I/O Lower Bounds for Sorting and Matrix Problems

Jeff Vitter

Duke University

Department of Computer Science

Center for Geometric & Biological Computing http://www.cs.duke.edu/CGBC/

EEF Summer School—July 2002

Outline

- ★ Fundamental Techniques for batched problems.
 - Merge sort, distribution sort.
- ★ Techniques for solving batched geometric problems.
 - Distribution sweeping, batched filtering, randomized incremental construction.
 - Red-blue orthogonal rectangle intersection, convex hull, range search, nearest neighbors.
 - Empirical results (via TPIE programming environment).
- ⇒ Fundamental lower bounds.
 - Sorting, permuting, FFT, matrix transposition, bundle sort.
 - Dynamic memory allocation
 - Hierarchical memory.
 - **★** Parallel disks.
 - Load balancing among disks is key issue.
 - Duality: reading (prefetching) \longleftrightarrow writing, merging \longleftrightarrow distribution

Review of Parallel Disk Model

[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94], ...

N =problem data size.

- M = size of internal memory.
- B = size of disk block.
- D = number of independent disks.
- P = number of CPUs.
- Q = number of queries.
- Z = problem output size.

Notational convenience (in units of blocks): N

$$n=rac{N}{B}, \;\; m=rac{M}{B}, \;\; q=rac{Q}{B}, \;\; z=rac{Z}{B}.$$

Fundamental I/O Bounds (with D=1 disk)

- ★ Batched problems [AV88], [VS90], [VS94]:
 - Scanning (touch problem): $\Theta\left(\frac{N}{B}\right) = \Theta(n)$
 - Sorting:

$$\Theta\left(\frac{N}{B}\frac{\log\frac{N}{B}}{\log\frac{M}{B}}\right) = \Theta\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right) = \Theta\left(n\log_{m}n\right)$$

- Permuting: Θ (min $\{N, n \log_m n\}$)
- ★ For other problems [CGGTVV95], [AKL95], ...
 - Graph problems \approx Permutation
 - Computational Geometry \approx Sorting
- **★** Online problems:
 - Searching and Querying: $\Theta\left(\log_B N + \frac{Z}{B}\right) = \Theta(\log_B N + z)$
- \bigstar What if there are D parallel disks ???

Fundamental I/O Bounds (with D=1 disk)

- ★ Batched problems [AV88], [VS90], [VS94]:
 - Scanning (touch problem): $\Theta\left(\frac{N}{B}\right) = \Theta(n)$
 - Sorting:

$$\Theta\left(\frac{N}{B}\frac{\log\frac{N}{B}}{\log\frac{M}{B}}\right) = \Theta\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right) = \Theta\left(n\log_{m}n\right)$$

- Permuting: Θ (min $\{N, n \log_m n\}$)
- ★ For other problems [CGGTVV95], [AKL95], ...
 - Graph problems \approx Permutation
 - Computational Geometry \approx Sorting
- ★ Online problems:
 - Searching and Querying: $\Theta\left(\log_B N + \frac{Z}{B}\right) = \Theta(\log_B N + z)$
- ★ D parallel disks: Saves factor of <math>
 D for batched problems, Replace B by D
 B in online problems (disk striping).

I/O Lower Bound for Permuting

Permuting problem: Given N distinct items from $\{1, 2, ..., N\}$, rearrange the N items into sorted order.

- * We will show the lower bound that permuting requires $\Omega(\min\{N, n \log_m n\})$ I/Os.
- \star Typically the min term is $n \log_m n$.
- ★ Permuting is a special case of sorting.
- ★ I/O lower bound also applies to sorting. It is based only upon routing considerations, since the order is already known.
- ★ For the pathological case when $N < n \log_m n$, we can show that sorting requires $\Omega(n \log_m n)$ I/Os in comparison model.
- ★ In the RAM model, permutation takes only O(N) time. But in I/O model, it (and most interesting problems) require sorting complexity (except for pathological case)!

I/O Lower Bound for Permuting

Goal: See how many I/O steps T are needed so that any of the N! permutations of the N items can be realized.

We say that a permutation is realizable if it appears in extended memory in the required order.

Tactic: Determine how much the tth I/O step can increase the number of possible realizable permutations.

I/O Lower Bound for Permuting

Assumption: the N items to permute are indivisible.

realizable permutations after tth read I/O

$$\binom{M}{B} \times (\text{\# realizable permutations after } (t-1)\text{st I/O})$$

if block was previously accessed

||

$$B! imes inom{M}{B} imes inom{\# ext{realizable permutations after } (t-1) ext{st I/O}}$$

if this is first access to block

There are N/B blocks initially unaccessed

choices for block accessed in tth I/O = $\left(\frac{N}{B} + t\right) \le N(1 + \log N)$.

Number T of required I/Os for Permuting

$$(B!)^{N/B} \left(\binom{M}{B} N(1 + \log N) \right)^T \ge N!$$

Taking logs and applying Stirling's approximation:

$$\frac{N}{B}\log B! + T\left(\log\binom{M}{B} + \log N\right) = \Omega(\log N!)$$

$$\frac{N}{B}(B\log B) + T\left(B\log\frac{M}{B} + \log N\right) = N\log N$$

$$T\left(B\log\frac{M}{B} + \log N\right) = N\log N - N\log B$$

$$= N\log\frac{N}{B}$$

$$= \Omega\left(\min\left\{N, \frac{N\log(N/B)}{B\log(M/B)}\right\}\right)$$

$$= \Omega\left(\min\left\{N, n\log_m n\right\}\right)$$

More Refined Analysis to Get Leading Coefficient

Assuming that M/B is an increasing function,

I/Os required to sort or permute n items is at least

$$\frac{2N}{D} \frac{\log n}{B \log m + 2 \log N} \sim \begin{cases} \frac{2n}{D} \log_m n & \text{if } B \log m = \omega(\log N); \\ \frac{N}{D} & \text{if } B \log m = o(\log N). \end{cases}$$

- ★ WLOG, we can assume that each I/O is *simple*: at any time there is only one copy of each item—on disk or in memory. *No copying!*
- \star We need to do enough write I/Os to keep up with read I/Os.
- \star The problem is that read I/Os may have fewer than B items.
- \star Let $b_i = \#$ items read in *i*th read I/O.
- ★ Let R = # read I/Os, and W = # write I/Os.
- $\bigstar W \geq \frac{1}{B} \left(\sum_{1 \leq i \leq R} b_i \right).$
- ★ Each read I/O boosts # realizable permutations by a factor of $N(1 + \log N)\binom{M}{b_i}$.
- \star Each write I/O boosts # realizable permutations by a factor of $N(1 + \log N)$.

More Refined Analysis to Get Leading Coefficient

$$(N(1 + \log N))^{R+W} \prod_{1 \le i \le R} \binom{M}{b_i} \ge \frac{N!}{(B!)^{N/B}}$$

- \star Let \tilde{b} be the average value of b_i .
- \star By convexity argument, LHS is maximized by setting each $b_i := \widetilde{b}$.

$$\bigstar W \ge \frac{1}{B} \left(\sum_{1 \le i \le R} b_i \right) = \frac{1}{B} (R\widetilde{b}) \Longrightarrow R \le (R + W) / (1 + \widetilde{b} / B).$$

$$\Rightarrow \left(N(1+\log N)\right)^{R+W} \binom{M}{\widetilde{b}}^{(R+W)/(1+\widetilde{b}/B)} \geq \frac{N!}{(B!)^{N/B}}.$$

 \star Maximize LHS by setting b = B, so we get

$$(N(1 + \log N))^{R+W} \binom{M}{B}^{(R+W)/2} \ge \frac{N!}{(B!)^{N/B}}.$$

which gives desired lower bound on the total number R + W of I/Os.

Converting from Row-Major to Column-Major Order

stored in row-major order is **Theorem 3.3** The number of I/Os required to transpose a $p \times q$ matrix

$$\Theta\left(\frac{n\log\min\{M,\min\{p,q\},n\}}{\log m}\right)$$

O(n) I/Os when $B^2 \leq M$. NOTE: Transposition is a special case of permutation. It can be done in

We define
$$f(x) = \begin{cases} x \log x & \text{if } x > 0; \\ 0 & \text{if } x = 0. \end{cases}$$

Let $y_i = \text{number of steps in internal memory that should be in ith block.}$ Let $x_{i,k} = \text{number of steps in } k\text{th block that should be in } i\text{th block}$

Define togetherness function as

$$C_k(t) = \sum_{1 \le i \le n} f(x_{i,k})$$
 $C_M(t) = \sum_{1 \le i \le n} f(y_i)$

Potential

Potential
$$(t) = C_M(t) + \sum_{k \ge 1} C_k(t)$$

 $Potential(T) = N \log B$

$$\text{Potential}(0) = \left\{ \begin{array}{ll} 0 & \text{if } B < \min\{p,q\}; \\ N\log\frac{B}{\min\{p,q\}} & \text{if } \min\{p,q\} \leq B \leq \max\{p,q\}; \\ N\log\frac{B^2}{N} & \text{if } \max\{p,q\} < B. \end{array} \right.$$

We can show that:

$$\nabla \text{Potential}(t) = C_M(t) - C_M(t-1) - C_k(t-1)$$
$$= O(B \log m)$$

$$\Longrightarrow \text{Lower bound} = \Omega\left(\frac{\text{Potential}(T) - \text{Potential}(0)}{B\log m}\right)$$

Bundle Sorting [MSV] -

each record is different): approach gives us a lower bound on the problem of bundle sorting, in which there are only K distinct key values (but secondary info of Combination of permutation approach and matrix transposition

$$\# I/Os = \Theta\left(n\log_m \frac{K}{B}\right).$$

expense of having blocks not be contigous in each run or bucket. This work also noticed that sorting can be done in-place, at

Recursive Matrix Multiplication

 \bigstar I/O complexity for $K \times K$ matrices:

$$T(K) = 8T\left(\frac{K}{2}\right) + 6\frac{K^2}{B} \tag{1}$$

$$= 9\sqrt{3} \frac{K^3}{B\sqrt{M}}.$$
 (2)

Iterative Matrix Multiplication

- * Rather than do partitioning at each level of recursion, do the partitioning all at once, up front.
- * Preprocess by reblocking row-major $K \times K$ input matrices into blocks of size $\sqrt{M/3} \times \sqrt{M/3}$.
- ★ Do matrix multiplication on blocks.
- * Reblock output into row-major order.

I/O Complexity for Iterative Matrix Multiplication.

I/O complexity for multiplying two $K \times K$ matrices:

$$T(K) = \left(\frac{K}{\sqrt{M/3}}\right)^3 \frac{M}{B} + 6\frac{K^2}{B} \left(1 + \log_{m/2} \frac{\sqrt{3}K}{\sqrt{M}}\right)$$
 (3)
$$\approx 3\sqrt{3} \frac{K^3}{B\sqrt{M}}$$
 (4)

3 times faster when the reblocking is done all up front!

The Need for Memory-Adaptive EM Algorithms. -

- \star Traditional EM algorithms assume fixed memory allocation.
- **★** Problem:
 - OS/DBMS can dynamically change memory allocation.
 - EM applications exhibit thrashing.
- **★** Solution:

EM algorithms that adapt online to memory fluctuations.

- ★ All prior work has been exclusively empirical:
 - Memory-Adaptive Hash Join (Zeller& Gray, Pang et al.)
 - Pang et al., 1995: Non-optimal memory-adaptive sort.
 - Zhang and Larson, 1997: Memory-adaptive sort, works only for very restricted kinds of fluctuations.

Why Traditional EM Algorithms Thrash.

Merging 8 runs using 9 internal memory blocks

Why Traditional EM Algorithms Thrash.

Merging 8 runs using 5 internal memory blocks: Leading blocks of 4 runs are out of memory

- \star If m drops to less than 8 but merge-order remains 8, worst case cost is one I/O per element output by merge.
- \star Solution: Reorganize computation; ie, change merge-order in response to change in m.

Dynamic Memory Environment

- \star EM algorithm is allocated m memory blocks by the OS/DBMS for an unspecified amount of time.
- * When OS/DBMS wants to change the allocation of m, it first allows EM algorithm to carry out m I/Os ("Reaction time"). Then it changes m.
- ★ We use a simplified "constant factor approximation" of this model.

Simple Model for Memory-Adaptive EM Algorithms

- \star EM algorithm \mathcal{A} is allocated memory in an allocation sequence $\sigma = m_1, m_2, m_3, \ldots$ of allocation phases.
- \star OS/DBMS determines σ in an online adversarial manner.
- \star ith phase: Algorithm owns m_i blocks of memory for $2m_i$ I/Os.
- ★ EM algorithm must adapt to allocation sequence.
- \star Suppose that \mathcal{A} solves problem \mathcal{P} during σ .
- \star A is dynamically optimal for \mathcal{P} iff
 - No other algorithm \mathcal{A}' can solve problem \mathcal{P} more than a constant number of times during σ .

Dynamic Memory Lower Bound for Sorting

ith phase:

Internal memory

$$(m_i = \frac{M_i}{B} \text{ blocks})$$

B items per block

Use comparison model:

$$\left\{egin{array}{l} B! imesinom{M_i}{B} \ inom{M_i}{B} \end{array}
ight\}$$

possible outcomes to comparisons per I/O =
$$\begin{cases} B! \times \binom{M_i}{B} & \text{reading unread block.} \\ \binom{M_i}{B} & \text{reading dirty block.} \end{cases}$$

$$(B!)^{N/B} \prod_i \binom{M_i}{B}^{2m_i} \geq N! \implies \sum_i 2m_i \log m_i = \Omega(n \log n).$$

Resource Consumption of Sorting

Sorting algorithm completes in ℓ phases

$$\implies \sum_{i=1}^{\ell} 2m_i \log m_i = \Omega(n \log n).$$

- ★ Resource Consumption of an I/O in phase i is $\log m_i$
- ★ Algorithm is dynamically optimal iff

 Total Resource Consumption (RC)= $O(n \log n)$.

A Framework for Memory-Adaptive Mergesort

- ★ Run Formation
 - Phase $i \implies$ Generate a run of length m_i blocks.
 - Number of runs in \mathcal{Q} is $n_0 \leq n$. (Very often, $n_0 \ll n$.)
 - Total Resource Consumption

RC_{run_formation} =
$$O(\#I/Os \times Max cost of each I/O)$$

= $O(n \log m_{max})$

- **★** Merging Stage
 - Memory-adaptive merging routine \mathcal{M} .
 - Repeat: Merge R runs from Q, append output run to Q.

Resource Consumption Requirement for Merging -

$$RC_{sort} = O\left(\frac{RC_{run_formation} + \frac{\log n_0}{\log R}RC_{pass}}{\log R}RC_{pass}\right)$$
$$= O\left(\frac{n\log m_{max} + \frac{\log n_0}{\log R}RC_{pass}}{\log R}RC_{pass}\right)$$

For dynamic optimality,

$$\bigstar$$
 RC_{pass} = $O(n \log R)$.

$$\bigstar R = \Omega(m_{\text{max}}^c).$$

Aspects

- ★ Various external memory data structures and techniques are required for the scheme to work efficiently.
- ★ Lower Bounds for problems related to sorting and matrix multiplication (and related problems).
- ★ Sorting algorithm was used to get dynamically optimal algorithms for permuting, permutation networks, FFT.
- ★ Dynamically Optimal memory-adaptive version of a buffer tree.
- ★ Techniques applicable via sorting and buffer trees to many other applications.
- ★ Dynamically optimal matrix multiplication algorithm.

Conclusions and Open Problems

- ★ Répertoire of useful paradigms (distribution, merging, distribution sweeping, persistence, parallel simulation, B-trees, external interval tree, external priority search tree) for important problems.
 - Worst-case optimality requires overhead.
 - Simpler versions are practical!
 - Building blocks for external data structures
- ★ Lots of interesting open problems!
 - Lower bounds without indivisibility assumption.
 - [Adler] showed that removing the indivisibility assumption for an artificial problems related to transposition can lead to faster algorithms.
 - New models: hierarchical memory, oblivious caching, dynamic memory allocation, MEMS, optical storage,

Conclusions and Open Problems

- TPIE, see http://www.cs.duke.edu/TPIE/
- Handling many disks, large merge orders, many partition elements, large fanouts. (Don't use square root trick.)
- String processing, molecular databases.

