
External Memory Geometric Data Structures

Lars Arge
Duke University

June 27, 2002

Summer School on Massive Datasets

Lars Arge

External memory data structures

2

External Memory Geometric Data Structures

• Many massive dataset applications involvegeometric data

(or data that can be interpreted geometrically)

– Points, lines, polygons

• Data need to be stored indata structureson external storage media
such thaton-linequeries can be answered I/O-efficiently

• Data often need to be maintained during dynamic updates

• Examples:

– Phone: Wireless tracking

– Consumer: Buying patterns (supermarket checkout)

– Geography: NASA satellites generate 1.2 TB per day

Lars Arge

External memory data structures

3

Example: LIDAR terrain data
• Massive (irregular) point sets (1-10m resolution)

• Appalachian Mountains (between 50GB and 5TB)

• Need to be queried and updated efficiently

Example: Jockey’s ridge (NC cost)

Lars Arge

External memory data structures

4

Model
• Model as previously

– N : Elements in structure

– B : Elements per block

– M : Elements in main memory

– T : Output size in searching problems

• Focuson

– Worst-casestructures

– Dynamicstructures

– Fundamentalstructures

– Fundamental design techniques

D

P

M

Block I/O

Lars Arge

External memory data structures

5

• Today:Dimension one

– External search trees: B-trees

– Techniques/tools

* Persistent B-trees (search in the past)

* Buffer trees (efficient construction)

• Tomorrow:“Dimension 1.5”

– Handling intervals/segments (interval stabbing/point location)

– Techniques/tools: Logarithmic method, weight-balanced B-trees,
global rebuilding

• Saturday:Dimension two

– Two-dimensional range searching

Outline

Lars Arge

External memory data structures

6

– If nodes stored arbitrarily on disk

ÿ Search in I/Os

ÿ Rangesearch in I/Os

• Binary search tree:

– Standard method for search amongN elements

– We assume elements in leaves

– Search traces at least one root-leaf path

External Search Trees

)(log2 NΟ

)(log2 NΟ

)(log2 TN +Ο

Lars Arge

External memory data structures

7

External Search Trees

• BFS blocking:

– Block height

– Output elements blocked

þ
Rangesearch in I/Os

• Optimal: space and query

)(log2 BΟ

)(BΘ

)(log)(log/)(log 22 NBN BΟ=ΟΟ

)(log B
T

B N +Ο
)(B

NΟ)(log B
T

B N +Ο

Lars Arge

External memory data structures

8

• Maintaining BFS blocking during updates?

– Balance normally maintained in search trees using rotations

• Seems very difficult to maintain BFS blocking during rotation

– Also need to make sure output (leaves) is blocked!

External Search Trees

x

y

x

y

Lars Arge

External memory data structures

9

B-trees
• BFS-blocking naturally corresponds to tree with fan-out

• B-trees balanced by allowing node degree to vary

– Rebalancing performed by splitting and merging nodes

)(BΘ

Lars Arge

External memory data structures

10

• (a,b)-tree uses linear space and has height

þ
Choosinga,b = each node/leaf stored in one disk block

þ
space and query

(a,b)-tree
• T is an (a,b)-tree (a

�

2 andb

�

2a-1)

– All leaves on the same level
(contain betweena andb elements)

– Except for the root, all nodes have
degree betweena andb

– Root has degree between 2 andb

)(log NO a

)(B
NΟ)(log B

T
B N +Ο

)(BΘ

(2,4)−tree

Lars Arge

External memory data structures

11

(a,b)-Tree Insert
• Insert:

Search and insert element in leafv

DO v hasb+1 elements

Split v:

make nodesv’ andv’’ with

and elements

insert element (ref) inparent(v)

(make new root if necessary)

v=parent(v)

• Insert touch nodes

ý ü bb ≤+
2

1 û ú ab ≥+
2

1

)(log NaΟ

v

v’ v’’

ý ü2
1+b û ú2

1+b

1+b

Lars Arge

External memory data structures

12

(a,b)-Tree Insert

Lars Arge

External memory data structures

13

(a,b)-Tree Delete
• Delete:

Search and delete element from leafv

DO v hasa-1 children

Fusev with sibling v’:

move children ofv’ to v

delete element (ref) fromparent(v)

(delete root if necessary)

If v has>b (and

�

a+b-1) children splitv

v=parent(v)

• Delete touch nodes)(log NaΟ

v

v

1−a

12 −≥ a

Lars Arge

External memory data structures

14

(a,b)-Tree Delete

Lars Arge

External memory data structures

15

• (a,b)-tree properties:

– If b=2a-1one update can

cause many rebalancing

operations

– If b

�

2a update only causeO(1) rebalancing operations amortized

– If b>2a rebalancing operations amortized

* Both somewhat hard to show

– If b=4a easy to show that update causes rebalance
operations amortized

* After split during insert a leaf contains≅ 4a/2=2aelements

* After fuse(and possible split) during delete a leaf contains
between≅ 2a and≅ a elements

(a,b)-Tree

)()(11

2
aa

OO b =−

)log(1 NO aa

2
5

insert

delete

(2,3)-tree

Lars Arge

External memory data structures

16

(a,b)-Tree
• (a,b)-tree with leaf parametersal,bl (b=4a andbl=4al)

– Height

– amortized leaf rebalance operations

– amortized internal node rebalance operations

• B-trees: (a,b)-trees witha,b =

– B-trees withelements in the leavessometimes calledB+-tree

• Fan-outk B-tree:

– (k/4,k)-trees with leaf parameter and elements in leaves

• Fan-out B-tree with

– O(N/B) space

– query

– update

)(BΘ

)(log)(log 1 B
T

BB
T

B
NONO

c
+=+

)(log NO B

)(log
la

N
aO

)(1
laO

)log(1 NO aaa l⋅

)(BΘ
)(

1
cBΘ 1≥c

Lars Arge

External memory data structures

17

Persistent B-tree
• In some applications we are interested in being able to access

previous versions of data structure

– Databases

– Geometric data structures (later)

• Partial persistence:

– Update current version (getting new version)

– Query all versions

• We would like to havepartial persistent B-treewith

– O(N/B) space –N is number of updates performed

– update

– query in any version)(log B
T

B NO +
)(log NO B

Lars Arge

External memory data structures

18

Persistent B-tree
• East way to make B-tree partial persistent

– Copy structure at each operation

– Maintain “version-access” structure (B-tree)

• Good query in any version,but

– O(N/B) I/O update

– O(N2/B) space

)(log B
T

B NO +

i i+2i+1

update

i+3i i+2i+1

Lars Arge

External memory data structures

19

Persistent B-tree
• Idea:

– Elements augmented with“existence interval”

– Augmented elements stored inonestructure

– Elements“alive” at “time” t (versiont) form B-tree

– Version access structure (B-tree) to access B-tree root at timet

Lars Arge

External memory data structures

20

Persistent B-tree
• Directedacyclic graphwith elements in leaves (sinks)

– Routing elements in internal nodes

• Each element (routing element) and node hasexistence interval

• Nodesalive at timet make up (B/4,B)-tree on alive elements

• B-tree on all roots (version access structure)

þ
Answer query at versiont in I/Os as in normal B-tree

• Additional invariant:

– New node (only) contains between and live elements

þ
O(N/B) blocks

B8
3 B8

7

)(log B
T

B NO +

B
4
1 B

8
7B

8
3 B

B
8
1 B

8
1B

2
1

Lars Arge

External memory data structures

21

B
4
1 B

8
7B

8
3 B

Persistent B-tree Insert
• Search for relevant leafl and insert new element

• If l containsx >B elements:Block overflow

– Version split:

Mark l dead and create new nodev with x alive element

– If : Strong overflow

– If : Strong underflow

– If then recursively updateparent(l):

Deletereference tol andinsertreference tov

B
4
1 B

8
7B

8
3 B

Bx 8
7>

Bx 8
3<

BxB 8
7

8
3 ≤≤

Lars Arge

External memory data structures

22

Persistent B-tree Insert
• Strong overflow()

– Split v into v’ andv’ with elements each ()

– Recursively updateparent(l):

Deletereference tol andinsertreference tov’ andv’’

• Strong underflow()

– Mergex elements withy live elements obtained byversion split
on sibling ()

– If then (strong overflow)performsplit

– Recursively updateparent(l):

Deletetwo referencesinsertone or two references

B
4
1 B

8
7B

8
3 BB

4
1 B

8
7B

8
3 BB

4
1 B

8
7B

8
3 B

2
x

B
4
1 B

8
7B

8
3 B

BB x
2

1
28

3 ≤<
Bx 8

7>

Byx 2
1≥+

Byx 8
7≥+

Bx 8
3<

Lars Arge

External memory data structures

23

Persistent B-tree Delete
• Search for relevant leafl and mark element dead

• If l contains alive elements:Block underflow

– Version split:

Mark l dead and create new nodev with x alive element

– Strong underflow():

Merge(version split) and possiblysplit (strong overflow)

– Recursively updateparent(l):

Deletetwo referencesinsertone or two references

Bx 4
1<

B
4
1 B

8
7B

8
3 B

B
8
1 B

8
1B

2
1

Bx 8
3<

Lars Arge

External memory data structures

24

Persistent B-tree

B
4
1 B

8
7B

8
3 B

B
8
1 B

8
1B

2
1

Insert Delete
done

Block overflow Block underflow

done

Version split Version split

Strong overflow Strong underflow

MergeSplit

done

done

Strong overflow

Split

done

-1,+1

-1,+2

-2,+2

-2,+1

0,0

Lars Arge

External memory data structures

25

Persistent B-tree Analysis
• Update:

– Search and “rebalance” on one root-leaf path

• Space: O(N/B)

– At least updates in leaf inexistence interval

– When leafl die

* At most two other nodes are created

* At most one block over/underflow one level up (inparent(l))

þ
– DuringN updates we create:

* leaves

* nodesi levels up

ÿ Space:
B

4
1 B

8
7B

8
3 B

B
8
1 B

8
1B

2
1

)(log NO B

B8
1

)()(B
N

i
B

N OO i =�
)(iB

NO

)(B
NO

Lars Arge

External memory data structures

26

Summary: B-trees
• Problem: MaintainingN elements dynamically

• Fan-out B-tree()

– Degree balanced tree with each node/leaf inO(1) blocks

– O(N/B) space

– I/O query

– I/O update

• Space and query optimal in comparison model

• Persistent B-tree

– Update current version

– Query all previous versions

)(log B
T

B NO +
)(log NO B

)(
1

cBΘ 1≥c

Lars Arge

External memory data structures

27

Other B-tree Variants
• Weight-balanced B-trees

– Weight instead of degree constraint

– Nodes high in the tree do not split very often

– Used when secondary structures are used

More later!

• Level-balanced B-trees

– Global instead of local balancing strategy

– Whole subtrees rebuilt when too many nodes on a level

– Used when parent pointers and divide/merge operations needed

• String B-trees

– Used to maintain and search (variable length) strings

More later (Paolo)

Lars Arge

External memory data structures

28

B-tree Construction
• In internal memory we cansortN elements inO(N log N) time

using a balanced search tree:

– Insert all elements one-by-one (construct tree)

– Output in sorted order using in-order traversal

• Same algorithm using B-tree use I/Os

– A factor of non-optimal

• We could of course build B-treebottom-upin I/Os

– But what about persistent B-tree?

– In general we would like to have dynamic data structure to use in
algorithmsÿ I/O operations

)log(NNO B

)(
log

log

B
B
M

BO

)log(
B
N

BMB
NO

)log(
B
N

BMB
NO)log(1

B
N

BMB
O

Lars Arge

External memory data structures

29

• Main idea: Logically group nodes together and add buffers

– Insertions done in a “lazy” way – elements inserted in buffers.

– When a buffer runs full elements are pushed one level down.

– Buffer-emptying inO(M/B) I/Os

ÿ everyblocktouched constant number of times on each level

ÿ insertingN elements (N/B blocks) costs I/Os.)log(
B
N

BMB
NO

Buffer-tree Technique

B

B

M elements

fan-outM/B
)(log

B
N

BMO

Lars Arge

External memory data structures

30

• Definition:

– Fan-out B-tree — (,)-tree with sizeB leaves

– SizeM buffer in each internal node

• Updates:

– Add time-stamp to insert/delete element

– CollectB elements in memory before inserting in root buffer

– Performbuffer-emptyingwhen buffer runs full

Basic Buffer-tree

B
M

4
1

B
M

m blocksM
B
M

B
M ...

4
1

B

B
M

Lars Arge

External memory data structures

31

Basic Buffer-tree
• Note:

– Buffer can be larger thanM during recursivebuffer-emptying

* Elements distributed in sorted order

ÿ at mostM elements in buffer unsorted

– Rebalancing needed when “leaf-node” buffer emptied

* Leaf-nodebuffer-emptyingonly performed after all full
internal node buffers are emptied

m blocksM
B
M

B
M ...

4
1

B

Lars Arge

External memory data structures

32

Basic Buffer-tree
• Internal nodebuffer-empty:

– Load firstM (unsorted) elements into

memory and sort them

– Merge elements in memory with rest

of (already sorted) elements

– Scan through sorted list while

* Removing “matching” insert/deletes

* Distribute elements to child buffers

– Recursively empty full child buffers

• Emptying buffer of sizeX takesO(X/B+M/B)=O(X/B) I/Os

m blocksM
B
M

B
M ...

4
1

Lars Arge

External memory data structures

33

Basic Buffer-tree
• Buffer-emptyof leaf node withK elements in leaves

– Sort buffer as previously

– Merge buffer elements with elements in leaves

– Remove “matching” insert/deletes obtainingK’ elements

– If K’<K then

* Add K-K’ “dummy” elements and insert in “dummy” leaves

Otherwise

* PlaceK elements in leaves

* Repeatedly insert block of elements in leaves and rebalance

• Delete dummy leaves and rebalance when all full buffers emptied

K

Lars Arge

External memory data structures

34

Basic Buffer-tree
• Invariant:

Buffers of nodes on path from root to emptied leaf-node are empty

þ
• Insert rebalancing (splits)

performed as in normal B-tree

• Delete rebalancing:v’ buffer emptied before fuse ofv

– Necessary buffer emptyings performed before next dummy-
block delete

– Invariant maintained

v vv’

v v’ v’’

Lars Arge

External memory data structures

35

Basic Buffer-tree
• Analysis:

– Not counting rebalancing, a buffer-emptying of node withX

�

M
elements (full) takesO(X/B) I/Os

ÿ total full node emptying cost I/Os

– Delete rebalancing buffer-emptying (non-full) takesO(M/B) I/Os

ÿ cost of one split/fuseO(M/B) I/Os

– DuringN updates

* O(N/B) leaf split/fuse

* internal node split/fuse

þ
Total cost ofN operations: I/Os

)log(
B
N

B
M

B
M

B
N

O

)log(
B
N

B
N

B
MO

)log(
B
N

B
N

B
MO

Lars Arge

External memory data structures

36

Basic Buffer-tree
• Emptying all buffersafterN insertions:

Perform buffer-emptying on all nodes in BFS-order

ÿ resulting full-buffer emptyings cost I/Os

empty non-full buffers usingO(M/B) ÿ O(N/B) I/Os

þ
• N elements can be sorted using buffer tree in I/Os

)log(
B
N

B
N

B
MO

)(
B

M
B

N

O

m blocksM
B
M

B
M ...

4
1

B

)log(
B
N

B
N

B
MO

Lars Arge

External memory data structures

37

• Insertanddeleteson buffer-tree takes I/Os amortized

– Alternative rebalancing algorithms possible (e.g. top-down)

• One-dim.rangesearchoperations can also be supported in

I/Os amortized

– Search elements handle lazily like updates

– All elements in relevant sub-trees

reported during buffer-emptying

– Buffer-emptying inO(X/B+T’/B),

whereT’ is reported elements

• Buffer-tree can e.g. be use in standard plane-sweep algorithms for
orthogonal line segment intersection (alternative todistribution
sweeping)

Buffer-tree Technique
)log(1

B
N

BMB
O

)log(1
B
T

B
N

BMB
O +

m blocks

Lars Arge

External memory data structures

38

• Basic buffer tree can be used in external priority queue

• To delete minimal element:

– Empty all buffers on leftmost path

– Delete elements in leftmost

leaf and keep in memory

– Deletion of nextM minimal

elements free

– Inserted elements checked against

minimal elements in memory

• I/Os everyO(M) deleteÿ amortized

Buffered Priority Queue

)log(
B
N

BMB
MO

M
4
1

)log(1
B
N

BMB
O

)(
B
MΘ

B

Lars Arge

External memory data structures

39

Other External Priority Queues

• External priority queue has been used in the development of many
I/O-efficient graph algorithms

• Buffer technique can be used on other priority queue structure

– Heap

– Tournament tree

• Priority queue supporting update often used in graph algorithms

– on tournament tree

– Major open problem to do it in I/Os

• Worst case efficient priority queue has also been developed

– B operations require I/Os

)log(1
B
N

BMB
O

)log(2
1

B
N

B
O

)(log
B
N

BM
O

Lars Arge

External memory data structures

40

Other Buffer-tree Technique Results
• AttachingΘ(B) size buffers to normal B-tree can also be use to

improve update bound

• Buffered segment tree

– Has been used inbatched range searchingandrectangle
intersectionalgorithm

• Can normally be modified to work in D-disk model using D-disk
merging and distribution

• Has been used on String B-tree to obtain I/O-efficient string sorting
algorithms

• Can be used to construct (bulk load) many data structures, e.g:

– R-trees

– Persistent B-trees

Lars Arge

External memory data structures

41

Summary
• Fan-out B-tree()

– Degree balanced tree with each node/leaf inO(1) blocks

– O(N/B) space

– I/O query

– I/O update

• Persistent B-tree

– Update current version, query all previous versions

– B-tree bounds withN number of operations performed

• Buffer tree technique

– Lazy update/queries using buffers attached to each node

– amortized bounds

– E.g. used to construct structures in I/Os

)(
1

cBΘ

)(log B
T

B NO +
)(log NO B

1≥c

)log(1
B
N

BMB
O

)log(
B
N

B
N

B
MO

Lars Arge

External memory data structures

42

Tomorrow
• “Dimension 1.5” problems:Interval stabbing and point location

• Use oftools/techniquesdiscussed today as well as

– Logarithmic method

– Weight-balanced B-trees

– Global rebuilding

q

x

