Batched Dynamic Geometric Problems

Jeff Vitter

Duke University

Center for Geometric and Biological Computing
and Department of Computer Science

CGBC

Center for Geometric & Biological Computing
http://www.csdukeedu/CGBC/

July 2002

3/\\
2 (1)
o 1
e

Outline
[Fundamental Techniques for batched problems.
e Merge sort, distribution sort.
Techniques for solving batched geometric problems.
e Distribution sweeping, batched filtering, randomized incremental
construction, parallel simulation.
e Red-blue orthogonal rectangle intersection, convex hull, range
search, nearest neighbors.
e Empirical results (via TPIE programming environment).
[Fundamental lower bounds.
e Sorting, permuting, FFT, matrix transposition, bundle sort.
e Dynamic memory allocation
e Hierarchical memory.
[1 Parallel disks.
e Load balancing among disks is key issue.
e Duality: reading (prefetchingd— writing,
merging<«— distribution

J eﬁ Vi tte r Center for Geometric & Biological Computing 2

Review of Parallel Disk Model

[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94], ...

N = problem data size.
m m M = size of internal memory.
B = size of disk block.
Block 10 D = number of independent disks.
P = number of CPUs.
Mem (= number of queries.
\L Z = problem output size.
\@U/ Notational convenience (in units of blocks):
N M Q Z
n=psm=pg.q=35, 2= 5.
C OB C

J eﬁ Vi tte r Center for Geometric & Biological Computing 3

Fundamental I/O Bounds (with D = 1 disk)

[1 Batched problems [AV88], [VS90], [VS94].
e Scanning (touch problemp (ﬂ) = O(n)

B
e Sorting:
Nlog% N N
=0 | =1 — | =0 (nl
@(Blog]g> (B O2M/B B) (nlog,, n)

e Permuting:® (min {N, nlog,, n})
[1 For other problems [CGGTVV95], [AKL95], ...

e Graph problemsx Permutation
e Computational Geometry Sorting

[] Online problems:
e Searching and Queryin® (logg N + £) = O(logg N + 2)

J eﬁ Vi tte r Center for Geometric & Biological Compi

Batched Problems in Geometry

[GTVVI3], [AVV95], [APRSV98a], [APRSV98b], [CFMMR98]
Orthogonal rectangle intersection.
Red-blue line segment intersection.
General line segment intersection.
All nearest neighbors.
2-D and 3-D convex hulls.
Batched range queries.
Trapezoid decomposition
Batched planar point location.
Triangulation.

(N I) O Ay

Use of virtual memory — Q(Nlogz N + Z) 1/Os. Bad !!!

We can improve this taD (n log,, n + z) 1/Os using
(1 Distribution sweep.

[] Persistent B-trees and batched filtering.

[Random incremental construction.

[] Parallel simulation.

Y
(D
: (D
& N

J eﬁ Vi tte r Center for Geometric & Biological Computin

Orthogonal Line Segment Intersection

Problem:Find all intersections ofertical segmentwith horizontal
segments

ﬁ
! W

Jeff Vitter

Internal Memory Approach

[] Presort the endpoints wrorder.
[Sweep the plane from top to bottom with a horizontal line.

[When reaching &ertical segmentstore itsr value in a balanced tree.
When leaving arertical segmentdelete itsr value from the tree.

[] At any given time, the balanced tree stores\teical segmenthit
by the sweep line.

[When reaching a ndo a 1-d range query in the tree
to find intersections witlertical segmentsTime isO(lg N + Z7),
whereZ’ is number of intersections reported.

[Total running time iSO (N 1g N + 7).

J eﬁ Vi tte r Center for Geometric & Biological Computing 7

External Solution?

[] Internal plane-sweep solution runsGi NV log N + Z) time.

[1 Using B-tree gives atw(N logz n + z) 1/O solution.

(1 We want anO(n log,,, n + z) I/O solution that takes advantage of
batching!

n
o [()
J eﬁ Vi tte r Center for Geometric & Biological Computing 8

Distribution Sweeping

[Goodrich, Tsay, Vengroff & Vitter 93]

being processed

horizontal /

segment

Slab 2

Slab 1

9

ometric & Biological Computing

nter for Ge:

Jeff Vitter

Distribution Sweeping

[1 Presort endpoints by andy coordinates.

[Divide thex-range into®(m) slabs so that each slab contains the
same number af values ofvertical segments

[1 Sweep all slabs simultaneously from top to bottom, keeping the
vertical segmentef a slab in a stack.

[] For each slab spanned by a noutput all “living”
vertical segmentm the slab’s stack and delete all “deadErtical
segment$rom stack.

[] For the left and right “endpieces” of(a nthat stick
out into a slab but don’t completely span it, handle those intersections
recursively for each slab.

J eﬁ Vi tte r Center for Geometric & Biological Computing 10

Implementing a Stack

Various stack operations:
Push element onto top
Read top entry,

Pop entry from top.

Variants: We can read the tdpentries from the stack
by iterating operation 3 times and then operationkl
times.

Keep current block and one other in internal memory
(using LRU).

It takesO(B) pushes or pops to require one 1/O.
— # 1/Os per operatioa= O (%) amortized.

11

12

13

14

Tk

Tk+1

T2

J eﬁ Vi tte r Center for Geometric & Biological Computing

Analysis of External Distribution Sweeping

[1 Each of thed(m) stacks can us@(1) blocks in internal memory.
[1 Therefore, each push, pop, or read uéel]f?) I/Os amortized.

(] In each pass, th@ (V) vertical segmentare inserted into the stack
in O(n) I/Os.

[1 For each of the& (V) fwe report intersections in
the slabs it completely spans. If the total number of intersections
reported in this pass i8’, the number of I/Os i§)(n) plus the cost
of Z’ stack push, pop, or read operations, whicbis. + Z'/B).

J eﬁ Vi tte r Center for Geometric & Biological Computing 1 2

Analysis of External Distribution Sweeping

[] We recurse on each of tlt&(m) slabs to handle the left endpieces
and right endpieces of theorizontal segmenis

[] Note that the total number of endpieces at every level of recursionjis
at most2x # horizontal segments.
It doesn’t double at each level.

(1 Number levels of recursion @ (log,, n).

[Final result:O(nlog,, n + z) l/Os.

J eﬁ Vi tte r Center for Geometric & Biological Computing 13

Class Quiz

What about batched range searching?

We want to be able to d@ range queries oV points in
O((n+ q)log,, n+ z) l/Os.

ldeas???

J eﬁ Vi tte r Center for Geometric & Biological Computing 14

Ing to the Rescue

eep

Sw

Distribution

°
®

°
Slab 2

Jeff Vitter

Distribution Sweeping

[] Presort points on andy coordinates.

[1 Presort theévottomhorizontal sideof the query rectangles by thejr
coordinate.

[1 Sweep all slabs simultaneously from top to bottom, keeping the
points of each slab in a stack.

[] For each slab spanned by a bottom horizontal side, traverse its stack.

[] Recursively handle the left endpiece and the right endpiece.

J eﬁ Vi tte r Center for Geometric & Biological Computing 1 6

Analysis of Distribution Sweeping

/
[1 Each sweep uses (n +q -+ %) 1/Os.

[In each pass, the points are inserted into the stackgqr) 1/0s.

[] For each query rectangle, we report the points that are both inside the
rectangle and inside the slab spanned by the rectangle. If the total
number of points reported in this pass4§ the number of 1/Os is

O(q+ Z'/B).

[] We recurse in each of the(m) slabs to handle the left endpieces and
right endpieces of the query rectangles.

[1 The total number of endpieces at every level of recursion is at most
2Q).
[] Recursion levelsO(log,, n).

[Final result:O((n + ¢) log,,, n + z) l/Os.

J eﬁ Vi tte r Center for Geometric & Biological Computing 1 7

Output-Sensitive Convex Hulls

[1 Goal: Compute the convex hull in
T(N,H)=0O(nlog,,|h] +n) l/Os,
whereH = hB is the size of the convex hull.

[] Motivation: H is often< N.
[] Follow internal memory approach of [Kirkpatrick-Seidel].

[We no longer have time to sort lycoordinate for a distribution
sweep.

[We can avoid the need to presort:bgoordinate and can instead do
the partitioning into slabs using the partitioning method described
earlier.

[1 CostisO(n) I/Os to do the partitioning.

(] But the number of slabs needs to be smalief;/m).
But that's OK: # levels of recursion is stid(log,, h).

J eﬁ Vi tte r Center for Geometric & Biological Computing 18

Output-Sensitive Convex Hulls

Main ldeas:

1. Apply Partitioning Lemma. Each of the = /m slabs has between
8% and 2% points.

2. Find hull edges crossing dividers @(n) 1/0s (a la [Goodrich]).

3. Recurse only when needed.

Result:O(nlog,, [h| +n) I/Os.
Analysis: Assuming Step 2 requirén) I/Os, each recursive call

[J either finds more thay/m /2 edges
R I

[] orit eliminatesN/2 points.

J eﬁ Vi tte r Center for Geometric & Biological Computing 19

Proof that T(N,H) < cnlog,,[h] + n
Divide-and-conquer gives (N, H) = » ~ T (N;, H;) + n.

By convexity, the worst case is when eaddh= 52 H;,

which is betweerg 2L e and2 \/H_

By D-and-C and induction hypothesis,

Case 1: HLW <

By/m B\/—
2H
T(N,H) < Z(\/—_logm [B\/_-‘—I—m;)—l—n
2H
< cnlogmB\/_+\/7—|—n—|—n
H cn
< cnlong—l—cnlong—?—l—Qn—i—m

< cnlog,, h+ n,

assumingn > 4 andc is large enough s.t.
cnlog, .2 —cn/2 4 2n+ /m < n.

J eﬁ Vi tte r Center for Geometric & Biological Computing 20

Proof that T'(IN, H) = O(nlog,,[h] + n)

.5 H
Case Z-Zm < 1.

By divide-and-conquer and induction hypothesis,

T(N,H) < Z(;—%(O)—I—m)—l—n

)

= 2n.

J eﬁ Vi tte r Center for Geometric & Biological Computing

21

3-d Convex Hull [Goodrich-Tsay-Vengroff-Vitter]
[1 Plane sweep and disribution sweep don’t seem applicable.

[Instead we use externalization of randomized construction of
[Reif-Sen] to compute 3-d convex hulls .

[Idea:Use random sampling in the dual problem (intersecting
half-spaces containing origin).

[] TakeO(log,, n) samples o5 = N¢ half-spaces and recursively
compute intersection of each sample.

[1 For each sample, construct (triangulated) “cones” formed from origin
to faces and find cones hit by tia input half-spaces.

Intersection of
sampled half-spaces

Non-sampled
half-space

J eﬁ Vi tte r Center for Geometric & Biological Computing 2 2

3-d Convex Hull

[] Eliminate redundant half-spaces.
[] Poll to find a sample that gives a well-balanced partition.

(1 With high probability, there will be a sample such that the
subproblem sizes add up @(V) and the largest is at mokig N
times the smallest.

[Polling uses random sampling to find the good sampl@(in) 1/Os.

[Recurse in each cone.

J eﬁ Vi tte r Center for Geometric & Biological Computing 23

Batched Persistent B-trees

[] Problem:givenoq,09,...,0n, Whereo; = insertr) or deleteg),
construct a data structure that allows a “B-tree search” in the past.

(1 We will apply distribution sweeping to construct a structure with
vm-way branching.

[] We achieveD(nlog,, n).

(1 Online method take® (N log,,, n).

J eﬁ Vi tte r Center for Geometric & Biological Computing 24

Batched Persistent B-trees

ty ts tio

[] Online property doesn’t hold for batched persistent B-trees.

[] Online PropertyfFor any timet, a root to leaf search or range searc
w.r.t. timet traverses only blocks that arehalf-full.

[] Important for output-sensitivity in time-stamped 1-d range search
(3-sided range search).

J eﬁ Vi tte r Center for Geometric & Biological Computing 25

Batched Persistent B-trees

[1 Online property not important for applications like batched planar
point location.

[] Applications:
e K simultaneous point location queries.
e K ray-shooting queries in CSG model.
e K range queries.

e Graph drawing.

J eﬁ Vi tte r Center for Geometric & Biological Computing 2 6

Persistent B-trees and Batch Filtering

7\
pANZIAAN

[] Outdegree< m

[1 Search dayered planar dam
O(n + (q + 1)heigh 1/Os,

where() = ¢B is the number of queries.

Jeff Vitter

o 27

Persistent B-trees and Batch Filtering

[] Start by sending all queries to the root node.

[1 Proceed level by level, sending &)l queries to level before sending
any to level + 1.

[] To do this I/O-efficiently, maintain a FIFO queue of queries that flow
through the edges between current level and next level.
e If less than B queries traverse an edge, store edges in gqueue.
e Otherwise, store a pointer to a linked list of blocks.

[1 The queue for the next level is produced from the current one
|/O-efficiently.

J eﬁ Vi tte r Center for Geometric & Biological Computing 28

Map Overlay / Spatial Join

Spatial Data:

» Maps

» Terrains

» CAD models

» VLSI models
Traditionally, spatial data is storec
in layers

Overlaying layers (map overlay
Is a fundamental operation in
geographical information systems
(GIS).

Jeff Vitter

Geographical Information Systems

A typical GIS might store the following layers:
» Roads » Rivers and lakes » Railroads

Example: roads in Triangle Area.

i
[

o]

Jeff Vitter

enter for Geometric & Biological Computing 3 0

Geographical Information Systems

Query:“Find all bridges in Triangle Area”

Requiresmap overlay(the roads map with the rivers/lakes map),
a type ofspatial join

ga

e

T}

i
[

-
N S\)
C

enter for Geometric & Biological Computing 3 1

Jeff Vitter

Spatial Join

Land Utilization Pollution level

(] In database literature often solved in two steps:

o) Compute minimal bounding rectangles for each region
and compute intersections between rectangles from different maps
(red-blue rectangle intersection).

o ‘Malidate intersections.

[1 We consider filter step: intersecting the two sets of rectangles.
[] Issues:

o #1/0s,

e Indexed vs. non-indexed structures for storing the rectangles.

e Skewed data

J eﬁ Vi tte r Center for Geometric & Biological Computing 3 2

Spatial Join

=

Land Utilization Pollution level

f

(] In database literature often solved in two steps:

o) Compute minimal bounding rectangles for each region
and compute intersections between rectangles from different maps
(red-blue rectangle intersection).

o ‘Malidate intersections.

[1 We consider filter step: intersecting the two sets of rectangles.
[] Issues:

o #1/0s,

e Indexed vs. non-indexed structures for storing the rectangles.

e Skewed data

J eﬁ Vi tte r Center for Geometric & Biological Computing 33

Case |: No Indexes

Previous Algorithm PBSM [PD96]

Partitions data into tiles

Reports duplicate intersections

TileO/Part0 | TileUPartl, Tile2/Part2, Tile3/Part0

77777777777777777777777777777

77777777777777777777777777

A tile may not fit in memory

New Improved Algorithm
SSSJ [APRSV9§]
Sort onx coordinate, then sweep.

-

No duplicate intersections
Optimal 1/0O performance
Robust to skewed data

Jeff Vitter

Red-Blue Rectangle Intersection

l/..--.%lﬁ —=d---J---- sSweepline

[1 Sweep plane while maintaining twaxtive listsof red and blue
rectangles intersecting vertical sweep line [BW80].
e When top of blue rectangle is reached:
() Insert blue rectangle in blue active list.
(i) Find intersections with rectangles in red active list.
e When bottom of blue rectangle is reached:
(i) Remove rectangle from blue active list.
[J Red rectangles are handled similarly.

%
: ()
&\

Jeff Vitter

35

Red-Blue Rectangle Intersection

l/..--._D —-d---J---- sweepline

[1 Algorithm performs badly$ N 1/0s)
if size of active lists> M.

Jeff Vitter

36

Red-Blue Rectangle Intersection

l/..--._D —-d---J---- sweepline

[1 Algorithm performs badly$ N 1/0s)
if size of active lists> M.

[Solved in optimabD(nlog,, n + z) 1/0Os
using general method for solvirigatched Dynamic Problems

[] Sequence of operations, as, ..., ax known beforehand.
(a; isInsert |, Delete orQuery .)

[] Key point: Updates and queries are batched!

J eﬁ Vi tte r Center for Geometric & Biological Computing 3 7

Sketch of External Solution [APRSV98].

-

. Divide plane into,/m slabs each withO(/N/+/m) endpoints.
Break rectangles into three pieces:

left endpiece, centerpiece, and right endpiece.

Find Z' intersections involving at least one centerpiece.
Recursively solve problem in each slab for endpieces.
O(log, 7z n) = O(log,, n) levels of recursion.

N

O Ok w

. . A
Performing Step 3 iV (n + E) 1/Os
—> O(nlog,, n + z) l/Os total.

n
(D
()
N

J eﬁ Vi tte r Center for Geometric & Biological Computing 38

Sketch of External Solution [APRSV98].

Divide plane into,/m slabs each withO(N/+/m) endpoints.
Break rectangles into three pieces:
left endpiece, centerpiece, and right endpiece.
Find Z' intersections involving at least one centerpiece.
Recursively solve problem in each slab for endpieces.

1 O(log, s n) = O(log,, n) levels of recursion.

. . A
[1 Performing Step 3 i) (n + E) 1/Os
—> O(nlog,, n + z) l/Os total.

J eﬁ Vi tte r Center for Geometric & Biological Computing

Sketch of External Solution [APRSV98].

| u

|
l . .

. Divide plane into,/m slabs each withO(/N/+/m) endpoints.

Break rectangles into three pieces:

left endpiece, centerpiece, and right endpiece.

Find Z' intersections involving at least one centerpiece.

Recursively solve problem in each slab for endpieces.
O(log, 7z n) = O(log,, n) levels of recursion.

T

AN o

O O & w

. . A
Performing Step 3 iV (n + E) 1/Os
—> O(nlog,, n + z) l/Os total.

n
(D
()
N

J eﬁ Vi tte r Center for Geometric & Biological Computing 40

Key Idea

Consider intersections ofdcenterpieces and tops bfuerects.:
(1 Usey/m slabs
1 = O(m) multislabs(continuous ranges of slabs)
[] Store each red centerpiece in a multislab, implemented as a stac
[]

Stack effectively keeps the firét rectangles of each multislab in
internal memory.

[] Perform top down sweep:
e Maintainingactive listfor each multislab.

J eﬁ Vi tte r Center for Geometric & Biological Computing 4 1

Sketch of Sweep

[Intersections betweemd centerpieces and tops bluerects.:

At red rectangle: Insert into relevant multislab list (stack).

e At blue rectangle: Scan through atllevanimultislab lists of red

[] Ot

Jeff Vitter

rectangles.
() Report intersection with “non-expired” red rectangles.

(i) Remove “expired” red rectangles (“lazy” deletion). (Combine

block with neighbor if< B/2 living rectangles.)

her cases handled similarly—in one sweep!

ERNLD

42

Analysis of I/O Performance in each Pass

Intersections ofed centerpieces and tops bluerects.
[1 Centerpieces of red rectangles are scanné&d(i) 1/Os.

[] For each top of a blue rectangle, we report intersections with
non-expired red centerpieces in all relevant multislab lists.

[1 Since the first block of each multlislab list (stack) is in internal

memory, if a multislab list hag centerpieces, # I/Os {%J < g

[1 Each centerpiece is deleted in lazy manner at most once.
k . . "+ N’
[] Sum ofE over all reportings is thus at most Jl; :

whereN’ is number of red centerpieces in the current pass.

. Z'"+ N"\ .
[] Over thelog,, n passes, summing | n + —5 gives a total of
O(nlog,, n + z) I/Os.

J eﬁ Vi tte r Center for Geometric & Biological Computing 43

Avoiding redundant reportings of intersections

[Example: A given blue rectangle could intersect the centerpiece of a
red rectangle, and the blue rectangle’s endpiece could intersect th
red rectangle’s endpiece.

[] Two intersections would be reported at different levels of recursion.

[1 How to fix this without sorting all intersections?
(Technically, sorting would requir@(z log,, z) I/Os, which is too
much theoretically, and inefficient in practice.)

J eﬁ Vi tte r Center for Geometric & Biological Computing 44

Avoiding redundant reportings of intersections

[1 Example: A given blue rectangle could intersect the centerpiece of a
red rectangle, and the blue rectangle’s endpiece could intersect the red
rectangle’s endpiece.

[] Two intersections would be reported at different levels of recursion.

[] How to fix this without sorting all intersections?

(Technically, sorting would requir@(z log,, z) I/Os, which is too
much theoretically, and inefficient in practice.)

[J Solution: Avoid redundant reportings of intersections by adopting a
convention as to when to report an intersection.

[J For example, each intersection could be reported only at the first
available opportunity. At each potential reporting time, the two
rectangles must be examined to determine if the intersection has
already been reported.

[] Charge each non-reporting to the actual intersection. Each intersection
IS non-reported at mog?(1) times.

J eﬁ Vi tte r Center for Geometric & Biological Computing 45

Higher Dimensions

[] Technique can be used recursively in dimensian 2 by decreasing
number of slab boundaries to'/2(¢=1) in each of thel — 1
dimensions orthogonal to sweep.

1 Ford = 3, consider a checkerboard of slabs'/4 x m1/4.
(1 There are at most}/2 x m!/2 = m multislabs.

[] Rectangles are partitioned indimension and then a sweep is done
in the z dimension simultaneously for allslabs to solve the
y, z-dimension subproblemE€OMPLICATED!

[1 1/0 performance using technique:
e d-dim. batched range searching:
O(nlog® ' n+t) 1/0s, O(n) space.
e d-dim. rectangle intersection:
O(nlog® ' n+1t)1/0s, O(n) space.
e Batched semidynamic planar point location:
O((n + k) log? (n+ k)) 1/0s, O(n + k) space.

J eﬁ Vi tte r Center for Geometric & Biological Computing 46

TPIE, http://www.cs.duke.edu/TPIE/

") Many problems can be solved using small number of paradigms.
" OS often provides inadequate support for /0 and internal memory

management.

J eﬁ Vi tte r Center for Geometric & Biological Computing 47

TPIE, http://www.cs.duke.edu/TPIE/

© Many problems can be solved using small number of paradigms.
OS often provides inadequate support for I/0O and internal memory
management.
[1 TPIE originally designed by former student Darren Vengroft:
e Make implementation easy (and portable). 1/0-efficient (and
portable) programs.
e Framework orientedmplements a number of high-level paradigms
on streams (C++)
—Scanning, merging, distribution, sorting, permuting, ...
e Access-OrientedFor index structures.

J eﬁ Vi tte r Center for Geometric & Biological Computing 48

TPIE’s Distribution Access Method

Jeff Vitter

TIGER/LIne Data

[] TIGER/Line data from U.S. Census Bureau
(standard benchmark data for spatial databases)

State Category Size Objects
Rhode Island (RI) Roads 4.3 MB 68,278
Hydrography 0.4 MB 7,013

Connecticut (CT) Roads 12.0 MB 188,643
Hydrography 1.8 MB 28,776

New Jersey (NJ) Roads 26.5 MB 414,443
Hydrography 3.2 MB 50,854

New York (NY) Roads 55.7 MB 870,413
Hydrography | 10.0 MB 156,568

All Roads 98.5MB | 1541,777
Hydrography | 15.4 MB 243,211

oW e i
N &' 'S 3 .\

J eﬁ Vi tte r Center for Geometric & Biological Computing 50

Performance Comparison with PBSM [DP96]

Time (seconds)

T 3 D3 T 3 T3 T 3
g 2 g 2 g 2 g 2 z 2
Q R Q (R Q

Sun SparcStation 20 (Solaris 2.5) , 32MB memory (TPIE 12MB)

J eﬁ Vi tte r Center for Geometric & Biological Computing

Performance Comparison with PBSM [DP96]

Data set: tall_rect Data set: wide_rect
3500 T T T T 1000 T T T T
o N "exte'n%Bjoin" o
3000 "extemaIBjom" - m "BBSM" ——
"PBSM" —— 800 1
2500 - I NF--=—==-=—=----
g L 1 g eo0f |7—m—s i
; 2000 § i
T
o 1500 - : 1 e tE e
£ 0 £ 400]
= = ——
1000 . C——=5—1.
200 F °
500 A
0 1 1 1 0
0 200000 400000 600000 800000 le+06 0 400000 600000
Number of rectangles Number of rectangles

oW e -
N &' 'S 3

J eﬁ Vi tte r Center for Geometric & Biological Computing 52

~
[

Case |l: Indexes Exist

Previous Algorithm ST [BKS93]
Carefully synchronized depth-first traversal.

Our Algorithm: PQ [APRSVVO00]

R-tree — | Priority Queue |— Sweep

J eﬁ Vi tte r Center for Geometric & Biological Computing 53

Related Results

[] External segment tree used in conjunction viaeliched filtering
[GTVVO3] andexternal fractional cascadintp solve large number
of problems with GIS applications [AVV95]:

e Red-blue line segment intersectionn log,, n + t) 1/Os.

[] Persistent B-trees [GTVV93] to solve batched point location In
O(nlog,,n +t) I/Os.

[Random incremental construction [CFMMR98] to get optimal
O((n + g)log,, n + z) 1/Os for general line segment intersection.

J eﬁ Vi tte r Center for Geometric & Biological Computing 54

Parallel Simulation Paradigm [CGGTVV95]

[] Let A be an/N-processor PRAM algorithm such that
e A reduces a problem of siz€ to one of sizex/V in constant time.
e Parallel running time ol is ©(log N).

[1 For each PRAM statement, sort theoperands so that they are contiguous.
[] SimulateN operations via a linear pass through the data.
(] 1/O Complexity forD = 1:
T(N) = O(sort(N))+T(aN)
= O(sort(N)).
[] Gives optimal EM algorithms for list ranking, Euler tours, expression tree
evaluation, connected components of sparse graph.

[1 Sometimes the sorting can be don&l(V) 1/0Os because of constraints and
assumptions [DDH97, SK97].

[Some problems like topological sorting, BFS, DFS are hard.

- oW w
N S'@'S 3
J eﬁ Vi tte r Center for Geometric & Biological Ci i

n
ERNLD

Conclusions and Open Problems

[1 Repertoire of useful paradigms (distribution, merging, distribution
sweeping, persistence, parallel simulation, B-trees, external intervl
tree, external priority search tree) for important problems.
e \Worst-case optimality requires overhead.

e Simpler versions are practical!
e Building blocks for external data structures

[1 Lots of open problems in the design and analysis of external mempry
algorithms and data structuréstay tuned!
e TPIE, seahttp://www.cs.duke.edu/TPIE/
e Handling many disks, large merge orders, many partition elements,
large fanouts. (Don’t use square root trick.)
e GIS applications (e.g. practical red-blue line segment intersectian,
nearest neighbor, spatial join, terrain processing).
e Image processing (indexing images, analyzing images).
e Fundamental graph problems
(e.g. topological sorting, BFS, DFS, connectivity).

oW e i
N 'S [[/

J eﬁ Vi tte r Center for Geometric & Biological Computing 5 6

Conclusions and Open Problems

e Online dynamic data structures
(e.g. dynamic point location, range search in higher dimensions
clustering, similarity search).

e String processing, molecular databases.

e Typical-case behavior of popular data structures (e.g., R-trees).

J eﬁ Vi tte r Center for Geometric & Biological Computing 5 7

