Bl Hyperdoctrines and
Higher-Order Separation Logic

Lars Birkedal

The IT University of Copenhagen

.z U
o
g

IT Ur:' eri,!;ceyn HOSL — p.1/2¢



Goals

Intro to Higher-order Separation Logic

= examples of why it is useful to use higher-order
logic

Intro to (Bl) hyperdoctrines
Observe some benefits of “abstract approach”

Main reference: [B. Biering and L. Birkedal and N.
Torp-Smith: Bl-Hyperdoctrines, Higher-order
Separation Logic, and Abstraction. ACM Transactions
on Programming Languages and Systems, 29(5):

2007.
(Journal version of ESOP’05 paper.)]
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HOSL Example

From [Petersen et. al.: A Realizability Model of HTT,
ESOP’08]: Imperative ADT:

stacktype =
[[a: Type.) B :Type.) inv: [ x alist — Prop.
/+newx / (—){emp}s: G{inv(s,|])} X
[*push*/ []s:B.]]z:
(I = aclist) {inv(s, 1) }u : H{inv(s,x 2 1)} X
/*xpopx/ ]]s:p.
(x:a,l: alist).
{inv(s,z :: D)}y afinv(s, ) ANy =4 x} X
/xdelx/ ]]s:p.
5 (I : alist).{inv(s,l)}u : 1{emp}
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Overview

Earlier work [Pym, O’Hearn, et. al.] has established
correspondence between a part of separation logic and
propositional B

We extend the correspondence to full separation logic
and a simple version of predicate Bl, and, moreover, to
higher-order

= define a class of sound and complete models: Bl
Hyperdoctrines

= show that one cannot simply use toposes as
models

= argue that higher-order separation logic is useful for
formalizations of separation logic and for data
abstraction
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Why abstract approach?

Results applicable in many different situations, e.g.:

Relational Parametricity and Separation Logic
[LB-Yang: FOSSACS'07]

Higher-order store [LB et. al.: ICALP’08]
Hoare Type Theory [Petersen et. al.. ESOP’08]

|dealized ML [Krishnaswami: thesis proposal,
Krishnaswami et. al.: submitted]

HOSL for Java [LB-Parkinson, ongoing]
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Bl Hyperdoctrines — Overview

A hyperdoctrine is a categorical formalization of a
model of predicate logic [Lawvere 1969]. Sound and
complete for IHOL.

Toposes also sound and complete for IHOL.
Bl Hyperdoctrines sound and complete for IHOL + Bl

Hyperdoctrine

Toposes Bl-Hyperdoctrine

Sub_E(-)
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First-order Hyperdoctrines, |

Let C be a category with finite products. A first-order
hyperdoctrine P over C Is a contravariant functor
P : C? — Poset S.1.:
Each P(X) is a Heyting algebra.
Each P(f): P(Y) — P(X) is a Heyting algebra
homomorphism.

There is an element =x of P(X x X) satisfying that for
all A e P(X x X),

1T < P(AX)(A) Iff =x<A.
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First-order Hyperdoctrines, |

For each product projection 7 : I' x X — I'In C,
P(m): P(I') — P(I' x X) has both a left adjoint (3.X)r
and a right adjoint (V.X)r:

A< P(r)(A) ifandonlyif (3X)p(A) < A’

P(m)(A) < A ifandonlyif A < (VX)r(A).

Natural in T".
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Interpretation in Hyperdoctrines

Types and terms interpreted by objects and morphisms
of C

Each formula ¢ with free variables in I' is interpreted as
a P-predicate [¢] € P([I']) by induction on the structure
of ¢ using definining properties of hyperdoctrine.

A formula ¢ with free variables in T" is satisfied If [¢] IS
TinP([I]).

Sound and complete for intuitionistic predicate logic.

A first-order hyperdoctrine is sound for classical
predicate logic in case all the fibres P(X) are Boolean
algebras and all the reindexing functions P(f) are
Boolean algebra homomorphisms.
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Hyperdoctrines

A (general) hyperdoctrine is a first-order hyperdoctrine with
the following additional properties:

C IS cartesian closed: and

there is H € C and a natural bijection
Ox : 0bj(P(X)) ~C(X, H).

Cartesian closure interprets higher types.

Type of propositions is interpreted by H.
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Bl Hyperdoctrines

Recall: A Bl algebra is a Heyting algebra, which has an
additional symmetric monoidal closed structure (I, *, —)

Define: A first-order hyperdoctrine P over C is a
first-order Bl hyperdoctrine in case
= all the fibres P(X) are Bl algebras, and
= all the reindexing functions P(f) are Bl algebra
homomorphisms

Likewise for general Bl hyperdoctrines.
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First-order Predicate Bl, |

Predicate logic with equality extended with I, ¢ * 1,
¢ — 1 satisfying the usual rules for Bl (in any context
I'):

(p*)x0Fp @x(=*0) Ox(Yx0)Fr (px) x0

1 ¢ @xl ¢ Px @
O Fr v 0Fr w ¢ Fp o
¢>I<(9|_F¢>l<u} ¢|_F?7bﬁl<(9

s U
o
g

IT Ur:' erﬂ;ceyn HOSL — p.12/2¢



First-Order Predicate Bl, I

Notice
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No Bl structure on contexts (in [Pym:2002] there is)

In particular, weakening on the level of variables is
always allowed

¢ Fr Y
¢ Frufex) ¥

Fine because simple and what we need for separation
logic
Can be interpreted in first-order Bl hyperdoctrines

Theorem The interpretation of first-order predicate Bl
IS sound and complete.

Also for classical predicate Bl, of course
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Higher-order Predicate Bl

Higher-order predicate logic extended with Bl as above.
Bl hyperdoctrines sound and complete class of models.
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Example of Bl hyperdoctrine

Let B be a complete Bl algebra. Define Set-indexed BI
hyperdoctrine:

P(X) = B*, functions from X to B, ordered pointwise
For f: X — Y, P(f): BY — B~ is comp. with f.

=x (z,2')1s T if x = 2/, otherwise L.

Quantification: for A € BI' X

(3X)r(A) € N €TV, ex Ali, )

(VX)r(A) E N e T A,y Ali, z)

in BL.
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Toposes and Bl Hyperdoctrines

Earlier work showed how to use some toposes to model
propostional Bl (Subg(1) Is a Bl-algebra, for certain &)

Toposes model (higher-order) predicate logic, since
Subg IS a hyperdoctrine.

But, surprise, we cannot interpret predicate Bl in
toposes:

Theorem Let &£ be a topos and suppose Subg : £°P — Poset

IS a Bl hyperdoctrine. Then the BI structure on each lattice

Subge(X) IS trivial, 1.e., for all ¢, € Subg(X), ¢ x 1 < @ A .
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Higher-order Separation Logic

Next:
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Recall pointer model and interpretation of separation
logic in pointer model

Show how to view pointer model as a Bl hyperdoctrine
and that the standard interpretation therein coincides
with standard interpretation of separation logic.

Leads to obvious extension of separation logic to
higher-order.

Some implications thereof.
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Pointer Model of Sep. Logic

set [Val] interpreting the type Val
set [Loc] of locations with [Loc] C [Val]

set of heaps H = [Loc| —;, [Val], ordered discretely,
with partial binary operation x defined by

bk By — hi U ho If hi#hs
L7727 ) Undefined  otherwise,

set Var —¢;,, [Val] of stacks
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Standard Int. of Formulas

Given by a forcing relation s, h I- ¢, where FV(¢) C dom(s):

s,hlFt1 =ty Iff
s,hlFt1 —ty Iff
s, h IF emp Iff
s,hilF¢pxvy  Iff

s,hl-¢—1 Iff

s,h |k Vx.¢ Iff
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[t1]s = [t2]s
dom(h) = {[t1]s} and A([t1]s) = [t2]s
h =1
there exists hy, hy € H. hqy x hy = h and
s,h1 IF ¢ and s, ho IF 1)
for all ', W'#h and s, ' I+ ¢ implies

s, hxh Ik

for all v € [Val].s|x — v],h IF ¢
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Separation Logic as a Bl Hyp.
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P(H) is a complete Boolean Bl algebra, ordered by
inclusion.

Let S be the Bl hyperdoctrine induced by the complete
Boolean Bl algebra

Theorem h € [¢p](vi,...,vp) Iff

1 U, .., Ty U, B IE .

(also works for other models of separation logic, e.qg.,
Intuitionistic and permissions models)
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Higher-order Sep. Logic

The Bl hyperdoctrine S also gives a model of

higher-order separation logic, with P(H) the set of truth
values.

Now consider some applications of higher-order.

-
L ——4

IT Unflycgral;cy HOSL — p.21/2¢



Formalization of Sep. Logic, |

Applications of sep. logic have used various
extensions, with sets of lists, trees, relations, etc.

Our point here is that they can be seen as trivial
definitional extensions, since they are all definable in
higher-order logic.

Let2 = {1, T}. Thereis acanonicalmap.::2— P(H).
Say ¢ : X — P(H) Is pure if there isamap y, : X — 2

s.t. ) ¢ -
N, A

.+  commutes.
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Formalization of Sep. Logic, |
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The sub-logic of pure predicates is simply the standard
classical higher-order logic of Set.

Allows to use classical higher-order logic for defining
lists, trees, etc.

In particular, recursive definitions of predicates, earlier
done at the meta-level, can now be done inside the
higher-order logic itself.
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Logical Characterizations. ..

of classes of formulas:

Traditional definition of a precise: ¢ Is precise Iff, for s, h,
there is at most one subheap hq of 4 such that s, hg IF g.

Prop. ¢ s precise Iiff

Vp1,p2 t prop. (p1*q) A (p2*q) — (p1 Ap2) *q

Is valid in the Bl hyperdoctrine S.
Thus: can make logical proofs about precise formulas.
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Characterizations, Il

Traditional: ¢ is monotone iff whenever i € [q] then also
h' € [q], for all extensions i/ D h.

Prop. ¢ Is monotone iff

Vp :prop. p*xq— ¢
Is valid in the Bl hyperdoctrine S.
Prop. ¢ s pure Iff
Vp1,p2 : prop. (g Ap1) * p2 <> q A (p1 * p2)

Is valid in the Bl hyperdoctrine S.
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Applications in Program Proving

one can use existential quantification over hidden
(abstract) resource invariants to reason about
programs using abstract data types, c.f. the stack
example from the beginning.

see also examples in Ynot paper [Nanevski et. al.] and
INn design patterns paper [Krishnaswami et. al.]

polymorphic types using universal guantification
(generic reasoning)
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Ongoing / Future Work

Systematic investigation of relation between assertion
and specification logic.

HOSL for Java / C#.

Formalizations / Automation
= finding loop / data structure invariants
= theorem proving for higher-order logic

= experiments so far:
[ HOSL in Isabelle/HOLCF [Varming-LB:
MFPS’08] (Cheney’s g.c. verified)
[] Ynot in Cog [Nanevski et. al.: ICFP’08] (finite
map data structures + design patterns verified)
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Strengthening

neorem Let P be an indexed preorder, fibres all Bl
gebras, preserved under reindexing, with full subset types.
nen the Bl structure on each lattice P(X) is trivial, i.e., for

o, € P(X), 0% 9 < ¢ A

e

The Bl hyperdoctrine for separation logic has subset
types, but not full subset types.

Full subset types:

y:ir: X | o} | O0FY
r:X | 0,0
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