
Paradigms for EÆcient Design of External

Memory Algorithms

Je�rey Scott Vitter1;2?

Purdue University, Department of Computer Sciences, West Lafayette, IN
47907-2066, USA

http://www.science.purdue.edu/jsv/

jsv@purdue.edu

Abstract. Data sets in large applications are often too massive to �t
completely inside the computer's internal memory. The resulting in-
put/output communication (or I/O) between fast internal memory and
slower external memory (such as disks) can be a major performance bot-
tleneck. We survey the state of the art in the design and analysis of
external memory (or EM ) algorithms, where the primary goal is to re-
duce the number of input/output (or I/O) operations, which tend to be
a bottleneck in data-intensive applications. Two important avenues to
reduce I/O costs are to exploit locality in EM algorithm design, in order
to increase the amount of usefulinformation transferred in each I/O, and
to take advantage of parallel disk drives, which can be accessed simulta-
neously. We examine several useful design paradigms and fundamental
performance bounds for I/O performance.

1 Introduction

1.1 Background

For reasons of economy, general-purpose computer systems usually contain a hierarchy
of memory levels, each level with its own cost and performance characteristics. At the
lowest level, CPU registers and caches are built with the fastest but most expensive
memory. For internal main memory, dynamic random access memory (DRAM) is typ-
ical. At a higher level, inexpensive but slower magnetic disks are used for external
mass storage, and even slower but larger-capacity devices such as tapes and optical
disks are used for archival storage. Figure 1 depicts a typical memory hierarchy and
its characteristics.

Most modern programming languages are based upon a programming model in
which memory consists of one uniform address space. The notion of virtual memory
allows the address space to be far larger than what can �t in the internal memory of the
computer. Programmers have a natural tendency to assume that all memory references
require the same access time. In many cases, such an assumption is reasonable (or at
least doesn't do any harm), especially when the data sets are not large. The utility
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and elegance of this programming model are to a large extent why it has 
ourished,
contributing to the productivity of the software industry.

However, not all memory references are created equal. Large address spaces span
multiple levels the of memory hierarchy, and accessing the data in the lowest levels
of memory is orders of magnitude faster than accessing the data at the higher levels.
For example, loading a register takes on the order of a nanosecond (10�9 seconds),
and accessing internal memory takes tens of nanoseconds, but the latency of accessing
data from a disk is several milliseconds (10�3 seconds), which is about one million
times slower! In applications that process massive amounts of data, the Input/Output
communication (or simply I/O) between levels of memory is often the bottleneck.

Many computer programs exhibit some degree of locality in their pattern of memory
references: Certain data are referenced repeatedly for a while, and then the program
shifts attention to other sets of data. Modern operating systems take advantage of such
access patterns by tracking the program's so-called \working set"|a vague notion that
roughly corresponds to the recently referenced data items [49]. If the working set is
small, it can be cached in high-speed memory so that access to it is fast. Caching and
prefetching heuristics have been developed to reduce the number of occurrences of a
\fault", in which the referenced data item is not in the cache and must be retrieved by
an I/O from a higher level of memory. For example, in a page fault, an I/O is needed
to retrieve a disk page from disk and bring it into internal memory.

Caching and prefetching methods are typically designed to be general-purpose, and
thus they cannot be expected to take full advantage of the locality present in every
computation. Some computations themselves are inherently nonlocal, and even with
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Fig. 1. The memory hierarchy of a typical uniprocessor system, including registers,
instruction cache, data cache (level 1 cache), level 2 cache, internal memory, and disks.
Below each memory level is the range of typical sizes for that memory level. Each
value of B at the top of the �gure denotes the block transfer size between two adja-
cent levels of the hierarchy. All sizes are given in units of bytes (B), kilobytes (KB),
megabytes (MB), gigabytes (GB), or terabytes (TB). (In the PDM model described
in in Section 2, we measure B in units of items rather than in units of bytes.) In
this �gure, 8 KB is the indicated physical block transfer size between internal memory
and the disks. However, in batched applications it is often more appropriate to use a
substantially larger logical block transfer size.



omniscient cache management decisions they are doomed to perform large amounts of
I/O and su�er poor performance. Substantial gains in performance may be possible by
incorporating locality directly into the algorithm design and by explicit management
of the contents of each level of the memory hierarchy, thereby bypassing the virtual
memory system.

We refer to algorithms that explicitly manage data placement and movement as
external memory (or EM ) algorithms. Some authors use the terms I/O algorithms

or out-of-core algorithms. We concentrate in this survey on the I/O communication
between the random access internal memory and the magnetic disk external memory,
where the relative di�erence in access speeds is most apparent. We therefore use the
term I/O to designate the communication between the internal memory and the disks.

1.2 Overview

In this article we survey several paradigms for exploiting locality and thereby reducing
I/O costs when solving problems in external memory. (See Table 1.) We give the
fundamental performance bounds required to solve various problems of interest. We
concentrate in this article on batched problems, in which no preprocessing is done and
the entire �le of data items must be processed, often by streaming the data through the
internal memory in one or more passes. Typical examples of batched problems include
sorting, FFT, computing Voronoi diagrams, and computing intersecting segments. We
refer the reader to Chapter ??? for a discussion of online problems, such as the dictionary
and priority queue problems, in which computation is done in response to a continuous
series of query operations.

In the next section we describe the parallel disk model (PDM) that we use as the
basis for our algorithm design. The three main performance measures of PDM are the
number of I/O operations, the disk space usage, and the CPU time. We focus in this
article on the number of I/O operations. In Section 3 we list the fundamental I/O
bounds that pertain to most of the problems we consider. In Section 4 we show why
it is crucial for EM algorithms to exploit locality, and we discuss an automatic load
balancing technique called disk striping for using multiple disks in parallel.

In Section 5 we focus on parallel disk algorithms for the canonical batched EM
problem of external sorting and the related problems of permuting and fast Fourier
transform. In Section 6, we discuss grid and linear algebra batched computations.

For most problems, parallel disks can be utilized e�ectively by means of disk striping
or the parallel disk techniques of Section 5, and hence we restrict ourselves starting in
Section 7 to the conceptually simpler single-disk case. In Section 7 we mention several
e�ective paradigms for batched EM problems in computational geometry. In Section 8
we look at EM algorithms for combinatorial problems on graphs. Algorithms for strings
are discussed in Chapter ??? and [144]. Experiments and programming environments
are discussed in Section 9.

In Section 10, we examine some fundamental lower bounds on I/O performance for
the problems examined earlier. In Section 11 we discuss upper and lower bounds for EM
algorithms that adapt optimally to dynamically changing internal memory allocations.
We conclude with some �nal remarks and observations in Section 12.

2 Parallel Disk Model (PDM)

EM algorithms explicitly control data placement and movement, and thus it is impor-
tant for algorithm designers to have a simple but reasonably accurate model of the



Paradigm Reference

Batched �ltering x7
Batched incremental construction x7
Disk striping x4.2
Distribution x5.1
Distribution Sweeping x7
Fractional Cascading x7
Load Balancing x4
Locality x4
Marriage before conquest x7
Merging x5.2
Parallel simulation x8
Persistence x7
Random sampling x5.1
Scanning (or streaming) x2.2
Sparsi�cation x8

Table 1. Paradigms for I/O eÆciency discussed in this survey.

            

Fig. 2. Platter of a magnetic disk drive.

memory system's characteristics. Magnetic disks consist of one or more rotating plat-
ters and one read/write head per platter surface. The data are stored on the platters
in concentric circles called tracks, as shown in Figure 2. To read or write a data item at
a certain address on disk, the read/write head must mechanically seek to the correct
track and then wait for the desired address to pass by. The seek time to move from
one random track to another is often on the order of 5 to 10 milliseconds, and the
average rotational latency, which is the time for half a revolution, has the same order
of magnitude. In order to amortize this delay, it pays to transfer a large contiguous
group of data items, called a block. Similar considerations apply to all levels of the
memory hierarchy. Typical block sizes are shown in Figure 1.

Even if an application can structure its pattern of memory accesses to exploit
locality and take full advantage of disk block transfer, there is still a substantial access



gap between internal and external memory performance. In fact the access gap is
growing, since the latency and bandwidth of memory chips are improving more quickly
than those of disks. Use of parallel processors further widens the gap. Storage systems
such as RAID deploy multiple disks in order to get additional bandwidth [31, 71].

In the next section we describe the high-level parallel disk model (PDM), which we
use throughout this survey for the design and analysis of EM algorithms. In Section 2.2
we consider some practical modeling issues dealing with the sizes of blocks and tracks
and the corresponding parameter values in PDM. In Section 2.3 we review the historical
development of models of I/O and hierarchical memory.

2.1 PDM and Problem Parameters

We can capture the main properties of magnetic disks and multiple disk systems by
the commonly used parallel disk model (PDM) introduced by Vitter and Shriver [150]:

N = problem size (in units of data items);

M = internal memory size (in units of data items);

B = block transfer size (in units of data items);

D = number of independent disk drives;

P = number of CPUs;

where M < N , and 1 � DB �M=2. The data items are assumed to be of �xed length.
In a single I/O, each of the D disks can simultaneously transfer a block of B contiguous
data items.

If P � D, each of the P processors can drive about D=P disks; if D < P , each
disk is shared by about P=D processors. The internal memory size is M=P per pro-
cessor, and the P processors are connected by an interconnection network. For routing
considerations, one desired property for the network is the capability to sort the M
data items in the collective main memories of the processors in parallel in optimal
O
�
(M=P ) logM

�
time.1 The special cases of PDM for the case of a single processor

(P = 1) and multiprocessors with one disk per processor (P = D) are pictured in
Figure 3.

Queries are naturally associated with online computations, but they can also be
done in batched mode. For example, in the batched orthogonal 2-D range searching
problem discussed in Section 7, we are given a set of N points in the plane and a set
of Q queries in the form of rectangles, and the problem is to report the points lying in
each of the Q query rectangles. In both the batched and online settings, the number of
items reported in response to each query may vary. We thus need to de�ne two more
performance parameters:

Q = number of input queries (for a batched problem);

Z = query output size (in units of data items):

It is convenient to refer to some of the above PDM parameters in units of disk
blocks rather than in units of data items; the resulting formulas are often simpli�ed.
We de�ne the lowercase notation

n =
N

B
; m =

M

B
; q =

Q

B
; z =

Z

B
(1)

1 We use the notation log n to denote the binary (base 2) logarithm log2 n. For bases
other than 2, the base is speci�ed explicitly.
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Fig. 3. Parallel disk model: (a) P = 1, in which the D disks are connected to a common
CPU; (b) P = D, in which each of the D disks is connected to a separate processor.

to be the problem input size, internal memory size, query speci�cation size, and query
output size, respectively, in units of disk blocks.

We assume that the input data are initially \striped" across the D disks, in units of
blocks, as illustrated in Figure 4, and we require the output data to be similarly striped.
Striped format allows a �le of N data items to be read or written in O(N=DB) =
O(n=D) I/Os, which is optimal.

The primary measures of performance in PDM are

1. the number of I/O operations performed,
2. the amount of disk space used, and
3. the internal (sequential or parallel) computation time.

For reasons of brevity in this survey we focus on only the �rst two measures. Most of
the algorithms we mention run in optimal CPU time, at least for the single-processor
case. Ideally algorithms should use linear space, which means O(N=B) = O(n) disk
blocks of storage.

2.2 Practical Modeling Considerations

Track size is a �xed parameter of the disk hardware; for most disks it is in the range
50{200 KB. In reality, the track size for any given disk depends upon the radius of the
track (cf. Figure 2). Sets of adjacent tracks are usually formatted to have the same



D0 D1 D2 D3 D4

stripe 0 0 1 2 3 4 5 6 7 8 9

stripe 1 10 11 12 13 14 15 16 17 18 19

stripe 2 20 21 22 23 24 25 26 27 28 29

stripe 3 30 31 32 33 34 35 36 37 38 39

Fig. 4. Initial data layout on the disks, for D = 5 disks and block size B = 2. The
input data items are initially striped block-by-block across the disks. For example, data
items 16 and 17 are stored in the second block (i.e., in stripe 1) of disk D3.

track size, so there are typically only a small number of di�erent track sizes for a given
disk. A single disk can have a 3 : 2 variation in track size (and therefore bandwidth)
between its outer tracks and the inner tracks.

The minimum block transfer size imposed by hardware is often 512 bytes, but
operating systems generally use a larger block size, such as 8 KB, as in Figure 1.
It is possible (and preferable in batched applications) to use logical blocks of larger
size (sometimes called clusters) and further reduce the relative signi�cance of seek
and rotational latency, but the wall clock time per I/O will increase accordingly. For
example, if we set PDM parameter B to be �ve times larger than the track size, so
that each logical block corresponds to �ve contiguous tracks, the time per I/O will
correspond to �ve revolutions of the disk plus the (now relatively less signi�cant) seek
time and rotational latency. If the disk is smart enough, rotational latency can even be
avoided altogether, since the block spans entire tracks and reading can begin as soon
as the read head reaches the desired track. Once the block transfer size becomes larger
than the track size, the wall clock time per I/O grows linearly with the block size.

For best results in batched applications, especially when the data are streamed
sequentially through internal memory, the block transfer size B in PDM should be
considered to be a �xed hardware parameter a little larger than the track size (say,
on the order of 100 KB for most disks), and the time per I/O should be adjusted
accordingly. For online applications that use pointer-based indexes, a smaller B value
such as 8 KB is appropriate, as in Figure 1. The particular block size that optimizes
performance may vary somewhat from application to application.

PDM is a good generic programming model that facilitates elegant design of I/O-
eÆcient algorithms, especially when used in conjunction with the programming tools
discussed in Section 9. More complex and precise disk models, such as the ones by
Ruemmler and Wilkes [110], Ganger [63], Shriver et al. [123], Barve et al. [25], and
Farach et al. [56], distinguish between sequential reads and random reads and consider
the e�ects of features such as disk bu�er caches and shared buses, which can reduce
the time per I/O by eliminating or hiding the seek time. For example, algorithms
for spatial join that access preexisting index structures (and thus do random I/O) can
often be slower in practice than algorithms that access substantially more data but in a
sequential order (as in streaming) [17]. It is thus helpful not only to consider the number
of block transfers, but also to distinguish between the I/Os that are random versus
those that are sequential. In some applications, automated dynamic block placement
can improve disk locality and help reduce I/O time [121].

Another simpli�cation of PDM is that the D block transfers in each I/O are syn-

chronous; they are assumed to take the same amount of time. This assumption makes



it easier to design and analyze algorithms for multiple disks. In practice, however, if
the disks are used independently, some block transfers will complete more quickly than
others. We can often improve overall elapsed time if the I/O is done asynchronously,
so that disks get utilized as soon as they become available. Bu�er space in internal
memory can be used to queue the read and write requests for each disk.

2.3 Related Memory Models, Hierarchical Memory, and Caching

The study of problem complexity and algorithm analysis when using EM devices began
more than 40 years ago with Demuth's Ph.D. dissertation on sorting [48, 83]. In the
early 1970s, Knuth [83] did an extensive study of sorting using magnetic tapes and (to a
lesser extent) magnetic disks. At about the same time, Floyd [60, 83] considered a disk
model akin to PDM for D = 1, P = 1, B = M=2 = �(Nc), for constant c > 0, and
developed optimal upper and lower I/O bounds for sorting and matrix transposition.
Hong and Kung [73] developed a pebbling model of I/O for straightline computations,
and Savage and Vitter [118] extended the model to deal with block transfer. Aggarwal
and Vitter [8] generalized Floyd's I/O model to allow D simultaneous block transfers,
but the model was unrealistic in that the D simultaneous transfers were allowed to
take place on a single disk. They developed matching upper and lower I/O bounds
for all parameter values for a host of problems. Since the PDM model can be thought
of as a more restrictive (and more realistic) version of Aggarwal and Vitter's model,
their lower bounds apply as well to PDM. In Section 5.4 we discuss a recent simulation
technique due to Sanders et al. [116]; the Aggarwal-Vitter model can be simulated
probabilistically by PDM with only a constant factor more I/Os, thus making the two
models theoretically equivalent in the randomized sense. Deterministic simulations on
the other hand require a factor of log(N=D)= log log(N=D) more I/Os [22].

Surveys of I/O models, algorithms, and challenges appear in [12, 65, 124]. Several
versions of PDM have been developed for parallel computation [47, 89, 128]. Models
of \active disks" augmented with processing capabilities to reduce data traÆc to the
host, especially during streaming applications, are given in [2, 108]. Models of micro-
electromechanical systems (MEMS) for mass storage appear in [68].

Some authors have studied problems that can be solved eÆciently by making only
one pass (or a small number of passes) over the data [57, 72]. One approach to reduce
the internal memory requirements is to require only an approximate answer to the prob-
lem; the more memory available, the better the approximation. A related approach to
reducing I/O costs for a given problem is to use random sampling or data compression
in order to construct a smaller version of the problem whose solution approximates the
original. These approaches are highly problem-dependent and somewhat orthogonal to
our focus in this survey.

The same type of bottleneck that occurs between internal memory (DRAM) and
external disk storage can also occur at other levels of the memory hierarchy, such as
between registers and level 1 cache, between level 1 cache and level 2 cache, between
level 2 cache and DRAM, and between disk storage and tertiary devices. The PDM
model can be generalized to model the hierarchy of memories ranging from registers at
the small end to tertiary storage at the large end. Optimal algorithms for PDM often
generalize in a recursive fashion to yield optimal algorithms in the hierarchical memory
models [6, 5, 151, 149]. Conversely, the algorithms for hierarchical models can be run in
the PDM setting, and in that setting many have the interesting property that they use
no explicit knowledge of the PDM parameters M and B.

One of the complications in algorithm design with the PDM and hierarchical models
is that the algorithms depend on hardware or software parameters, such as M , D,



and B. Frigo et al. [61] and Bender et al. [28] developed the notion of cache-oblivious
algorithms and data structures that require no knowledge of the storage parameters.
The goal is for a single algorithm to be optimal no matter what the parameter values.
We refer the reader to Chapter ??? for more details.

Unfortunately, the match between theory and practice is harder to establish for
hierarchical models and caches than for disks. The simpler hierarchical models are less
accurate, and the more practical models are architecture-speci�c. The relative memory
sizes and block sizes of the levels vary from computer to computer. Another issue is
how blocks from one memory level are stored in the caches at a lower level. When a disk
block is read into internal memory, it can be stored in any speci�ed DRAM location.
However, in level 1 and level 2 caches, each item can only be stored in certain cache
locations, often determined by a hardware modulus computation on the item's memory
address. The number of possible storage locations in the cache for a given item is called
the level of associativity. Some caches are direct-mapped (i.e., with associativity 1), and
most caches have fairly low associativity (typically at most 4).

Another reason why the hierarchical models tend to be more architecture-speci�c is
that the relative di�erence in speed between level 1 cache and level 2 cache or between
level 2 cache and DRAM is orders of magnitude smaller than the relative di�erence
in latencies between DRAM and the disks. Yet, it is apparent that good EM design
principles are useful in developing cache-eÆcient algorithms. For example, sequential
internal memory access is much faster than random access, by about a factor of 10, and
the more we can build locality into an algorithm, the faster it will run in practice. By
properly engineering the \inner loops", a programmer can often signi�cantly speed up
the overall running time. Tools such as simulation environments and system monitoring
utilities [84, 109, 129] can provide sophisticated help in the optimization process.

For reasons of focus, we do not consider such hierarchical models and caching issues
in this survey. We refer the reader to the following references: Aggarwal et al. [5] de�ne
an elegant hierarchical memory model, and Aggarwal et al. [6] augment it with block
transfer capability. Alpern et al. [9] model levels of memory in which the memory size,
block size, and bandwidth grow at uniform rates. Vitter and Shriver [151] and Vitter
and Nodine [149] discuss parallel versions and variants of the hierarchical models.
The parallel model of Li et al. [89] also applies to hierarchical memory. Savage [117]
gives a hierarchical pebbling version of [118]. Carter and Gatlin [30] de�ne pebbling
models of nonassociative direct-mapped caches. Rahman and Raman [105] and Sen and
Chatterjee [122] apply EM techniques to models of caches and translation lookaside
bu�ers. Rao and Ross [106, 107] use B-tree techniques to exploit locality for the design
of cache-conscious search trees.

3 Fundamental I/O Operations and Bounds

The I/O performance of many batched algorithms can be expressed in terms of the
bounds for the following three fundamental operations:

1. Scanning (a.k.a. streaming or touching) a �le of N data items, which involves the
sequential reading or writing of the items in the �le.

2. Sorting a �le of N data items, which puts the items into sorted order.
3. Outputting the Z answers to a query in a blocked \output-sensitive" fashion.

We give the I/O bounds for these four operations in Table 2. We separately list the
special case of a single disk (D = 1), since the formulas are simpler and many of the
discussions in this paper will be restricted to the single-disk case.



The I/O bound Scan(N) = O(n=D), which is clearly required to read or write a
�le of N items, represents a linear number of I/Os in the PDM model. An interesting
feature of the PDM model is that almost all nontrivial batched problems require a
nonlinear number of I/Os, even those that can be solved easily in linear CPU time in
the (internal memory) RAM model. Examples we shall discuss later include permuting,
transposing a matrix, list ranking, and several combinatorial graph problems. Many of
these problems are equivalent in I/O complexity to permuting or sorting.

The linear I/O bounds for Scan(N) and Output(Z) are trivial. The algorithms and
lower bounds for Sort(N) are relatively new and are discussed in later sections. As
Table 2 indicates, the multiple-disk I/O bounds for Scan(N), Sort(N), and Output(Z)
are D times smaller than the corresponding single-disk I/O bounds; such a speedup is
clearly the best improvement possible with D disks.

In practice, the logarithmic term logm n in the Sort(N) bound is a small constant.
For example, in units of items, we could have N = 1010, M = 107, and B = 104, and
thus we get n = 106, m = 103, and logm n = 2, in which case sorting can be done in a
linear number of I/Os. If memory is shared with other processes, the logm n term will
be somewhat larger, but still bounded by a constant.

It still makes sense to explicitly identify the logm n term in the I/O bounds and not
hide them within the big-oh or big-theta factors, since the terms can have a signi�cant
e�ect in practice. (Of course, it is equally important to consider any other constants
hidden in big-oh and big-theta notations!) The nonlinear I/O bound �(n logm n) usu-
ally indicates that multiple or extra passes over the data are required. In truly massive
problems, the data will reside on tertiary storage. As we suggested in Section 2.3, PDM
algorithms can often be generalized in a recursive framework to handle multiple levels
of memory. A multilevel algorithm developed from a PDM algorithm that does n I/Os
will likely run at least an order of magnitude faster in hierarchical memory than would
a multilevel algorithm generated from a PDM algorithm that does n logm n I/Os [151].

4 Exploiting Locality and Load Balancing

The key to achieving eÆcient I/O performance in EM applications is to design the ap-
plication to access its data with a high degree of locality. Since each read I/O operation
transfers a block of B items, we make optimal use of that read operation when all B

Table 2. I/O bounds for the fundamental operations. The PDM parameters are de�ned
in Section 2.1.

Operation I/O bound, D = 1 I/O bound, general D � 1
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items are needed by the application. A similar remark applies to write operations. An
orthogonal form of locality more akin to load balancing arises when we use multiple
disks, since we can transfer D blocks in a single I/O only if the D blocks reside on
distinct disks.

An algorithm that does not exploit locality can be reasonably eÆcient when run
on data sets that �t in internal memory, but it will perform miserably when deployed
naively in an EM setting, in which virtual memory is used to handle page management.
Examining such performance degradation is a good way to put the I/O bounds of
Table 2 into perspective. In Section 4.1 we examine this phenomenon for the single-
disk case, when D = 1.

In Section 4.2, we look at the multiple-disk case and discuss the important paradigm
of disk striping [81, 111], for automatically converting a single-disk algorithm into an
algorithm for multiple disks. Disk striping can be used to get optimal multiple-disk I/O
algorithms for three of the four fundamental operations in Table 2. The only exception
is sorting. The optimal multiple-disk algorithms for sorting require more sophisticated
load balancing techniques, which we cover in Section 5.

4.1 Locality Issues with a Single Disk

A good way to appreciate the fundamental I/O bounds in Table 2 is to consider what
happens when an algorithm does not exploit locality. For simplicity, we restrict our-
selves in this section to the single-disk caseD = 1. For many of the batched problems we
look at in this paper, such as sorting, FFT, triangulation, and computing convex hulls,
it is well known how to write programs to solve the corresponding internal memory
versions of the problems in O(N logN) CPU time. But if we execute such a program on
a data set that does not �t in internal memory, relying upon virtual memory to handle
page management, the resulting number of I/Os may be 
(N log n), which represents
a severe bottleneck.

We would like instead to incorporate locality directly into the algorithm design
and achieve the desired I/O bound of O(n logm n). At the risk of oversimplifying, we
can paraphrase the goal of EM algorithm design for batched problems in the following
syntactic way: to derive eÆcient algorithms so that the N and Z terms in the I/O
bounds of the naive algorithms are replaced by n and z, and so that the base of the
logarithm terms is not 2 but instead m. The relative speedup in I/O performance can
be very signi�cant, both theoretically and in practice. For example, if we go from a
naive algorithm that uses �(N log n) I/Os to one that uses only �(n logm n) I/Os,
the resulting I/O performance improvement is proportional to (N log n)=n logm n =
B logm, which can be extremely large.

4.2 Disk Striping for Multiple Disks

It is conceptually much simpler to program for the single-disk case (D = 1) than for
the multiple-disk case (D � 1). Disk striping [81, 111] is a practical paradigm that
can ease the programming task with multiple disks: I/Os are permitted only on entire
stripes, one stripe at a time. For example, in the data layout in Figure 4, data items
20{29 can be accessed in a single I/O step because their blocks are grouped into the
same stripe. The net e�ect of striping is that the D disks behave as a single logical
disk, but with a larger logical block size DB.

We can thus apply the paradigm of disk striping to automatically convert an algo-
rithm designed to use a single disk with block size DB into an algorithm for use on D
disks each with block size B: In the single-disk algorithm, each I/O step transmits one



block of size DB; in the D-disk algorithm, each I/O step consists of D simultaneous
block transfers of size B each. The number of I/O steps in both algorithms is the same;
in each I/O step, the DB items transferred by the two algorithms are identical. Of
course, in terms of wall clock time, the I/O step in the multiple-disk algorithm will be
�(D) times faster than in the single-disk algorithm because of parallelism.

Disk striping can be used to get optimal multiple-disk algorithms for three of
the four fundamental operations of Section 3|scanning, online search, and output
reporting|but it is nonoptimal for sorting. To see why, consider what happens if we
use the technique of disk striping in conjunction with an optimal sorting algorithm for
one disk, such as merge sort [83]. The optimal number of I/Os to sort using one disk
with block size B is

� (n logm n) = �

�
n
log n

logm

�
= �

�
N

B

log(N=B)

log(M=B)

�
: (2)

With disk striping, the number of I/O steps is the same as if we use a block size of
DB in the single-disk algorithm, which corresponds to replacing each B in (2) by DB,
which gives the I/O bound

�

�
N

DB

log(N=DB)

log(M=DB)

�
= �

�
n

D

log(n=D)

log(m=D)

�
: (3)

On the other hand, the optimal bound for sorting is

�
� n
D

logm n
�
= �

�
n

D

log n

logm

�
: (4)

The striping I/O bound (3) is larger than the optimal sorting bound (4) by a multi-
plicative factor of

log(n=D)

log n

logm

log(m=D)
� logm

log(m=D)
: (5)

When D is on the order of m, the log(m=D) term in the denominator is small, and the
resulting value of (5) is on the order of logm, which can be signi�cant in practice.

It follows that the only way theoretically to attain the optimal sorting bound (4)
is to forsake disk striping and to allow the disks to be controlled independently, so
that each disk can access a di�erent stripe in the same I/O step. Actually, the only
requirement for attaining the optimal bound is that either reading or writing is done
independently. It suÆces, for example, to do only read operations independently and
to use disk striping for write operations. An advantage of using striping for write
operations is that it facilitates the writing of parity information for error correction
and recovery, which is a big concern in RAID systems. (We refer the reader to [31, 71]
for a discussion of RAID and error correction issues.)

In practice, sorting via disk striping can be more eÆcient than complicated tech-
niques that utilize independent disks, especially when D is small, since the extra factor
(logm)= log(m=D) of I/Os due to disk striping may be less than the algorithmic and
system overhead of using the disks independently [138]. In the next section we discuss
algorithms for sorting with multiple independent disks. The techniques that arise can
be applied to many of the batched problems addressed later in the paper. Two such
sorting algorithms|distribution sort with randomized cycling and simple randomized
merge sort|have relatively low overhead and will outperform disk-striped approaches.



5 External Sorting and Related Problems

The problem of external sorting (or sorting in external memory) is a central problem
in the �eld of EM algorithms, partly because sorting and sorting-like operations ac-
count for a signi�cant percentage of computer use [83], and also because sorting is an
important paradigm in the design of eÆcient EM algorithms, as we show in Section 8.
With some technical quali�cations, many problems that can be solved easily in linear
time in internal memory, such as permuting, list ranking, expression tree evaluation,
and �nding connected components in a sparse graph, require the same number of I/Os
in PDM as does sorting.

Theorem 1 ([8, 99]). The average-case and worst-case number of I/Os required for

sorting N = nB data items using D disks is

Sort(N) = �
� n
D

logm n
�
: (6)

We saw in Section 4.2 how to construct eÆcient sorting algorithms for multiple
disks by applying the disk striping paradigm to an eÆcient single-disk algorithm. But
in the case of sorting, the resulting multiple-disk algorithm does not meet the optimal
Sort(N) bound of Theorem 1. In Sections 5.1 and 5.2 we discuss some recently de-
veloped external sorting algorithms that use disks independently. The algorithms are
based upon the important distribution and merge paradigms, which are two generic
approaches to sorting. The SRM method and its variants [23, 27, 114], which are based
upon a randomized merge technique, outperform disk striping in practice for reason-
able values of D. All the algorithms use online load balancing strategies so that the
data items accessed in an I/O operation are evenly distributed on the D disks. The
same techniques can be applied to many of the batched problems we discuss later in
this survey.

All the methods we cover for parallel disks, with the exception of Greed Sort in
Section 5.2, provide eÆcient support for writing redundant parity information onto the
disks for purposes of error correction and recovery. For example, some of the methods
access the D disks independently during parallel read operations, but in a striped
manner during parallel writes. As a result, if we write D � 1 blocks at a time, the
exclusive-or of the D � 1 blocks can be written onto the Dth disk during the same
write operation.

In Section 5.4, we show that if we allow independent reads and writes, we can prob-
abilistically simulate any algorithm written for the Aggarwal-Vitter model discussed
in Section 2.3 by use of PDM with the same number of I/Os, up to a constant factor.

In Section 5.5 we consider the situation in which the items in the input �le do
not have unique keys. In Sections 5.6 and 5.7 we consider problems related to sorting,
such as permuting, permutation networks, transposition, and fast Fourier transform.
In Section 10, we give lower bounds for sorting and related problems.

5.1 Sorting by Distribution

Distribution sort [83] is a recursive process in which we use a set of S � 1 partitioning
elements to partition the items into S disjoint buckets. All the items in one bucket
precede all the items in the next bucket. We complete the sort by recursively sorting
the individual buckets and concatenating them together to form a single fully sorted
list.

One requirement is that we choose the S � 1 partitioning elements so that the
buckets are of roughly equal size. When that is the case, the bucket sizes decrease



from one level of recursion to the next by a relative factor of �(S), and thus there are
O(logS n) levels of recursion. During each level of recursion, we scan the data. As the
items stream through internal memory, they are partitioned into S buckets in an online
manner. When a bu�er of size B �lls for one of the buckets, its block is written to the
disks in the next I/O, and another bu�er is used to store the next set of incoming items
for the bucket. Therefore, the maximum number of buckets (and partitioning elements)
is S = �(M=B) = �(m), and the resulting number of levels of recursion is �(logm n).

It seems diÆcult to �nd S = �(m) partitioning elements using �(n=D) I/Os and
guarantee that the bucket sizes are within a constant factor of one another. EÆcient
deterministic methods exist for choosing S =

p
m partitioning elements [8, 98, 150],

which has the e�ect of doubling the number of levels of recursion. Probabilistic methods
based upon random sampling can be found in [58]. A deterministic algorithm for the
related problem of (exact) selection (i.e., given k, �nd the kth item in the �le in sorted
order) appears in [127].

In order to meet the sorting bound (6), we must form the buckets at each level
of recursion using O(n=D) I/Os, which is easy to do for the single-disk case. In the
more general multiple-disk case, each read step and each write step during the bucket
formation must involve on the average �(D) blocks. The �le of items being partitioned
is itself one of the buckets formed in the previous level of recursion. In order to read
that �le eÆciently, its blocks must be spread uniformly among the disks, so that no
one disk is a bottleneck. The challenge in distribution sort is to write the blocks of the
buckets to the disks in an online manner and achieve a global load balance by the end
of the partitioning, so that the bucket can be read eÆciently during the next level of
the recursion.

Partial striping is an e�ective technique for reducing the amount of information
that must be stored in internal memory in order to manage the disks. The disks are
grouped into clusters of size C and data are written in \logical blocks" of size CB, one
per cluster. Choosing C =

p
D won't change the optimal sorting time by more than a

constant factor, but as pointed out in Section 4.2, full striping (in which C = D) can
be nonoptimal.

Vitter and Shriver [150] develop two randomized online techniques for the par-
titioning so that with high probability each bucket will be well balanced across the
D disks. In addition, they use partial striping in order to �t in internal memory the
pointers needed to keep track of the layouts of the buckets on the disks. Their �rst
partitioning technique applies when the size N of the �le to partition is suÆciently
large or whenM=DB = 
(logD), so that the number �(n=S) of blocks in each bucket
is 
(D logD). Each parallel write operation writes its D blocks in independent random
order to a disk stripe, with all D! orders equally likely. At the end of the partitioning,
with high probability each bucket is evenly distributed among the disks. This situa-
tion is intuitively analogous to the classical occupancy problem, in which b balls are
inserted independently and uniformly at random into d bins. It is well-known that if
the load factor b=d grows asymptotically faster than log d, the most densely populated
bin contains b=d balls asymptotically on the average, which corresponds to an even
distribution. However if the load factor b=d is 1, the largest bin contains (ln d)= ln ln d
balls, whereas an average bin contains only one ball [147]. Intuitively, the blocks in
a bucket act as balls and the disks act as bins. In our case, the parameters corre-
spond to b = 
(d log d), which suggests that the blocks in the bucket should be evenly
distributed among the disks.

By further analogy to the occupancy problem, if the number of blocks per bucket
is not 
(D logD), then the technique breaks down and the distribution of each bucket



among the disks tends to be uneven, causing a bottleneck for I/O operations. For these
smaller values of N , Vitter and Shriver use their second partitioning technique: The
�le is read in one pass, one memoryload at a time. Each memoryload is independently
and randomly permuted and written back to the disks in the new order. In a second
pass, the �le is accessed one memoryload at a time in a \diagonally striped" manner.
Vitter and Shriver show that with very high probability each individual \diagonal
stripe" contributes about the same number of items to each bucket, so the blocks of
the buckets in each memoryload can be assigned to the disks in a balanced round robin
manner using an optimal number of I/Os.

DeWitt et al. [50] present a randomized distribution sort algorithm in a similar
model to handle the case when sorting can be done in two passes. They use a sampling
technique to �nd the partitioning elements and route the items in each bucket to a
particular processor. The buckets are sorted individually in the second pass.

An even better way to do distribution sort, and deterministically at that, is the
BalanceSort method developed by Nodine and Vitter [98]. During the partitioning
process, the algorithm keeps track of how evenly each bucket has been distributed
so far among the disks. It maintains an invariant that guarantees good distribution
across the disks for each bucket. For each bucket 1 � b � S and disk 1 � d �
D, let numb be the total number of items in bucket b processed so far during the
partitioning and let numb(d) be the number of those items written to disk d; that is,
numb =

P
1�d�D numb(d). By application of matching techniques from graph theory,

the BalanceSort algorithm is guaranteed to write at least half of any given memoryload
to the disks in a blocked manner and still maintain the invariant for each bucket b that
the bD=2c largest values among numb(1), numb(2), . . . , numb(D) di�er by at most 1.
As a result, each numb(d) is at most about twice the ideal value numb=D, which implies
that the number of I/Os needed to read a bucket into memory during the next level of
recursion will be within a small constant factor of optimal.

The distribution sort methods that we mentioned above for parallel disks perform
write operations in complete stripes, which makes it easy to write parity information
for use in error correction and recovery. But since the blocks written in each stripe
typically belong to multiple buckets, the buckets themselves will not be striped on the
disks, and we must use the disks independently during read operations. In the write
phase, each bucket must therefore keep track of the last block written to each disk so
that the blocks for the bucket can be linked together.

An orthogonal approach is to stripe the contents of each bucket across the disks so
that read operations can be done in a striped manner. As a result, the write operations
must use disks independently, since during each write, multiple buckets will be writ-
ing to multiple stripes. Error correction and recovery can still be handled eÆciently
by devoting to each bucket one block-sized bu�er in internal memory. The bu�er is
continuously updated to contain the exclusive-or (parity) of the blocks written to the
current stripe, and after D� 1 blocks have been written, the parity information in the
bu�er can be written to the �nal (Dth) block in the stripe.

Under this new scenario, the basic loop of the distribution sort algorithm is, as
before, to read one memoryload at a time and partition the items into S buck-
ets. However, unlike before, the blocks for each individual bucket will reside on
the disks in contiguous stripes. Each block therefore has a prede�ned place where
it must be written. If we choose the normal round-robin ordering for the stripes
(namely, : : : ; 1; 2; 3; : : : ; D; 1; 2; 3; : : : ; D; : : : ), the blocks of di�erent buckets may \col-
lide", meaning that they need to be written to the same disk, and subsequent blocks
in those same buckets will also tend to collide. Vitter and Hutchinson [148] solve the



problem by the technique of randomized cycling. For each of the S buckets, they deter-
mine the ordering of the disks in the stripe for that bucket via a random permutation
of f1, 2, . . . , Dg. The S random permutations are chosen independently. If two blocks
(from di�erent buckets) happen to collide during a write to the same disk, one block is
written to the disk and the other is kept on a write queue. With high probability, sub-
sequent blocks in those two buckets will be written to di�erent disks and thus will not
collide. As long as there is a small pool of available bu�er space to temporarily cache
the blocks in the write queues, Vitter and Hutchinson show that with high probability
the writing proceeds optimally.

We expect that the randomized cycling method or the related merge sort meth-
ods discussed at the end of Section 5.2 will be the methods of choice for sorting with
parallel disks. Experiments are underway to evaluate their relative performance. Dis-
tribution sort algorithms may have an advantage over the merge approaches presented
in Section 5.2 in that they typically make better use of lower levels of cache in the
memory hierarchy of real systems, based upon analysis of distribution sort and merge
sort algorithms on models of hierarchical memory, such as the RUMH model of Vitter
and Nodine [149].

5.2 Sorting by Merging

The merge paradigm is somewhat orthogonal to the distribution paradigm of the previ-
ous section. A typical merge sort algorithm works as follows [83]: In the \run formation"
phase, we scan the n blocks of data, one memoryload at a time; we sort each memory-
load into a single \run", which we then output onto a series of stripes on the disks. At
the end of the run formation phase, there are N=M = n=m (sorted) runs, each striped
across the disks. (In actual implementations, we can use the \replacement-selection"
technique to get runs of 2M data items, on the average, when M � B [83].) After the
initial runs are formed, the merging phase begins. In each pass of the merging phase,
we merge groups of R runs. For each merge, we scan the R runs and merge the items
in an online manner as they stream through internal memory. Double bu�ering is used
to overlap I/O and computation. At most R = �(m) runs can be merged at a time,
and the resulting number of passes is O(logm n).

To achieve the optimal sorting bound (6), we must perform each merging pass in
O(n=D) I/Os, which is easy to do for the single-disk case. In the more general multiple-
disk case, each parallel read operation during the merging must on the average bring
in the next �(D) blocks needed for the merging. The challenge is to ensure that those
blocks reside on di�erent disks so that they can be read in a single I/O (or a small
constant number of I/Os). The diÆculty lies in the fact that the runs being merged
were themselves formed during the previous merge pass. Their blocks were written to
the disks in the previous pass without knowledge of how they would interact with other
runs in later merges.

For the binary merging case R = 2 we can devise a perfect solution, in which the
next D blocks needed for the merge are guaranteed to be on distinct disks, based upon
the Gilbreath principle [64, 83]: We stripe the �rst run into ascending order by disk
number, and we stripe the other run into descending order. Regardless of how the items
in the two runs interleave during the merge, it is always the case that we can access the
next D blocks needed for the output via a single I/O operation, and thus the amount of
internal memory bu�er space needed for binary merging is minimized. Unfortunately
there is no analogue to the Gilbreath principle for R > 2, and as we have seen above,
we need the value of R to be large in order to get an optimal sorting algorithm.



The Greed Sort method of Nodine and Vitter [99] was the �rst optimal deterministic
EM algorithm for sorting with multiple disks. It handles the case R > 2 by relaxing the
condition on the merging process. In each step, two blocks from each disk are brought
into internal memory: the block b1 with the smallest data item value and the block b2
whose largest item value is smallest. If b1 = b2, only one block is read into memory, and
it is added to the next output stripe. Otherwise, the two blocks b1 and b2 are merged
in memory; the smaller B items are written to the output stripe, and the remaining
B items are written back to the disk. The resulting run that is produced is only an
\approximately" merged run, but its saving grace is that no two inverted items are too
far apart. A �nal application of Columnsort [87] suÆces to restore total order; partial
striping is employed to meet the memory constraints. One disadvantage of Greed Sort
is that the block writes and block reads involve independent disks and are not done in a
striped manner, thus making it diÆcult to write parity information for error correction
and recovery.

Aggarwal and Plaxton [7] developed an optimal deterministic merge sort based
upon the Sharesort hypercube parallel sorting algorithm [44]. To guarantee even dis-
tribution during the merging, it employs two high-level merging schemes in which the
scheduling is almost oblivious. Like Greed Sort, the Sharesort algorithm is theoretically
optimal (i.e., within a constant factor of optimal), but the constant factor is larger than
the distribution sort methods.

One of the most practical methods for sorting is based upon the simple randomized

merge sort (SRM) algorithm of Barve et al. [23, 27], referred to as \randomized strip-
ing" by Knuth [83]. Each run is striped across the disks, but with a random starting
point (the only place in the algorithm where randomness is utilized). During the merg-
ing process, the next block needed from each disk is read into memory, and if there is
not enough room, the least needed blocks are \
ushed" (without any I/Os required) to
free up space. Barve et al. [23] derive an asymptotic upper bound on the expected I/O
performance, with no assumptions on the input distribution. A more precise analysis,
which is related to the so-called cyclic occupancy problem, is an interesting open prob-
lem. The cyclic occupancy problem is similar to the classical occupancy problem we
discussed in Section 5.1 in that there are b balls distributed into d bins. However, in the
cyclical occupancy problem, the b balls are grouped into c chains of length b1, b2, . . . bc,
where

P
1�i�c bi = b. Only the head of each chain is randomly inserted into a bin; the

remaining balls of the chain are inserted into the successive bins in a cyclic manner
(hence the name \cyclic occupancy"). It is conjectured that the expected maximum
bin size in the cyclic occupancy problem is at most that of the classical occupancy
problem [23, 83, problem 5.4.9{28]. The bound has been established so far only in an
asymptotic sense.

The expected performance of SRM is not optimal for some parameter values, but
it signi�cantly outperforms the use of disk striping for reasonable values of the param-
eters, as shown in Table 3. Experimental con�rmation of the speedup was obtained on
a 500 megahertz CPU with six fast disk drives, as reported by Barve and Vitter [27].

We can get further improvements in merge sort by a more careful prefetching sched-
ule for the runs. Barve et al. [24] and Kallahalla and Varman [77, 78] have developed
competitive and optimal methods for prefetching blocks in parallel I/O systems.

5.3 Duality between Distribution and Merging

Hutchinson et al. [75, 76] have demonstrated a powerful duality between the process
of writing a sequence of blocks to parallel disks and the process of reading a sequence
of blocks from parallel disks. The writing process is straightforward: In order to write



D = 5 D = 10 D = 50

k = 5 0:56 0:47 0:37

k = 10 0:61 0:52 0:40

k = 50 0:71 0:63 0:51

Table 3. The ratio of the number of I/Os used by simple randomized merge sort
(SRM) to the number of I/Os used by merge sort with disk striping, during a merge
of kD runs, where kD �M=2B. The �gures were obtained by simulation.

sequence � of distinct blocks, each with a speci�ed disk location, each block, when
accessed, is placed into a bu�er. At each I/O step, a block is written to each disk
that has at least one outstanding write request. The duality principle tells us that
the I/O schedule for �, when run in reverse, gives a valid I/O schedule for reading
the reverse sequence �0 of blocks. How to construct an optimal prefetching (read)
schedule for a sequence �0 had long been an open problem [77]. By duality, however,
it is easily solvable by computing the optimal schedule for the write problem on the
reverse sequence � and then reversing the I/O schedule. A related duality exists as
well for the problem of reading a sequence of blocks with repetitions, in which caching
comes into play [75, 76].

Duality can be extended to the two sorting paradigms of distribution and merging.
In particular, we can reduce the merge process to one of reading a sequence of blocks.
The diÆculty is that the input order �0 for the blocks, namely, the order in which
the blocks need to be accessed during the merge, is highly data-dependent and not
known in advance. The key to duality is to characterize �0 in a simple and easily
implementable way. If we examine the process of merging, as illustrated in Figure 5
from the bottom to top, we see that the merging bu�er contains a partially �lled block
from each run (not yet expired). When the block empties all its items into the merged
output stream, the next block from that run can be inserted into the merging bu�er.
The merging bu�er is pictured in the upper rectangle in Figure 5), which is distinct
from the space reserved for the prefetch bu�ers (lower rectangle in Figure 5).

The �rst moment, therefore, when a block absolutely needs to be present in memory
is when the smallest key value of the block is merged into the output stream. We
therefore de�ne the trigger of a block to be the key value of the smallest key in the
block. We say that a block is accessed (or read) when it is moved from the prefetch
bu�er to the merging bu�er, where it stays until its items are exhausted by the merging
process. Thus, the access (or read) order �0 of the blocks is given by the sorted order
of the triggers.

We have now reduced the merging problem to that of prefetching for the input
sequence �0. By duality, we can compute an optimal I/O schedule for �0 by computing
the optimal I/O schedule for writing the reverse sequence �, which is straightforward.
By reversing the I/O schedule, we get an optimal I/O schedule for merging.

The problem remains, however, to determine a striping discipline for laying out
the buckets on the disks. When the placement of the blocks of each run is done by
randomized cycling [148], as described in Section 5.1, the expected number of I/O steps
in the schedule computed via duality meets the optimal sorting bound Sort(N). The
resulting merge sort algorithm is optimal up to second-order terms and is the method
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and for storing the next block being formed for each bucket in distribution) and for
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of choice in practice, along with the distribution sort method based on randomized
cycling discussed at the end of Section 5.1.

5.4 A General Simulation

Sanders et al. [116] and Sanders [115] give an elegant randomized technique to simulate
the Aggarwal-Vitter model of Section 2.3, in which D simultaneous block transfers
are allowed regardless of where the blocks are located on the disks. On the average,
the simulation realizes each I/O in the Aggarwal-Vitter model by only a constant
number of I/Os in PDM. One property of the technique is that the read and write
steps use the disks independently. Armen [22] had earlier shown that deterministic
simulations resulted in an increase in the number of I/Os by a multiplicative factor of
log(N=D)= log log(N=D).



The technique of Sanders et al. consists of duplicating each disk block and storing
the two copies on two independently and uniformly chosen disks (chosen by a hash
function). In terms of the occupancy model, each ball (block) is duplicated and stored
in two random bins (disks). Let us consider the problem of retrieving a speci�c set of
D blocks from the disks. For each block, there is a choice of two disks from which it
can be read. Regardless of which D blocks are requested, Sanders et al. show how to
choose the copies that permit the D blocks to be retrieved with high probability in
only two parallel I/Os. A natural application of this technique is to the layout of data
on multimedia servers in order to support multiple stream requests, as in video-on-
demand.

When writing blocks of data to the disks, each block must be written to both the
disks where a copy is stored. Sanders et al. prove that with high probability D blocks
can be written with a constant number of I/O steps on the average, assuming that there
are O(D) blocks of internal bu�er space to serve as write queues. Blocks are queued
until the disk is available for writing. The key part of the analysis is showing that the
internal bu�er space does not over
ow, except with exponentially small probability. The
read and write bounds can be improved with a corresponding tradeo� in redundancy
and internal memory space.

5.5 Handling Duplicates

Arge et al. [15] describe a single-disk merge sort algorithm for the problem of duplicate
removal, in which there are a total of K distinct items among the N items. It runs
in O

�
nmax

�
1; logm(K=B)

	�
I/Os, which is optimal in the comparison model. The

algorithm can be used to sort the �le, assuming that a group of equal items can be
represented by a single item and a count.

A harder instance of sorting called bundle sorting arises when we have K distinct
key values among the N items, but all the items have di�erent secondary information.
Abello et al. [1] and Matias et al. [92] develop optimal distribution sort algorithms for
bundle sorting using BundleSort(N;K) = O

�
nmax

�
1; logmminfK; ng	� I/Os, and

Matias et al. [92] prove the matching lower bound. Matias et al. [92] also show how
to do bundle sorting (and sorting in general) in place (i.e., without extra disk space).
In distribution sort, for example, the blocks for the sub�les can be allocated from the
blocks freed up from the �le being partitioned; the disadvantage is that the blocks in
the individual sub�les are no longer consecutive on the disk. The algorithms can be
adapted to run on D disks with a speedup of O(D) using the techniques described in
Sections 5.1 and 5.2.

5.6 Permuting and Transposition

Permuting is the special case of sorting in which the key values of the N data items
form a permutation of f1, 2, . . . , Ng.
Theorem 2 ([8]). The average-case and worst-case number of I/Os required for per-

muting N data items using D disks is

�

�
min

�
N

D
; Sort(N)

��
: (7)

The I/O bound (7) for permuting can be realized by using one of the sorting
algorithms from Section 5 except in the extreme case B logm = o(log n), in which
case it is faster to move the data items one by one in a nonblocked way. The one-by-
one method is trivial if D = 1, but with multiple disks there may be bottlenecks on



individual disks; one solution for doing the permuting in O(N=D) I/Os is to apply the
randomized balancing strategies of [150].

Matrix transposition is the special case of permuting in which the permutation can
be represented as a transposition of a matrix from row-major order into column-major
order.

Theorem 3 ([8]). With D disks, the number of I/Os required to transpose a p � q

matrix from row-major order to column-major order is

�
�
n

D
logmminfM; p; q; ng

�
; (8)

where N = pq and n = N=B.

When B is relatively large (say, 1

2
M) and N is O(M2), matrix transposition can be

as hard as general sorting, but for smaller B, the special structure of the transposition
permutation makes transposition easier. In particular, the matrix can be broken up
into square submatrices of B2 elements such that each submatrix contains B blocks of
the matrix in row-major order and also B blocks of the matrix in column-major order.
Thus, if B2 < M , the transpositions can be done in a simple one-pass operation by
transposing the submatrices one at a time in internal memory.

Matrix transposition is a special case of a more general class of permutations called
bit-permute/complement (BPC) permutations, which in turn is a subset of the class
of bit-matrix-multiply/complement (BMMC) permutations. BMMC permutations are
de�ned by a logN � logN nonsingular 0-1 matrix A and a (logN)-length 0-1 vector c.
An item with binary address x is mapped by the permutation to the binary address
given by Ax� c, where � denotes bitwise exclusive-or. BPC permutations are the spe-
cial case of BMMC permutations in which A is a permutation matrix, that is, each row
and each column of A contain a single 1. BPC permutations include matrix transposi-
tion, bit-reversal permutations (which arise in the FFT), vector-reversal permutations,
hypercube permutations, and matrix reblocking. Cormen et al. [40] characterize the
optimal number of I/Os needed to perform any given BMMC permutation solely as
a function of the associated matrix A, and they give an optimal algorithm for imple-
menting it.

Theorem 4 ([40]). With D disks, the number of I/Os required to perform the BMMC

permutation de�ned by matrix A and vector c is

�

�
n

D

�
1 +

rank(
)

logm

��
; (9)

where 
 is the lower-left log n� logB submatrix of A.

An interesting theoretical question is to determine the I/O cost for each individual
permutation, as a function of some simple characterization of the permutation, such
as number of inversions.

5.7 Fast Fourier Transform and Permutation Networks

Computing the fast Fourier transform (FFT) in external memory consists of a series
of I/Os that permit each computation implied by the FFT directed graph (or butter-

y) to be done while its arguments are in internal memory. A permutation network
computation consists of an oblivious (�xed) pattern of I/Os such that any of the N !
possible permutations can be realized; data items can only be reordered when they
are in internal memory. A permutation network can be realized by a series of three
FFTs [158].



Theorem 5. With D disks, the number of I/Os required for computing the N-input

FFT digraph or an N-input permutation network is Sort(N).

Cormen and Nicol [39] give some practical implementations for one-dimensional
FFTs based upon the optimal PDM algorithm of [150]. The algorithms for FFT are
faster and simpler than for sorting because the computation is nonadaptive in nature,
and thus the communication pattern is �xed in advance.

6 Matrix and Grid Computations

Dense matrices are generally represented in memory in row-major or column-major
order. Matrix transposition, which is the special case of sorting that involves conversion
of a matrix from one representation to the other, was discussed in Section 5.6. For
certain operations such as matrix addition, both representations work well. However, for
standard matrix multiplication (using only semiring operations) and LU decomposition,
a better representation is to block the matrix into square

p
B�

p
B submatrices, which

gives the upper bound of the following theorem:

Theorem 6 ([73, 118, 150, 157]). The number of I/Os required for standard matrix

multiplication of two K �K matrices or to compute the LU factorization of a K �K

matrix is �
�
K3=minfK;

p
M gDB�.

Hong and Kung [73] and Nodine et al. [97] give optimal EM algorithms for itera-
tive grid computations, and Leiserson et al. [88] reduce the number of I/Os of naive
multigrid implementations by a �(M1=5) factor. Gupta et al. [70] show how to derive
eÆcient EM algorithms automatically for computations expressed in tensor form.

If a K � K matrix A is sparse, that is, if the number Nz of nonzero elements
in A is much smaller than K2, then it may be more eÆcient to store only the nonzero
elements. Each nonzero element Ai;j is represented by the triple (i; j; Ai;j). Unlike the
dense case, in which transposition can be easier than sorting (e.g., see Theorem 3 when
B2 �M), transposition of sparse matrices is as hard as sorting:

Theorem 7. For a matrix stored in sparse format and containing Nz nonzero ele-

ments, the number of I/Os required to convert the matrix from row-major order to

column-major order, and vice-versa, is �
�
Sort(Nz)

�
.

The lower bound follows by reduction from sorting. If the ith item in the input
of the sorting instance has key value x 6= 0, there is a nonzero element in matrix
position (i; x).

For further discussion of numerical EM algorithms we refer the reader to the survey
by Toledo [134]. Some issues regarding programming environments are covered in [36]
and Section 9.

7 Batched Problems in Computational Geometry

Problems involving massive amounts of geometric data are ubiquitous in spatial
databases [86, 112, 113], geographic information systems (GIS) [86, 112, 137], constraint
logic programming [79, 80], object-oriented databases [159], statistics, virtual reality
systems, and computer graphics [62]. NASA's Earth Observing System project, the
core part of the Earth Science Enterprise (formerly Mission to Planet Earth), pro-
duces petabytes (1015 bytes) of raster data per year [54]! Microsoft's TerraServer online



database of satellite images is over one terabyte in size [131]. A major challenge is to
develop mechanisms for processing the data, or else much of the data will be useless.2

For systems of this size to be eÆcient, we need fast EM algorithms for basic prob-
lems in computational geometry. Luckily, many problems on geometric objects can be
reduced to a small core of problems, such as computing intersections, convex hulls, or
nearest neighbors. Useful paradigms have been developed for solving these problems
in external memory.

Theorem 8. Certain batched problems involving N = nB input items, Q = qB

queries, and Z = zB output items can be solved using

O
�
(n+ q) logm n+ z

�
(10)

I/Os with a single disk:

1. Computing the pairwise intersections of N segments in the plane and their trape-

zoidal decomposition;

2. Finding all intersections between N nonintersecting red line segments and N non-

intersecting blue line segments in the plane;

3. Answering Q orthogonal 2-D range queries on N points in the plane (i.e., �nding

all the points within the Q query rectangles);

4. Constructing the 2-D and 3-D convex hull of N points;

5. Voronoi diagram and Triangulation of N points in the plane;

6. Performing Q point location queries in a planar subdivision of size N ;

7. Finding all nearest neighbors for a set of N points in the plane;

8. Finding the pairwise intersections of N orthogonal rectangles in the plane;

9. Computing the measure of the union of N orthogonal rectangles in the plane;

10. Computing the visibility of N segments in the plane from a point; and

11. Performing Q ray-shooting queries in 2-D Constructive Solid Geometry (CSG)

models of size N .

The parameters Q and Z are set to 0 if they are not relevant for the particular problem.

Goodrich et al. [67], Zhu [161], Arge et al. [21], Arge et al. [19], and Crauser et
al. [41, 42] develop EM algorithms for those problems using these EM paradigms for
batched problems:

Distribution sweeping, a generalization of the distribution paradigm of Section 5 for
\externalizing" plane sweep algorithms.

Persistent B-trees, an o�ine method for constructing an optimal-space persistent ver-
sion of the B-tree data structure (see Chapter ???), yielding a factor of B improve-
ment over the generic persistence techniques of Driscoll et al. [52].

Batched �ltering, a general method for performing simultaneous EM searches in data
structures that can be modeled as planar layered directed acyclic graphs; it is useful
for 3-D convex hulls and batched point location. Multisearch on parallel computers
is considered in [51].

2 For brevity, in the remainder of this survey we deal only with the single-disk case D =
1. The single-disk I/O bounds for the batched problems can often be cut by a factor
of �(D) for the case D � 1 by using the load balancing techniques of Section 5. In
practice, disk striping (cf. Section 4.2) may be suÆcient.



External fractional cascading, an EM analogue to fractional cascading on a segment
tree, in which the degree of the segment tree is O(m�) for some constant 0 < � � 1.
Batched queries can be performed eÆciently using batched �ltering.

External marriage-before-conquest, an EM analogue to the technique of Kirkpatrick
and Seidel [82] for performing output-sensitive convex hull constructions.

Batched incremental construction, a localized version of the randomized incremental
construction paradigm of Clarkson and Shor [34], in which the updates to a simple
dynamic data structure are done in a random order, with the goal of fast overall
performance on the average. The data structure itself may have bad worst-case
performance, but the randomization of the update order makes worst-case behavior
unlikely. The key for the EM version so as to gain the factor of B I/O speedup is
to batch together the incremental modi�cations.

We focus in the remainder of this section primarily on the distribution sweep
paradigm [67], which is a combination of the distribution paradigm of Section 5.1
and the well-known sweeping paradigm from computational geometry [104, 45]. As an
example, let us consider computing the pairwise intersections of N orthogonal segments
in the plane by the following recursive distribution sweep: At each level of recursion,
the region under consideration is partitioned into �(m) vertical slabs, each containing
�(N=m) of the segments' endpoints. We sweep a horizontal line from top to bottom to
process the N segments. When the sweep line encounters a vertical segment, we insert
the segment into the appropriate slab. When the sweep line encounters a horizontal
segment h, as pictured in Figure 6, we report h's intersections with all the \active"
vertical segments in the slabs that are spanned completely by h. (A vertical segment is
\active" if it intersects the current sweep line; vertical segments that are found to be no
longer active are deleted from the slabs.) The remaining two end portions of h (which
\stick out" past a slab boundary) are passed recursively to the next level, along with
the vertical segments. The downward sweep then proceeds. After the initial sorting (to
get the segments with respect to the y-dimension), the sweep at each of the O(logm n)
levels of recursion requires O(n) I/Os, yielding the desired bound (10). Some timing
experiments on distribution sweeping appear in [32]. Arge et al. [19] develop a uni�ed
approach to distribution sweep in higher dimensions.

A central operation in spatial databases is spatial join. A common preprocessing
step is to �nd the pairwise intersections of the bounding boxes of the objects involved
in the spatial join. The problem of intersecting orthogonal rectangles can be solved
by combining the previous sweep line algorithm for orthogonal segments with one
for range searching. Arge et al. [19] take a more uni�ed approach using distribution
sweep, which is extendible to higher dimensions: The active objects that are stored
in the data structure in this case are rectangles, not vertical segments. The authors
choose the branching factor to be �(

p
m ). Each rectangle is associated with the largest

contiguous range of vertical slabs that it spans. Each of the possible �
��p

m

2

��
= �(m)

contiguous ranges of slabs is called a multislab. The reason why the authors choose the
branching factor to be �(

p
m ) rather than �(m) is so that the number of multislabs

is �(m), and thus there is room in internal memory for a bu�er for each multislab.
The height of the tree remains O(logm n).

The algorithm proceeds by sweeping a horizontal line from top to bottom to process
the N rectangles. When the sweep line �rst encounters a rectangle R, we consider the
multislab lists for all the multislabs that R intersects. We report all the active rectangles
in those multislab lists, since they are guaranteed to intersect R. (Rectangles no longer
active are discarded from the lists.) We then extract the left and right end portions
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Fig. 6. Distribution sweep used for �nding intersections amongN orthogonal segments.
The vertical segments currently stored in the slabs are indicated in bold (namely, s1,
s2, . . . , s9). Segments s5 and s8 are not active, but have not yet been deleted from the
slabs. The sweep line has just advanced to a new horizontal segment that completely
spans slabs 2 and 3, so slabs 2 and 3 are scanned and all the active vertical segments
in slabs 2 and 3 (namely, s2, s3, s4, s6, s7) are reported as intersecting the horizontal
segment. In the process of scanning slab 3, segment s5 is discovered to be no longer
active and can be deleted from slab 3. The end portions of the horizontal segment that
\stick out" into slabs 1 and 4 are handled by the lower levels of recursion, where the
intersection with s8 is eventually discovered.

of R that partially \stick out" past slab boundaries, and we pass them down to process
in the next lower level of recursion. We insert the remaining portion of R, which spans
complete slabs, into the list for the appropriate multislab. The downward sweep then
continues. After the initial sorting preprocessing, each of the O(logm n) sweeps (one
per level of recursion) takes O(n) I/Os, yielding the desired bound (10).

The resulting algorithm, called Scalable Sweeping-Based Spatial Join (SSSJ) [18,
19], outperforms other techniques for rectangle intersection. It was tested against two
other sweep line algorithms: the Partition-Based Spatial-Merge (QPBSM) used in Par-
adise [103] and a faster version called MPBSM that uses an improved dynamic data
structure for intervals [18]. The TPIE system described in Section 9 served as the com-
mon implementation platform. The algorithms were tested on several data sets. The
timing results for the two data sets in Figures 7(a) and 7(b) are given in Figures 7(c)
and 7(d), respectively. The �rst data set is the worst case for sweep line algorithms; a
large fraction of the line segments in the �le are active (i.e., they intersect the current
sweep line). The second data set is a best case for sweep line algorithms, but the two
PBSM algorithms have the disadvantage of making extra copies of the rectangles. In
both cases, SSSJ shows considerable improvement over the PBSM-based methods. In
other experiments done on more typical data, such as TIGER/line road data sets [133],
SSSJ and MPBSM perform about 30% faster than does QPBSM. The conclusion we



draw is that SSSJ is as fast as other known methods on typical data, but unlike other
methods, it scales well even for worst-case data. If the rectangles are already stored in
an index structure, such as the R-tree index structure, hybrid methods that combine
distribution sweep with inorder traversal often perform best [17].

For the problem of �nding all intersections among N line segments, Arge et al. [21]
give an eÆcient algorithm based upon distribution sort, but the output component
of the I/O bound is slightly nonoptimal: z logm n rather than z. Crauser et al. [41,
42] attain the optimal I/O bound (10) by constructing the trapezoidal decomposition
for the intersecting segments using an incremental randomized construction. For I/O
eÆciency, they do the incremental updates in a series of batches, in which the batch
size is geometrically increasing by a factor of m.

8 Batched Problems on Graphs

The �rst work on EM graph algorithms was by Ullman and Yannakakis [136] for the
problem of transitive closure. Chiang et al. [33] consider a variety of graph problems,
several of which have upper and lower I/O bounds related to sorting and permuting.
Abello et al. [1] formalize a functional approach to EM graph problems, in which com-
putation proceeds in a series of scan operations over the data; the scanning avoids side
e�ects and thus permits checkpointing to increase reliability. Kumar and Schwabe [85],
followed by Buchsbaum et al. [29], develop graph algorithms based upon amortized
data structures for binary heaps and tournament trees. Munagala and Ranade [95] give
improved graph algorithms for connectivity and undirected breadth-�rst search, and
Arge et al. [13] extend the approach to compute the minimum spanning forest (MSF).
Meyer [93] provides some improvements for graphs of bounded degree. Arge [11] gives
eÆcient algorithms for constructing ordered binary decision diagrams. Grossi and Ital-
iano [69] apply their multidimensional data structure to get dynamic EM algorithms
for MSF and two-dimensional priority queues (in which the delete min operation is
replaced by delete minx and delete miny). Techniques for storing graphs on disks for
eÆcient traversal and shortest path queries are discussed in [4, 66, 74, 96]. Computing
wavelet decompositions and histograms [152, 153, 155] is an EM graph problem related
to transposition that arises in On-Line Analytical Processing (OLAP). Wang et al. [154]
give an I/O-eÆcient algorithm for constructing classi�cation trees for data mining.

Table 4 gives the best known I/O bounds for several graph problems, as a function
of the number V = vB of vertices and the number E = eB of edges. The best known
I/O lower bound for these problems is 


�
(E=V )Sort(V ) = e logm v

�
, as mentioned in

Section 10. A sparsi�cation technique [55] can often be applied to convert I/O bounds
of the form O

�
Sort(E)

�
to the improved form O

�
(E=V )Sort(V )

�
. For example, the

actual I/O bounds for connectivity and MSF derived by Munagala and Ranade [95]
and Arge et al. [13] are O

�
max

�
1; log log(V=e)

	
Sort(E)

�
. For the MSF problem, we

can partition the edges of the graph into E=V sparse subgraphs on V vertices, and
then apply the algorithm of [13] to each subproblem to create E=V spanning forests in
a total of O

�
max

�
1; log log(V=e)

	
(E=V )Sort(V )

�
I/Os. We can then merge the E=V

spanning forests, two at a time, in a balanced binary merging procedure by repeatedly
applying the algorithm of [13]. After the �rst level of binary merging, the spanning
forests collectively have at most E=2 edges; after two levels, they have at most E=4
edges, and so on in a geometrically decreasing manner. The total cost for the �nal
spanning forest is thus O

�
max

�
1; log log(V=e)

	
(E=V )Sort(V )

�
I/Os. The reason why

sparsi�cation works is that the spanning forest output by each binary merge is only
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Fig. 7. Comparison of Scalable Sweeping-Based Spatial Join (SSSJ) with the original
PBSM (QPBSM) and a new variant (MPBSM) (a) Data set 1 consists of tall and skinny
(vertically aligned) rectangles. (b) Data set 2 consists of short and wide (horizontally
aligned) rectangles. (c) Running times on data set 1. (d) Running times on data set 2.

�(V ) in size, yet it preserves the necessary information needed for the next merge step.
The same approach works for connectivity.



Graph Problem I/O Bound, D = 1

List ranking,
Euler tour of a tree,
Centroid decomposition,
Expression tree evaluation

�
�
Sort(V )

�
[33]

Connected components,
Minimum spanning forest (MSF)

O

�
max

�
1; log log

V

e

�
E

V
Sort(V )

�
[13, 55, 95] (deterministic)

�

�
E

V
Sort(V )

�
[33] (randomized)

Bottleneck MSF,
Biconnected components

O

�
min

�
V

2
; max

�
1; log

V

M

�
E

V
Sort(V );

(logB)
E

V
Sort(V ) + e log V

��

[1, 33, 55, 85] (deterministic)

�

�
E

V
Sort(V )

�
[33, 55] (randomized)

Ear decomposition,
Maximal matching

O

�
min

�
V

2
; max

�
1; log

V

M

�
Sort(E);

(logB)Sort(E) + e log V

��

[1, 33, 85] (deterministic)

O
�
Sort(E)

�
[33] (randomized)

Undirected breadth-�rst search O
�
BundleSort(E; V ) + V

�
[95]

Undirected single-source
shortest paths

O(e log e+ V ) [85]

Directed and undirected
depth-�rst search,
Topological sorting,
Directed breadth-�rst search,
Directed single-source
shortest paths

O
�
min

nve
m

+ V; (V + e) log v
o�

[29, 33, 85]

Transitive closure O

�
V v

r
e

m

�
[33]

Table 4. Best known I/O bounds for batched graph problems for the single-disk case
D = 1. The number of vertices is denoted by V = vB and the number of edges by
E = eB. The terms Sort(N) and BundleSort(N;K) are de�ned in Sections 3 and 5.5.
Lower bounds are discussed in Section 10.

In the case of semi-external graph problems [1], in which the vertices �t in internal
memory but not the edges (i.e., V � M < E), several of the problems in Table 4



can be solved optimally in external memory. For example, �nding connected compo-
nents, biconnected components, and minimum spanning forests can be done in O(e)
I/Os when V � M . The I/O complexities of several problems in the general case re-
main open, including connected components, biconnected components, and minimum
spanning forests in the deterministic case, as well as breadth-�rst search, topological
sorting, shortest paths, depth-�rst search, and transitive closure. It may be that the
I/O complexity for several of these problems is �

�
(E=V )Sort(V ) + V

�
. For special

cases, such as trees, planar graphs, outerplanar graphs, and graphs of bounded tree
width, several of these problems can be solved substantially faster in O

�
Sort(E)

�
I/Os

[4, 33, 90, 91].

Chiang et al. [33] exploit the key idea that eÆcient EM algorithms can often be
developed by a sequential simulation of a parallel algorithm for the same problem. The
intuition is that each step of a parallel algorithm speci�es several operations and the
data upon which they act. If we bring together the data arguments for each operation,
which we can do by two applications of sorting, then the operations can be performed
by a single linear scan through the data. After each simulation step, we sort again
in order to reblock the data into the linear order required for the next simulation
step. In list ranking, which is used as a subroutine in the solution of several other
graph problems, the number of working processors in the parallel algorithm decreases
geometrically with time, so the number of I/Os for the entire simulation is proportional
to the number of I/Os used in the �rst phase of the simulation, which is Sort(N) =
�(n logm n). The optimality of the EM algorithm given in [33] for list ranking assumes
that

p
m logm = 
(log n), which is usually true in practice. That assumption can be

removed by use of the bu�er tree data structure [10] (see Chapter ???). A practical
randomized implementation of list ranking appears in [126].

Dehne et al. [46, 47] and Sibeyn and Kaufmann [128] use a related approach and get
eÆcient I/O bounds by simulating coarse-grained parallel algorithms in the BSP paral-
lel model. Coarse-grained parallel algorithms may exhibit more locality than the �ne-
grained algorithms considered in [33], and as a result the simulation may require fewer
sorting steps. Dehne et al. make certain assumptions, most notably that logm n � c for
some small constant c (or equivalently that Mc < NB), so that the periodic sortings
can each be done in a linear number of I/Os. Since the BSP literature is well devel-
oped, their simulation technique provides eÆcient single-processor and multiprocessor
EM algorithms for a wide variety of problems.

In order for the simulation techniques to be reasonably eÆcient, the parallel algo-
rithm being simulated must run in O

�
(logN)c

�
time using N processors. Unfortunately,

the best known polylog-time algorithms for problems such as depth-�rst search and
shortest paths use a polynomial number of processors, not a linear number. P-complete
problems such as lexicographically-�rst depth-�rst search are unlikely to have polylog-
arithmic time algorithms even with a polynomial number of processors. The interesting
connection between the parallel domain and the EM domain suggests that there may
be relationships between computational complexity classes related to parallel comput-
ing (such as P-complete problems) and those related to I/O eÆciency. It may thus
be possible to show by reduction that certain groups of problems are \equally hard"
to solve eÆciently in terms of I/O and are thus unlikely to have solutions as fast as
sorting.



9 The TPIE External Memory Programming Environment

In this section we describe TPIE (Transparent Parallel I/O Environment)3 [14, 135,
138], which serves as the implementation platform for the experiments described in
Section 7 as well as in several of the referenced papers. TPIE is a comprehensive set of
C++ templates for EM paradigms and a run-time library. Its goal is to help program-
mers develop high-level, portable, and eÆcient implementations of EM algorithms.

There are three basic approaches to supporting development of I/O-eÆcient code,
which we call access-oriented, array-oriented, and framework-oriented. TPIE falls pri-
marily into the third category with some elements of the �rst category. Access-oriented
systems preserve the programmer abstraction of explicitly requesting data transfer.
They often extend the read-write interface to include data type speci�cations and col-
lective speci�cation of multiple transfers, sometimes involving the memories of multiple
processing nodes. Examples of access-oriented systems include the UNIX �le system
at the lowest level, higher-level parallel �le systems such as Whiptail [125], Vesta [37],
PIOUS [94], and the High Performance Storage System [156], and I/O libraries MPI-
IO [36] and LEDA-SM [43].

Array-oriented systems access data stored in external memory primarily by means
of compiler-recognized data types (typically arrays) and operations on those data types.
The external computation is directly speci�ed via iterative loops or explicitly data-
parallel operations, and the system manages the explicit I/O transfers. Array-oriented
systems are e�ective for scienti�c computations that make regular strides through
arrays of data and can deliver high-performance parallel I/O in applications such as
computational 
uid dynamics, molecular dynamics, and weapon system design and
simulation. Array-oriented systems are generally ill-suited to irregular or combinatorial
computations. Examples of array-oriented systems include PASSION [132], Panda [120]
(which also has aspects of access orientation), PI/OT [102], and ViC* [35].

TPIE [14, 135, 138] provides a framework-oriented interface for batched computa-
tion as well as an access-oriented interface for online computation. Instead of viewing
batched computation as an enterprise in which code reads data, operates on it, and
writes results, a framework-oriented system views computation as a continuous process
during which a program is fed streams of data from an outside source and leaves trails
of results behind. TPIE programmers do not need to worry about making explicit calls
to I/O routines. Instead, they merely specify the functional details of the desired com-
putation, and TPIE automatically choreographs a sequence of data movements to feed
the computation.

TPIE is written in C++ as a set of templated classes and functions. It consists
of three main components: a block transfer engine (BTE), a memory manager (MM),
and an access method interface (AMI). The BTE is responsible for moving blocks of
data to and from the disk. It is also responsible for scheduling asynchronous read-
ahead and write-behind when necessary to allow computation and I/O to overlap.
The MM is responsible for managing main memory in coordination with the AMI and
BTE. The AMI provides the high-level uniform interface for application programs. The
AMI is the only component that programmers normally need to interact with directly.
Applications that use the AMI are portable across hardware platforms, since they do
not have to deal with the underlying details of how I/O is performed on a particular
machine.

3 The TPIE software distribution is available free of charge at
http://www.cs.duke.edu/TPIE/ on the World Wide Web.



We have seen in the previous sections that many batched problems in spatial
databases, GIS, scienti�c computing, and graphs can be solved optimally using a rel-
atively small number of basic paradigms such as scanning (or streaming), multiway
distribution, and merging, which TPIE supports as access mechanisms. Batched pro-
grams in TPIE thus consist primarily of a call to one or more of these standard access
mechanisms. For example, a distribution sort can be programmed by using the access
mechanism for multiway distribution. The programmer has to specify the details as to
how the partitioning elements are formed and how the buckets are de�ned. Then the
multiway distribution is invoked, during which TPIE automatically forms the buckets
and writes them to disk using double bu�ering. For online data structures such as
hashing, B-trees, and R-trees, TPIE supports more traditional block access like the
access-oriented systems.

10 Lower Bounds on I/O

In this section we prove the lower bounds from Theorems 1{5 and mention some related
I/O lower bounds for the batched problems in computational geometry and graphs
covered in Sections 7 and 8.

10.1 Scanning

The most trivial batched problem is that of scanning (a.k.a. streaming or touching)
a �le of N data items, which can be done in a linear number O(N=DB) = O(n=D)
of I/Os.

10.2 Permuting

Permuting is one of several simple problems that can be done in linear CPU time in
the (internal memory) RAM model, but require a nonlinear number of I/Os in PDM
because of the locality constraints imposed by the block parameter B. The following
proof of the permutation lower bound (7) of Theorem 2 appears in [75].

Theorem 9. Assuming that M=B is an increasing function as N ! 1, the number

of I/Os required to sort or permute n items, up to lower-order terms, is at least

2N

D

log(N=B)

B log(M=B) + 2 logN
�

8>><
>>:

2N

DB

log(N=B)

log(M=B)
if B log

M

B
= !(logN);

N

D
if B log

M

B
= o(logN):

The second case in the theorem is the pathological case in which the block size B
and internal memory size M are so small that the optimal way to permute the items
is to move them one at a time in the naive manner, not making use of blocking.

For the lower bound calculation, we can assume without loss of generality that
there is only one disk, namely, D = 1. The I/O lower bound for general D follows by
dividing the lower bound for one disk by a factor of D. We can also assume at any
given time that there is only one copy of each block, either on disk or in memory.

The lower bound proof is an elaboration of the one by Aggarwal and Vitter [8],
in which they bound the maximum number of permutations that can be produced by
at most t I/Os. If we take the value of t for which the bound �rst reaches N !, we get
a lower bound on the worst-case number of I/Os. Our elaboration is more careful to
provide a precise bound on both inputs and output operations, so that constant factors
are provided.



Initially, the number of producible permutations is 1. Let us consider the e�ect of
an output. There can be at most N=B + o� 1 nonempty blocks before the oth output
operation, and thus the items in the oth output can go into one of N=B + o places
relative to the other blocks. Hence, the oth output boosts the number of producible
permutations by a factor of at most N=B + o, which can be bounded trivially by

N(1 + logN) (11)

For the case of an input operation, we �rst consider a read I/O from a speci�c
block on disk. If the b items involved in the read I/O were together in internal memory
at some previous time (e.g., if the block was created by an earlier output operation),
then the items could have been arranged in an arbitrary order by the algorithm while
in internal memory. Thus, the b! possible ordering of the b inputed items relative to
themselves could already have been produced before the input operation. This implies
in a subtle way that rearranging the newly inputed items among the otherM � b items
in internal memory can boost the number of producible permutations by a factor of at
most

�
M

b

�
, which is the number of ways to intersperse b indistinguishable items within

a group of size M .
The above analysis applies to input from a speci�c block. If the input was preceded

by a total of o output operations, there are at most N=B+ o � N(1+ logN) blocks to
choose from for the I/O, so the number of producible permutations is boosted further
by at most N(1 + logN). Therefore, assuming that at some point the b inputed items
were previously together in internal memory, an input operation can boost the number
of producible permutations by at most

N(1 + logN)

 
M

b

!
: (12)

Now let's consider an input operation in which some of the inputed items were
not together previously in internal memory (e.g., the �rst time a block is read). By
rearranging the relative order of the items in internal memory, we can increase the
number of producible permutations. Given that there are N=B full blocks initially, we
get the maximum increase when the N=B blocks are read in full, which boosts the
number of producible permutations by a factor of

(B!)N=B: (13)

Let I be the total number of input operations. In the ith input operation, let bi be
the number of items brought into internal memory. By the simplicity property, some
of the items in the block being accessed may not be brought into internal memory, but
rather may be left on disk. In this case, bi counts only the number of items that are
removed from disk and left in internal memory. In particular, we have 0 � bi � B.

By the simplicity property, we need to make room in internal memory for the new
items arriving, and in the end all items are stored back on disk. Therefore we get the
following lower bound on the number O of output operations:

O � 1

B

� X
1�i�I

bi

�
: (14)

Combining (11), (12), and (13), we �nd that

�
N(1 + logN)

�I+O Y
1�i�I

 
M

bi

!
� N !

(B!)N=B
; (15)



where O satis�es (14).
Let �B be the average number of items read during the I input operations. By a

convexity argument, the left-hand side of (15) is maximized when each bi has the same
value, namely, �B. From (15) and (14), we get

�
N(1 + logN)

�I+O M
�B

!I
� N !

(B!)N=B
; (16)

�
N(1 + logN)

�I+O M
�B

!(I+O)=(1+ �B=B)

� N !

(B!)N=B
: (17)

The left-hand side of (17) maximized when �B = B, so we get

�
N(1 + logN)

�I+O M
B

!(I+O)=2

� N !

(B!)N=B
: (18)

Theorem 9 follows by taking logarithms of both sides of (18) and using Stirling's formula
and the fact that M=B is an increasing function of N .

10.3 Sorting

Permuting is a special case of sorting, and hence, the permuting lower bound applies
also to sorting. In the unlikely case thatB logm = o(log n), the permuting bound is only

(N=D), and we must resort to the comparison model to get the full lower bound (6)
of Theorem 1 [8]. In the typical case in which B logm = 
(log n), the comparison
model is not needed to prove the sorting lower bound; the diÆculty of sorting in that
case arises not from determining the order of the data but from permuting (or routing)
the data.

10.4 Related Problems

The proof used above for permuting also works for permutation networks, in which
the communication pattern is oblivious (�xed). Since the choice of disk block is �xed

for each I/O, there is no
�
N(1 + logN)

�I+O
term as there is in (15). Hence, when

we solve for I + O, we get the lower bound (6) rather than (7). The lower bound
follows directly from the counting argument; unlike the sorting derivation, it does not
require the comparison model for the case B logm = o(log n). The lower bound also
applies directly to FFT, since permutation networks can be formed from three FFTs
in sequence. The transposition lower bound involves a potential argument based upon
a togetherness relation [8].

Arge et al. [15] show for the comparison model that any problem with an

(N logN) lower bound in the (internal memory) RAM model requires 
(n logm n)
I/Os in PDM for a single disk. Their argument leads to a matching lower bound of


�
nmax

�
1; logm(K=B)

	�
I/Os in the comparison model for duplicate removal with

one disk.

10.5 Bundle Sorting

For the problem of bundle sorting, in which the N items have a total of K distinct key
values (but the secondary information of each item is di�erent), Matias et al. [92] de-
rive the matching lower bound BundleSort(N;K) = 


�
nmax

�
1; logmminfK; ng	�.

The proof consists of the following parts. The �rst part is a simple proof of the



same lower bound as for duplicate removal, but without resorting to the compari-
son model (except for the pathological case B logm = o(log n)). It suÆces to replace
N ! on the right-hand side of (15) by N !=

�
(N=K)!

�K
, which is the maximum number

of permutations of N numbers having K distinct values. Solving for I + O gives the
lower bound 


�
nmax

�
1; logm(K=B)

	�
, which is equal to the desired lower bound for

BundleSort (N;K) when K = B1+
(1) or M = B1+
(1). Matias et al. [92] derive the
remaining case of the lower bound for BundleSort(N;K) by a potential argument based
upon the transposition lower bound. Dividing by D gives the lower bound for D disks.

10.6 Geometrical and Graph Problems

Chiang et al. [33], Arge [11], Arge and Miltersen [16], and Munagala and Ranade [95]
give models and lower bound reductions for several computational geometry and graph
problems. The geometry problems discussed in Section 7 are equivalent to sorting
in both the internal memory and PDM models. Problems such as list ranking and
expression tree evaluation have the same nonlinear I/O lower bound as permuting.
Other problems such as connected components, biconnected components, and minimum
spanning forest of sparse graphs with E edges and V vertices require as many I/Os as
E=V instances of permuting V items. This situation is in contrast with the (internal
memory) RAM model, in which the same problems can all be done in linear CPU
time. (The known linear-time RAM algorithm for �nding a minimum spanning tree is
randomized.) In some cases there is a gap between the best known upper and lower
bounds, which we examine further in Section 8.

10.7 Issue of Indivisibility

The lower bounds mentioned above assume that the data items are in some sense
\indivisible", in that they are not split up and reassembled in some magic way to get
the desired output. It is conjectured that the sorting lower bound (6) remains valid even
if the indivisibility assumption is lifted. However, for an arti�cial problem related to
transposition, Adler [3] showed that removing the indivisibility assumption can lead to
faster algorithms. A similar result is shown by Arge and Miltersen [16] for the decision
problem of determining if N data item values are distinct. Whether the conjecture is
true is a challenging theoretical open problem.

11 Dynamic Memory Allocation

The amount of internal memory allocated to a program may 
uctuate during the course
of execution because of demands placed on the system by other users and processes. EM
algorithms must be able to adapt dynamically to whatever resources are available so as
to preserve good performance [100]. The algorithms in the previous sections assume a
�xed memory allocation; they must resort to virtual memory if the memory allocation
is reduced, often causing a severe degradation in performance.

Barve and Vitter [26] discuss the design and analysis of EM algorithms that adapt
gracefully to changing memory allocations. In their model, without loss of generality,
an algorithm (or program) P is allocated internal memory in phases: During the ith
phase, P is allocated mi blocks of internal memory, and this memory remains allocated
to P until P completes 2mi I/O operations, at which point the next phase begins.
The process continues until P �nishes execution. The model makes the reasonable
assumption that the duration for each memory allocation phase is long enough to
allow all the memory in that phase to be used by the algorithm.



For sorting, the lower bound approach of Section 10.2 implies that

X
i

2mi logmi = 
(n log n):

We say that P is dynamically optimal for sorting if

X
i

2mi logmi = O(n log n)

for all possible sequences m1, m2, . . . of memory allocation. Intuitively, if P is dynam-
ically optimal, no other algorithm can perform more than a constant number of sorts
in the worst-case for the same sequence of memory allocations.

Barve and Vitter [26] de�ne the model in generality and give dynamically optimal
strategies for sorting, matrix multiplication, and bu�er tree operations. Their work
represents the �rst theoretical model of dynamic allocation and the �rst algorithms
that can be considered dynamically optimal. Previous work was done on memory-
adaptive algorithms for merge sort [100, 160] and hash join [101], but the algorithms
handle only special cases and can be made to perform nonoptimally for certain patterns
of memory allocation.

12 Conclusions

In this survey we have described several useful paradigms for the design and imple-
mentation of eÆcient external memory (EM) algorithms. The problem domains we
have considered include sorting, permuting, FFT, scienti�c computing, computational
geometry, graphs, databases, and geographic information systems. Interesting chal-
lenges remain in virtually all these problem domains. One diÆcult problem is to prove
lower bounds for permuting and sorting without the indivisibility assumption. Another
promising area is the design and analysis of EM algorithms for eÆcient use of multiple
disks. Optimal bounds have not yet been determined for several basic EM graph prob-
lems such as topological sorting, shortest paths, breadth- and depth-�rst search, and
connected components. There is an intriguing connection between problems that have
good I/O speedups and problems that have fast and work-eÆcient parallel algorithms.

A continuing goal is to develop optimal EM algorithms and to translate theoretical
gains into observable improvements in practice. For some of the problems that can
be solved optimally up to a constant factor, the constant overhead is too large for
the algorithm to be of practical use, and simpler approaches are needed. In practice,
algorithms cannot assume a static internal memory allocation; they must adapt in a
robust way when the memory allocation changes.

Many interesting challenges and opportunities in algorithm design and analysis
arise from new architectures being developed, such as networks of workstations, hier-
archical storage devices, disk drives with processing capabilities, and storage devices
based upon microelectromechanical systems (MEMS). Active (or intelligent) disks, in
which disk drives have some processing capability and can �lter information sent to the
host, have recently been proposed to further reduce the I/O bottleneck, especially in
large database applications [2, 108]. MEMS-based nonvolatile storage has the potential
to serve as an intermediate level in the memory hierarchy between DRAM and disks.
It could ultimately provide better latency and bandwidth than disks, at less cost per
bit than DRAM [119, 139].
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