q")),

where f(x) = e°".

N
st/
J eﬂ‘ Vit t er Center for Geometric & Biological Computing 3 4

Proof
Suppose that ¢ of the D possible starting points for bucket b are

critical with respect to time step ¢.

[] Case 1: Starting Point is Critical

Q" is either Q®) — 1 or Q®

E(f(Q”(t)) | the starting point is critical)

> (1 — %) E(f(Q(t) — 1) | starting point is critical)

-I—% E(f(Q(t)) ‘ starting point is critical)

= ((1 - %) ﬁ + %) E(f(Q(t)) | starting point is critical),

since f(z) = e*® and thus f(Q'Y — 1) = ﬁf(Q(t)).

N
st/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 3 5

Proof

(] Case 2: Starting Point is Non-critical

Q"(t) 1s either Q(t) or Q(t) +1

E(f(Q”(t)) | starting point is non-critical)

> (1 — %) E(f(Q(t)) ‘ starting point is non-critical)

-|—% E(f(Q(t) + 1) ‘ starting point 1is non—critical)

= ((1 — %) + % f(l)) E(f(Q(t)) | starting point is non-critical)

L
F(1)

since f(z) = e°® and thus f(Q'") +1) = F(QM).

N
st/
J eﬂ‘ Vit t er Center for Geometric & Biological Computing 3 6

Proof

Before Transformation

E(f(QW"))

c
D

@A \AQSV i starting point is oiﬂo@:
D

After Transformation

B(f(Q" (1))

c
= MHA%AQ:ASV_Q@&L&M:@ point is critical)

o
+ AH | |v HA%AQ:ASV_mamHEbm Uowbammhoapuoiﬂomb
D

c c 1 c
_ (t)
& D AAH Uv (1) T Uv BlF@T)

starting point is oiﬁom:

D

+ AH — Nv E(F(QW) _ starting point is non-critical) (1)

+ AH _ Wv AAH _ Mv + W ECV E(£(Q(")) | starting point is non-critical) (2)

I oW oI
Xl | sl
.H e m. ./\. m. ,ﬁ ,ﬁ er Center for Geometric & Biological Computing

37

Proof
Combining (1) and (2) from the previous slide we get

E(F(Q" (1)) —r(r(@®))
1
(1)

c2

|o | | | | Aﬁv 4 - i;4 .i. . .-
H H H H H @ U#L.Hfﬁ,ﬁi‘::#?ﬁ\:fﬁ\&p

>

n ow
|_| AMA\AHV | Hv | MA\AHV | va muA %AQANVV _ mdmwﬁmdmﬁomddmm 505-01@3@5.

> 0 by Lemma below

Lemma 5:

EA \A@QJ _ starting point is sos-oiﬁompv
> HA ,2@3 — 1) 7 starting point is oiio.&v
1

= 170 E(F(QW) 7 starting point is critical)
Intuition: Let 1 < ¢ < D be the number of critical starting points. The
proof uses a mapping between the ¢(D — 1)! cycle orders with a critical
starting point and the (D — ¢)(D — 1)! cycle orders with a non-critical
starting point.

- oW 8 o
N &g ,Cﬁ&

nu. mm. ./\.m.,ﬁ ,ﬁ @H. Center for Geometric & Biological Computing w m

Experimental Results

Testing with smaller numbers of disks shows that even

non-asymptotic behavior is attractive. Test parameters:
1 Block arrival regimes:
1. “Random input”: next bucket to receive a block is chosen

randomly.
2. “Balanced input” : round-robin issue of blocks to buckets.

[] Small and large €. Can ¢ = 07 (That is, can we write out a full

(1 —€)D = D items in each write cycle?)

[] Wait for steady state and then record the histogram of the

total queue space (i.e., total memory space) used.

I
N/
for Geometric & Biological Computing 3 9

Jeff Vitter

Random lIssue, €¢ = 0.3

Buckets issue Blocks in Random Order
N=2000000 D=10 S=50 epsilon=0.3

60000

50000

40000

30000

Frequency

20000

10000

5 10 15 20 25 30 35 40
Total Queue Space (blocks)

- oW 8
N &g

J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 4 O

Round-Robin Issue, €¢ = 0.3

Buckets Issue Blocks in Round-Robin Order
N=2000000 S=50 D=10 epsilon=0.3

100000 | . | | .

Ll S il B R BB
L B B B L B B
(0 B B B , B .
N = B i Bl BB i i i liBii

50000 | S —— s e — — ——

Frequency

40000 """"""""""""""" """""""""""""""" """"""""""""""" """"""""""""""
30000 """""""""""" """""""""""""""" """"""""""""""" """"""""""""""
20000 ‘ """"""""" """""""""""""""" """"""""""""""" """"""""""""""
10000 ; """"" """""""""""""""" """"""""""""""" """"""""""""""
| | ;u*\ | | |
20 25 30

Total Queue Space (blocks)

ﬁ
NI 'S
J eﬂ‘ Vit t er Center for Geometric & Biological Computing 4 1

Random lIssue, € = 0.1

Buckets issue Blocks in Random Order
N=2000000 D=10 S=50 epsilon=0.1

35000

30000

25000

20000

Frequency

15000

10000

5000

Total Queue Space (blocks)

- I
NI 'S'g st/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 4 2

Round-Robin Issue, ¢ = 0.1

Buckets Issue Blocks in Round-Robin Order
N=2000000 S=50 D=10 epsilon=0.1

140000 | .

120000

100000 | — e

> 80000 f e e

c : : i

Qo

>

o : : :

o 1 1 1

w 60000 e S I R B
40000 | R SR R S—
20000

0

|
RCD
SRD
RSD
FRD

Jeff Vitter

Total Queue Space (blocks)

ﬁ
NI &'

Center for Geometric & Biological Computing

43

Random lIssue, €e = 0

Buckets issue Blocks in Random Order
N=2000000 D=10 S=50 epsilon=0

80000 , , ; 1 ! ! !

20000 [N W — % S S e RE D —x. i
60000 T S S -

50000 [b

T

Frequency

30000

20000 [l [-
10000 o o . ol -
0 ol 2L 1
100 110 120 130 140
Total Queue Space (blocks)
C N 5 I
NI 'S§ st/

J eﬂ‘ Vit t er Center for Geometric & Biological Computing 4 4

Round-Robin Issue, € = 0

Buckets Issue Blocks in Round-Robin Order
N=2000000 S=50 D=10 epsilon=0

200000 i | | T | | |

180000 |
160000 ||
140000 ||
120000 | . e

100000 f e S S —

Frequency

80000 o e Hiiibhr
60000 e B B '
40000 e i

20000 | e R

0 ' " ' R
20 40 60 80

J eﬂ‘ Vit t er Center for Geometric & Biological Computing 4 5

Conclusions and Future Work

[RCD is a simple, practical, and provably good method for
sorting with parallel disks.

[We conjecture that SRD and RSD perform similarly to RCD.

[Randomized cycling can be applied to merge sort to get a
practical and theoretically optimal sorting algorithm.

[RCD can be used in distribution sweeping applications.

(1 We are starting practical implementation/study.

N
st/
J eﬂ‘ Vit t er Center for Geometric & Biological Computing 4 6

