
A Concurrent Logical Relation
Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

IT University of Copenhagen, Denmark
{birkedal, fisi, thamsborg}@itu.dk

Abstract
We present a logical relation for showing the correctness of program transformations based on a
new type-and-effect system for a concurrent extension of an ML-like language with higher-order
functions, higher-order store and dynamic memory allocation.

We show how to use our model to verify a number of interesting program transformations that
rely on effect annotations. In particular, we prove a Parallelization Theorem, which expresses
when it is sound to run two expressions in parallel instead of sequentially. The conditions are
expressed solely in terms of the types and effects of the expressions. To the best of our knowledge,
this is the first such result for a concurrent higher-order language with higher-order store and
dynamic memory allocation.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases verification, logical relation, concurrency, type and effect system

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.107

1 Introduction

Relational reasoning about program equivalence is useful for reasoning about the correctness
of program transformations, data abstraction (representation independence), compiler cor-
rectness, etc. The standard notion of program equivalence is contextual equivalence and in
recent years, there have been many improvements in reasoning methods for higher-order ML-
like languages with general references, based on bisimulations, e.g., [17, 23, 25], traces [18],
game semantics [21], and Kripke logical relations, e.g., [1, 2, 8, 12].

In this paper we present the first Kripke logical relation for reasoning about equivalence
of a concurrent higher-order ML-like language with higher-order store and dynamic memory
allocation.

To state and prove useful equivalences about concurrent programs, it is necessary to
have some way of restricting the contexts under which one proves equivalences. This point
was made convincingly in the recent paper by Liang et. al. [19], who presented a rely-
guarantee-based simulation for verifying concurrent program transformations for a first-order
imperative language (with first-order store). Here is a very simple example illustrating the
point. Consider two expressions

e1 ≡ x := 1; y := 1 and e2 ≡ y := 1;x := 1.

Here x and y are variables of type ref int. The expressions e1 and e2 are not contextually
equivalent. (To see why, consider expression e3 ≡ x := 0; y := 0, and note that running e1
in parallel with e3 may result in a state with !x = 0 and ! y = 1, but that cannot be the
case when we run e2 in parallel with e3.) The issue is, of course, that the context may also
modify the references x and y. On the other hand, if we know that no other threads have
access to x or y, then it should be the case that e1 and e2 are equivalent. We can express
this restriction on the contexts using a refined region-based type-and-effect system.

© Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 107–121

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.107
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

108 A Concurrent Logical Relation

We first recall that a type-and-effect system is a type system that classifies programs
according to which side effects the programs may have. A variety of effect systems have
been proposed for higher-order programming languages, e.g., [15, 20, 27], see [16] for a
recent overview. Effect systems can often be understood as specifying the results of a static
analysis, in the sense that it is possible to automatically infer types and effects. Effect
systems can be used for different purposes: they were originally proposed by Lucassen and
Gifford [20] for parallelization purposes but they have also, e.g., been used as the basis for
implementing ML using a stack of regions for memory management [27, 9]. In a recent
series of papers, Benton et. al. have argued that another important point of effect systems
is that they can be used as the basis for effect-based program transformations, e.g., compiler
optimizations, [6, 5, 3, 4], see also [26]. The idea is that certain program transformations
are only sound under additional assumptions about which effects program phrases may, or
rather may not, have.

Now, returning to our example, we refine the types of x and y to be refρint and refσ int,
respectively. Intuitively, this expresses that x and y are references in different regions, but
it does not put any restrictions on whether other threads may access x or y. Thus, when we
type e1 and e2 we will use two contexts of region variables, one for public regions that can be
used by other concurrently running threads, and one for private regions that are under the
control of the present thread. This idea is inspired by recent work on concurrent separation
logic, e.g., [22, 11, 29, 13]. We use a vertical bar to separate public and private regions: the
typing context

ρ, σ | ∅ | x : refρint, y : refσ int

expresses that ρ and σ are public regions, whereas the typing context

∅ | ρ, σ | x : refρint, y : refσ int

expresses that ρ and σ are private regions. The expressions e1 and e2 are well-typed in the
latter context and, with this refined typing, they are indeed contextually equivalent, because
our type-and-effect system guarantees that no well-typed context can access regions ρ or σ.
(The expressions are also well-typed in the former context, but not contextually equivalent
with that refined typing.)

In this paper we present a step-indexed Kripke logical relations model of a type-and-effect
system with public and private regions for a concurrent higher-order language with general
references. Our model is constructed over the operational semantics of the programming
language, and builds on recent work by Thamsborg and Birkedal on logical relations for the
sequential sub-language [26]. Note that the type-and-effect annotations are just annotations;
the operational semantics of the language is standard and regions only exist in our semantic
model, not in the operational semantics.

As an important application of our model we prove a Parallelization Theorem, which
expresses when it is sound to run two expressions in parallel instead of sequentially. To the
best of our knowledge, this is the first such result for a higher-order language with higher-
order store and dynamic memory allocation. Here is a very simple instance of the theorem.
Consider two expressions

e1 ≡ y := !x+ ! y and e2 ≡ z := !x+ ! z,

each well-typed in a context

∅ | ρx, ρy, ρz | x : refρx int, y : refρy int, z : refρz int,

L. Birkedal, F. Sieczkowski, and J. Thamsborg 109

i.e., where x, y, and z are references in distinct private regions. In this context, running e1
and e2 sequentially is contextually equivalent to running e1 and e2 in parallel. Intuitively,
this also makes sense: e1 and e2 update references in distinct regions, and it is unproblematic
that they both read (but not write) from the same region.

As mentioned, this was a simple instance of the Parallelization Theorem. We stress that
the theorem is expressed solely in terms of the type and efffects of the expressions e1 and
e2, so a compiler may automatically infer that it is safe to parallelize two expressions by
looking at the inferred effect types, and without reasoning about all interleavings. Moreover,
the theorem applies to contexts and expressions with general higher types (not just with
references to integers and unit types). Note that the distinction between private and public
regions is also crucial here (parallelization would not be sound if the effects of the expressions
were on public regions).

Our type-and-effect system crucially also includes a region-masking rule. Traditionally,
this rule has been used to hide local effects on regions, which makes it possible to view a
computation as pure even if it uses effects locally and makes the effect system stronger, in
the sense that it can justify more program transformations. Here we also observe that the
masking rule can be used for introducing private regions, since the masking rule intuitively
guarantees that effects on a region are not leaked to the context. It is well-known that region-
masking makes the model construction for a sequential language technically challenging, see
the extensive discussion in [26]. Here it is yet more challenging because of concurrency; we
explain how our model ensures soundness of the masking rule in Section 3.

The extension with concurrency also means that when we define the logical relation for
contextual approximation and relate two computations e1 and e2, we cannot simply require
relatedness after e1 has completed evaluation (as in the sequential case), since other threads
should be allowed to execute as well. We explain our approach to relating concurrent
computations in Section 3; it is informed by recent soundness proofs of unary models of
concurrent separation logic [30, 10].

Another challenge arises from the fact that since our language includes dynamically
allocated general references, the existence of the logical relation is non-trivial; in particular,
the set of Kripke worlds must be recursively defined. Here we build on our earlier work [7]
and define the worlds as a solution to a recursive metric-space equation. Indeed, to focus on
the essential new aspects due to the extension with concurrency, we deliberately choose to
use the exact same notion of worlds as we used for the sequential sub-language in [26]. In the
same vein, we here consider a monomorphically typed higher-order programming language
with general references, but leave out universal and existential types as well as recursive
types. However, we want to stress that since our semantic techniques (step-indexed Kripke
logical relations over recursively defined worlds) do indeed scale well to universal, existential,
and recursive types, e.g. [7, 12], it is possible to extend our model to a language with such
types. We conjecture that it is also possible to extend our model to richer effect systems
involving region and effect polymorphism, but we have not done so yet.

All proofs are deferred to the long version of the paper; it can be found online at the
following address: www.itu.dk/people/birkedal/papers/longsamba.pdf.

2 Language and Typing

We consider a standard call-by-value lambda calculus with general references, and extended
with parallel composition and an atomic construct. We assume countably infinite, pairwise
disjoint sets of region variables RV (ranged over by ρ), locations L (ranged over by l) and

CSL’12

www.itu.dk/people/birkedal/papers/longsamba.pdf

110 A Concurrent Logical Relation

π ::= rdρ |wrρ | alρ
ε ::= π1, . . . , πn

τ ::= 1 | int | τ1× τ2 | refρ τ
| τ1 →Π,Λ

ε τ2

v ::= x | 〈〉 | 〈v1, v2〉
| fun f(x).e | l

e ::= v | proji v | v e | ref v | ! v
| v1 := v2 | par e1 and e2

| cas (v1, v2, v3) | atomic e
E ::= [] | v E | par E and e2

| par e1 and E

Figure 1 Syntax.

(E[proji 〈v1, v2〉] |h) 7−→ (E[vi] |h)
(E[(fun f(x).e) v] |h) 7−→ (E[e[fun f(x).e/f, v/x]] |h)

(E[ref v] |h) 7−→ (E[l] |h[l 7→ v]) if l /∈ dom(h)
(E[l := v] |h) 7−→ (E[〈〉] |h[l:=v]) if l ∈ dom(h)

(E[! l] |h) 7−→ (E[h(l)] |h) if l ∈ dom(h)
(E[par v1 and v2] |h) 7−→ (E[〈v1, v2〉] |h)
(E[cas (l, n1, n2)] |h) 7−→ (E[1] |h[l:=n2])

if l ∈ dom(h) and h(l) = n1

(E[cas (l, n1, n2)] |h) 7−→ (E[0] |h)
if l ∈ dom(h) and h(l) 6= n1

(E[atomic e] |h) 7−→ (E[v] |h′)
if (e |h) 7−→∗ (v |h′)

(E[atomic e] |h) 7−→ (E[atomic e] |h)

Figure 2 Operational semantics.

program variables (ranged over by x, y, f). As usual, the reduction relation is between
configurations, (e |h) 7−→ (e′ |h′) where heaps h, h′ ∈ H are finite maps from locations
to values. Figures 1 and 2 give the syntax and operational semantics; we denote the set
of expressions E and the set of values V. The evaluation contexts allow parallel evaluation
inside par expressions, and there is a new primitive reduction covering the case when the two
subcomputations have terminated. For technical simplicity, we allow an atomic e expression
to reduce to itself, possibly introducing more divergence than the diverging behaviours of
e. The syntax is kept minimal; in examples we may use additional syntactic sugar, e.g.,
writing let x = e1 in e2 for (fun f(x).e2) e1 for some fresh f . For e ∈ E , we write FV(e)
and FRV(e) for the sets of free program variables and region variables, respectively; also we
define rds ε = {ρ ∈ RV | rdρ ∈ ε} and similarly for writes and allocation.

The form of the judgments of our type-and-effect system is standard with one important
refinement: regions are partitioned into public and private regions, with the purpose of
restricting interference from the environment. In greater detail, a typing judgement looks
like this:

Π |Λ |Γ ` e : τ, ε.

The Γ, e and τ are the usual: the variable context Γ assigns types to program variables in
the expression e, with the resulting type of τ . To get an idea of — or rather an upper bound
of — the side-effects of e, we split the heap into regions; these are listed in Π and Λ. We
track memory accesses by adding a set ε of effects of the form rdρ, wrρ and alρ, where ρ is a
region. Roughly, a computation with effect rdρ may read one or more locations in region ρ,
and similarly for writes and allocation. This setup goes back to Lucassen and Gifford [20].

The novelty, as mentioned in the Introduction, is our partition of regions into the public
ones Π and the private ones Λ. As opposed to the rest of the judgment, this public-private
division does not make promises about the behavior of e. Instead, it states the expectations
that e has of the environment: threads running in parallel with e may — in a well-typed
manner — read, write and allocate in the public regions but must leave the private regions

L. Birkedal, F. Sieczkowski, and J. Thamsborg 111

Π |Λ |Γ, x : τ ` x : τ, ∅ Π |Λ |Γ ` 〈〉 : 1, ∅
Π |Λ |Γ ` v : τ1 × τ2, ε
Π |Λ |Γ ` proji v : τi, ε

Π |Λ |Γ ` v1 : τ1, ε1 Π |Λ |Γ ` v2 : τ2, ε2

Π |Λ |Γ ` 〈v1, v2〉 : τ1 × τ2, ε1 ∪ ε2

Π |Λ |Γ, f : τ1 →Π,Λ
ε τ2, x : τ1 ` e : τ2, ε

Π |Λ |Γ ` fun f(x).e : τ1 →Π,Λ
ε τ2, ∅

Π |Λ |Γ ` v : τ1 →Π,Λ
ε τ2, ε1 Π |Λ |Γ ` e : τ1, ε2

Π |Λ |Γ ` v e : τ2, ε1 ∪ ε2 ∪ ε
Π |Λ |Γ ` v : τ, ε ρ ∈ Π,Λ

Π |Λ |Γ ` ref v : refρτ , ε ∪ {alρ}
Π |Λ |Γ ` v1 : refρτ , ε1 Π |Λ |Γ ` v2 : τ, ε2

Π |Λ |Γ ` v1 := v2 : 1, ε1 ∪ ε2 ∪ {wrρ}
Π |Λ |Γ ` v : refρτ , ε

Π |Λ |Γ ` ! v : τ, ε ∪ {rdρ}
Π |Λ, ρ |Γ ` e : τ, ε

Π |Λ |Γ ` e : τ, ε− ρ
(ρ /∈ FRV(Γ, τ))

· |Π,Λ |Γ ` e : τ, ε
Π |Λ |Γ ` atomic e : τ, ε

(als ε ⊆ rds ε ∩ wrs ε)

Π,Λ | · |Γ ` e1 : τ1, ε1 Π,Λ | · |Γ ` e2 : τ2, ε2

Π |Λ |Γ ` par e1 and e2 : τ1 × τ2, ε1 ∪ ε2

Π |Λ |Γ ` v1 : refρint, ε1 Π |Λ |Γ ` v2 : int, ε2 Π |Λ |Γ ` v3 : int, ε3

Π |Λ |Γ ` cas (v1, v2, v3) : int, {wrρ, rdρ} ∪ ε1 ∪ ε2 ∪ ε3

Π |Λ |Γ ` e : τ1, ε1 Π,Λ ` τ1 ≤ τ2 ε1 ⊆ ε2

Π |Λ |Γ ` e : τ2, ε2
(FRV(ε2) ⊆ Π,Λ)

Θ ` τ ≤ τ
(FRV(τ) ⊆ Θ)

Θ ` τ1 ≤ τ ′1 Θ ` τ2 ≤ τ ′2
Θ ` τ1 × τ2 ≤ τ ′1 × τ ′2

Θ ` τ ′1 ≤ τ1 Θ ` τ2 ≤ τ ′2 ε1 ⊆ ε2 Π1 ⊆ Π2 Λ1 ⊆ Λ2

Θ ` τ1 →Π1,Λ1
ε1 τ2 ≤ τ ′1 →Π2,Λ2

ε2 τ ′2
(FRV(ε2),Π2,Λ2 ⊆ Θ)

Figure 3 Typing and subtyping relations. Notice that for a typing judgement Π |Λ |Γ ` e : τ, ε
we always have FRV(Γ, τ, ε) ⊆ Π ∪ Γ.

untouched.
When running parallel threads, the private regions of the parent are shared between

the children, and so are public from their point of view; this is reflected in the typing
rule for parallel composition, c.f. Figure 3. Note that the parent thread only continues
once both children have terminated; as a consequence, the parent regains ownership of its
private regions before it goes on. Running an expression atomically temporarily makes all
regions private. The side condition is a technical necessity. Finally, new, private regions are
introduced by the so-called masking rule:

Π |Λ, ρ |Γ ` e : τ, ε
Π |Λ |Γ ` e : τ, ε− ρ

(ρ /∈ FRV(Γ, τ))

The subtraction of ρ in the conclusion removes any read, write or allocation effects tagged
with ρ. The reading of the masking rule is that we make a brand new, empty region ρ for
e to use, but once e has terminated we forget about ρ again; this works out since the side
condition prevents e from leaking locations from ρ. Traditionally, the masking rule has been
used to do memory-management [27] as well as a means of hiding local effects to facilitate
effect-based program transformations [5, 26]. Here we make another use of the rule: we
observe that, moreover, e cannot leak locations from ρ while running and so ρ is a private
region for the duration of e. After all, the only means of inter-thread communication is

CSL’12

112 A Concurrent Logical Relation

shared memory. Note that from the perspective of the context, this rule allows to remove a
private region, and prepare a setup for application of the parallel composition.

All the typing rules are in Figure 3. We just remark here, that reference types are
tagged with the region where the location resides and that function arrows are tagged with
the latent effects as well as with the public and private regions that the function expects; the
latter is natural once we remember that a function is basically just a suspended, well-typed
expression.

Because of the nondeterminism arising from par and shared references, the definition of
contextual equivalence could take into account both may- and must-convergence. In this
paper we only consider may-equivalence and formally we define (may-) contextual approxi-
mation by:
I Definition 1. Π |Λ |Γ ` e .↓ e′ : τ, ε if and only if for all h and C typed such that
· | · | · ` C[e], C[e′] : int, ∅, whenever (C[e] |h) ↓ then (C[e′] |h) ↓.
Here, as usual, (e |h) ↓ means that (e |h) 7−→ ∗(v |h′) for some value v and some h′.

Contextual equivalence, Π |Λ |Γ ` e ≈ e′ : τ, ε, is then defined as Π |Λ |Γ ` e .↓ e′ :
τ, ε and Π |Λ |Γ ` e′ .↓ e : τ, ε. Note that the diverging behaviours introduced by our
operational semantics of atomic e do not influence may-contextual equivalence.

3 Definition of the logical relation

Semantic Types and Worlds We give a Kripke or world-indexed logical relation. This
is a fairly standard approach to modeling dynamic allocation; in combination with higher-
order store, however, it comes with a fairly standard problem: the type-world circularity.
Roughly, semantic types are indexed over worlds and worlds contain semantic types, so both
need to be defined before the other. A specific instance of this circularity was solved recently
by Thamsborg and Birkedal [26] based on metric-space theory developed by Birkedal et. al.
[7]; we re-use that solution here. Semantic types (and worlds) are constructed as a fixed-
point of a endo-functor on a certain category of metric-spaces. We do not care about that,
though; we just give the result of the construction. In addition, we largely ignore the fact
that we actually deal in metric spaces and not just plain sets; the little metric machinery
we need is deferred to the appendix of the long version of the paper.

There is a set T of semantic types and a set W of worlds; types are world-indexed rela-
tions on values and worlds describe the regions and type-layouts of heaps, roughly speaking.
Take a type µ ∈ T and apply it to a world w ∈W and you get an indexed relation on values,
i.e., µ(w) ⊆ N × V × V. These relations are downwards closed in the first coordinate; we
read (k, v1, v2) ∈ µ(w) as saying that v1 and v2 are related at type µ up to approximation
k assuming world w.

We assume a countably infinite set of region names RN ; a world w ∈W contains finitely
many such |w| ⊆fin RN . Some of these dom(w) ⊆ |w| are live and the rest are dead. To each
live region r ∈ dom(w) we associate a finite partial bijection w(r) on locations decorated
with types, i.e., w(r) ⊆fin L×L× T̂ such that for (l1, l2, µ), (m1,m2, ν) ∈ w(r) we have that
both l1 = m1 and l2 = m2 imply l1 = m1, l2 = m2 and µ = ν. We write dom1(w(r)) for
the set of left hand side locations in the bijection and dom2(w(r)) for the right hand side
ones; different regions must have disjoint left and right hand side locations. For convenience,
we set domA

1 (w) =
⋃
r∈A∩dom(w) dom1(w(r)) whenever A ⊆ |w|, and we write dom1(w) for

dom|w|1 (w), i.e., the set of all left hand side locations. Similarly for the right hand side.
Worlds evolve and types adapt. Triples of two locations and a type can be added to a live

region, as long as different regions remain disjoint. Orthogonal to this, one can add a fresh,

L. Birkedal, F. Sieczkowski, and J. Thamsborg 113

i.e., neither live nor dead, region name with an associated empty partial bijection. And one
can kill any live region, rendering it dead and losing the associated the partial bijection in
the process. The reflexive, transitive closure of all three combined is a preorder v on worlds;
it is a crucial property of types that they respect this, i.e., that w v w′ =⇒ µ(w) ⊆ µ(w′)
for any two w,w′ ∈ W and any µ ∈ T. This is type monotonicity and it prevents values
from fleeing types over time.

Finally, to tie the knot, there is an isomorphism ι : T̂→ T from the odd types stored in
worlds to proper types. Whenever a type is extracted from a world it needs to be coerced
by this isomorphism before it can be applied to some world.

The Logical Relation and Interpretation of Types Often, a logical relation goes like
this: two computations are related if they (from related heaps) reduce to related values (and
heaps); this is the extensional view: we do not care about the intermediate states. As we
consider concurrency, however, a computation can be interrupted and so we need to start
caring. In our setup, public regions are accessible from the environment. To address this,
we assume that before each reduction step, the public regions hold related values; in return,
we promise related values after the step. In other words, the granularity of extensionality
is just one step for the public regions. For private regions, however, there is no interference
and the granularity is an entire computation as usual. This is the fundamental idea; it is
how we propose to stay extensional in the face of concurrency.

Without further ado, let us look into the cornerstone of our model: the safety relation
defined in Figure 6; auxiliary relations are defined in Figure 8. What does it mean to have

(k, h◦1, h◦2, e1, e2, h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w◦, w?

Overall, it says that after environment interference, we can match the behavior of e1, i.e.,
termination or any one-step reduction, by zero or more steps of e2; match in the sense of
(re-)establishing certain relations, including safety itself. Safety is a local property of a pair
of computations, this is crucial: it has no knowledge of computations running concurrently
and h1 and h2 are the local heaps, i.e., the parts of the global heaps that the e1 respectively
e2 control exclusively. The computations consider R(Π) to be their public, R(Λ) to be their
private and A to be their anonymous regions. The latter intuitively are private regions
that have been masked out: they exist only for the duration of these computations, but
we have to track them to deny the environment access; this is another difficulty imposed
by concurrency. Safety is indexed by a world w as well; note that worlds are global things:
all concurrent threads share one world, i.e., they agree about the division of the heap into
regions and the types associated to locations. Finally k is intuitively the number of steps
we are safe for, h◦1 and h◦2 are the (private parts of) the initial local heaps, τ is the expected
return type, ε the effects and w◦ the initial world.

We unroll the definition in writing. The first pair of big square brackets — the prerequi-
sites — translates to ‘the environment interferes’. This yields a new world w′ subject to the
constraints of the environment transition relation: no public, private or anonymous regions
are killed, and the latter two see no allocation either. The actual contents of the public
regions are unknown, but we are free to assume that they hold related values of the proper
type, at least where we have read effects; this is the public heaps g1 and g2 in the precondition
relation. In addition we have frames f1 and f2 that cover the remainder of the world and
a triple-split relation that ensures coherence between the domains of corresponding parts of
the world and the heaps, see Figures 4 and 8.

The left hand side is irreducible in the termination branch and takes one step in the
progress branch. In either case, we must match this in zero or more steps on the right hand

CSL’12

114 A Concurrent Logical Relation

domR(Π)
1 (w)︷ ︸︸ ︷

−−−−−
domR(Λ)

1 (w)︷ ︸︸ ︷
−−−−−

domA
1 (w)︷ ︸︸ ︷

−−−−−−−−
−−−−−︸ ︷︷ ︸

dom(g1)

−−−−−︸ ︷︷ ︸
dom(h1)

−−−−−︸ ︷︷ ︸
dom(h1)

−−−−−−︸ ︷︷ ︸
dom(f1)

−−−︸ ︷︷ ︸
dom(h1)

Figure 4 The left hand side of the triple-split relation. The top dashed line is dom1(w), the bot-
tom dashed line dom(g1 · h1 · f1). The local heap h1 has a private part matching the private regions,
an anonymous part matching the anonymous regions and an off-world part outside the domain of
the world. The frame f1 must cover regions that are neither public, private nor anonymous.

side, not touching the frame; this means finding a future world w′′ and relating a number of
things. The choice of future world is restricted by the self transition relation: we must not
kill private or public regions, but we can allocate in them, and regions that we know nothing
about must be left untouched; this is our promise to the environment. In the termination
branch, we are furthermore required to kill off all anonymous regions as the computation is
done; any new regions added in the progress branch go to the set of anonymous regions. In
both branches, the changes made to the public heap must be well-typed and permitted by
the effects and, if we are done, we check the changes made to (the private part of) the local
heaps as well; the fact that the public heaps are compared across a single stage and the
(private parts of) the local heaps are compared across the entire computations is the crux
of the idea of having different granularities of extensionality.

In addition to performing actual allocation, we have the possibility of moving existing
locations from, say, the off-world part of the local heap into the public heap or the private
part of the local heap; this is a subtle point that permits the actual allocation of new
locations and the corresponding extension of the world to be temporarily out of sync.

We have glossed over one aspect of safety: the right hand side takes steps in the ordi-
nary operational semantics, but the left hand side works in the instrumented operational
semantics. A reduction (e |h)→n

µ (e′ |h′) in the latter implies a similar reduction in former;
in addition it counts the steps of a reduction with all atomic commands ‘unfolded’ (with
unfolding itself counting one step) and it records all heap accesses; the formal definition is
deferred to the appendix of the long version of the paper. We need the former for com-
patibility of the atomic typing rule below: atomic commands really unfold as they execute,
hence we must count the number of ‘unfolded’ steps. It is less immediate that we must test
the actual reads, writes and allocations, recorded by µ, against the effects described by ε, as
done in the progress branch of safety. But if omitted, our present proof of the Paralleliza-
tion Theorem falls short, since it relies on the following simple, but crucial commutation
property:

I Lemma 2. If we have l /∈ µ and (e |h)→n
µ (e′ |h′), then (e |h[l 7→ v])→n

µ (e′ |h′[l 7→ v]).

The actual logical relation is given in Figure 7. The existentially quantified a ∈ N is
the minimal number of anonymous regions required to run; apart from that it uses safety
in a straightforward way. There is some asymmetry to these definitions: the anonymous
regions A are required to exist (and be empty) in the world beforehand, but are killed
off in the termination branch; also the precondition on the (private parts of) the initial
local heaps is in the logical relation whereas the postcondition lives in the termination
branch. The interpretation of types is in Figure 5. Interpreting the function type looks
daunting, but a function is just a suspended expression with a single free variable, hence
we have to restate most of the logical relation in the definition. Apart from that, we just

L. Birkedal, F. Sieczkowski, and J. Thamsborg 115

J1KRw = {(k, (), ()) | k ∈ N} JintKR w = {(k, n, n) | k ∈ N ∧ n ∈ Z}

Jτ1 × τ2KRw =
{
(k, (v11, v21), (v12, v22)) | (k, v11, v12) ∈ Jτ1K

R
w ∧ (k, v21, v22) ∈ Jτ2K

R
w
}

JrefρτKRw =


{

(k, l1, l2) | ∃µ ∈ T̂. (l1, l2, µ) ∈ w(R(ρ)) ∧
∀w′ w w. JτKR w′ k= (ι µ)(w′)

}
R(ρ) ∈ dom(w)

{(k, v1, v2) | k ∈ N ∧ v1, v2 ∈ V} R(ρ) /∈ dom(w)
q
τ1 →Π,Λ

ε τ2
y
Rw =



(k, fun f(x).e1, fun f(x).e2) | ∃a ∈ N.∀j < k. ∀w′ w w.
∀A ⊆ dom(w′).∀v1, v2 ∈ V.∀h1, h2, h

′
1, h
′
2 ∈ H.[

R(FRV(ε)) ⊆ dom(w′) ∧ A#R(Π ∪ Λ) ∧ |A| ≥ a ∧ w′(A) = ∅ ∧
(j, v1, v2) ∈ Jτ1K

R
w′ ∧ h′1 ⊆ h1 ∧ h′2 ⊆ h2 ∧ (j, h′1, h′2) ∈ PΛ,R

ε w′

]
⇒

(j, h′1, h′2, (fun f(x).e1) v1, (fun f(x).e2) v2, h1, h2) ∈ safeΠ,Λ,A,R
τ2,ε w′, w′


R(FRV(ε)) ⊆ dom(w)

{(k, v1, v2) | k ∈ N ∧ v1, v2 ∈ V} R(FRV(ε)) * dom(w)

Figure 5 Interpretation of types. We require R : RV ⇀fin RN injective with FRV(τ) ⊆ dom(R).
We assume R(FRV(τ)) ⊆ |w| above, otherwise we define JτKRw to be the empty set. In the
interpretation of functions, and also below, we write # to denote disjoint sets. We get that JτKR ∈ T.

remark that the R(ρ) /∈ dom(w) case of reference interpretation is part of an approach to
handling dangling pointers (due to region masking) proposed recently in [26]; similarly for
the R(FRV(ε)) * dom(w) case.

To conclude this subsection we give a theorem that, combined with the upcoming com-
patibility, means that logical relatedness implies contextual may-approximation. The proof
is in the appendix of the long version of the paper and it is not hard, but it is worth noting
that we need a proof at all: with sequential languages, this is a result one reads off the
definition of the logical relation.

I Theorem 3 (May-Equivalence). Assume that · | · | · |= e1 � e2 : int, ∅ holds. Take any
h1, h2 ∈ H. If there are e′1, h′1 with (e1 |h1) ∗7−→ (e′1 |h′1) such that irr(e′1|h′1) holds, then
there is n ∈ Z such that e′1 = n and h′2 such that (e2 |h2) ∗7−→ (n, h′2).

Compatibility of the Logical Relation The logical relation is compatible, i.e., respects
all typing rules. This is a sine qua non of logical relations; it implies the fundamental lemma
stating that every well-typed expression is related to itself. And, as discussed just above, it
makes the logical relation approximate contextual may-approximation:

I Theorem 4. Π |Λ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ ` e1 .↓ e2 : τ, ε.

Compatibility means that each typing rule induces a lemma by reading the (unary) typing
judgments as the corresponding (binary) logical relations.The three most interesting of these
have to do with concurrency and the divide between public and private regions; they are
listed here and proofs are given in the appendix of the long version of the paper:

I Lemma 5. Π |Λ, ρ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ |= e1 � e2 : τ, ε− ρ provided that
ρ /∈ FRV(Γ, τ).

CSL’12

116 A Concurrent Logical Relation

(k, h◦1, h◦2, e1, e2, h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w◦, w

⇐⇒
∀j ≤ k. ∀w′, g1, g2, f1, f2.[

envtranΠ,Λ,A,R w,w′ ∧ (j, g1, g2) ∈ PΠ,R
ε w′ ∧

(g1, h1, f1, g2, h2, f2) ∈ splitsΠ,Λ,A,R w′
]
⇒[

irr(e1|g1 · h1 · f1)⇒

∃e′2, w′′, h′1, h′2, g′1, g′2.

(e2 | g2 · h2 · f2) ∗7−→ (e′2 | g′2 · h′2 · f2) ∧ selftranΠ,Λ,A,R w′, w′′ ∧
∅ = (A ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)) ∧ g1 · h1 = g′1 · h′1 ∧

(g′1, h′1, f1, g
′
2, h
′
2, f2) ∈ splitsΠ,Λ,∅,R w′′ ∧ (j, g1, g2, g

′
1, g
′
2) ∈ QΠ,R

ε w′, w′′ ∧

(j, e1, e
′
2) ∈ JτKR (w′′) ∧ ∃h′′1 ⊆ h′1, h′′2 ⊆ h′2. (j, h◦1, h◦2, h′′1 , h′′2) ∈ QΛ,R

ε w◦, w′′
]
∧[

∀e′1, h
†
1, µ, n ≤ j. (e1 | g1 · h1 · f1)→n

µ (e′1 |h
†
1)⇒

∃e′2, w′′, A′, h′1, h′2, g′1, g′2.

(e2 | g2 · h2 · f2) ∗7−→ (e′2 | g′2 · h′2 · f2) ∧ selftranΠ,Λ,A,R w′, w′′ ∧

A′ = (A ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)) ∧ h†1 = g′1 · h′1 · f1 ∧

(g′1, h′1, f1, g
′
2, h
′
2, f2) ∈ splitsΠ,Λ,A′,R w′′ ∧ (j − n, g1, g2, g

′
1, g
′
2) ∈ QΠ,R

ε w′, w′′ ∧

µ ∈ effsA
′,R

ε,h′
1
w′′ ∧ (j − n, h◦1, h◦2, e′1, e′2, h′1, h′2) ∈ safeΠ,Λ,A′,R

τ,ε w◦, w′′
]

Figure 6 Safety. The predicate is defined by well-founded induction. Nontrivial requirements
are: Π # Λ, FRV(τ, ε) ⊆ Π ∪ Λ, FV(e1, e2) = ∅, R : Π ∪ Λ ↪→ |w◦|, R(FRV(ε)) ⊆ dom(w◦) and
w w w◦ with dom(w◦) ∩ R(Π ∪ Λ) ⊆ dom(w), A ⊆ dom(w) and A#R(Π ∪ Λ). See Figure 8 for
auxiliary definitions. We refer to the contents of the big square brackets as the prerequisites, the
termination branch and the progress branch, respectively.

Π | Λ | Γ |= e1 � e2 : τ, ε
⇐⇒

∃a ∈ N.∀k ∈ N.∀w ∈W.∀R : Π ∪ Λ ↪→ |w|.∀A ⊆ dom(w).

∀γ1, γ2 ∈ V |Γ|.∀h1, h2, h
′
1, h
′
2 ∈ H.[

R(FRV(ε)) ⊆ dom(w) ∧ A#R(Π ∪ Λ) ∧ |A| ≥ a ∧ ∀r ∈ A.w(r) = ∅ ∧

(k, γ1, γ2) ∈ JΓKRw ∧ h′1 ⊆ h1 ∧ h′2 ⊆ h2 ∧ (k, h′1, h′2) ∈ PΛ,R
ε w

]
⇒

(k, h′1, h′2, e1[γ1/Γ], e2[γ2/Γ], h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w,w.

Figure 7 The logical relation with anonymous regions. We require that Π # Λ, FRV(Γ, τ, ε) ⊆
Π ∪ Λ and, as always, that FV(e1, e2) ∈ |Γ|.

L. Birkedal, F. Sieczkowski, and J. Thamsborg 117

envtranΠ,Λ,A,R w,w′ ⇐⇒ w v w′ ∧ ∀r ∈ dom(w) ∩ (R(Π ∪ Λ) ∪A). r ∈ dom(w′)
∧ ∀r ∈ dom(w) ∩ (R(Λ) ∪A). w(r) = w′(r).

selftranΠ,Λ,A,R w,w′ ⇐⇒ w v w′ ∧ ∀r ∈ dom(w) \A. r ∈ dom(w′)
∧ ∀r ∈ dom(w) \ (R(Π ∪ Λ) ∪A). w(r) = w′(r).

(g1, h1, f1, g2, h2, f2) ∈ splitsΠ,Λ,A,R w ⇐⇒
dom(h1) # dom(g1) # dom(f1) ∧ dom(h2) # dom(g2) # dom(f2) ∧

domR(Π)
1 (w) = dom(g1) ∧ domR(Λ)∪A

1 (w) ⊆ dom(h1) ∧

domdom(w)\(R(Π∪Λ)∪A)
1 (w) ⊆ dom(f1) ∧

domR(Π)
2 (w) = dom(g2) ∧ domR(Λ)∪A

2 (w) ⊆ dom(h2) ∧

domdom(w)\(R(Π∪Λ)∪A))
2 (w) ⊆ dom(f2).

(k, h1, h2) ∈ PΘ,R
ε w ⇐⇒ dom(h1) = domR(Θ)

1 (w) ∧ dom(h2) = domR(Θ)
2 (w) ∧

∀r ∈ R(Θ) ∩ dom(w).∀(l1, l2, µ) ∈ w(r).
r ∈ R(rds ε)⇒ k > 0⇒ (k − 1, h1(l1), h2(l2)) ∈ (ι µ)(w).

(k, h1, h2, h
′
1, h
′
2) ∈ QΘ,R

ε w,w′ ⇐⇒

dom(h1) = domR(Θ)
1 (w) ∧ dom(h2) = domR(Θ)

2 (w) ∧

dom(h′1) = domR(Θ)
1 (w′) ∧ dom(h′2) = domR(Θ)

2 (w′) ∧(
∀r ∈ R(Θ) ∩ dom(w).∀(l1, l2, µ) ∈ w(r).
[h1(l1) = h′1(l1) ∧ h2(l2) = h′2(l2)] ∨ [r ∈ R(wrs ε) ∧
k > 0⇒ (k − 1, h′1(l1), h′2(l2)) ∈ (ι µ)(w′)]

)
∧(

∀r ∈ R(Θ) ∩ dom(w).
∀(l1, l2, µ) ∈ w′(r) \ w(r). r ∈ R(als ε) ∧
k > 0⇒ (k − 1, h′1(l1), h′2(l2)) ∈ (ι µ)(w′)

)
.

µ ∈ effsA,Rε,h w ⇐⇒ {l | rdl ∈ µ} ∩ dom1(w) ⊆ domR(rds ε)∪A
1 (w) ∧

{l | wrl ∈ µ} ∩ dom1(w) ⊆ domR(wrs ε)∪A
1 (w) ∧

{l | all ∈ µ} ∩ dom1(w) ⊆ domR(als ε)∪A
1 (w) ∧

{l | rdl ∈ µ ∨ wrl ∈ µ ∨ all ∈ µ} \ dom1(w) ⊆ dom(h).

Figure 8 Six auxiliary definitions. The environment transition and self transition relations are
defined for Π # Λ, R : Π ∪ Λ ↪→ |w|, A ⊆ dom(w) and R(Π ∪ Λ) #A. The triple-split relation
has the same prerequisites. The precondition relation is defined for R : RV ⇀fin |w| injective
with Θ ∪ FRV(ε) ⊆ dom(R). The postcondition relation additionally requires w′ w w such that
dom(w) ∩ R(Θ) ⊆ dom(w′). Finally the actual-effects relation expects R : RV ⇀fin |w| injective
with FRV(ε) ⊆ dom(R) and A ⊆ dom(w).

CSL’12

118 A Concurrent Logical Relation

I Lemma 6. · |Π,Λ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ |= atomic e1 � atomic e2 : τ, ε if
als ε ⊆ rds ε ∩ wrs ε.

I Lemma 7. Π,Λ | · |Γ |= e1 � e2 : τ, ε and Π,Λ | · |Γ |= e†1 � e†2 : τ †, ε† together imply
Π |Λ |Γ |= par e1 and e†1 � par e2 and e†2 : τ × τ †, ε ∪ ε†.

4 Applications

4.1 Parallelization Theorem: Disjoint Concurrency
We now explain our Parallelization Theorem, which gives us an easy way to prove properties
about the common case of disjoint concurrency, where disjointness is captured using private
regions and effect annotations.

I Theorem 8 (Parallelization). Assuming that
1. Π,Λ | · | Γ ` e1 : τ1, ε1,
2. Π,Λ | · | Γ ` e2 : τ2, ε2,
3. rds ε1 ∪ wrs ε1 ∪ rds ε2 ∪ wrs ε2 ⊆ Λ,
4. rds ε1 ∩ wrs ε2 = rds ε2 ∩ (wrs ε1 ∪ als ε1) = wrs ε1 ∩ wrs ε2 = ∅,
the following property holds:

Π | Λ | Γ |= 〈e1, e2〉 ∼= par e1 and e2 : τ1 × τ2, ε1 ∪ ε2.

Intuitively, item 3 keeps the environment from detecting anything, and item 4 prevents the
two computations from talking among themselves, thereby making them independent; the
als ε1 in item 4 is a technicality that we cannot do without. We showed a concrete simple
application of this theorem in the Introduction. More generally, example usage includes
situations where we operate on two imperative data structures (say linked lists or graphs);
if we only mutate parts of the data structures that are in different regions, then we may
safely parallelize operations on the data structures.

The masking rule makes it possible to do more optimizations via the Parallelization
Theorem: Consider, for simplicity, the familiar example of an efficient implementation fib
of the Fibonacci function using two local references. We can use the masking rule to give it
type and effect int→·,·∅ int, ∅. This allows us to view the imperative implementation as pure,
and thus by Theorem 8 we find that it is sound to optimize two sequential calls to fib to two
parallel calls. This may sound like a simple optimization, but the point is that a compiler
can perform it automatically, just based on the effect types. It also underlines how we are
able to reason about more involved behaviors of concurrent threads, even though the type
system provides only rough bounds on interference through the private-public distinction.

The proof of the Parallelization Theorem is quite tricky. Please see the the appendix of
the long version of the paper for an informal overview of the proof and the technical details.

4.2 Non-disjoint Concurrency
We now exemplify how our logical relations model can also be used to reason compositionally
about equivalences of fine-grained concurrent programs operating on public regions.

Consider the following type

τ ≡ refρint→ρ,∅
{rdρ,wrρ} 1

L. Birkedal, F. Sieczkowski, and J. Thamsborg 119

of functions that take an integer reference in a public region, possibly read and write from
the reference, and return unit. The following two functions

fun inc1(x). let y = !x in let z = y + 1 in
if cas (x, y, z) then 〈〉 else inc1 (x)

and fun inc2(x). atomic (x := !x+ 1)

both have type τ . (We have allowed ourselves to use a standard conditional expression; 1
corresponds to true and 0 to false.) Both functions increment the integer given in their ref-
erence arguments; inc1 uses the fine-grained compare-and-swap to do it atomically, whereas
inc2 uses the brute-force atomic operation. Using our logical relations model, we can prove
that inc1 and inc2 are contextually equivalent:

ρ | · | · ` inc1 ≈ inc2 : τ, ∅. (1)

Hence, replacing inc2 with inc1 in any well-typed client gives two contextually equivalent
expressions. Thus our logical relation models a form of data abstraction for concurrency
(where we abstract over the granularity of concurrency in the module).

We now show how to use the equivalence of inc1 and inc2 to derive equivalences of two
different clients using the fine-grained concurrency implementation inc1.

To this end, consider the following two client programs of type

σ ≡ τ →ρ,∅
∅ refρint→ρ,∅

{rdρ,wrρ} int,

fun c1(inc).λ n.incn; incn; !n and fun c2(inc).λ n.(par incn and incn); !n

Note that c1 makes two sequential calls to inc, whereas c2 runs the two calls in parallel.
Because of the use of compare-and-swap in inc1, we would hope that the c1 inc1 and c2 inc1
are contextually equivalent (in typing context ρ | ∅ | ∅). We can prove that this is indeed
the case using compositional reasoning as follows. Using our logical relation, we prove that
c1 inc2 is contextually equivalent to c2 inc2, i.e.,

ρ | · | · ` c1 inc2 ≈ c2 inc2 : refρint→ρ,∅
{rdρ,wrρ} int, ∅. (2)

Finally, we conclude that c1 inc1 is contextually equivalent to c2 inc1 by transitivity of con-
textual equivalence (using (1), (2) and (1) again for the respective steps):

c1 inc1 ≈ c1 inc2 ≈ c2 inc2 ≈ c2 inc1

This proof illustrates an important point: to show equivalence of two clients of a module
implemented using fine-grained concurrency, it suffices to show that the clients are equiv-
alent wrt. a coarse-grained implementation, and that the coarse-grained implementation is
equivalent to the fine-grained implementation. This is often a lot simpler than trying to
show the equivalence of the clients wrt. the fine-grained implementation directly. We can
think of the coarse-grained implementation of the module (here inc2) as the specification of
the module and the fine-grained implementation (here inc1) as its implementation.

The formal proofs of (1) and (2) follow by straightforward induction.

5 Discussion

Gifford and Lucassen [15, 20] originally proposed type-and-effect systems as a static analysis
for determining which parts of a higher-order imperative program could be implemented
using parallelism. Here we are able to express the formal correctness of these ideas in a

CSL’12

120 A Concurrent Logical Relation

succinct way by having a parallel construct in our programming language and establishing
the Parallelization Theorem.

In Section 4.2 we showed how contextual equivalence can be used to state that compare-
and-swap can be used to implement a simple form of locking, and how our logical relations
model could be used to prove this statement. We believe that it should be possible to give
similar succinct statements and proofs of other implementations of synchronization; confer
work by Turon and Wand [28].

As mentioned earlier, we have deliberately used the same definition of worlds here as
in [26]. As discussed there [26, Section 8.2], this notion of world has somewhat limited
expressiveness: the only heap invariants we can state are those that relate values at two
locations by a semantic type. To increase expressiveness, it would thus be interesting to
extend our model using ideas from [12], and then investigate more examples of equivalences.

Recently, Liang et. al. [19] have proposed RGSim, a simulation based on rely-guarantee,
to verify program transformations in a concurrent setting. Their actual definition [19, Defi-
nition 4] bears some resemblance to our safety relation; indeed, an early draft of loc.cit. was
a source of inspiration. They have no division of the heap into public and private parts,
instead they give a pair of rely and guarantee that, respectively, constrain the interference of
the environment and the actions of the computation. Their approach is essentially untyped;
one point of view is that we ‘auto-instantiate’ the many parameters of their simulation
based on our typing information. They consider first-order languages with ground store;
this obviously keeps life simple, but the example equivalences they give are not.

Our simple example of data abstraction for concurrency in Section 4.2 suggests that there
could be a relationship to linearizability. We intend to explore whether a formal relationship
can be established in our higher-order setting; confer work by Filipović et. al. [14].

6 Conclusion and Future Work

We have presented a logical relations model of a new type-and-effect system for a concurrent
higher-order ML-like language with general references. We have shown how to use the model
for reasoning about both disjoint and non-disjoint concurrency. In particular, we have proved
the first automatic Parallelization Theorem for such a rich language.

In this paper, we have focused on may contextual equivalence. Future work includes
investigating models for must contextual equivalence. Since our language allows the encoding
of countable nondeterminism, must equivalence is non-trivial, and will probably involve
indexing over ω1 rather than ω [24]. Future work also includes extending the model to
region and effect polymorphism, as well as the extension to more expressive worlds, and to
other concurrency constructs such as fork-join.

The authors would like to thank Jan Schwinghammer and Xinyu Feng for discussions of
aspects of this work.

References

1 Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,
2004.

2 Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation inde-
pendence. In POPL, 2009.

3 N. Benton, L. Beringer, M. Hofmann, and A. Kennedy. Relational semantics for effect-based
program transformations with dynamic allocation. In PPDP. ACM, 2007.

L. Birkedal, F. Sieczkowski, and J. Thamsborg 121

4 N. Benton, L. Beringer, M. Hofmann, and A. Kennedy. Relational semantics for effect-based
program transformations: Higher-order store. In PPDP. ACM, 2009.

5 N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions. In TLDI,
2007.

6 N. Benton, A. Kenney, M. Hofmann, and L. Beringer. Reading, writing and relations:
Towards extensional semantics for effect analyses. In APLAS, 2006.

7 L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang. Step-
indexed Kripke models over recursive worlds. In POPL, 2011.

8 L. Birkedal, J. Thamsborg, and K. Støvring. Realizability semantics of parametric poly-
morphism, general references, and recursive types. In FOSSACS, 2009.

9 L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to von Neumann machines
via region representation inference. In POPL, 1996.

10 A. Buisse, L. Birkedal, and K. Støvring. A step-indexed Kripke model of separation logic
for storable locks. In MFPS, 2011.

11 M. Dodds, X. Feng, M.J. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In ESOP,
2009.

12 D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects
on local relational reasoning. In ICFP 2010, pages 143–156. ACM, 2010.

13 X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic
and assume-guarantee reasoning. In ESOP, 2007.

14 Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for
concurrent objects. TCS, 2010.

15 D.K. Gifford and J.M. Lucassen. Integrating functional and imperative programming. In
LISP and Functional Programming, 1986.

16 F. Henglein, H. Makholm, and H. Niss. Effect types and region-based memory management.
In B.C. Pierce, editor, Advanced Topics in Types and Programming Languages. 2005.

17 Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-
order imperative programs. In POPL, 2006.

18 James Laird. A fully abstract trace semantics for general references. In ICALP, 2007.
19 H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for verifying concurrent

program transformations. In POPL, 2012.
20 J.M. Lucassen and D.K. Gifford. Polymorphic effect systems. In POPL, 1988.
21 A. Murawski and N. Tzevelekos. Game semantics for good general references. In LICS,

2011.
22 Peter W. O’Hearn. Resources, concurrency, and local reasoning. TCS, 2007.
23 Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for

higher-order languages. TOPLAS, 2011.
24 Jan Schwinghammer and Lars Birkedal. Step-indexed relational reasoning for countable

nondeterminism. In CSL, 2011.
25 Eijiro Sumii. A complete characterization of observational equivalence in polymorphic

λ-calculus with general references. In CSL, 2009.
26 Jacob Thamsborg and Lars Birkedal. A Kripke logical relation for effect-based program

transformations. In ICFP, 2011.
27 M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value λ-calculus using a

stack of regions. In Proceedings of POPL, 1994.
28 Aaron Joseph Turon and Mitchell Wand. A separation logic for refining concurrent objects.

In Thomas Ball and Mooly Sagiv, editors, POPL, pages 247–258. ACM, 2011.
29 V. Vafeiadis and M.J. Parkinson. A marriage of rely/guarantee and separation logic. In

CONCUR, 2007.
30 Viktor Vafeiadis. Concurrent separation logic and operational semantics. In MFPS, 2011.

CSL’12

	Introduction
	Language and Typing
	Definition of the logical relation
	Applications
	Parallelization Theorem: Disjoint Concurrency
	Non-disjoint Concurrency

	Discussion
	Conclusion and Future Work

