
1

Rational and Integer Matrix Games - A BRICS Mini Course

K. Subramani ∗

LCSEE,

West Virginia University,

Morgantown, WV

{ksmani@csee.wvu.edu}

1 Introduction

In this tutorial, we shall discuss the problems of Linear Programming and Integer Programming, within the
framework of Matrix Games.

We shall discuss 2 algorithms for Linear Programming, viz., the Fourier-Motzkin (FM) elimination procedure
and the Simplex method.

The FM procedure which was developed by Fourier [Fou24] and rediscovered by Motzkin [DE73] is a incremen-
tal, elegant procedure that works well when either the constraint system has a small dimension (2 or 3) or it has
at most 2 non-zero variables per row [HN94]. However, in general, it is not a practical algorithm for moderate
sized problems, which lack the above properties.

The Simplex method was developed by George B. Dantzig in 1947 and to date, is one of the most popular
schemes for implementing linear programming models. Although, based on a number of simple observations,
understanding the details of the algorithm requires a certain amount of mathematical maturity.

The pedagogical material for this tutorial has been taken in part from [IC93], [BJ77], [Sch87], [GLS88], [Sub03]
and [Sub].

This tutorial has been organized into 4 sessions. The first 2 sessions will be held on August 12, while the
remaining 2 sesssions will be held on August 13.

The topics covered in Session I are as follows:

1. Introduction to Linear Programming and Integer Programming.

2. The Fourier Motzkin elimination Procedure.

3. The Simplex Algorithm.

In Session II, the following topics will be covered:

1. The Simplex Algorithm (contd.)

2. Introduction to Quantified Linear Programming.

3. A decision procedure for deciding Quantified Linear Programs.

4. Proof of Correctness.

Session III will be concerned with the following topics:

1. Proof of Correctness (Contd.)

2. Analysis.
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3. Oblivious and Clairvoyant games.

In Session IV, we shall cover the following topics:

1. Introduction to Quantified Integer Programming.

2. Total Unimodularity of the Constraint matrix.

2 Introduction to Linear Programming and Integer Programming

1. Definition.

2. Decision Variables, Constraints, feasibility region.

3. The Diet problem.

4. The Min-Cost Flow problem.

5. The Matchbox problem (Exercise) - A company manufactures 2 types of matchboxes, say T1 and T2. Selling
a unit of T1 nets a profit of $10, while a unit of T2 nets a profit of $15. Each matchbox goes through a
cutting process and a labeling process. A unit of T1 requires 2 hours of cutting and an hour of labeling,
whereas a unit of T2 requires 1 hours of cutting and 2 hours of labeling. The company can support at most
10 hours of labeling and at most 10 hours of cutting hours, per week. Due to contractual obligations, the
company must make at least 3 units of T1 per week. What is the optimal product mix for the company?
Solution: z = 83 1

3
, 3 1

3
units of T1 and 3 1

3
units of T2.

6. The Clausal Satisfiability problem.

2.1 The Graphical Method

1.

min z = 2x1 + 5x2

s.t.

x1 + x2 ≥ 6

−x1 − 2x2 ≥ −18

x1, x2 ≥ 0

Solution: x1 = 6, x2 = 0, z = 12.

2.

max z = x1 + 3x2

s.t.

x1 + x2 ≤ 6

−x1 + 2x2 ≤ 8

x1, x2 ≥ 0.

Solution: x1 = 4

3
, x2 = 14

3
, z = 15 1

3
.

This method can be used for the case only when the number of variables is 2 or 3.
Possible events in any linear program:

1. Unique optimum.

2. Alternative optima.

3. Unbounded optimum.

4. Empty feasible region.
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3 Fourier-Motzkin Elimination

The Fourier-Motzkin elimination procedure is an elegant, syntactic, variable elimination scheme to solve constraint
systems that are comprised of linear inequalities. It was discovered initially by Fourier [Fou24] and later by
Motzkin [DE73], who used it to solve general purpose Linear programs.

The key idea in the elimination procedure is that a constraint system in n variables ( i.e. <n ), can be
projected onto a space of n − 1 variables ( i.e. <n−1 ), without altering the solution space. In other words,
polyhedral projection of a constraint set is solution preserving. This idea is applied recursively, till we are left
with a single variable ( say x1 ). If we have a ≤ x1 ≤ b, a ≤ b, then the system is consistent, for any value of x1

in the interval [a, b]. Working backwards, we can deduce the values of all the variables x2, . . . , xn. If a > b, we
conclude that the system is infeasible.

Algorithm (3.1) is a formal description of the above procedure.

Function Fourier-Motzkin elimination (A, ~b)

1: for ( i = n down to 2 ) do
2: Let I+ = { set of constraints that can be written in the form xi ≥ ()}
3: Let I− = { set of constraints that can be written in the form xi ≤ ()}
4: for ( each constraint k ∈ I+ ) do
5: for ( each constraint l ∈ I− ) do
6: Add k ≤ l to the original constraints
7: end for
8: end for
9: Delete all constraints containing xi

10: end for
11: if ( a ≤ x1 ≤ b, a, b ≥ 0 ) then
12: Linear program is consistent

13: return
14: else
15: Linear program is inconsistent

16: return
17: end if

Algorithm 3.1: The Fourier-Motzkin Elimination Procedure

Though elegant, this syntactic procedure suffers from an exponential growth in the constraint set, as it pro-
gresses. This growth has been observed both in theory [Sch87] and in practice [HLL90, LM91]. By appropriately
choosing the constraint matrix A, it can be shown that eliminating k variables causes the size of the constraint

set to increase from m to O(m2
k

) [Sch87]. Algorithm (3.1) remains useful though as a tool for proving theorems
on polyhedral spaces [VR99]. [Sch87] gives a detailed exposition of this procedure.

3.1 One Person Rational Matrix games

Both Linear Programming and Integer Programming can be thought as of guessing a vector that satisfies certain
conditions. If the guessed vector meets the conditions, the game is won by the player; otherwise the game is lost.

4 Basic Feasible solutions

1. Extreme points and Optimality.

2. Basic Feasible Solutions (BFS).

3. Degeneracy.

4. Correspondence between Basic Feasible Solutions and Extreme Points.
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5 The Simplex Method

1. Improving a BFS.

2. Picking a variable to enter the current Basis.

3. Picking a variable to leave the current Basis.

4. Termination and Unboundedness.

Algorithm (5.1) summarizes the above discussion.

Function Simplex (A, ~b, ~c)

1: We are solving the linear program

min ~c · ~x

A · ~x = ~b

~x ≥ ~0.

2: Assume that you are given an initial feasible basis B.
3: Partition A into (B : N), ~x into ( ~xB, ~xN) and ~c into ( ~cB, ~cN).
4: Let J denote the index set of the nonbasic variables.
5: Set ~xB = B−1~b, ~xN = ~0 and z = ~cB · ~xB.

6: Set ~w = ~cBB−1.
7: Calculate zj − cj for all the nonbasic variables. Let

zk − ck = max
j∈J

zj − cj

8: if (zk − ck) ≤ 0 then
9: return(The current basis is optimal.)

10: end if
11: Solve the system B · ~yk = ~ak.
12: if ~yk ≤ ~0 then
13: return(The optimal solution is unbounded.)
14: end if
15: xk (actually ak) enters the basis and xBr

leaves the basis, where the index r is determined by the Minimum
Ratio Test:

br

yrk

= min
1≤i≤m

bi

yik

: yik > 0

16: Update the basis B, the index set J and Goto Step 3 :.

Algorithm 5.1: The Simplex Algorithm

6 Quantified Linear Programming

Quantified Linear Programming is the problem of checking whether a polyhedron specified by a linear system
of inequalities is non-empty, with respect to a specified quantifier string. Quantified Linear Programming sub-
sumes traditional Linear Programming, since in traditional Linear Programming, all the program variables are
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existentially quantified (implicitly), whereas, in Quantified Linear Programming, a program variable may be exis-
tentially quantified or universally quantified over a continuous range. On account of the alternation of quantifiers
in the specification of a Quantified Linear Program (QLP), this problem is non-trivial. QLPs represent a class of
Declarative Constraint Logic Programs (CLPs) that are extremely rich in their expressive power.

We are interested in deciding the following query:

G : ∃x1 ∈ [a1, b1] ∀y1 ∈ [l1, u1] ∃x2 ∈ [a2, b2] ∀y2 ∈ [l2, u2] . . .∃xn ∈ [an, bn] ∀yn ∈ [ln, un]

A · [~x ~y]T ≤ ~b , ~x ≥ ~0? (1)

where

• A is an m× 2 · n matrix called the constraint matrix,

• ~x is a n−vector, representing the control variables (these are existentially quantified)

• ~y is a n−vector, representing the variables that can assume values within a pre-specified range; i.e., com-
ponent yi has a lower bound of li and an upper bound of ui (these are universally quantified);

• ~b is an m−vector

The pair (A, ~b) is called the Constraint System. Without loss of generality, we assume that the quantifiers are
strictly alternating, since we can always add dummy variables (and constraints, if necessary) without affecting
the correctness or complexity of the problem.

6.1 Constraint Satisfaction and Model Verification

Definition 6.1 Let G =< Q(~x, ~y), (A, ~b) > represent an arbitrary Parametric Polytope (QLP) in the form
specified by System (1). We say that G is true or non-empty if there exists an x1 ∈ <, such that for all
y1 ∈ [l1, u1] (which could depend upon x1), there exists an x2 ∈ < (which could depend upon y1), there exists a

y2 ∈ [l2, u2] (which could depend upon x1 and x2) and so on such that A · [~x ~y]T ≤ ~b, where ~x = [x1, x2, . . . , xn]T

and ~y = [y1, y2, . . . , yn]T .

In order to better understand Definition (6.1), we resort to the following 2-person game. Let X denote the
existential player and Y denote the Universal player. The game is played in a sequence of 2 · n rounds, with X
making his ith move, xi, in round 2 · i− 1 and Y making his ith move, yi, in round 2 · i. The initial constraint
system A · [~x ~y]T ≤ ~b is referred to as the initial board configuration. The following conventions are followed in
the game:

1. xi, yi ∈ <, yi ∈ [li, ui] i = 1, 2, . . . , n,

2. The moves are strictly alternating, i.e., X makes his ith move before Y makes his ith move, before X makes
his (i + 1)th move and so on,

3. When either player makes a move, the configuration of the board changes; for instance, suppose that X makes
the first move as 5. The current configuration is then transformed from A · [~x ~y]T ≤ ~b to A′ · [~x′ ~y′]T ≤ ~b′,

where A′ is obtained from A, by dropping the first column, ~x′ = [x2, x3, . . . , xn]T and ~b′ = ~b− 5 · ~a1, with
~a1 denoting the first column of A.

4. The ith move made by X, viz., xi may depend upon the current board configuration as well as the first
(i − 1) moves made by Y; likewise, yi may depend upon the current board configuration and the first i

moves made by X.

5. Let ~x1 denote the numerical vector of the n moves made by X; ~y1 is defined similarly. If A · [ ~x1 ~y1]T ≤ ~b,
then X is said to have won the game; otherwise, the game is a win for Y. It is important to note that the
game as described above is non-deterministic in nature, in that we have not specified how X and Y make
their moves. Further, if it is possible for X to win the game, then he will make the correct sequence of
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moves; likewise, if X cannot win the game, then corresponding to every sequence of moves that he makes,
Y has a corresponding sequence of moves to ensure that at least one constraint in the constraint system is
violated. (See [Pap94, HO02].)

6. From the above discussion, it is clear that the moves made by X will have the following form:

~x = [c1, f1(y1), f2(y1, y2), . . . , fn−1(y1, y2, . . . , yn−1)]
T (2)

where c1 is a constant and xi = fi−1(y1, y2, . . . , yi−1) captures the dependence of xi on the first (i − 1)
moves of Y.

Likewise, the moves made by Y have the following form:

~y = [g1(x1), g2(x1, x2), . . . , gn(x1, x2, . . . , xn)]T (3)

The fi() and gi() are Skolem functions.

The following phrases are equivalent and will be used interchangeably for the rest of this paper:

(a) ~x is a solution vector of G,

(b) ~x is a model for G,

(c) ~x satisfies G,

(d) ~x is appropriate for G,

(e) ~x ∈ G,

(f) ~x is a winning strategy for G.

Note that corresponding to any game (QLP) G, either the Existential player (X) has a winning strategy
against all strategies employed by the Universal player (Y) or (mutually exclusively) the Universal player
(Y) has a winnging strategy, against all strategies employed by the Existential player. However a specific
strategy ~x, for X may or may not be winning; if it is not a winning strategy for X, then Y has a winning
strategy ~y(~x), corresponding to ~x.

Suppose that a solution vector ~x in the form described by Equation (2) is given; then the above model verification
algorithm requires an infinite precision Alternating Turing Machine, since there is no guarantee that the guessed
values have polynomial size or even finite size!

7 A Decision Procedure for Quantified Linear Programs

7.1 Analysis

Lemma 7.1 Given an m× n totally unimodular constraint matrix, Algorithm (7.1) runs in polynomial time.

Proof: We have observed previously that eliminating a universally quantified variable does not increase the
number of constraints and hence can be implemented in time O(m · n), through variable substitution. Further,
since it corresponds to simple deletion of a column, the matrix stays totally unimodular. From [Sub03], we know
that there are at most O(n2) non-redundant constraints. Eliminating an existentially quantified variable, could
create at most as O(n4) constraints, since m = O(n2) [VR99]. A routine to eliminate the redundant constraints
can be implemented in time n × O(n4 · log n4) = O(n5 · log n) through a sort procedure. (There are O(n4)
row vectors in all; comparing two row vectors takes time O(n).) The procedures Prune-Constraints() and
Check-Inconsistency() work only with single variable constraints and hence both can be implemented in time
O(m · n). Thus a single iteration of the i loop in Algorithm (7.1) takes time at most O(n5 · log n) and hence the
total time taken by Algorithm (7.1) to decide a given QLP is at most O(n6 · log n). 2

Remark 7.1 We could use a variation of Radix-Sort(), to achieve sorting in time O(n × n4), to give a total
running time of O(n6).
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Function QLP-Decide (A, ~b)

1: A′
n+1

= A; ~b′n+1 = ~b
2: for (i = n down to 2) do

3: (A′
i
, ~b′i) = Elim-Univ-Variable (A′

i+1
, ~b′i+1, yi, li, ui)

4: (A′
i
, ~b′i) = Elim-Exist-Variable (A′

i
, ~b′i, xi)

5: if (Check-Inconsistency()) then
6: return (false)
7: end if
8: Prune-Constraints()
9: end for

10: (A′
1
, ~b′1) =Elim-Univ-Variable (A′

2
, ~b′2, y1, l1, u1)

11: {After the elimination of y1, the original system is reduced to a one-variable system, i.e., a series of intervals
on the x1-axis. We can therefore check whether this system provides an interval or declares an inconsistency.
An interval results if after the elimination of redundant constraints, we are left with x1 ≥ a, x1 ≤ b, a ≤ b; an
inconsistency results if we are left with x1 ≥ a, x1 ≤ b, b < a.}

12: if (a ≤ x1 ≤ b, a, b ≥ 0, a ≤ b) then
13: System is feasible

14: return
15: else
16: System is infeasible

17: return
18: end if

Algorithm 7.1: A Quantifier Elimination Algorithm for deciding Query G

Function Elim-Univ-Variable (A, ~b, yi, li, ui)

1: {Every constraint involving the variable yi can be re-written in the form yi ≤ () or (exclusively) yi ≥ (), i.e.,
in a way that the coefficient of yi is +1.}

2: Substitute yi = li in each constraint that can be written in the form yi ≥ ()
3: Substitute yi = ui in each constraint that can be written in the form yi ≤ ()

4: Create the new coefficient matrix A′ and the new vector ~b′ after the requisite manipulations
5: return(A′, ~b′)

Algorithm 7.2: Eliminating Universally Quantified variable yi ∈ [li, ui]

Function Elim-Exist-Variable (A, ~b, xi)

1: Form the set L≤ of every constraint that can be written in the form xi ≤ (). If xi ≤ mj is a constraint in

(A, ~b), mj is added to L≤.
2: Form the set L≥ of every constraint that can be written in the form xi ≥ (). Corresponding to the constraint

xi ≥ nk of (A, ~b), nk is added to L≥.
3: Form the set L= of every constraint that does not contain xi

4: L = φ.
5: for each constraint mj ∈ L≤ do
6: for each constraint nk ∈ L≥ do
7: Create the new constraint lkj : nk ≤ mj ; L = L ∪ lkj .
8: end for
9: end for

10: Create the new coefficient matrix A′ and the new vector ~b′, to include all the constraints in L = L ∪ L=,
after the requisite manipulations.

11: return(A′, ~b′)

Algorithm 7.3: Eliminating Existentially Quantified variable xi

7



8 Restricted Games

Definition 8.1 An E-QLP is a QLP in which all the existential quantifiers precede the universal quantifiers,
i.e., a QLP of the form:

∃x1∃x2 . . . ∃xn ∀y1 ∈ [l1, u1]∀y2 ∈ [l2, u2], . . .∀yn ∈ [ln, un] A · [~x ~y]T ≤ ~b

Definition 8.2 An F-QLP is a QLP in which all the universal quantifiers precede the existential quantifiers,
i.e., a QLP of the form:

∀y1 ∈ [l1, u1] ∀y2 ∈ [l2, u2], . . .∀yn ∈ [ln, un] ∃x1 ∃x2 . . . ∃xn A · [~x ~y]T ≤ ~b

9 Quantified Integer Programming

Definition 9.1 Let x1, x2, . . . xn be a set of n variables with integral ranges. A mathematical program of the
form

Q1 x1 ∈ {a
1 − b1} Q2 x2 ∈ {a

2 − b2}, . . .

Qn xn ∈ {a
n − bn} A · ~x ≤ ~b (4)

where each Qi is either ∃ or ∀ is called a Quantified Integer Program (QIP).

Definition 9.2 A TQLP is a QLP in which the constraint matrix is totally unimodular.

Definition 9.3 A Quantified Integer Program in which some variables have discrete ranges, while the rest have
continuous ranges is called a Mixed QIP (MQIP).

Theorem (9.1) argues the equivalence of certain MQIPs and QLPs. The consequences of this equivalence, when
the constraint matrix is totally unimodular, are pointed out in Corollary (9.2).

Theorem 9.1

L :∃x1 ∈ [a1, b1] ∀y1 ∈ {c
1 − d1}

∃x2 ∈ [a2, b2] ∀y2 ∈ {c
2 − d2}

. . .∃xn ∈ [an, bn] ∀yn ∈ {c
n − dn}

A · [~x ~y]T ≤ ~b

⇔

R :∃x1 ∈ [a1, b1] ∀y1 ∈ [c1, d1]

∃x2 ∈ [a2, b2] ∀y2 ∈ [c2, d2]

. . . ∃xn ∈ [an, bn] ∀yn ∈ [cn, dn]

A · [~x ~y]T ≤ ~b (5)

In other words, the existential player of the game L has a winning strategy, if and only if the existential player of
the game R has a winning strategy.

Proof: Let XL and YL denote the existential and universal players of the game L respectively. Likewise, let XR

and YR denote the existential and universal players of the game R.
Observe that R is a QLP, while L is an MQIP.

R ⇒ L is straightforward. Suppose that XR has a strategy that is winning when the universal player YR can
choose his ith move from the continuous interval [ci, di]; then clearly the strategy will also be winning, when the
universal player has to choose his ith move from the discrete interval {ci − di}. Thus XL can adopt the same
strategy as XR and win against any strategy employed by YL.
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We now focus on proving L ⇒ R. Our proof uses induction on the length of the quantifier string and therefore
on the dimension of A. Note that as described in System (1), the quantifier string is always of even length, with
the existentially quantified variables and the universally quantified variables strictly alternating. Further, the
first variable is always existentially quantified and the last variable is always universally quantified.

In the base case of the induction, the length of the quantifier string is 2; accordingly, we have to show that:

L :∃x1 ∈ [a1, b1] ∀y1 ∈ {c
1 − d1} A · [x1 y1]

T ≤ ~b

⇒ R :∃x1 ∈ [a1, b1] ∀y1 ∈ [c1, d1] A · [x1 y1]
T ≤ ~b

Let us say that L is true and let x1 = c0 be a solution, where c0 ∈ [a1, b1]. We can write the constraint system

A · [x1 y1]
T ≤ ~b as: x1 · ~g1 + y1 · ~h1 ≤ ~b. Note that c0 is a fixed constant, independent of y1 and holds for all

integral values of y1 in {c1 − d1}. Accordingly, we have:

c0 · ~g1 ≤ ~b− c1 · ~h1

c0 · ~g1 ≤ ~b− d1 · ~h1 (6)

Now consider the (real) parametric point y1 = λ · c1 + (1− λ) · d1, 0 ≤ λ ≤ 1. Observe that

~b− (λ · c1 + (1− λ) · d1) · ~h1

= λ · ~b + (1− λ) · ~b− λ · c1 · ~h1

−(1− λ) · d1 · ~h1

= λ · (~b− c1 · ~h1) + (1− λ) · (~b− d1 · ~h1)

≥ λ · (c0 · ~g1) + (1− λ) · (c0 · ~g1)

= c0 · ~g1

In other words, x1 = c0 holds for all values of y1 in the continuous range [c1, d1], thereby proving the base case.
Assume that Theorem (9.1) always holds, when the quantifier string has length 2 ·m; we need to show that it

holds when the quantifier string has length 2 ·m + 2, i.e., we need to show that:

L :∃x1 ∈ [a1, b1] ∀y1 ∈ {c
1 − d1}

∃x2 ∈ [a2, b2] ∀y2 ∈ {c
2 − d2}

. . . ∃xm+1 ∈ [am+1, bm+1]

∀ym+1 ∈ {c
m+1 − dm+1}

A · [~x ~y]T ≤ ~b

⇒

R :∃x1 ∈ [a1, b1] ∀y1 ∈ [c1, d1]

∃x2 ∈ [a2, b2] ∀y2 ∈ [c2, d2]

. . . ∃xm+1 ∈ [am+1, bm+1]

∀ym+1 ∈ [cm+1, dm+1]

A · [~x ~y]T ≤ ~b (7)

Let ~xs = [x1, x2, . . . , xm+1]
T be a model for L, in the manner described in Section §6.1. We consider 2 distinct

games L1 and L2 to decide L; one in which YL is forced to choose cm+1 for ym+1 and another in which YL is
forced to pick ym+1 = dm+1.

Consider the complete set of moves made in (m + 1) rounds by XL and YL to decide L in both games; let
~xL denote the numeric vector guessed by XL, while ~yL1 denotes the vector guessed by YL for game L1 and ~yL2

denotes the vector guessed by YL for game L2. Note that the moves made by XL cannot depend on ym+1 and
hence the vector guessed by XL is the same for both games; further ~yL1 and ~yL2 differ only in their (m + 1)th

component. We denote the m-vector (numeric) corresponding to the first m components of the 2 vectors ~yL1
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and ~yL2 by ~y1. We rewrite the constraint system A · [~x ~y]T ≤ ~b as G · ~x + H′ · ~y′ + ym+1 · ~hm+1 ≤ ~b, where

~x = [x1, x2, . . . , xm+1]
T and ~y′ = [y1, y2, . . . , ym]T .

Since ~xs is a model for L, we must have

G · ~xL + H′ · ~y1 + cm+1 · ~hm+1 ≤ ~b (8)

and

G · ~xL + H′ · ~y1 + dm+1 · ~hm+1 ≤ ~b (9)

Now consider the (real) parametric point

ym+1 = λ · cm+1 + (1− λ) · dm+1.

Observe that:

G · ~xL + H′ · ~y1 + ym+1 · ~hm+1

= G · ~xL + H′ · ~y1 + (λ · cm+1 + (1− λ) · dm+1) · ~hm+1

= λ · (G · ~xL + H′ · ~y1 + cm+1 · ~hm+1)

+(1− λ) · (G · ~xL + H′ · ~y1 + dm+1 · ~hm+1)

≤ λ · ~b + (1− λ) · ~b

= ~b

In other words, ~xs serves as a winning strategy for XL for all values of ym+1 in the continuous range
[cm+1, dm+1]. Accordingly, we are required to show that

L :∃x1 ∈ [a1, b1] ∀y1 ∈ {c
1 − d1}

∃x2 ∈ [a2, b2] ∀y2 ∈ {c
2 − d2}

. . .∃xm+1 ∈ [am+1, bm+1]

∀ym+1 ∈ [cm+1, dm+1] A · [~x ~y]T ≤ ~b

⇒

R :∃x1 ∈ [a1, b1] ∀y1 ∈ [c1, d1]

∃x2 ∈ [a2, b2] ∀y2 ∈ [c2, d2]

. . .∃xm+1 ∈ [am+1, bm+1]

∀ym+1 ∈ [cm+1, dm+1] A · [~x ~y]T ≤ ~b (10)

Observe that both ym+1 and xm+1 are continuous in L and R and hence can be eliminated using the quan-
tifier elimination techniques used to eliminate the variables of a Quantified Linear Program [Sub03]; ym+1 is
eliminated using variable substitution, while xm+1 is eliminated using the Fourier-Motzkin elimination technique.

Accordingly, the constraint system A · [~x ~y]T ≤ ~b is transformed into the system A1 · [ ~x1 ~y1]T ≤ ~b1, where
~x1 = [x1, x2, . . . , xm]T and ~y1 = [y1, y2, . . . , ym]T . Since the quantifier string is now of length 2 ·m, we can use
the inductive hypothesis to conclude that L ⇒ R.

It follows that Theorem (9.1) is proven. 2

Corollary 9.1 If all the existentially quantified variables of a QIP have continuous ranges, then the discrete
ranges of the universally quantified variables can be relaxed into continuous ranges.

Theorem 9.2 Let

R : ∃x1 ∈ [a1, b1] ∀y1 ∈ [c1, d1]

∃x2 ∈ [a2, b2] ∀y2 ∈ [c2, d2]

. . .∃xn ∈ [an, bn] ∀yn ∈ [cn, dn]

A · [~x ~y]T ≤ ~b (11)
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have a model, where A is totally unimodular. Then x1 can always be chosen integral, by the existential player
(say XR), without affecting the outcome of the game.

Proof: (Recall that ai, bi, ci, di, i = 1, 2, . . . n are integral and ~b is integral.) Observe that R is a QLP,
hence we can use the algorithm developed in [Sub03] to decide it. The algorithm therein, eliminates a universally

quantified variable as follows: The vector ~b is replaced with a new integral vector, say ~b′, obtained by subtracting
an appropriate integral vector from ~b. The only change to the A matrix is that a column is eliminated and hence
it stays totally unimodular. Existentially quantified variables are eliminated using Fourier-Motzkin elimination,
which is a variation of pivoting and hence their elimination also preserves total unimodularity (See [NW99]). Since
R has a model, the algorithm in [Sub03] determines a range for x1 of the form a ≤ x1 ≤ b. Since A is totally

unimodular and stays so under the elimination operations, and ~b is integral and stays so under the elimination
operations, there is at least one integer in this range. 2

Corollary 9.2 Let

R :∃x1 ∈ [a1, b1] ∀y1 ∈ {c
1 − d1}

∃x2 ∈ [a2, b2] ∀y2 ∈ {c
2 − d2}

. . .∃xn ∈ [an, bn] ∀yn ∈ {c
n − dn}

A · [~x ~y]T ≤ ~b (12)

be true, where A is TUM. Then x1 can always be chosen integral.

Proof: Follows from Theorem (9.1) and Theorem (9.2). 2

Theorem 9.3

L : ∃x1 ∈ {a
1 − b1} ∀y1 ∈ {c

1 − d1}

∃x2 ∈ {a
2 − b2} ∀y2 ∈ {c

2 − d2}

. . . ∃xn ∈ {a
n − bn} ∀yn ∈ {c

n − dn}

A · [~x ~y]T ≤ ~b

⇔

R : ∃x1 ∈ [a1, b1] ∀y1 ∈ {c
1 − d1}

∃x2 ∈ [a2, b2] ∀y2 ∈ {c
2 − d2}

. . .∃xn ∈ [an, bn] ∀yn ∈ {c
n − dn}

A · [~x ~y]T ≤ ~b (13)

where A is TUM.

Proof: Let XL and YL denote the existential and universal players of the game L respectively. Likewise, let XR

and YR denote the existential and universal players of the game R.
L ⇒ R is straightforward. If there exists a winning strategy for XL against YL, when XL is forced to choose

his ith move from the discrete interval {ai − bi}, then the same strategy will also be winning for XL, when he
is allowed to choose his ith move from the continuous interval [ai − bi]. Thus XR can adopt the same strategy
against YR and win.

We focus on proving R ⇒ L. Let XR have a winning strategy against against YR in the game R.
From the hypothesis, we know that there exists a rational x1 ∈ [a1, b1], for all integral values of y1 ∈ {c1− d1},

there exists a rational x2 ∈ [a2, b2] (which could depend on y1), for all integral values of y2 ∈ {c2− d2}, . . . , there
exists a rational xn ∈ [an, bn] (which could depend upon y1, y2, . . . , yn−1), for all integral values of yn ∈ {cn− dn}

such that A · [~x ~y]T ≤ ~b. From Corollary (9.2), we know that x1 can always be guessed integral (say p1), since

11



A is TUM. Since y1 must be guessed integral (say q1), at the end of round 1, we have guessed 2 integers and

the constraint system A · [~x ~y]T ≤ ~b is transformed into A′ · [~x′ ~y′]T ≤ ~b′, where A′ is obtained by deleting

the first column ( ~a1) and the (n + 1)th column ( ~an+1) of A, ~x′ = [x2, x3, . . . , xn]T , ~y′ = [y2, y3, . . . , yn]T and
~b′ = ~b− ~p1 − ~q1, where ~p1 is the m−vector (p1 · ~a1) and ~q1 is the m−vector (q1 · ~an+1). Note that once again A′

is TUM and ~b′ is integral. So x2 can be guessed integral and y2 must be integral. Thus, the game can be played
with the X constantly guessing integral values and Y being forced to make integral moves. From the hypothesis
R is true; it follows that L is true. 2

Theorem 9.4 TQIPs can be decided in polynomial time.

Proof: Use Theorem (9.3) to relax the ranges of the existentially quantified variables and Theorem (9.1) to relax
the ranges of the universally quantified variables to get a TQLP; then use the algorithm in [Sub03] to decide the
TQLP in polynomial time. 2

Remark 9.1 We have thus shown that when the constraint matrix representing a system of linear inequalities is
totally unimodular, a Quantified Integer Program can be relaxed to a Quantified Linear Program, in exactly the
same way that a traditional Integer Program can be relaxed to a traditional Linear Program.
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