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External memory data structures

External Memory Geometric Data Structures

 Many massive dataset applications involyi@metric data
(or data that can be interpreted geometrically)
— Points, lines, polygons

e Data need to be stored trata structureen external storage media
such thabn-linequeries can be answered I/O-efficiently

e Data often need to be maintained during dynamic updates

 Examples
— Phone Wireless tracking
— ConsumerBuying patterns (supermarket checkout)
— GeographyNASA satellites generate 1.2 TB per day
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External memory data structures

Example: LIDAR terrain data
e Massive (irregular) point sets (1-10m resolution)

« Appalachian Mountains (between 50GB and 5TB)
 Need to be queried and updated efficiently
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External memory data structures

Model

 Modelas previously
— N : Elements in structure
— B : Elements per block
— M : Elements in main memory

— T : Output size in searching problems

e Focuson
— Worst-casestructures
— Dynamicstructures
— Fundamentastructures
— Fundamental design techniques




External memory data structures

Outline

 Today:Dimension one
— External search trees: B-trees
— Techniques/tools

* Persistent B-trees (search in the past)‘ X
* Buffer trees (efficient construction)

« Tomorrow:“Dimension 1.5”
— Handling intervals/segments (interval stabbing/point location)

— Techniques/tools: Logarithmic method, weight-balanced B-trges,
global rebuilding

e SaturdayDimension two

— Two-dimensional range searching
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External memory data structures

External Search Trees

e Binary search tree:
— Standard method for search amadwglements
— We assume elements in leaves

O(log, N)<

OOOOO OO0 OO0 0O 000000000 000000 oo oOooO o .
— Search traces at least one root-leaf patﬁ
— If nodes stored arbitrarily on disk

= Search inO(log, N) 1/Os

— Rangesearch i®(log, N+T) 1/Os
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External memory data structures

External Search Trees

pd

SIQIOIGID,

O(B)

e BFS blocking:
— Block heightO(log, N)/O(log, B) = O(logg N)
— Output elements blocked

U
Rangesearch i®(logg N +74) 1/Os
» Optimat O(N5) space an@®(logg N +T4) query
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External memory data structures

External Search Trees

« Maintaining BFS blocking during updates?
— Balance normally maintained in search trees using rotations

=

o Seems very difficult to maintain BFS blocking during rotation
— Also need to make sure output (leaves) is blocked!
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External memory data structures

B-trees
« BFS-blocking naturally corresponds to tree with fan©(B)
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» B-trees balanced by allowing node degree to vary
— Rebalancing performed by splitting and merging nodes

%NH/N /l\
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External memory data structures

(a,b)-tree

* Tis an @,b)-tree @2 andb>2a-1)

— All leaves on the same level (2,4)—tree
(contain betweea andb elements)

— Except for the root, all nodes have
degree betweeaandb

— Root has degree between 2 dnd

* (a,b)-tree uses linear space and has heflag, N)
U

Choosinga,b =©(B) each node/leaf stored in one disk block
U

O(N4) space an®(logg N +74) query
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External memory data structures

(a,b)-Tree Insert

Insert:

Search and insert element in leaf
DO v hasb+1 elements
Splitv:
make nodes’ andv” with
[%—‘s band \_%Jz a elements
Insert element (ref) iparent(v)
(make new root if necessary)

v=parent(v)

e Insert toucl®(log, N) nodes
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External memory data structures

(a,b)-Tree Insert
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External memory data structures

(a,b)-Tree Delete

e Delete:

Search and delete element from lgaf
DO v hasa-1 children
Fusev with sibling v':
move children o’ tov
delete element (ref) fromarent(v)
(delete root if necessary)
If vhas>b (and<a+b-1) children splitv
v=parent(v)

 Delete touctO(log, N) nodes
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External memory data structures

(a,b)-Tree Delete
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External memory data structures

(a,b)-Tree

* (a,b)-tree properties: v (23)tree

— If b=2a-1one update can insert

. —_—
cause many rebalancing delete
operations

— If b>2a update only caus@®(1) rebalancing operations amortize}
— If b>2a O(yl—a) = O(%,) rebalancing operations amortized
* Both somewhat hard to show

— If b=4a easy to show that update cauSl{%Ioga N) rebalange
operations amortized

* After split during insert a leaf contains4a/2=2aelements

* After fuse(and possible split) during delete a leaf contains
between//2aand 55/2 a elements
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External memory data structures

(a,b)-Tree
(a,b)-tree with leaf parametees,b, (b=4a andb=4a,)
— HeightO(log, g)
— O( }g) amortized leaf rebalance operations
— O(ﬁloga N) amortized internal node rebalance operations

B-trees (a,b)-trees witha,b = ©(B)

— B-trees withelements in the leavesdmetimes calle&*-tree
Fan-outk B-tree

— (k/4,k)-trees with leaf paramet&®(B) and elements in leaves
Fan-ouB(B% ) B-tree withc =1

— O(N/B) space

— O(IogB% N +T4) =O(logg N +T4) query

— O(logg N) update
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External memory data structures

Persistent B-tree
* |n some applications we are interested in being able to access
previous versions of data structure
— Databases
— Geometric data structures (later)
« Partial persistence
— Update current version (getting new version)
— Query all versions

« We would like to havepartial persistent B-trewith
— O(N/B) space -N is number of updates performed
— O(logg N) update
— O(logg N +T4) query in any version
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External memory data structures

Persistent B-tree

« East way to make B-tree partial persistent
— Copy structure at each operation
— Maintain “version-access” structure (B-tree)

update

VY N VYV

« GoodO(logg N +T4) query in any versiomut
— O(N/B) I/O update
— O(N?/B) space
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External memory data structures

Persistent B-tree

e |dea
— Elements augmented witbxistence interval”
— Augmented elements storedanestructure
— Elementsalive” at“time” t (versiont) form B-tree

AN

— Version access structure (B-tree) to access B-tree root at time
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External memory data structures

Persistent B-tree

» Directedacyclic graphwith elements in leaves (Sinks)
— Routing elements in internal nodes
e Each element (routing element) and nodedvastence interval
* Nodesalive at timet make up B/4,B)-tree on alive elements
» B-tree on all roots (version access structure)

U

Answer query at versiohin O(logg N +74) I/Os as in normal B-tree
o Additional invariant
— New node (only) contains betwegB  apdB

U
O(N/B) blocks
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External memory data structures

Persistent B-tree Insert

e Search for relevant ledfand insert new element
 |f | containsx >B elementsBlock overflow
— Version split
Mark | dead and create new nodevith x alive element
— If x> 7/ B: Strong overflow
— If x< ¥ B: Strong underflow
— If 3¢ B < x< 7% Bthen recursively updatearent|):
Deletereference td andinsertreference tw

1 3 7 7
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External memory data structures

Persistent B-tree Insert
e Strong overflow(x > 74 B)
— Splitvinto v’ andv’ with %, elements each3{ B< %, < ¥ B )
— Recursively updatparentl):
Deletereference td andinsertreference to’ andv”

i g8 = im g i 8
« Strong underflon(x < 3 B)
— Mergex elements withy live elements obtained byersion split
on sibling (x+y=%B)
— If x+y=74B then (strong overflow)performsplit
— Recursively updatparentl):
Deletetwo referencessertone or two references
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External memory data structures

Persistent B-tree Delete

e Search for relevant ledfand mark element dead
e If | containsx< ¥, B alive element&lock underflow
— Version split
Mark | dead and create new nodevith x alive element
— Strong underflow( x < 3 B):

Merge(version spliy and possiblysplit (strong overflovy
— Recursively updatparentl):
Deletetwo referencesisertone or two references

1 3
ig 3B
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External memory data structures

Persistent B-tree

Insert

1 > done/

Block overflow

Version split

Delete

Block underflow

Version split

done Strong Lverflow

Strong
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Strong underflow

Merge

ove rflow\‘one

-2,+1
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External memory data structures

Persistent B-tree Analysis
e UpdateO(logg N)
— Search and “rebalance” on one root-leaf path
o SpaceO(N/B)
— At least4 B updates in leaf iaxistence interval
— When leal die
* At most two other nodes are created
* At most one block over/underflow one level up fsarentl))

U

— DuringN updates we create:
* O(Ng)leaves
* O(%i)nodesi levels up

= Spacet ] O(V,) = O(V4)
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External memory data structures

Summary: B-trees

Problem MaintainingN elements dynamically

Fan-oul@(B% ) B-tree(c=1)
— Degree balanced tree with each node/le&(h) blocks
— O(N/B) space

— O(logg N +T4) I/O query
— O(logg N) 1/O update
Space and query optimal in comparison model

Persistent B-tree
— Update current version
— Query all previous versions
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External memory data structures

Other B-tree Variants

* Weight-balanced B-trees
— Weight instead of degree constraint
— Nodes high in the tree do not split very often
— Used when secondary structures are used
More later!

« Level-balanced B-trees

— Global instead of local balancing strategy

— Whole subtrees rebuilt when too many nodes on a level

— Used when parent pointers and divide/merge operations neeq
e String B-trees

— Used to maintain and search (variable length) strings

More later (Paolo)
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External memory data structures

B-tree Construction
 |In internal memory we cagrortN elements irO(N log N) time
using a balanced search tree:
— Insert all elements one-by-one (construct tree)
— Output in sorted order using in-order traversal

« Same algorithm using B-tree uOéN logg N)  I/Os

— A factor of O(B 'lzzMg) non-optimal

e We could of course build B-tregottom-upin O(%Iog,\,l/B %) 1/Os
— But what about persistent B-tree?

— In general we would like to have dynamic data structure to us¢ i
O(& logy 5 §) algorithms= O(%IOgM/B%) /O operations
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External memory data structures

Buffer-tree Technique

yaml =
M elements

fan-outM/B
\P

B

« Main idea Logically group nodes together and add buffers
— Insertions done in a “lazy” way — elements inserted in bufferg.
— When a buffer runs full elements are pushed one level down
— Buffer-emptying inO(M/B) 1/Os
= everyblocktouched constant number of times on each le
= insertingN elements /B blocks) cost©(§ logy s &) 1/Os
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External memory data structures

Basic Buffer-tree

e Definition:
— Fan-out! B-tree —%-L- 13- )-tree with sizleaves
— SizeM buffer in each internal node

» Updates:
— Add time-stamp to insert/delete element
— CollectB elements in memory before inserting in root buffer
— Performbuffer-emptyingwhen buffer runs full

Lars Arge
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External memory data structures

Basic Buffer-tree

* Note:
— Buffer can be larger tha during recursivéuffer-emptying
* Elements distributed in sorted order
= at mostM elements in buffer unsorted
— Rebalancing needed when “leaf-node” buffer emptied

* Leaf-nodebuffer-emptyingonly performed after all full
Internal node buffers are emptied

Lars Arge
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External memory data structures

Basic Buffer-tree

 Internal nodeuffer-empty

— Load firstM (unsorted) elements into
memory and sort them

— Merge elements in memory with rest
of (already sorted) elements

— Scan through sorted list while
* Removing “matching” insert/delete
* Distribute elements to child buffers

— Recursively empty full child buffers

 Emptying buffer of sizeX takesO(X/B+M/B)=0(X/B) I/Os
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External memory data structures

Basic Buffer-tree

o Buffer-emptyof leaf node withK elements in leaves

— Sort buffer as previously
— Merge buffer elements with elements in leaves
— Remove “matching” insert/deletes obtainiigelements

— If K’<K then
* Add K-K’ “dummy” elements and insert in “dummy” leay
Otherwise
* PlaceK elements in leaves
* Repeatedly insert block of elements in leaves and rebal

» Delete dummy leaves and rebalance when all full buffers emptigt

Lars Arge 33



External memory data structures

Basic Buffer-tree

 |nvariant
Buffers of nodes on path from root to emptied leaf-node are empgy
U
* Insert rebalancing (splits)
performed as in normal B-tree

» Delete rebalancing’’ buffer emptied before fuse of

— Necessary buffer emptyings performed before next dummy-
block delete

— Invariant maintained
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External memory data structures

Basic Buffer-tree

e Analysis
— Not counting rebalancing, a buffer-emptying of node vtk M
elementsfill) takesO(X/B) 1/0s

= total full node emptying co€(§ logw, §) 1/0s
— Delete rebalancing buffer-emptyingan-full) takesO(M/B) 1/Os
= cost of one split/fus®(M/B) 1/0s

— DuringN updates

* O(N/B) leaf split/fuse

x O(S—flogM " = )internal node split/fuse
U B

Total cost ofN operationsO(% logw v %) 1/Os
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External memory data structures

Basic Buffer-tree

« Emptying all buffersafterN insertions:
Perform buffer-emptying on all nodes in BFS-order
= resulting fuII buffer emptyings co€t( IogM/ 1/Os
emptyO( ) non-full buffers usin@(M/B) = O(N/B) 1/0s

U
* N elements can be sorted using buffer tre@(%log% %) 1/Os
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Buffer-tree Technique

» Insertanddeleteson buffer-tree takeS(glog,, /B% 1/0Os amortize
— Alternative rebalancing algorithms possible (e.g. top-down)
e One-dim.rangesearchperations can also be supported in

O(log,, X +I)1/Os amortized

M/B B
— Search elements handle lazily like updates

— All elements in relevant sub-trees
reported during buffer-emptying

— Buffer-emptying inO(X/B+T'/B),
whereT’ is reported elements

» Buffer-tree can e.g. be use in standard plane-sweep algorithms fpr
orthogonal line segment intersection (alternativditaribution

sweeping
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Buffered Priority Queue

« Basic buffer tree can be used in external priority queue
e To delete minimal element:

— Empty all buffers on leftmost pa

— Deletez M elements in leftmost
leaf and keep in memory

— Deletion of nextM minimal
elements free

— Inserted elements checked agal
minimal elements in memory

* O(§ logy g 5) 1/Os everyO(M) delete= O(4 log, /B%) amortized
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Other External Priority Queues

External priority queue has been used in the development of magy
|/O-efficientgraph algorithms

Buffer technique can be used on other priority queue structure
— Heap

— Tournament tree

Priority queue supporting update often used in graph algorithms

— O(Z log, ¥) on tournament tree

— Major open problem to do it i@(%logM/B% 1/Os
Worst case efficient priority queue has also been developed

— B operations requir®(log,, /B% 1/0s
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Other Buffer-tree Technigue Results

Attaching®(B) size buffers to normal B-tree can also be use to
Improve update bound

Buffered segment tree

— Has been used imatched range searchiagdrectangle
Intersectioralgorithm

Can normally be modified to work in D-disk model using D-disk
merging and distribution

Has been used on String B-tree to obtain 1/0O-efficient string sortipg
algorithms

Can be used to construct (bulk load) many data structures, e.g:
— R-trees

— Persistent B-trees
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Summary

Fan-oul@(B% ) B-tree(c=1)

— Degree balanced tree with each node/le&(h) blocks
— O(N/B) space

—O(logg N +T4) 1/0 query

—O(logg N) I/O update

Persistent B-tree
— Update current version, query all previous versions
— B-tree bounds witiN number of operations performed
« Buffer tree technique
— Lazy update/queries using buffers attached to each node
— O(%IogM/B%) amortized bounds
— E.g. used to construct structurei- log " X) 1/Os

Lars Arge 41



External memory data structures

Tomorrow

e “Dimension 1.5” problemsinterval stabbing and point location

, N
T\

» Use oftools/techniquediscussed today as well as
— Logarithmic method
— Weight-balanced B-trees
— Global rebuilding
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