I/O Lower Bounds
for Sorting and Matrix Problems

Jeff Vitter

Duke University

Department of Computer Science

-

-

N

C

v

C

()

Center for Geometric & Biological Computing
http://www.cs.duke.edu/CGBC/

EEF Summer School—July 2002

3 /\\
2 (1)
o

Outline
[J Fundamental Techniques for batched problems.

e Merge sort, distribution sort.
[1 Techniques for solving batched geometric problems.
e Distribution sweeping, batched filtering, randomized
incremental construction.
e Red-blue orthogonal rectangle intersection, convex hull, range
search, nearest neighbors.
e Empirical results (via TPIE programming environment).
— Fundamental lower bounds.
e Sorting, permuting, FFT, matrix transposition, bundle sort.
e Dynamic memory allocation
e Hierarchical memory.
[1 Parallel disks.
e Load balancing among disks is key issue.
e Duality: reading (prefetching) +— writing,

merging <— distribution

J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 2

Review of Parallel Disk Model

[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94|, ...

Block {[/O

Jeff Vitter

= problem data size.

= size of internal memory.

size of disk block.

= number of CPUs.

O v U w = =
I

= number of queries.

Z = problem output size.

= number of independent disks.

Notational convenience (in units of blocks):

3

)

o/

Center for Geometric & Biological Computing

Fundamental |/O Bounds (with D = 1 disk)

[1 Batched problems [AV88], [VS90], [VS94]:
N

e Scanning (touch problem): © (E) = O(n)

e Sorting:

Nlog% N N
© (Blog%> =0 (ElogM/B E) = 0O (nlog,, n)

e Permuting: © (min{N, nlog, n})

[1 For other problems [CGGTVV95|, [AKL95], ...
e Graph problems =< Permutation

e (Computational Geometry = Sorting

[] Online problems:
e Searching and Querying: © (logg N + %) = O(logg N + 2)

[What if there are D parallel disks 777

Jeff Vitter

Fundamental |/O Bounds (with D = 1 disk)

[] Batched problems [AV88], [VS90], [VS94]:
N
e Scanning (touch problem): © (—) = O(n)

B
e Sorting:
Nlog% N N
= — 1 — | =0 (nl

e Permuting: © (min {N, nlog, n})
[1 For other problems [CGGTVV95|, [AKL95|, ...

e Graph problems = Permutation

e (Computational Geometry =< Sorting

[] Online problems:
e Searching and Querying: © (logg N + Z) = O(logg N + 2)

[1 D parallel disks: Saves factor of D for batched problems,
Replace B by DB in online problems (disk striping).

- e
N '@’y =g

g
@]

i
S 7
EEINY

Jeff Vitter

/0 Lower Bound for Permuting

Permuting problem: Given N distinct items from {1,2,..., N },

rearrange the IV items into sorted order.

[1 We will show the lower bound that permuting requires
Q(min{ N, nlog,,n}) I/Os.

LI Typically the min term is nlog, n.

[] Permuting is a special case of sorting.

[1 I/0O lower bound also applies to sorting. It is based only upon

routing considerations, since the order is already known.

[] For the pathological case when N < nlog,, n, we can show that
sorting requires 2(nlog,, n) I/Os in comparison model.

[J In the RAM model, permutation takes only O(NV) time.
But in I/O model, it (and most interesting problems) require

sorting complexity (except for pathological case)!

()
C
N

/
\
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 6

/0 Lower Bound for Permuting

Goal: See how many I/0 steps T' are needed so that any of the N!

permutations of the IV items can be realized.

We say that a permutation is realizable if it appears in extended

memory in the required order.

Internal Memory T
~
e
Diskl,——
Memory positions: N~
1.2.3. M, M+1. M+2. M+3. ...

Tactic: Determine how much the ¢th 1/O step can increase the

number of possible realizable permutations.

= N
Kt e/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 7

/0 Lower Bound for Permuting

Assumption: the N items to permute are indivisible.

realizable permutations after tth read 1/0

\i
Amv xA%Hmmzmmzmwmwgcﬁ@ﬁosm@@@HQICmﬁH\Ov

if block was previously accessed

M
B! x A v x (# realizable permutations after (¢ — 1)st I/O)

if this is first access to block

There are N/B blocks initially unaccessed.

choices for block accessed in tth 1/0 = A| + @v < N(1+4log N).

- eW 8 o
N &g ,CAK

.H @ m. ./\. m. ,ﬁ ,ﬁ @ H. Center for Geometric & Biological Computing m

Number T of required 1/0Os for Permuting

(BHN/B AAWV N(1+log Zvv > NI

Taking logs and applying Stirling’s approximation:

mwomm_l_lﬂ log M + log N = Q(log N!)
B B
M
Amwommvl_lﬂAm_omwl_LomZv — Nlog N
M
ﬂAm_omwl_LomZv = NlogN — NlogB

= Zwomw

= oy
— Q(min{N, nlog, n})

- oW 8 o
N &g ,Cﬁ&

.H e m. ./\. m. ,ﬁ ,ﬁ er Center for Geometric & Biological Computing @

More Refined Analysis to Get Leading Coefficient

Assuming that M /B is an increasing function,

1/0s required to sort or permute n items is at least

2N logn

D Blogm + 2log N ~)

(

\

%n, log,. n if Blogm = w(log N);
% if Blogm = o(log N).

1 WLOG, we can assume that each 1/0O is simple: at any time there is

only one copy of each item—on disk or in memory. No copying/

W 2> % (Z19’§R bi)'

N(l—I—logN)(%).

We need to do enough write 1/Os to keep up with read 1/Os.
The problem is that read I/Os may have fewer than B items.
Let b; = # items read in ith read 1/0.

Let R = # read 1/Os, and W = # write 1/Os.

Each read 1/O boosts # realizable permutations by a factor of

[] Each write I/O boosts # realizable permutations by a factor of

N(1+logN).

Jeff Vitter

- o
-\ o/

More Refined Analysis to Get Leading Coefficient

1 = (N(1+1logN))"™" H <M> Z(HJ;[—J!V/B

7

1 Let b be the average value of b;.

[] By convexity argument, LHS is maximized by setting each b; := b.
W2 %(ZlgigRbi) - %(R)= R< (R+W)/(1+40b/B).
) (R+W)/(1+b/B)

b = (BON/B
[Maximize LHS by setting b= B, so we get

M S N
R+W .

which gives desired lower bound on the total number R + W of I/Os.

0 (N(1+1logN))™" (44 V!

J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 1 1

Converting from Row-Major to Column-Major Order

Theorem 3.3 The number of I/Os required to transpose a p X ¢ matrix

stored in row-major order is

o AS log min{ M, min{p, ¢},n} v

logm

NOTE: Transposition is a special case of permutation. It can be done in
O(n) 1/Os when B* < M.

xlogz itz > 0;
0 if z = 0.
Let z; r = number of steps in kth block that should be in ith block.

Let y; = number of steps in internal memory that should be in ith block.

We define f(z) =

Define togetherness function as

ol o
'y fCA\

..u. @ m. ./\. m. ,ﬁ ,ﬁ @ r Center for Geometric & Biological Computing H M

Potential

Potential(t) = Cy;(t) + MU C(t)

Potential(T') = N log B

(0 if B < min{p, q};
Potential(0) = ¢ Nlog % if min{p, ¢} < B < max{p, q};
| Nlog $ if max{p,q} < B.
We can show that:
VPotential(t) = Cyn(t) —Cp(t—1) —Cr(t—1)
= O(Blogm)

— Lower bound = O AmuodobﬁmxﬂvImuodobﬂm:ovv.

Blogm

- eW 8 o
N &g’ g waK

.H @ m. ./\. m. ,ﬁ ,ﬁ @ r Center for Geometric & Biological Computing H w

Bundle Sorting [MSV]

Combination of permutation approach and matrix transposition
approach gives us a lower bound on the problem of bundle sorting,
in which there are only K distinct key values (but secondary info of

each record is different):

#1/0s =06 A:Homs Wv

This work also noticed that sorting can be done in-place, at
expense of having blocks not be contigous in each run or bucket.

- eW 8 o
N &g o/

.H @ m. ./\. m. ,ﬁ ,ﬁ @ r Center for Geometric & Biological Computing H &”

Recursive Matrix Multiplication

Al,l Bl,l + A1,2 :
N N

(1 I/O complexity for K x K matrices:

T(K) = 8T(§)+6%2

X
= 9Vv3 :
BV M

Jeff Vitter

Iterative Matrix Multiplication

[1 Rather than do partitioning at each level of recursion, do the

partitioning all at once, up front.

[Preprocess by reblocking row-major K X K input matrices into

blocks of size /M /3 x \/M/3.

[Do matrix multiplication on blocks.

[Reblock output into row-major order.

N
st/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 1 6

/0 Complexity for Iterative Matrix Multiplication

I/O complexity for multiplying two K x K matrices:

K wi K? V3K
TK) = |—| =+6—[1+1 A 3
.vaw
~ w/\w 4
BvM A v

3 times faster when the reblocking s done all up front!

- eW 8 o
N &g’ g waK

.H @ m. ./\. m. ,ﬁ ,ﬁ @ H. Center for Geometric & Biological Computing H q

The Need for Memory-Adaptive EM Algorithms.

[] Traditional EM algorithms assume fired memory allocation.

[Problem:
e OS/DBMS can dynamically change memory allocation.
e EM applications exhibit thrashing.

[] Solution:

EM algorithms that adapt online to memory fluctuations.

[] All prior work has been exclusively empirical:
e Memory-Adaptive Hash Join (Zeller& Gray, Pang et al.)

e Pang et al., 1995: Non-optimal memory-adaptive sort.

e Zhang and Larson, 1997: Memory-adaptive sort, works only

for very restricted kinds of fluctuations.

Jeff Vitter

© 18

Why Traditional EM Algorithms Thrash.

I:I—>-

il

Merging 8 runs using 9 internal memory blocks

- eW 8 o
N &'y fCﬁK

.H @ m. ./\. m. ,ﬁ ,ﬁ @ r Center for Geometric & Biological Computing H @

Why Traditional EM Algorithms Thrash.

—_— — — —

1 m
}

uuuuuﬁﬁu

Merging 8 runs using 5 internal memory blocks:

Leading blocks of 4 runs are out of memory

[1 If m drops to less than 8 but merge-order remains 8, worst case

cost is one I/O per element output by merge.

[] Solution: Reorganize computation; ie, change merge-order in

response to change in m.

Jeff Vitter

ﬁ

ﬁ

-y

4

(

o
o/

n/\\

er for Geometric & Biological Computing

20

Dynamic Memory Environment

(1 EM algorithm is allocated m memory blocks by the OS/DBMS

for an unspecified amount of time.

[When OS/DBMS wants to change the allocation of m, it first
allows EM algorithm to carry out m I/Os (“Reaction time”).
Then it changes m.

[We use a simplified “constant factor approximation” of this

model.

N
st/
J e ff V i t t e r Center for Geometric & Biological Computing 2 1

Simple Model for Memory-Adaptive EM Algorithms

[EM algorithm A is allocated memory in an

allocation sequence o = mq, ma, ms, ... of allocation phases.
OS/DBMS determines ¢ in an online adversarial manner.

ith phase: Algorithm owns m; blocks of memory for 2m; 1/0Os.
EM algorithm must adapt to allocation sequence.

Suppose that A solves problem P during o.

1 OO 0O 0o o

A is dynamically optimal for P iff

e No other algorithm A’ can solve problem P more than a

constant number of times during o.

J e H‘ V i t t e r Center for Geometric & Biological Computing 2 2

Dynamic Memory Lower Bound for Sorting

1th phase:
Internal memory ——
M; B items
(m; = — blocks) < = - per block
B 1/0
R

Use comparison model:

(M
B! x (Z) reading unread block.

possible outcomes _ B
to comparisons per I/O M,
B reading dirty block.
\
M 2m;
N/B i | o
(B! H > N! — 232mz logm; = Q(nlogn).

N
st/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 2 3

Resource Consumption of Sorting

Sorting algorithm completes in £ phases
— Zle 2m;log m; = Q(nlogn).

[] Resource Consumption of an I/O in phase ¢ is

log m;

[] Algorithm is dynamically optimal iff
Total Resource Consumption (RC)= O(nlogn).

J e H‘ V i t t e r Center for Geometric & Biological Computing 2 4

A Framework for Memory-Adaptive Mergesort

[1 Run Formation
e Phaset = Generate a run of length m; blocks.
e Number of runs in @ is ng < n. (Very often, ng < n.)

e Total Resource Consumption

RCrun_formation = O(#I/0s x Max cost of each 1/0)
= O(nlogmmax)

[1 Merging Stage
e Memory-adaptive merging routine M.

e Repeat: Merge /7 runs from @, append output run to Q.

o
o/

J e ff V i t t e r Center for Geometric & Biological Computing 2 5

Resource Consumption Requirement for Merging

log n
RCSOI‘ — run_rorma iOl’l ass
¢ O (RC format og 17 ——RC,)

log ng

= O (nlogmmax + » gRRCpaSS)

For dynamic optimality,
(1 RCpass = O(nlog 7).
0 R=Q(m

max)

Jeff Vitter

26

Aspects

[] Various external memory data structures and techniques are

required for the scheme to work efficiently.

[1 Lower Bounds for problems related to sorting and matrix
multiplication (and related problems).

[] Sorting algorithm was used to get dynamically optimal
algorithms for permuting, permutation networks, FFT.

[Dynamically Optimal memory-adaptive version of a buffer tree.

[1 Techniques applicable via sorting and buffer trees to many
other applications.

[Dynamically optimal matrix multiplication algorithm.

)
e/
J e ﬂ‘ V i t t e r Center for Geometric & Biological Computing 2 7

Conclusions and Open Problems

[0 Répertoire of useful paradigms (distribution, merging,
distribution sweeping, persistence, parallel simulation, B-trees,
external interval tree, external priority search tree) for
important problems.

e Worst-case optimality requires overhead.
e Simpler versions are practical!
e Building blocks for external data structures

[1 Lots of interesting open problems!

e Lower bounds without indivisibility assumption.

e |Adler] showed that removing the indivisibility assumption
for an artificial problems related to transposition can lead to

faster algorithms.

e New models: hierarchical memory, oblivious caching,
dynamic memory allocation, MEMS, optical storage,

- oW 8 o
N 'y » e 'Sy,

J e H‘ V i t t e r Center for Geometric & Biological Computing 2 8

Conclusions and Open Problems

e TPIE, see http://www.cs.duke.edu/TPIE/

e Handling many disks, large merge orders, many partition

elements, large fanouts. (Don’t use square root trick.)

e String processing, molecular databases.

- eW 8 o
N &g’ g fcﬁ\

.H @ m. ./\. m. ,ﬁ ,ﬁ @ r Center for Geometric & Biological Computing N @

