External Memory Geometric Data Structures

Lars Arge
Duke University

June 27, 2002

Summer School on Massive Datasets

External memory data structures

External Memory Geometric Data Structures

 Many massive dataset applications involyi@metric data
(or data that can be interpreted geometrically)
— Points, lines, polygons

e Data need to be stored trata structureen external storage media
such thabn-linequeries can be answered I/O-efficiently

e Data often need to be maintained during dynamic updates

 Examples
— Phone Wireless tracking
— ConsumerBuying patterns (supermarket checkout)
— GeographyNASA satellites generate 1.2 TB per day

Lars Arge 2

External memory data structures

Example: LIDAR terrain data
e Massive (irregular) point sets (1-10m resolution)

« Appalachian Mountains (between 50GB and 5TB)
 Need to be queried and updated efficiently

G, s

L iy -" 13.;'- % b "

Example:Jckey’ ridge (C cost) o

Lars Arge 3

o

Block\ I/0

Lars Arge

External memory data structures

Model

 Modelas previously
— N : Elements in structure
— B : Elements per block
— M : Elements in main memory

— T : Output size in searching problems

e Focuson
— Worst-casestructures
— Dynamicstructures
— Fundamentastructures
— Fundamental design techniques

External memory data structures

Outline

 Today:Dimension one
— External search trees: B-trees
— Techniques/tools

* Persistent B-trees (search in the past)‘ X
* Buffer trees (efficient construction)

« Tomorrow:“Dimension 1.5”
— Handling intervals/segments (interval stabbing/point location)

— Techniques/tools: Logarithmic method, weight-balanced B-trges,
global rebuilding

e SaturdayDimension two

— Two-dimensional range searching

Lars Arge 5

External memory data structures

External Search Trees

e Binary search tree:
— Standard method for search amadwglements
— We assume elements in leaves

O(log, N)<

OOOOO OO0 OO0 0O 000000000 000000 oo oOooO o .
— Search traces at least one root-leaf patﬁ
— If nodes stored arbitrarily on disk

= Search inO(log, N) 1/Os

— Rangesearch i®(log, N+T) 1/Os

Lars Arge 6

External memory data structures

External Search Trees

pd

SIQIOIGID,

O(B)

e BFS blocking:
— Block heightO(log, N)/O(log, B) = O(logg N)
— Output elements blocked

U
Rangesearch i®(logg N +74) 1/Os
» Optimat O(N5) space an@®(logg N +T4) query

Lars Arge 7

External memory data structures

External Search Trees

« Maintaining BFS blocking during updates?
— Balance normally maintained in search trees using rotations

=

o Seems very difficult to maintain BFS blocking during rotation
— Also need to make sure output (leaves) is blocked!

Lars Arge 8

External memory data structures

B-trees
« BFS-blocking naturally corresponds to tree with fan©(B)

N

N

LA

LA

LA

LA

LA

LA

LA

LA

7N

» B-trees balanced by allowing node degree to vary
— Rebalancing performed by splitting and merging nodes

%NH/N /l\

Lars Arge

External memory data structures

(a,b)-tree

* Tis an @,b)-tree @2 andb>2a-1)

— All leaves on the same level (2,4)—tree
(contain betweea andb elements)

— Except for the root, all nodes have
degree betweeaandb

— Root has degree between 2 dnd

* (a,b)-tree uses linear space and has heflag, N)
U

Choosinga,b =©(B) each node/leaf stored in one disk block
U

O(N4) space an®(logg N +74) query

Lars Arge 10

External memory data structures

(a,b)-Tree Insert

Insert:

Search and insert element in leaf
DO v hasb+1 elements
Splitv:
make nodes’ andv” with
[%—‘s band _%Jz a elements
Insert element (ref) iparent(v)
(make new root if necessary)

v=parent(v)

e Insert toucl®(log, N) nodes

Lars Arge 11

External memory data structures

(a,b)-Tree Insert

Lars Arge 12

External memory data structures

(a,b)-Tree Delete

e Delete:

Search and delete element from lgaf
DO v hasa-1 children
Fusev with sibling v':
move children o’ tov
delete element (ref) fromarent(v)
(delete root if necessary)
If vhas>b (and<a+b-1) children splitv
v=parent(v)

 Delete touctO(log, N) nodes

Lars Arge 13

External memory data structures

(a,b)-Tree Delete

Lars Arge 14

External memory data structures

(a,b)-Tree

* (a,b)-tree properties: v (23)tree

— If b=2a-1one update can insert

. —_—
cause many rebalancing delete
operations

— If b>2a update only caus@®(1) rebalancing operations amortize}
— If b>2a O(yl—a) = O(%,) rebalancing operations amortized
* Both somewhat hard to show

— If b=4a easy to show that update cauSl{%Ioga N) rebalange
operations amortized

* After split during insert a leaf contains4a/2=2aelements

* After fuse(and possible split) during delete a leaf contains
between//2aand 55/2 a elements

Lars Arge 15

External memory data structures

(a,b)-Tree
(a,b)-tree with leaf parametees,b, (b=4a andb=4a,)
— HeightO(log, g)
— O(}g) amortized leaf rebalance operations
— O(ﬁloga N) amortized internal node rebalance operations

B-trees (a,b)-trees witha,b = ©(B)

— B-trees withelements in the leavesdmetimes calle&*-tree
Fan-outk B-tree

— (k/4,k)-trees with leaf paramet&®(B) and elements in leaves
Fan-ouB(B%) B-tree withc =1

— O(N/B) space

— O(IogB% N +T4) =O(logg N +T4) query

— O(logg N) update

Lars Arge 16

External memory data structures

Persistent B-tree
* |n some applications we are interested in being able to access
previous versions of data structure
— Databases
— Geometric data structures (later)
« Partial persistence
— Update current version (getting new version)
— Query all versions

« We would like to havepartial persistent B-trewith
— O(N/B) space -N is number of updates performed
— O(logg N) update
— O(logg N +T4) query in any version

Lars Arge 17

External memory data structures

Persistent B-tree

« East way to make B-tree partial persistent
— Copy structure at each operation
— Maintain “version-access” structure (B-tree)

update

VY N VYV

« GoodO(logg N +T4) query in any versiomut
— O(N/B) I/O update
— O(N?/B) space

Lars Arge 18

External memory data structures

Persistent B-tree

e |dea
— Elements augmented witbxistence interval”
— Augmented elements storedanestructure
— Elementsalive” at“time” t (versiont) form B-tree

AN

— Version access structure (B-tree) to access B-tree root at time

Lars Arge 19

External memory data structures

Persistent B-tree

» Directedacyclic graphwith elements in leaves (Sinks)
— Routing elements in internal nodes
e Each element (routing element) and nodedvastence interval
* Nodesalive at timet make up B/4,B)-tree on alive elements
» B-tree on all roots (version access structure)

U

Answer query at versiohin O(logg N +74) I/Os as in normal B-tree
o Additional invariant
— New node (only) contains betwegB apdB

U
O(N/B) blocks

Lars Arge 20

External memory data structures

Persistent B-tree Insert

e Search for relevant ledfand insert new element
 |f | containsx >B elementsBlock overflow
— Version split
Mark | dead and create new nodevith x alive element
— If x> 7/ B: Strong overflow
— If x< ¥ B: Strong underflow
— If 3¢ B < x< 7% Bthen recursively updatearent|):
Deletereference td andinsertreference tw

1 3 7 7

Lars Arge 21

External memory data structures

Persistent B-tree Insert
e Strong overflow(x > 74 B)
— Splitvinto v’ andv’ with %, elements each3{ B< %, < ¥ B)
— Recursively updatparentl):
Deletereference td andinsertreference to’ andv”

i g8 = im g i 8
« Strong underflon(x < 3 B)
— Mergex elements withy live elements obtained byersion split
on sibling (x+y=%B)
— If x+y=74B then (strong overflow)performsplit
— Recursively updatparentl):
Deletetwo referencessertone or two references

Lars Arge 22

External memory data structures

Persistent B-tree Delete

e Search for relevant ledfand mark element dead
e If | containsx< ¥, B alive element&lock underflow
— Version split
Mark | dead and create new nodevith x alive element
— Strong underflow(x < 3 B):

Merge(version spliy and possiblysplit (strong overflovy
— Recursively updatparentl):
Deletetwo referencesisertone or two references

1 3
ig 3B

Lars Arge 23

External memory data structures

Persistent B-tree

Insert

1 > done/

Block overflow

Version split

Delete

Block underflow

Version split

done Strong Lverflow

Strong

Lars Arge

Strong underflow

Merge

ove rflow\‘one

-2,+1

24

External memory data structures

Persistent B-tree Analysis
e UpdateO(logg N)
— Search and “rebalance” on one root-leaf path
o SpaceO(N/B)
— At least4 B updates in leaf iaxistence interval
— When leal die
* At most two other nodes are created
* At most one block over/underflow one level up fsarentl))

U

— DuringN updates we create:
* O(Ng)leaves
* O(%i)nodesi levels up

= Spacet] O(V,) = O(V4)

Lars Arge 25

External memory data structures

Summary: B-trees

Problem MaintainingN elements dynamically

Fan-oul@(B%) B-tree(c=1)
— Degree balanced tree with each node/le&(h) blocks
— O(N/B) space

— O(logg N +T4) I/O query
— O(logg N) 1/O update
Space and query optimal in comparison model

Persistent B-tree
— Update current version
— Query all previous versions

Lars Arge 26

External memory data structures

Other B-tree Variants

* Weight-balanced B-trees
— Weight instead of degree constraint
— Nodes high in the tree do not split very often
— Used when secondary structures are used
More later!

« Level-balanced B-trees

— Global instead of local balancing strategy

— Whole subtrees rebuilt when too many nodes on a level

— Used when parent pointers and divide/merge operations neeq
e String B-trees

— Used to maintain and search (variable length) strings

More later (Paolo)

Lars Arge 27

External memory data structures

B-tree Construction
 |In internal memory we cagrortN elements irO(N log N) time
using a balanced search tree:
— Insert all elements one-by-one (construct tree)
— Output in sorted order using in-order traversal

« Same algorithm using B-tree uOéN logg N) I/Os

— A factor of O(B 'lzzMg) non-optimal

e We could of course build B-tregottom-upin O(%Iog,\,l/B %) 1/Os
— But what about persistent B-tree?

— In general we would like to have dynamic data structure to us¢ i
O(& logy 5 §) algorithms= O(%IOgM/B%) /O operations

Lars Arge 28

External memory data structures

Buffer-tree Technique

yaml =
M elements

fan-outM/B
\P

B

« Main idea Logically group nodes together and add buffers
— Insertions done in a “lazy” way — elements inserted in bufferg.
— When a buffer runs full elements are pushed one level down
— Buffer-emptying inO(M/B) 1/Os
= everyblocktouched constant number of times on each le
= insertingN elements /B blocks) cost©(§ logy s &) 1/Os

Lars Arge 29

External memory data structures

Basic Buffer-tree

e Definition:
— Fan-out! B-tree —%-L- 13-)-tree with sizleaves
— SizeM buffer in each internal node

» Updates:
— Add time-stamp to insert/delete element
— CollectB elements in memory before inserting in root buffer
— Performbuffer-emptyingwhen buffer runs full

Lars Arge

30

External memory data structures

Basic Buffer-tree

* Note:
— Buffer can be larger tha during recursivéuffer-emptying
* Elements distributed in sorted order
= at mostM elements in buffer unsorted
— Rebalancing needed when “leaf-node” buffer emptied

* Leaf-nodebuffer-emptyingonly performed after all full
Internal node buffers are emptied

Lars Arge

31

External memory data structures

Basic Buffer-tree

 Internal nodeuffer-empty

— Load firstM (unsorted) elements into
memory and sort them

— Merge elements in memory with rest
of (already sorted) elements

— Scan through sorted list while
* Removing “matching” insert/delete
* Distribute elements to child buffers

— Recursively empty full child buffers

 Emptying buffer of sizeX takesO(X/B+M/B)=0(X/B) I/Os

Lars Arge 32

External memory data structures

Basic Buffer-tree

o Buffer-emptyof leaf node withK elements in leaves

— Sort buffer as previously
— Merge buffer elements with elements in leaves
— Remove “matching” insert/deletes obtainiigelements

— If K’<K then
* Add K-K’ “dummy” elements and insert in “dummy” leay
Otherwise
* PlaceK elements in leaves
* Repeatedly insert block of elements in leaves and rebal

» Delete dummy leaves and rebalance when all full buffers emptigt

Lars Arge 33

External memory data structures

Basic Buffer-tree

 |nvariant
Buffers of nodes on path from root to emptied leaf-node are empgy
U
* Insert rebalancing (splits)
performed as in normal B-tree

» Delete rebalancing’’ buffer emptied before fuse of

— Necessary buffer emptyings performed before next dummy-
block delete

— Invariant maintained

Lars Arge 34

External memory data structures

Basic Buffer-tree

e Analysis
— Not counting rebalancing, a buffer-emptying of node vtk M
elementsfill) takesO(X/B) 1/0s

= total full node emptying co€(§ logw, §) 1/0s
— Delete rebalancing buffer-emptyingan-full) takesO(M/B) 1/Os
= cost of one split/fus®(M/B) 1/0s

— DuringN updates

* O(N/B) leaf split/fuse

x O(S—flogM " =)internal node split/fuse
U B

Total cost ofN operationsO(% logw v %) 1/Os

Lars Arge 35

External memory data structures

Basic Buffer-tree

« Emptying all buffersafterN insertions:
Perform buffer-emptying on all nodes in BFS-order
= resulting fuII buffer emptyings co€t(IogM/ 1/Os
emptyO() non-full buffers usin@(M/B) = O(N/B) 1/0s

U
* N elements can be sorted using buffer tre@(%log% %) 1/Os

Lars Arge 36

External memory data structures

Buffer-tree Technique

» Insertanddeleteson buffer-tree takeS(glog,, /B% 1/0Os amortize
— Alternative rebalancing algorithms possible (e.g. top-down)
e One-dim.rangesearchperations can also be supported in

O(log,, X +I)1/Os amortized

M/B B
— Search elements handle lazily like updates

— All elements in relevant sub-trees
reported during buffer-emptying

— Buffer-emptying inO(X/B+T'/B),
whereT’ is reported elements

» Buffer-tree can e.g. be use in standard plane-sweep algorithms fpr
orthogonal line segment intersection (alternativditaribution

sweeping
Lars Arge 37

External memory data structures

Buffered Priority Queue

« Basic buffer tree can be used in external priority queue
e To delete minimal element:

— Empty all buffers on leftmost pa

— Deletez M elements in leftmost
leaf and keep in memory

— Deletion of nextM minimal
elements free

— Inserted elements checked agal
minimal elements in memory

* O(§ logy g 5) 1/Os everyO(M) delete= O(4 log, /B%) amortized

Lars Arge 38

External memory data structures

Other External Priority Queues

External priority queue has been used in the development of magy
|/O-efficientgraph algorithms

Buffer technique can be used on other priority queue structure
— Heap

— Tournament tree

Priority queue supporting update often used in graph algorithms

— O(Z log, ¥) on tournament tree

— Major open problem to do it i@(%logM/B% 1/Os
Worst case efficient priority queue has also been developed

— B operations requir®(log,, /B% 1/0s

Lars Arge 39

External memory data structures

Other Buffer-tree Technigue Results

Attaching®(B) size buffers to normal B-tree can also be use to
Improve update bound

Buffered segment tree

— Has been used imatched range searchiagdrectangle
Intersectioralgorithm

Can normally be modified to work in D-disk model using D-disk
merging and distribution

Has been used on String B-tree to obtain 1/0O-efficient string sortipg
algorithms

Can be used to construct (bulk load) many data structures, e.g:
— R-trees

— Persistent B-trees

Lars Arge 40

External memory data structures

Summary

Fan-oul@(B%) B-tree(c=1)

— Degree balanced tree with each node/le&(h) blocks
— O(N/B) space

—O(logg N +T4) 1/0 query

—O(logg N) I/O update

Persistent B-tree
— Update current version, query all previous versions
— B-tree bounds witiN number of operations performed
« Buffer tree technique
— Lazy update/queries using buffers attached to each node
— O(%IogM/B%) amortized bounds
— E.g. used to construct structurei- log " X) 1/Os

Lars Arge 41

External memory data structures

Tomorrow

e “Dimension 1.5” problemsinterval stabbing and point location

, N
T\

» Use oftools/techniquediscussed today as well as
— Logarithmic method
— Weight-balanced B-trees
— Global rebuilding

Lars Arge 42

