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Abstract

Computer programs, even the ones whose correctness is vital, are growing
ever larger. Thus, if we are to be capable of verifying software, we need to do
so modularly, i.e., reason separately about separate parts of the big programs
and conclude that the whole program is correct based on correctness of its
subcomponents. In recent years, we have seen a steady advance in modular
techniques for software verification. However, these new developments are still
far from encompassing all the features that modern programming languages
utilize.

In this thesis, we study several approaches to extend modular reason-
ing techniques to more realistic programming languages. We consider three
distinct directions, which deal with both traditional program logic style veri-
fication, as well as relational reasoning.

In Verifying Object-Oriented Programs with Higher-Order Sep-
aration Logic in Coq we construct a logic for giving modular separation
logic specifications to object-oriented code that uses dynamic dispatch through
interfaces. This powerful programming technique is commonly used in virtu-
ally all modern object-oriented languages, and most previous work only tar-
geted the most common design patterns. We present a logic that is powerful
enough to express the rarer, complex patterns of usage, while allowing for
simple specification of simpler, more concrete interfaces. We follow this direc-
tion with Formalized Verification of Snapshotable Trees: Separation
and Sharing, where we show that our approach scales to non-trivial pro-
grams. In this article we consider a family of sophisticated data structures
that use complex sharing patterns, notoriously difficult to reason about with
separation logic, and show how to verify one of them using our approach.

A Separation Logic for Fictional Sequential Consistency takes our
work on separation logic in a different direction: based on a cutting-edge logic
for reasoning about concurrent programs, it tackles the problem of real-world
memory models, focusing on the common TSO model. The paper provides
two interconnected logics: the TSO logic, in which one can reason about the
additional observable behaviours, which the user can observe on the weak
memory model, and the SC logic, in which reasoning is standard. Since most
well-behaved code (e.g., well synchronized programs) cannot observe any ad-
ditional behaviours admitted by the memory model, we thus provide the much
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needed abstraction from the machine model for a large class of higher-level
code.

Finally, in A Concurrent Logical Relation we investigate a different,
relational, approach to reasoning about programs. We treat a concurrent ex-
tension of an ML-like language, build the first logical relation for a concurrent
programming language, and prove a parallelization theorem, a long standing
conjecture that describes, in terms of types and effects, when it is safe to run
two expressions in parallel.
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Introduction
The recent spread of computers and computer programs to virtually all areas
of human life has increased the need for understanding whether these programs
are correct. Especially in the case of safety critical systems, which are more and
more computerized, we would like to be able to conclude whether the systems
will run correctly. However, at the same time the systems have grown in size
and complexity, to the extent where analyzing a complete program is virtually
impossible. This underlines the need for modular techniques of reasoning about
software. By modularity we mean, in this context, that we should be able to
reason independently about separate components of the system, and deduce the
properties of the whole system from the properties of these parts.

In the last decade, we have seen a steady advance in modular techniques
for software verification. However, these new developments are still far from
encompassing all the features that modern programming languages utilize. In
this thesis, we concentrate on two such techniques: separation logic and Kripke
logical relations. We consider three distinct directions in which we can extend
modular reasoning techniques to more realistic programming languages. First,
however, we present a short overview of the key problem.

1 The problems of shared mutable state.
One of the biggest problems in verification of real-life software has, for a long
time, been the treatment of shared mutable state. This is a feature pervasive
in almost all modern programming languages. In simple imperative languages
the pointers allow the programmer to define complex data structures; in object-
oriented programs the objects are stored on the heap and can be referenced
from multiple different points of the program; even in most functional lan-
guages imperative, higher-order state is used to provide the means for more
efficient implementations. Also in the concurrent programming languages, most
communication primitives are usually developed in terms of shared memory.

To understand how shared mutable state constitutes a problem, consider the
following code snippet:

x := 1;
y := 2

Let us try to specify what value can be stored in the cell x after the snippet
executes. Clearly, it can be 1, as long as y denotes a different memory cell
then x. However, what if both x and y denote the same location? In this case
the value of x should be 2, since this is the final value written to that memory
cell. This is an instance of the problem of pointer aliasing, and it is one of the
problems underlying the considerations in this thesis.

From the program verification perspective, this problem basically reduces
to being able to describe pointer aliasing — or, rather, lack of aliasing — in a
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concise and modular way. However, reasoning about pointer aliasing directly,
using explicit equality of the references, is problematic. In the case of our
example, this is still relatively simple: we could informally specify our snippet
by saying, for example “if x = y, then the value of x is 2, otherwise the value of
x is 1”. However, this approach does not readily scale even to the simplest data
structures, especially if we want to keep the specification abstract. For example,
if we want to append two singly-linked lists in constant time, using a pointer
to the end of the list, we need to know that the two lists are not overlaid: the
structures cannot share any pointers. If the list were overlaid, the list resulting
from appending one to the other would become a cyclic structure, a result we
might assume the programmer did not expect of an append function.

The problem runs even deeper, actually. Even if we manage to express the
disjointness of the two lists in question, we do not know how the append action
would affect any of the other lists we might know about. This makes specifying
functions in a concise way virtually impossible. We discuss one of the ways to
solve this problem in the following section.

2 Program logics: the case for separation.
We begin this section with a short overview of Hoare logic. Then, we proceed
to discuss the basics of separation logic, motivating its design by how it helps
with the problem of pointer aliasing.

Hoare logic [16] was one of the first attempts at reasoning about programs
in a modular way. It was originally developed for a simple imperative language,
but since its inception a lot of work was put into extending it to more realistic
languages, a process that still continues, and of which this thesis is a small part.
Its key characteristic is the use of Hoare triples of the form

{P} c {Q}

where P and Q are assertions and c is the command that we are reasoning about.
The assertions are usually interpreted as predicates on the program states, and
the interpretation of a triple {P} c {Q} states that if we evaluate the program
from a state s that satisfies P and the evaluation terminates in a state s′, then
s′ satisfies Q. Assertions themselves form a logic, and we can use the reasoning
within this logic via a rule of consequence:

P1 ` P2 {P2} c {Q2} Q2 ` Q1

{P1} c {Q1}
.

Hoare triples can also be easily adapted to a language of expressions, by taking
the postcondition Q to be parameterized on the final value of the expression.

The notion of Hoare triples allows us to reason about simple imperative
code, but in fact we need a lot more power if we are to handle realistic program-
ming languages. As Reynolds puts it in [25], where he introduces the notion of
specification logic,
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[T]o obtain universal specifications about commands in Algol-like
languages, it is necessary to extend the language of specifications
well beyond the Hoare triples.

In fact, we can build a general higher-order logic of specifications, with Hoare
triples being just one of the basic formulae. Another kind of basic formula
might be, for example, a specification of a procedure. Adding this kind of
specification would allow us to verify programs that use procedure calls, as
shown in [25]. Sufficiently strong specification logics can also allow us to reason
about correctness of recursive or mutually recursive functions in a general way,
for example using Löb induction [7], or, as we show further on, specify object-
oriented code that uses interfaces.

These developments, however, do not readily scale to shared mutable state.
In fact, the way to reason in a modular way in the classical Hoare logic was
through an admissible conjunction proof rule,

{P} c {Q}
{P ∧ R} c {Q ∧ R} ,

which usually requires side conditions dependent on the programming language
for which the logic is designed. This rule, however, is not admissible if the state
of the program includes shared mutable state: the changes to the heap that c
makes might well invalidate R!

Separation Logic.
This brings us to separation logic. Introduced independently by Reynolds in [26],
and Ishtiaq and O’Hearn in [18], separation logic extends the classic assertion
logic of Hoare’s in a way that makes a variant of the proof rule discussed above its
cornerstone. Specifically, let us consider when would the conjunction rule hold:
clearly, if the assertion R were made about a part of state that was different,
disjoint from the part of the state that P was made about, such a property
should hold. This observation leads us to a new assertion logic connective,
called separating conjunction and written ∗. Intuitively, P∗Q holds in any state
that can be split in two disjoint sub-states, one of which satisfies P, and the
other Q. We also need some primitive way of specifying what values are stored
in the heap; for this, we use a points-to predicate, written l 7→ v, which asserts
that the location l is allocated in the heap, and the value stored at l is indeed v.

Coming back to the example from Section 1, we can equip the snippet with
a precondition

x 7→ u ∗ y 7→ v.

This precondition ensures that x and y can actually be dereferenced, since we
have a points-to assertion for both of these locations. But equally importantly,
it states that x 6= y — since if they were equal, we would not be able to split
the state into two disjoint parts such that the same location were in both parts.
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As long as our assertion logic also allows for existential quantification, these
new connectives are a powerful tool for describing the shape and contents of dis-
joint data structures, such as lists or trees. Consider, for example, the following,
classic specification of a singly-linked list:

list(x, vs) def=(x = null ∧ vs = ε)
∨ ∃y, v, vs′. x 7→ (v, y) ∗ list(y, vs′) ∧ vs = v · vs′

This specification, defined by induction on the mathematical representation of
the list, vs, ensures that no parts of the list are shared within the list. If we
did not require this, our definition would admit circular lists, which would make
reasoning about updates we might make to the list much more complicated.
Moreover, if we have an assertion list(x, us) ∗ list(y, vs), we are sure that no
pointers except for the final null pointer are shared between the two lists. In
contrast, a separate assertion that would describe that the lists are well-formed
and not overlaid would have to be at least as complex as the definition itself —
and it would not give us any knowledge about other lists that we might know
about.

These definitions lead us to rephrase the Hoare logic rule for conjoining an
assertion to a triple in a way that works in the presence of shared mutable state:
the frame rule. As with its predecessor, it may need programming language–
dependent side conditions, but its general form is

{P} c {Q}
{P ∗ R} c {Q ∗ R} .

This proof rule states that if we can split our state into two parts, one satisfying
P and the other R, and if the part that satisfies P suffices to run the program
c and end in a state that satisfies Q, then running the program in the state
consisting of both parts will give us a state that again can be split in two parts:
one that satisfies Q, and one that still satisfies R. Intuitively, this rule should
hold, since the program does not “need” the part of the state described by R,
so it should not modify it, but in some settings more complex arguments are
needed to show that the rule is sound.

This ability to succinctly and accurately describe the shapes of data struc-
tures ties in well with some of the useful features of specification logics. For
example, if the specification logic admits second-order quantification, existen-
tial quantifiers can be used to make the predicates that encode the shape of
the data structure abstract [10]. This is similar in spirit to using existential
quantification for data abstraction. Specific proof systems sometimes use more
syntactic variants with a particular mode of use, an example developed for
the object-oriented setting are abstract predicates, introduced by Parkinson and
Bierman in [23].

This new expressive power does not come without a cost, however. One
can easily notice that the separating conjunction does not admit all the usual
structural rules that we would expect of a conjunction. In particular, contraction
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rule does not hold in general, since we have

l 7→ v 6` l 7→ v ∗ l 7→ v.

Admissibility of the weakening rule depends on the design and precise semantics
of the logic. A good source for an overview of design considerations and tech-
niques is, for example, a recent review by Jensen [19].

3 Relational reasoning and higher-order store.
In this section, we briefly discuss the development of the logical relation tech-
niques to the point where they are able to handle languages with higher-order
store.

The logical relations technique was developed in the 1970s by, among others,
Tait [27] and Plotkin [24]. The technique was first developed for showing unary
properties of languages, for instance the strong normalization of simply-typed
lambda calculus, and later also for binary properties, most importantly contex-
tual equivalence. The essence of the technique is interpreting syntactic types as
relations that are determined by the structure of the type: for example, Jσ → τK
should be determined from the relations JσK and JτK in a way that guarantees
closure under lambda abstraction and application; see [21, Chapter 8] for a good
introduction to the technique, as well as more historical references.

In the most basic setting, the types can be interpreted simply as sets of
well-typed values or expressions. However, this simple mode of interpretation
does not readily scale to richer type systems, including polymorphic calculi.
The crucial idea that allows us to interpret the universal quantification, is to
have a space of semantic types, closed under intersections. Once we have such
a space, we can give an interpretation to an open type that is well-formed in a
type variable context, ∆ ` τ . We interpret ∆ as a sequence of semantic types,
one for each variables, and the interpretation of the judgment is a map from the
interpretation of ∆ into semantic types. This treatment admits interpretations
of universal and existential quantifiers via intersections and unions respectively,
as long as the space of semantic types is closed under these operations. This idea,
though stated differently, dates back to Girard’s original paper on System F [15].
A good reference for the treatment of polymorphism is [21, Chapter 9].

Still more involved is the treatment of the recursive types. In contrast to
universal and existential quantifiers, we cannot directly express the interpret-
ation of the judgment ∆ ` µα. τ in terms of the interpretation of ∆, α ` τ
— at least not without enriching the space of semantic types with some extra
structure. One of the possibilities is to ensure that the space of semantic types
is non-empty and has a metric structure. Then, as long as the interpretation
of ∆, α ` τ that we want to use to interpret the recursive type is a contractive
map, we would be able to use Banach’s fixed point theorem to give an interpret-
ation of the recursive type. This approach was first explored by Amadio [5], and
Abadi and Plotkin [1]; see for example Birkedal et al. [12] and the references
therein for more extensive treatment.
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For all their usefulness, the domain-theoretic models mentioned above are
complex, and require solid mathematical grounding. Thus, simpler, more op-
erational treatment of recursive types would also be useful. A line of research
that provided such a technique is step-indexing. In this setting, one explicitly
stratifies the space of semantic types by using a natural number that intuitively
corresponds to the number of evaluation steps for which the type provides in-
formation. At index 0, the type does not provide any information, while at each
higher index the information is more refined. Since the stratified relation is tied
to the evaluation steps, this setup provides a relatively simple way to interpret
iso-recursive types: unfolding a recursive value requires an evaluation step, so
the interpretation of the recursive type only needs to depend on information
from the previous stratum, and thus is well-defined. Step-indexing has been
introduced by Appel and McAllester [6], and a good reference for this treat-
ment of recursive types is Ahmed’s work [3]. Note that the syntactic treatment
has been since reconciled with the semantic one by Birkedal et al. in [11], by
showing that the space of semantic types in the step-indexed models can also
be seen as an ultrametric space.

The higher-order store, the final language extension we consider in this sec-
tion, presents us with a different challenge still. This is due to the fact that
we can no longer consider the semantic type in isolation: after all, we have
to consider references, and whether they are well-typed should depend on the
store. More explicitly, assume we have a space of semantic types T ◦. To be
able to provide an interpretation of reference types, we need a space of semantic
types that would know, at the least, what locations are defined. This gives us
a domain equation of the following shape:

T = W → T ◦,

whereW denotes the space of worlds, the semantic descriptions of heaps. In the
case of a ground store, it is enough for the world to describe which locations are
allocated, and so we could takeW = Pfin(L), a finite set of locations. However,
if we have higher-order store, we need to know what type is associated with any
given location. This leaves us, in the simplest case, with an equation of the
shape

W = L ⇀fin T.

Solving this sort of recursive domain equations is the crucial challenge in model-
ing the higher-order store, and since the recursion occurs in a negative position,
the solution is not trivial. That said, in the recent years different solutions for
these types of domain equations have been provided, including [2, 4, 17, 12, 11].

Note that the notion of worlds given by the equation above is a very simplistic
one. It can be extended to much more complex structures, see for example [4]
or some of the recent work on models of concurrent calculi with higher-order
state, e.g., [30].
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Relational models and aliasing
The problem of aliasing is just as pressing in the relational setting, as it is when
reasoning in unary models. Coming back to the code snippet of Section 1, let
us consider the following equation:

e1; e2 ' e2; e1.

Should we be able to reorder the assignments in the example with this equality?
Clearly we should only be allowed to do that if we know that x and y are not
aliased, but this means that the equation does not hold in general. Thus, if we
are to provide useful equivalences for programs that use higher-order store, we
need to be able to express what aliasing patterns are permitted for the program
equivalence to hold.

In the logical relations setting, one way to express such restrictions is to
strengthen the underlying type system. To this end, we can use a type-and-effect
system, which, in addition to the information on the type of an expression, also
provides the information on side effects that it may perform. However, since the
type and effect information should be determined statically, the precise locations
that may or may not be aliased cannot be determined in general. Thus, the
type-and-effect systems usually partition the heap into disjoint regions, with
each reference being allocated in one of the regions. Thus, they can statically
infer the lack of aliasing — as long as the references belong to different regions
of the memory. The effects usually include read, write and allocate actions in
a region, but it is possible to extend this set. Type-and-effect systems were
introduced by Gifford and Lucassen in [14, 20], and have since been used, for
example, to define static analyses [22] or even as a basis for a runtime system
of SML [29, 13].

What interests us in the context of this thesis is the use of a type-and-
effect system to enable relational reasoning, and in particular to justify effect-
based program transformations. This possibility has been conjectured in the
original papers of Gifford and Lucassen, but the relational models of higher-
order programming languages were not strong enough to handle this kind of
reasoning. However, with the development of rich relational models by Benton
et al. [8, 9], this line of research has opened to new possibilities, and the work
of Thamsborg and Birkedal [28] has extended and adapted it to the operational
model, on which we base some of the work presented in this thesis.

4 The contents of this thesis.
This thesis aims to extend some of the modular reasoning techniques towards
more realistic programming language features. In the following, we present a
short overview of the subsequent chapters.

In Chapter 2, Verifying Object-Oriented Programs with Higher-
Order Separation Logic in Coq, we define a higher-order separation logic
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that allows us to give modular specification to object-oriented code that uses dy-
namic dispatch. We believe this an important development, since dynamic dis-
patch, typically using interfaces is a widespread and powerful feature of modern
object-oriented programming languages. Most previous work targeted specific,
widespread design patterns, but didn’t readily scale to other modes of use that
are relatively common when using interfaces. A particular example that we use
in Section 2 of that chapter is reasoning about methods that take any instance
of a given interface as an argument. This technique can be used, for example, to
parameterize an algorithm on an underlying collection data structure. We show
how, using higher-order separation logic, one can give an abstract specifications
to an interface, and a concrete instantiation thereof to verify a class that imple-
ments the interface. Thus, specifications of methods that use the interface can
also be expressed abstractly. Additionally, if these methods in turn are called by
a client that knows which particular implementation is being used, the concrete
instantiation of the interface can be used to easily regain the information about
the state of the object.

The other aspect of our work in Chapter 2 is the Coq formalization. The
framework that we lay down in Section 3 is, to a large extent, language inde-
pendent, and can be used to experiment with different programming language
features in a sound manner. The framework itself has been extended with tactic
support, and eventually became the Charge! platform.

In Chapter 3, Formalized Verification of Snapshotable Trees: Sep-
aration and Sharing, we show how the techniques shown in Chapter 2 scale
to realistic, sophisticated data structures. We begin by presenting a family of
challenging case studies, the snapshotable trees, derived from a library of col-
lections for C#. This data structure is a usual binary search tree in all but
one aspects: it also provides a method to take a persistent snapshot of the col-
lection in constant time. Since this time bound means we cannot simply copy
the tree to build a snapshot, the memory has to be shared between the tree
and its snapshots. This makes reasoning about the data structure challenging,
particularly so if one wants to give it modular specifications. We also provide
four implementations of the data structure, varying in terms of complexity of
sharing involved — and, thus, the space usage.

We show how using higher-order separation logic one can achieve relatively
modular specifications and use our formalization to prove one of the provided im-
plementations, thus showing that our approach to verification of object-oriented
programs does indeed scale to complex, realistic data structure.

We tackle an altogether different problem in Chapter 4, A Separation
Logic for Fictional Sequential Consistency: instead of considering a soph-
isticated programming language, we turn to underlying memory models. In
particular, we consider a simple, class-based, concurrent language running on a
total store order (TSO) memory model. In TSO, each thread has an associated
store buffer — a FIFO queue that buffers writes. Any time a value should be
written into the memory, it is instead added to the buffer, and the writes from
the buffer are flushed to the memory nondeterministically. This setup admits
additional states that would not be observable with “standard” memory mod-
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els, and is commonly used to model some real-life processors, notably of the x86
family.

We provide a separation logic for the TSO model, including some novel
connectives that allow us to reason about the new states of the memory, but
the real strength of our approach is that it allows us to abstract from the complex
memory model, and use a much simpler, standard separation logic for a large
class of programs. We achieve this by giving programs that utilize the weak
behaviors in a restricted way specifications that provide their clients with a
fiction of sequential consistency, thus bringing standard modular reasoning to
much more realistic memory models.

Finally, in Chapter 5, A Concurrent Logical Relation, we again consider
a different problem: giving a relational account of concurrency in the presence
of higher-order store. We build on a logical relation for an ML-like language
with higher-order store developed by Thamsborg and Birkedal, and extend it to
support concurrency. To the best of our knowledge, this is the first such logical
relation published. Since we are using a type-and-effect system to qualify not
just the type of the expression, but also the kinds of side effects the program
performs, this allows us to reason about correctness of concurrent program
transformations — like the ones one might find in an optimizing compiler. One
of such program transformations, proposed by Gifford and Lucassen as one of
the arguments for introducing the type-and-effect systems, is automatic, effect-
guided parallelization. We prove that, under certain conditions, this is indeed
a valid optimization, thus showing that our logical relation is both strong and
useful.

Additionally, we show how one can use relational reasoning about concurrent
programs to show that certain low-level, nonblocking algorithms fulfill their
specification, in this case, given by a high-level programming language construct
instead of a logical formula.

5 Overview of the publications.
Listed below are the papers I have contributed to during the PhD studies.
Included is a brief account of the role I have had in the research and writing
phase.

1. Verifying Object-Oriented Programs with Higher-Order Separ-
ation Logic in Coq. Jesper Bengtson, Jonas Braband Jensen, Filip
Sieczkowski and Lars Birkedal. In Proceedings of ITP, 2011. Forms
Chapter 2 of this thesis.
This paper formed the basis for what later became Charge! — a sound
framework for interactive verification of object-oriented programs, build
entirely within the Coq proof assistant. My share of the work on this the-
ory was proportional; in particular, the Coq formalization was developed
jointly by Jesper Bengtson, Jonas B. Jensen and myself, with all of us
collaborating closely on all of its features.
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In the writing of this paper, my input was concentrated on the sections
that concerned formalization of abstract separation logic and its instanti-
ation to the chosen subset of Java. The technical development formalized
in Coq can be found at http://itu.dk/people/birkedal/papers/hosl_
coq-201105.tar.gz.

2. Formalized Verification of Snapshotable Trees: Separation and
Sharing. Hannes Mehnert, Filip Sieczkowski, Lars Birkedal and Peter
Sestoft. In Proceedings of VSTTE 2012. Forms Chapter 3 of this thesis.
This article was the first big case study conducted within the framework
presented above, and informed some of the decisions taken with respect
to proof automation in Charge! Hannes and me contributed the majority
of this theory, and most of the formalization work fell to me.
I have taken a smaller part in writing the article, focusing mostly on the
treatment of iterators. The technical development formalized in Coq can
be found at http://itu.dk/people/hame/snapshots.tar.gz.

3. A Concurrent Logical Relation. Lars Birkedal, Filip Sieczkowski and
Jacob Thamsborg. In Proceedings of CSL 2012. Forms Chapter 5 of this
thesis.
This paper extends the theory developed earlier by Jacob and Lars to a
concurrent setting. My contribution here was proportional; in particular
I was responsible for proving the parallelization theorem, the main applic-
ation we provide of our logical relation. Some of the formal proofs are
included in the appendix attached to the paper.

4. A Separation Logic for Fictional Sequential Consistency. Filip
Sieczkowski, Kasper Svendsen and Lars Birkedal. Under submission. Forms
Chapter 4 of this thesis.
I have developed this theory with help from Kasper and Lars. My contri-
bution has been major, although Kasper and Lars made sure it evolved
towards the principled, two-level structure the logic has in its current form.
The writing has been a joint work, in which I have been responsible for
explaining the programming language and the complex TSO logic (Sec-
tions 2 and 4). I have also written most of the technical appendix included
in this thesis.

5. AKripke Logical Relation for Effect-based Program Transforma-
tions. Lars Birkedal, Guilhem Jaber, Filip Sieczkowski and Jacob Thams-
borg. Under submission. Not included in this thesis.
This is an extended version of Jacob and Lars’s ICFP 2011 article. My
contributions to it were centered around extending the theory presented
there to support region polymorphism, and preparing the text for the
journal submission.
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Verifying object-oriented programs with
higher-order separation logic in Coq
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Abstract. We present a shallow Coq embedding of a higher-order sepa-
ration logic with nested triples for an object-oriented programming lan-
guage. Moreover, we develop novel specification and proof patterns for
reasoning in higher-order separation logic with nested triples about pro-
grams that use interfaces and interface inheritance. In particular, we
show how to use the higher-order features of the Coq formalisation to
specify and reason modularly about programs that (1) depend on some
unknown code satisfying a specification or that (2) return objects con-
forming to a certain specification. All of our results have been formally
verified in the interactive theorem prover Coq.

1 Introduction

Separation Logic [12,16] is a Hoare-style program logic for modular reasoning
about programs that use shared mutable data structures. Higher-order separa-
tion logic [3] (HOSL) is an extension of separation logic that allows for quan-
tification over predicates in both the assertion logic (the logic of pre- and post-
conditions) and the specification logic (the logic of Hoare triples). HOSL was
proposed with the purposes of (1) reasoning about data abstraction via quan-
tification over resource invariants, and (2) making formalisations of separation
logic easier by having one general expressive logic in which it is possible to de-
fine predicates, etc., needed for applications. In this article we explore these two
purposes further; we discuss each in turn.

The first purpose (data abstraction) has been explored for a first-order lan-
guage [4], for higher-order languages [9,11], and for reasoning about generics
and delegates in object-oriented languages (without interfaces and without in-
heritance) [18]. In this article we show how HOSL can be used for modular
reasoning about interfaces and interface-based inheritance in an object-oriented
language like Java or C ]. Our current work is part of a research project in
which we aim to formally specify and verify the C5 generic collection library [8],
which is an extensive collection library that is used widely in practice and whose
implementation makes extensive use of shared mutable data structures. A first
case-study of one of the C5 data structures is described in [7]. C5 is written in
C ] and is designed mainly using interface inheritance, rather than class-to-class
inheritance; different collection modules are related via an inheritance hierarchy
among interfaces. For this reason we focus on verifying object-oriented programs
that use interfaces and interface-based inheritance.
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We explore the second purpose (formalisation) by developing a Coq formal-
isation of HOSL for an object-oriented class-based language and show through
verified examples how it can be used to reason about interfaces and inheritance.

Our formalisation makes use of ideas from abstract separation logic [6] and
thus consists of a general treatment of the assertion logic that works for many
models and for a general operationally-inspired notion of semantic command.
Our general treatment of the logic is also rich enough to cover so-called nested
triples [17], which are useful for reasoning about unknown code, either in the
form of closures or delegates [18] or, as we show here, in the form of code match-
ing an interface. To reason about object-oriented programs, we instantiate the
general development with the heap model for our object-oriented language and
derive suitable proof rules for the language. This approach makes it easier in the
future to experiment with other storage models and languages, e.g., variants of
separation logic with fractional permissions.

Summary of contributions. We formalize a shallow Coq embedding of a higher-
order separation logic for an object-oriented programming language. We have
designed a system that allows us to write programs together with their spec-
ifications, and then prove that each program conforms to its specification. All
meta-theoretical results have been verified in Coq1.

We introduce a pattern for interface specifications that allows for a modular
design. An interface specification is parametrised in such a way that any class
implementing the interface can be given a suitably expressive specification by
a simple instantiation of the interface specification. Moreover, we show how to
use nested triples to, e.g., write postconditions in the assertion logic that require
a returned object to match a certain specification. Our approach enables us to
verify dynamically dispatched method calls, where the dynamic types of the
objects are unknown.

Outline. The rest of this article is structured as follows. In Section 2 we demon-
strate the patterns we use for writing interfaces by providing a small example
program that uses interface inheritance and proving that it conforms to its spec-
ification. In Section 3 we cover the language and memory-model independent
kernel of our Coq formalisation. In Section 4 we specialise our system to handle
Java-like programs by providing constructs and a suitable memory model for a
subset of Java. Section 5 covers related work, and Section 6 concludes.

2 Reasoning with interfaces

To demonstrate how our logic is applied, we will use the example of a class
Cell that stores a single value and which is extended by a subclass Recell that
maintains a backup of the last overwritten value and has an undo operation. This
example is originally due to Abadi and Cardelli [1]; a variant of it was also used

1 The Coq development accompanying this article can be found at
http://itu.dk/people/birkedal/papers/hosl_coq-201105.tar.gz
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interface ICell {
int get();
void set(int v);
}

class ProxySet {
static void proxySet(ICell c, int v) {
c.set(v);
}
}

class Cell implements ICell {
int value;

Cell() { }
int get() {
return this.value;
}
void set(int v) {
this.value = v;
}
}

interface IRecell extends ICell {
void undo();
}

class Recell implements IRecell {
Cell cell;
int bak;

Recell() {
this.cell = new Cell();
}
int get() {
return this.cell.get();
}
void set(int v) {
this.bak = this.cell.get();
this.cell.set(v);
}
void undo() {
this.cell.set(this.bak);
}
}

Fig. 1. Java code for the Cell-Recell example with interface inheritance.

by Parkinson and Bierman [14] to show how their logic deals with class-to-class
inheritance.

We add to this example a method proxySet, which calls the set method of
a given object reference. It is a challenge to give a single specification to this
method that is powerful enough to expose any additional side effects the set
method might have in arbitrary subclasses. We will see in this section how our
specification style achieves this, and it is sketched in Section 5 how this compares
to related work.

Our model programming language is a subset of both Java and C ]. It leaves
out class-to-class inheritance and focuses on interface inheritance. This mode of
inheritance captures the essential object-oriented aspect of dynamic dispatch,
while the code-reuse aspect has to be explicitly encoded with class composition.
A Java implementation of the Cell-Recell example can be found in in Figure 1.

2.1 Interface ICell

Interface ICell from Figure 1 is modelled as a parametrised specification that
states conditions for whether a class C behaves “Cell-like”. In the following, val
denotes the type of program values, in our case the union of integers, Booleans
and object references. Also, UPred(heap) is the type of logical propositions over
heaps, i.e., the spatial component of the assertion logic (see Section 3.1 for the
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precise definition).

ICell , λC : classname. λT : Type. λR : val → T → UPred(heap).

λg : T → val . λs : T → val → T.

(∀t : T. C::get(this) 7→ {R̂ this t} {r. R̂ this t ∧ r = g t}) ∧ (1)

(∀t : T. C::set(this, x) 7→ {R̂ this t} {R̂ this (ŝ t x)}) ∧ (2)

(∀t, v. g (s t v) = v) (3)

There is some notation to explain here. ICell is a function that takes five argu-
ments and returns a result of type spec, which is the type of specifications. The
logical connectives at the outer level (∧ and ∀) thus belong to the specification
logic. The parameter R is the representation predicate of class C, so R c t intu-
itively means that c is a reference to an object that is mathematically modelled
by the value t of type T . The parameters g and s are functions that describe how
get and set inspect and transform this mathematical value. They are constrained
by (3) to ensure that get will actually return the value set with set.

The notation C::m(p̄) 7→ {P} {r. Q} from (1) and (2) specifies that method
m of class C has precondition P and postcondition Q. The arguments in a call
will be bound to the names p̄ in P and Q, and the return value will be bound to
r in Q. We support both static and dynamic methods, where dynamic methods
have an additional first argument, as seen in (1) and (2). The precise definition
is given in Section 4.2.

The notation f̂ from (1) and (2) lifts a function f such that it operates
on expressions, including program variables, rather than operating directly on
val . It is a technical point that can be ignored for a first understanding of this
example, but it is crucial for making HOSL work in a stack-based language.
Details are in Section 3.2.

The type of T refers to the Type universe hierarchy in Coq.

2.2 Method proxySet

Consider method proxySet from Figure 1. Operationally, calling proxySet(c, v)
does the same as calling c.set(v), and we seek a specification that reflects this.
It is crucial for modularity that proxySet can be specified and verified only once
and then used with any implementation of ICell that may be defined later. We
give it the following specification.

ProxySet spec , ∀C, T,R, g, s. ICell C T R g s→
∀t : T. ProxySet::proxySet(c, x) 7→ {c : C ∧ R̂ c t} {R̂ c (ŝ t x)}

The assertion c : C means that the object referenced by c is of class C. Thus,
the caller of proxySet can pass in an object reference of any class C as long as C
can be shown to satisfy ICell .

This specification is as powerful as that of set in ICell since it essentially for-
wards it. Any class that behaves Cell-like should be able to encode the behaviour
of its set method by a suitable choice of R and s. We will see in Section 2.6 that
it, for instance, is possible to pass in a Recell and deduce how proxySet affects
its backup value.
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2.3 Class Cell

A Java implementation of Cell can be found in Figure 1. We model constructors
as static methods that allocate the object before running the initialisation code
and return the allocated object, which is what happens in the absence of class-
to-class inheritance.

We give class Cell the following specification, which is a conjunction of what
we will call an interface specification and a class specification. These correspond
respectively to the dynamic and static specifications in [14].

Cell spec , ∃RCell. ICell Cell val RCell (λv. v) (λ , v. v) ∧ Cell class RCell

where

Cell class , λRCell : val → val → UPred(heap).

Cell::new() 7→ {true} {∃v. R̂Cell this v} ∧
(∀v. Cell::get(this) 7→ {R̂Cell this v} {r. R̂Cell this v ∧ r = v}) ∧
(∀v. Cell::set(this, x) 7→ {R̂Cell this v} {R̂Cell this x})

The representation predicate RCell is quantified such that its definition is visible
only while proving the specifications of Cell, thus hiding the internal representa-
tion of the class from clients [4,13].

It is crucial that RCell is quantified outside both the class and the interface
specification such that the representation predicate is the same in the two. In
practice, a client will allocate a Cell by calling new, which establishes RCell; later,
to model casting the object reference to its interface type, the client knows that
ICell holds for this same RCell.

The specifications of get and set in Cell class are identical to their counter-
parts in ICell when C, T,R, g, and s, are instantiated as in Cell spec. In general,
the class specification can be more precise than the interface specification, sim-
ilarly to the dynamic and static specifications of [14].

To prove Cell spec, the existential RCell is chosen as λc, v. c.value 7→ v. We
can then show that Cell class RCell holds by verifying the method bodies of get,
set and init, and the correctness of get and set can be used as a lemma in proving
the interface specification. In this way, each method body is verified only once.

2.4 Interface IRecell

To show the analogy to interface inheritance at the specification level, we ex-
amine an interface for classes that behave Recell-like. The Java code for that is
IRecell in Figure 1. The specification corresponding to this interface follows the
same pattern as ICell :

IRecell , λC : classname. λT : Type. λR : val → T → UPred(heap).

λg : T → val . λs : T → val → T. λu : T → T.

ICell C T R g s ∧ (4)

(∀t : T. C::undo(this) 7→ {R̂ this t} {R̂ this (u t)}) ∧ (5)

(∀t, v. g (u (s t v)) = g t) (6)
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Notice that interface extension is modelled by referring to ICell in (4). We
do not have to respecify get and set since they were already general enough in
ICell due to it being parametric in g and s. Note how equation (6) specifies the
abstract behaviour of undo via g and s.

There is a pattern to how we construct a specification-logic interface predicate
from a Java interface declaration. For each method m(x1, . . . , xn), we add a
parameter fm : T → valn → (val × T ). The product (val × T ) can be replaced
with just val or T if the method should have no side effects or no return value,
respectively. We then add a method specification of the form:

∀t : T. C::m(p̄) 7→ {R̂ this t} {r. R̂ this (π2 (f̂m p̄ t)) ∧ r = π1 (f̂m p̄ t)}.

2.5 Class Recell

The specification of class Recell follows the same pattern as with Cell:

Recell spec , ∃RRecell : val → val → val → UPred(heap).
IRecell Recell (val × val) R g s u ∧ Recell class RRecell

where R = λthis, (v, b). RRecell this v b, g = λ(v, b). v,
s = λ(v, b), v′. (v′, v), u = λ(v, b). (b, b),

and Recell class is defined analogously to Cell class.

2.6 Class World

The correctness of the above specifications only matters if it enables client code
to instantiate and use the classes. The client code in World demonstrates this:

class World {
static ICell make() {
Recell r = new Recell();
r.set(5);
ProxySet::proxySet(r, 3);
r.undo();
return r;
}

static void main() {
ICell c = World::make();
assert c.get() == 5;
}
}

The body of make demonstrates the use of proxySet. Operationally, it should
be clear that r has the value 3 and the backup value 5 after the call to proxySet.
This can also be proved in our logic despite using a specification of proxySet that
was verified without knowledge of Recell and its backup field.

Upon returning from make, we choose to forget that the returned object is
really a Recell, upcasting it to ICell. Its precise class is not needed by the caller,
main, which only needs to know that the returned object will return 5 from get.

We capture the interaction between these two methods with the following
specification, in which FunI : spec → UPred(heap) injects the specification logic
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into the logic of propositions over heaps, thus generalising the concept of nested
triples. Section 3.5 describes FunI in more detail.

World spec ,World::main() 7→ {true} {true} ∧

World::make() 7→ {true}
{
r. ∃C, T,R, g, s. F̂unI (ICell C T R g s) ∧
∃t. R̂ r t ∧ g t = 5 ∧ r : C

}

The make method is specified to return an object whose class C is unknown,
but we know that C satisfies ICell .

This pattern of returning an object of an unknown type that satisfies a par-
ticular specification often comes up in object-oriented programming: think of
the method on a collection that returns an iterator, for example. The essence
of this pattern is to have a parametrised specification S : classname → spec

and a method specified as D::m() 7→ {true} {r. ∃C. r : C ∧ F̂unI (S C)}. A
more straightforward alternative to such a specification – one that does not re-
quire an embedding of the specification logic in the assertion logic – would be
∃C. S C ∧ D::m() 7→ {true} {r. r : C}. However, this restricts the body of m
to only being able to return objects of one class. The method body cannot, for
example, choose at run time to return either a C1 or a C2, where both C1 and
C2 satisfy S. We find that the most elegant way to allow the method body to
make such a choice is to embed the specification in the postcondition.

Using the notion of validity from Definition 5 in Section 3.4 we can now prove
that the whole program will behave according to specification:

Theorem 1. (ProxySet spec ∧ Cell spec ∧ Recell spec ∧World spec) is valid.

3 Abstract representation

The core of our system is designed to be language independent. To allow for dif-
ferent memory models, we adopt the notion of separation algebras from Calcagno
et al. [6]; we can then instantiate an assertion logic with any separation algebra
suitable for the problem at hand. Commands are modelled as relations on the
program state, which in turn consists of a mutable stack and a heap. Finally, we
define an expressive specification logic that can be used to reason about semantic
commands.

We use set-theoretic notation to describe our formalisation as this makes the
theories easier to read; in Coq we model these sets as functions into Prop, which
is the sort of propositions in Coq.

3.1 Uniform predicates

Definition 1 (Separation algebra). A separation algebra is a partial, can-
cellative, commutative monoid (Σ, ◦, 1) where Σ is the carrier, ◦ is the monoid
operator, and 1 is the unit element.
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Intuitively, Σ can be thought of as a type of heaps, and the ◦-operator as
composition of disjoint heaps. Hence we refer to the elements of Σ as heaps.
Two heaps are compatible, written h1 # h2 if h1 ◦ h2 is defined. A heap h1 is a
subheap of a h2, written h1 v h2, if there exists an h3 such that h2 = h1 ◦ h3.
We will commonly refer to a separation algebra by its carrier Σ.

A uniform predicate [5] over a separation algebra is a predicate on heaps and
natural numbers; it is upwards closed in the heaps and downwards closed in the
natural numbers.

UPred(Σ ) , {p ⊆ Σ × N | ∀g,m. ∀h w g. ∀n ≤ m. (g,m) ∈ p→ (h, n) ∈ p)}
The upward closure in heaps ensures that we have an intuitionistic separation
logic as is desirable for garbage-collected languages.

The natural numbers are used to connect the uniform predicates with the
step-indexed specification logic – this connection will be covered in Section 3.5.

We define the standard connectives for the uniform predicates as in [5]:

true , Σ × N false , ∅
p ∧ q , p ∩ q p ∨ q , p ∪ q

∀x : U. f ,
⋂

x:U f x ∃x : U. f ,
⋃

x:U f x

p→ q , {(h, n) | ∀g w h. ∀m ≤ n. (g,m) ∈ p→ (g,m) ∈ q}
p ∗ q , {(h1 ◦ h2, n) | h1 # h2 ∧ (h1, n) ∈ p ∧ (h2, n) ∈ q}
p −∗ q , {(h, n) | ∀m ≤ n. ∀h1#h. (h1,m) ∈ p→ (h ◦ h1,m) ∈ q}

For the quantifiers, U is of type Type, i.e. the sort of types in Coq, and f is any
Coq function from U to UPred(Σ ). This allows us to quantify over any member
of Type in Coq.

3.2 Stacks

Stacks are functions from variable names to values: stack , var → val .
Two stacks are said to agree on a set V of variables if they assign the same

value to all members of V : s 'V s′ , ∀x ∈ V. s x = s′ x. In order to define
operators that take values from the stack as arguments we introduce the notion
of a stack monad. This approach is similar to that of Varming and Birkedal [20].

sm T , {(f : stack → T, V : P(var)) | ∀s, s′. s 'V s′ → f s = f s′}
Intuitively, V is an over-approximation of the free program variables in f . For
any m = (f, V ) ∈ sm T , we write m s to mean f s and fv m to mean V .

Theorem 2. sm is a monad with return operation λx : T. ((λ . x), ∅) and bind
operation λm : sm T. λf : T → sm U. ((λs. f (m s) s), fv m ∪⋃

t∈T fv (f t)).

We use the stack monad to model expressions (which can be evaluated to
values using data from the stack), pure assertions (that represent logical proposi-
tions that are evaluated without using the heap), and assertions (that represent
logical propositions that are evaluated using both the heap and the stack).

expr , sm val pure , sm Prop asn(Σ) , sm UPred(Σ )
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We create an assertion logic by lifting all connectives from UPred(Σ ) into
asn(Σ). The definitions and properties of the liftings follow from the fact that
sm is a monad (Theorem 2).We prove that both the uniform predicates and the
assertions model separation logic [3].

Theorem 3. For any separation algebra Σ, UPred(Σ ) and asn(Σ) are complete
BI-algebras.

The stack monad is also used for the lifting operator f̂ that was introduced in
Section 2.1. The operator takes a function f , and returns a function f̂ where any
argument type T that is passed to f is replaced with sm T , and any return type
U with sm U . As an example, the representation predicate R in the specification
for ICell , which has type val → T → UPred(heap), is lifted to R̂ in the assertion-

logic formulas of the specification. The resulting type for R̂ is sm val → sm T →
sm UPred(heap), i.e. expr → sm T → asn(heap).

We have to make this lifting explicit in specifications because it restricts
how program variables behave under substitution. We have that (f̂ e)[e′/x] =

f̂ (e[e′/x]) for any f : val → UPred(Σ ), but it is not the case that (g e)[e′/x] =
g (e[e′/x]) for any g : expr → asn(Σ) because g e may have more free program

variables than those appearing in e, whereas f̂ e cannot, by construction. To
make HOSL useful in a stack-based language, where such substitutions are com-
monplace, we therefore typically quantify over functions into UPred(Σ ) that we
then lift to asn(Σ) where needed.

3.3 Semantic commands

To obtain a language-independent core, we model commands as indexed relations
on program states (each consisting of a stack and a heap) – a semantic command
will relate, in a certain number of steps, a state either to another state or to an
error. The only requirements we impose on these commands are that they do
not relate to anything in zero steps, and that they satisfy a frame property
that will allow us to infer a frame-rule for all semantic commands. Intuitively,
the semantic commands can be seen as abstractions of rules of a step-indexed
big-step operational semantics. More formally, we have the following definitions.

Definition 2 (pre-command). A pre-command c̃ relates an initial state to
either a terminal state or the special err state:

precmd , P(stack ×Σ × ((stack ×Σ) ] {err})× N)

We write (s, h, c̃) n x to mean that (s, h, x, n) ∈ c̃.

Definition 3 (Frame property). A pre-command c̃ has the frame property in
case the following holds. If (s, h1, c̃) 6 n err and (s, h1 ◦ h2, c̃) n (s′, h′) then
there exists h′1 such that h′ = h′1 ◦ h2 and (s, h1, c̃) n (s′, h′1).
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Definition 4 (Semantic command). A semantic command satisfies the frame
property and does not evaluate to anything in zero steps.

semcmd , {ĉ ∈ precmd | ĉ has the frame property ∧ ∀s, h, x. (s, h, ĉ) 6 0 x}

To facilitate the encoding of imperative programming languages in our frame-
work, we create the following semantic commands that can be used as building
blocks for that purpose. These commands are similar to the ones found in [6].

id seq ĉ1 ĉ2 ĉ1 + ĉ2 ĉ∗ assume P check P

Intuitively, these semantic commands are defined as follows: The id-command
is the identity command – it does nothing; the seq-command executes two com-
mands in sequence; the +-operator nondeterministically executes one of two
commands; the ∗-command executes a command an arbitrary amount of times;
the assume-command assumes a pure assertion that can be used to prove cor-
rectness of future commands; the check-command works like the id-command
as long as a pure assertion can be inferred. Recall that pure assertions are logical
formulas that are evaluated without using the heap.

Theorem 4. id, seq, +, ∗, assume, and check are semantic commands.

3.4 Specification logic

With the assertion logic and the semantic commands in place, we can define
the specification logic. Semantically, a specification is a downwards-closed set of
natural numbers; this allows us to reason about (mutually) recursive programs
via step-indexing.

spec , {S ⊆ N | ∀m,n. m ≤ n ∧ n ∈ S → m ∈ S}

The set spec is a complete Heyting algebra under the subset ordering, i.e.,
logical entailment (|=) is modelled as subset inclusion. Hence a specification S
is valid if S = N.

Given assertions P and Q, and semantic command ĉ, we define a Hoare triple
specification:

{P}ĉ{Q} , {n | ∀m ≤ n. ∀k ≤ m. ∀s, h. (h,m) ∈ P s→ (s, h, ĉ) 6 k err ∧
∀h′, s′. (s, h, ĉ) k (s′, h′)→ (h′,m− k) ∈ Q s′}

A program is proved correct by proving that its specification is valid:

Definition 5. A specification is valid, written |= S, when true |= S.

3.5 Connecting the assertion logic with the specification logic

We define an embedding of the specification logic into the assertion logic as
follows:

FunI : spec → UPred(Σ ) , λS. Σ × S.
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Lemma 1. FunI is monotone, preserves implication, and has a left and a right
adjoint, when spec and UPred(Σ ) are treated as poset categories.

From the second part of this lemma it follows that FunI preserves both finite
and infinite conjunctions and disjunctions, which entails that all specification
logic connectives are preserved by the translation.

3.6 Recursion

The specification connectives defined in the previous section are not enough for
our purposes. When proving a program correct (by proving a formula of the
form |= S), it is commonplace that the proof of one part of specification in S
requires other parts of S – a typical example is recursive method calls, where
the specification of the method called must be available in the context during
its own verification. To accomplish this, we borrow the later operator (.) from
Gödel-Löb logic (see [2]).

.S , {n+ 1 | n ∈ S} ∪ {0}
This operator can be used via the Löb rule, which allows us to do induction

on the step-indexes of the semantic commands.

Γ ∧ .S |= S 0 ∈ Γ → 0 ∈ S
Γ |= S

Löb

In the inductive case .S is found on the left hand side of the turnstile and can
hence be used to prove S.

4 Instantiation to an object-oriented language

We define a Java-like language with syntax of programs P shown below. The
language is untyped and does not need syntax for interfaces; these exist in the
specification logic only.

We use a shallow embedding for expressions, which we denote with e, as
shown in Section 3.2.

P ::= C∗ f ∈ (field names)

C ::= class C f∗ (m(x̄){c; return e})∗
c ::= x := alloc C | x := e | x := y.f | x.f := e | x := y.m(ē)

| x := C::m(ē) | skip | c1; c2 | if e then c1 else c2

| while e do c | assert e

In order to provide a concrete instance of the assertion logic, we construct a sep-
aration algebra of concrete heaps. The carrier set is heap , (ptr × field)

fin
⇀ val ,

with the values defined as the union of integers, Booleans and object references.
The partial composition h1 ◦ h2 is defined as h1 ∪ h2 if dom h1 ∩ dom h2 = ∅;
otherwise the result is undefined. The unit of the algebra is the empty map,
emp. We denote this separation algebra (heap, ◦, emp) with heap. The points-to
predicate is defined as v.f 7→v′ , {(h, n) | h w [(v, f) 7→ v′]}.
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skip ∼sem id
Skip-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

c1; c2 ∼sem seq ĉ1 ĉ2
Seq-Sem

c ∼sem ĉ

while e do c ∼sem seq (seq (assume e) ĉ)∗ (assume ¬e) While-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

if e then c1 else c2 ∼sem (seq (assume e) ĉ1) + (seq (assume ¬e) ĉ2)
If-Sem

Fig. 2. The skip, sequential composition, conditional and loop cases of the semantics
relation

4.1 Semantics of the programming language

We define the semantics of the programming language commands by relating
them to semantic commands instantiated with heap as the separation algebra.
We write c ∼sem ĉ to denote that the syntactic command c is related to the
semantic command ĉ. The ∼sem relation can be thought of as a function; it is
defined as a relation only because this was more straightforward in Coq.

The commands skip, ;, if , and while can be related directly to composites
of the general semantic commands, defined in Section 3.3. The definition of ∼sem

for these commands can be found in Figure 2. For the remaining commands,
new semantic commands must be created.

In particular, for method calls, we define a semantic command

call x C::m(ē) with c ĉ

that, intuitively, calls method m of class C with arguments ē and assigns the
return value to x; the command c is the method body, and ĉ is its corresponding
semantic command. This semantic command works uniformly for both static and
dynamic methods, since in the dynamic case we can pass the object reference as
an additional argument. The definition of this semantic command is shown in
Figure 3. The definition makes use of a predicate

C::m(p̄){c; return r} ∈ P

which holds in case method m in class C has parameters p̄ and method body
c in program P. The program parameter P has been left implicit in the other
rules. The notation [p̄ 7→ (ē s)] denotes a finite map that associates each p in p̄
with the e at the corresponding position in ē evaluated in stack s.

The requirement that the method body is related to the semantic command
is not enforced by the construction of the semantic command, but rather by the
definition of ∼sem for respectively static and dynamic method calls:

c ∼sem ĉ

x := C::m(ē) ∼sem call x C::m(ē) with c ĉ
SCall-Sem
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([p̄ 7→ (ē s)], h, ĉ) n (s′, h′) C::m(p̄){c; return r} ∈ P |p̄| = |ē|
(s, h, call x C::m(ē) with c ĉ) n+1 (s[x 7→ (r s′)], h′)

Call

C::m(p̄){c; return r} /∈ P
(s, h, call x C::m(ē) with c ĉ) 1 err

Call-Fail1

C::m(p̄){c; return r} ∈ P |p̄| 6= |ē|
(s, h, call x C::m(ē) with c ĉ) 1 err

Call-Fail2

([p̄ 7→ (ē s)], h, ĉ) n err C::m(p̄){c; return r} ∈ P |p̄| = |ē|
(s, h, call x C::m(ē) with c ĉ) n+1 err

Call-Fail3

Fig. 3. Semantic call commands.

c ∼sem ĉ y : C

x := y.m(ē) ∼sem call x C::m(y, ē) with c ĉ
DCall-Sem

4.2 Syntactic Hoare triples and the concrete assertion logic

Hoare triples for syntactic commands are defined in the following manner:

{P}c{Q} , ∀ĉ. c ∼sem ĉ→ {P}ĉ{Q}.

From this definition we infer and prove sound Hoare rules for all commands of
our language. To define the rule for method calls we first define the predicate
that asserts the specification of methods, introduced in Section 2.1.

C::m(p̄) 7→ {P} {r. Q} , ∃c, e. wf (p̄, r, P,Q, c) ∧ C::m(p̄){c; return e} ∈ P
∧ {P}c{Q[e/r]},

where wf is a predicate to assert the following static properties: the method
parameter names do not clash; the pre- and postcondition do not use any stack
variables other than the method parameters and this (the postcondition may
also use the return variable); the method body does not modify the values of
the method parameters or this.

Selected proof rules for syntactic commands are shown in Figure 4. Note the
use of the later operator (.) in the method call rule; this means that this method
call rule will often be used in connection with the Löb rule.

Theorem 5. The rules in Figure 4 are sound with respect to the operational
semantics.
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|= {P}skip{P} Skip {P}c1{Q} ∧ {Q}c2{R} |= {P}c1; c2{R}
Seq

{P ∧ e}c1{Q} ∧ {P ∧ ¬e}c2{Q} |= {P}if e then c1 else c2{Q}
If

{P ∧ e}c{P} |= {P}while e do c{P ∧ ¬e} While
P ` e

|= {P}assert e{P} Assert

|= {true}x := alloc C{∀∗f ∈ fields(C). x.f 7→null} Alloc

|= {P}x := e{∃v. P [v/x] ∧ x = e[v/x]} Assign |= {x.f 7→ }x.f := e{x.f 7→e} Write

P ` y.f 7→e
|= {P}x := y.f{∃v. P [v/x] ∧ x = e[v/x]} Read

Γ |= .C::m(p̄) 7→ {P} {r. Q} |p̄| = |y, ē|
Γ |= {y : C ∧ P [y, ē/p̄]}x := y.m(ē){∃v. Q[x, y[v/x], ē[v/x]/r, p̄]} DCall

Γ |= .C::m(p̄) 7→ {P} {r. Q} |p̄| = |ē|
Γ |= {P [ē/p̄]}x := C::m(ē){∃v. Q[x, ē[v/x]/r, p̄]} SCall

P ` P ′ Q′ ` Q
{P ′}c{Q′} |= {P}c{Q} Consequence

∀x ∈ fv R. c does not modify x

{P}c{Q} |= {P ∗R}c{Q ∗R} Frame

P ` P ′ Q′ ` Q fv P ⊆ fv P ′ fv Q ⊆ fv Q′

C::m(p̄) 7→ {P ′} {r. Q′} |= C::m(p̄) 7→ {P} {r. Q} Consequence-MSpec

fv R ⊆ {this} ∪ p̄
C::m(p̄) 7→ {P} {r. Q} |= C::m(p̄) 7→ {P ∗R} {r. Q ∗R} Frame-MSpec

Fig. 4. Specification logic rules for syntactic Hoare triples

5 Related work

Formalisations of higher-order separation logic have been proposed before, e.g.
by Varming and Birkedal [20], who developed an Isabelle/HOL formalisation of
HOSL for partial correctness for a simple imperative language with first-order
mutually recursive procedures, using a denotational semantics of the program-
ming language, and by Preoteasa [15], who developed a PVS formalisation for
total correctness using a predicate-transformer semantics for a similar program-
ming language.

Parkinson and Bierman treated an extended version of the Cell-Recell exam-
ple in [14], improving upon their earlier work in [13]. Their approach is to tailor
the specification logic to build in a form of quantification over families of rep-
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resentation predicates following a fixed pattern determined by the inheritance
tree of the program. This construction is known as abstract predicate families
(APFs).

Where our logic allows quantification over a representation type T , as used
in Section 2.1, APFs have a built-in notion of variable-arity predicates to achieve
same effect: representation predicates of a subclass can add parameters to the
representation predicate they inherit. Class Cell defines a two-parameter repre-
sentation predicate family Val , which is extended to three arguments in Recell.
A Recell r having value 2 and backup field 1 would be asserted as Val(r, 2, 1).
This assertion implies Val(r, 2), which in turn implies ∃b.Val(r, 2, b) if it is known
that r is a Recell. Thus, casting to the two-argument representation predicate
that would be necessary for calling {∃v.Val(c, v)} proxySet(c, x) {Val(c, x)} will
lose any information about the backup field.

The logic of Parkinson and Bierman was extended by van Staden and Calcagno
[19] to handle multiple inheritance, abstract classes and controlled leaking of
facts about the abstract representation of either a single class or a class hier-
archy. Using the latter feature, we observe that their logic can also be used to
reason about the example in Section 2, by using parameters g and s to give a
precise specification of proxySet. Instead of being functions, g and s would be
abstract predicate families whose first argument would be an object reference
used only for selecting the correct member of the APF.

Compared to the logics based on abstract predicate families, our logic allows
families of not just predicates but also types, functions, class names or any other
type that can be quantified over in Coq. This gives us strong typing of logical
variables, and all this works without building it into the logic and requiring that
quantifications and proofs follow the shape of the inheritance tree.

6 Conclusion and Future Work

We have presented a Coq implementation of a generic framework for higher-order
separation logic. In this framework, instantiated with a simple object-oriented
language, we have shown how HOSL can be used to reason about interfaces and
interface inheritance.

Future work includes developing better support for automation via better
use of tactics. Our Coq proofs of example programs are cluttered with manual
reordering of the context because we do not yet have tactics to automate this. We
also plan to integrate the current tool with an Eclipse front-end that is currently
being researched within our project [10]. Moreover, we plan to use the tool for
formal verification of interesting data structures from the C5 collection library.

Although it is not necessary for the code we mostly want to verify, proper
support for class-to-class inheritance in both the logic and the design pattern
would enable more direct comparison with related work. It would also make our
Java subset more similar to actual Java.
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Separation and Sharing
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Abstract. We use separation logic to specify and verify a Java program
that implements snapshotable search trees, fully formalizing the specifi-
cation and verification in the Coq proof assistant. We achieve local and
modular reasoning about a tree and its snapshots and their iterators, al-
though the implementation involves shared mutable heap data structures
with no separation or ownership relation between the various data.
The paper also introduces a series of four increasingly sophisticated im-
plementations and verifies the first one. The others are included as future
work and as a set of challenge problems for full functional specification
and verification, whether by separation logic or by other formalisms.

1 Introduction

This paper presents a family of realistic but compact challenge case studies
for modular software verification. We fully specified and verified the first case
study in Coq, using a domain-specific separation logic [10] and building upon
our higher-order separation logic [2]. As future work we plan to verify the other
implementations with the presented abstract interface specification. We believe
this is the first mechanical formalization of this approach to modular reason-
ing about implementations that use shared heap data with no separation or
ownership relation between the various data.

The family of case studies consists of a single interface specification for snap-
shotable trees, and four different implementations. A snapshotable tree is an
ordered binary tree that represents a set of items and supports taking readonly
snapshots of the set, in constant time, at the expense of slightly slower subsequent
updates to the tree. A snapshotable tree also supports iteration (enumeration)
over its items as do, e.g., the Java collection classes. The four implementations
of the snapshotable tree interface all involve shared heap data as well as increas-
ingly subtle uses of destructive heap update.

For practical purposes it is important that the same interface specification
can support verification of multiple implementations with varying degrees of in-
ternal sharing and destructive update. Moreover, the specification must accom-
modate any number of data structure (tree) instances, each having any number
of iterators and snapshots, each of which in turn can have any number of itera-
tors. Most importantly, we show how we can have local reasoning (a frame rule)
even though the tree and its snapshots share mutable heap data.
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We welcome other solutions to the specification and verification of this case
study; indeed R. Leino has already made one (unpublished) using Dafny [11].

The Java source code of the case studies of all four implementations and the
Coq source is available at http://www.itu.dk/people/hame/snapshots.tgz.

Section 2 presents the interface of the case study data structure, shows an
example use, and outlines four implementations. Section 3 gives a formal spec-
ification of the interface using separation logic and verifies the example code.
Sections 4 and 5 verify the first implementation.

2 Case Study: Snapshotable Trees

The case study is a simplified version of snapshotable treesets from the C5 col-
lection library [8].

2.1 Interface: Operations on Snapshotable Trees

Conceptually, a snapshot of a treeset is a readonly copy of the treeset. Subsequent
updates to the tree do not affect any of its snapshots, so one can update the
tree while iterating over a snapshot. Taking a snapshot must be a constant time
operation, but subsequent updates to the tree may be slower after a snapshot has
been taken. Implementations (Section 2.3) typically achieve this by making the
tree and its snapshots share parts of their representation, gradually unsharing
it as the tree gets updated, in a manner somewhat analogous to copy-on-write
memory management schemes in operating systems.

All tree and snapshot implementations implement the same ITree interface:

public interface ITree extends Iterable<Integer> {

public boolean contains(int x);

public boolean add(int x);

public ITree snapshot();

public Iterator<Integer> iterator();

}

These operations have the following effect:

– tree.contains(x) returns true if the item is in the tree, otherwise false.
– tree.add(x) adds the item to the tree and returns true if the item was not

already in the tree; otherwise does nothing and returns false.
– tree.snapshot() returns a readonly snapshot of the given tree. Updates to

the given tree will not affect the snapshot. A snapshot cannot be made from
a snapshot.

– tree.iterator() returns an iterator (also called enumerator, or stream) of
the tree’s items. Any number of iterators on a tree or snapshot may exist
at the same time. Modifying a tree will invalidate all iterators on that tree
(but not on its snapshots), so that the next operation on such an iterator
will throw ConcurrentModificationException.
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We include the somewhat complicated iterator() operation because it makes
the distinction between a tree and its snapshots completely clear: While it is
illegal to modify a tree while iterating over it, it is perfectly legal to modify
the tree while iterating over one of its snapshots. Also, this poses an additional
verification challenge when considering implementations with rebalancing (cases
A2B1 and A2B2 in Section 2.3) because tree.add(item) may rebalance the
tree in the middle of an iteration over a snapshot of the tree, and that should
be legal and not affect the iteration.

Note that for simplicity, items are here taken to be integers; using techniques
from [20] it is straightforward to extend our formal specification and verification
to handle a generic version of snapshotable trees.

2.2 Example Client Code

To show what can be done with snapshots and iterators (and not without),
consider this piece of client code. It creates a treeset t, adds three items to it,
creates a snapshot s of the tree, and then iterates over the snapshot’s three items
while adding new items (6 and 9) to the tree:

ITree t = new Tree();

t.add(2); t.add(1); t.add(3);

ITree s = t.snapshot();

Iterator<Integer> it = s.iterator();

boolean lc = it.hasNext();

while (lc) {

int x = it.next();

t.add(x * 3);

lc = it.hasNext();

}

2.3 Implementations of Snapshotable Trees

One may consider four implementations of treesets, spanned by two orthogonal
implementation features. First, the tree may be unbalanced (A1) or it may be
actively rebalanced (A2) to keep depth O(log n). Second, snapshots may be kept
persistent, that is, unaffected by tree updates, either by path copy persistence
(B1) or by node copy persistence (B2):

Without rebalancing With rebalancing
Path copy persistence A1B1 A2B1
Node copy persistence A1B2 A2B2

The implementation closest to that of the C5 library [8, section 13.10] is A2B2,
which is still somewhat simplified: only integer items, no comparer argument, no
update events, and so on. In this paper we formalize and verify only implemen-
tation A1B1; the verification of the more sophisticated implementations A1B2,
A2B1 and A2B2 will be addressed in future work.
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Nevertheless, for completeness and in the hope that others may consider
this verification challenge, we briefly discuss all four implementations and the
expected verification challenges here.

With path copy persistence (cases AxB1), adding an item to a tree will du-
plicate the path from the root to the added node, if this is necessary to avoid
modifying any snapshot of the tree. Thus an update will create O(d) new nodes
where d is the depth of the tree.

With node copy persistence (cases AxB2), each tree node has a spare child
reference. The first update to a node uses this spare reference, does not copy the
node and does not update its parent; the node remains shared between the tree
and its snapshots. Only the second update to a node copies it and updates its
parent. Thus an update does not replicate the entire path to the tree root; the
number of new nodes per update is amortized O(1). See Driscoll [6] or [8].

To implement ordered trees without rebalancing (cases A1By), we use a Node
class containing an item (here an integer) and left and right children; null is
used to indicate the absence of a child. A tree or snapshot contains a stamp
(indicating the “time” of the most recent update) and a reference to the root
Node object; null if the tree is empty.

To implement rebalancing of trees (cases A2By), we use left-leaning red-black
trees (LLRB) which encode 2-3 trees [1, 19], instead of general red-black trees [7]
as in the C5 library. This reduces the number of rebalancing cases.

To implement iterators on a tree or snapshot we use a class TreeIterator that
holds a reference to the underlying tree, a stamp (the creation “time” of the
iterator) and a stack of nodes. The stamp is used to detect subsequent updates
to the underlying tree, which will invalidate the iterator. Since snapshots cannot
be updated, their iterators are never invalidated. The iterator’s stack holds its
current state: for each node in the stack, the node’s own item and all items in
the right subtree have yet to be output by the iterator.

Case A1B1 = no rebalancing, path copy persistence In this implementation there
is shared data between a tree and its snapshots, but the shared data is not being
mutated because the entire path from the root to an added node gets replicated.
Hence no node reachable from the root of a snapshot, or from nodes in its
iterators’ stacks, can be affected by an update to the live tree; therefore no
operation on a snapshot can be affected by operations on the live tree. Although
this case is therefore the simplest case, it already contains many challenges in
finding a suitable specification for trees, snapshots and iterators, and in proving
the stack-based iterator implementation correct.

Case A2B1 = rebalancing, path copy persistence In this case there is potential
mutation of shared data, because the rebalancing rotations seem to be able to
affect nodes just off the fresh unshared path from a newly added node to the root.
This could adversely affect an iterator of a snapshot because a reference from
the iterator’s node stack might have its right child updated (by a rotation), thus
wrongly outputting the items of its right subtree twice or not at all. However,
this does not happen because the receiver of a rotation (to be moved down) is
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always a fresh node (we’re in case B1 = path copy persistence) and moreover we
consider only add operations (not remove), so the child being rotated (moved up)
is also a fresh node and thus not on the stack of any iterator – the rebalancing
was caused by this child being “too deep” in the tree. Hence if we were to
support remove as well, then perhaps the implementation of rotations needs to
be refined.

Case A1B2 = no rebalancing, node copy persistence In this case, there is muta-
tion of shared data not observable by the client. For example, a left-child update
to a tree node that is also part of a snapshot will move the snapshot’s left-child
value to the node’s extra reference field, and destructively update the left child as
required for the live tree. There should be no observable change to the snapshot,
despite the change to the data representing it. The basic reason for correctness
is that any snapshot involving an updated node will use the extra reference and
hence not see the update; this is true for nodes reachable from the root of a
snapshot as well as for nodes reachable from the stack of an iterator. When we
need to update a node whose extra reference is already in use, we leave the old
node alone and create a fresh copy of the node for use in the live tree; again,
existing snapshots and their iterators do not see the update.

Case A2B2 = rebalancing, node copy persistence In this case there is mutation
of shared data (due both to moving child fields to the extra reference in nodes,
and due to rotations), not observable for the client. Since the updates caused by
rotations are handled exactly like other updates, the correctness of rebalancing
with respect to iterators seems to be more straightforward than in case A2B1.

3 Abstract Specification and Client Code Verification

We use higher-order separation logic [18, 3] to specify and verify the snapshotable
tree data structure. We build on top of our intuitionistic formalization of HOSL
in Coq [2] with semantics for an untyped Java-like language.

To allow implementations to share data between a tree, its snapshots, and
iterators and still make it possible for clients to reason locally (to focus only
on a single tree / snapshot / iterator), we will use an idea from [10] (see also
the verification of Union-Find in [9]). The idea is to introduce an abstract pred-
icate, here named H, global to each tree data structure consisting of a single
tree, multiple snapshots, and multiple iterators. This abstract predicate H is
parameterized by a finite set of disjoint abstract structures. We have three kinds
of abstract structures: Tree, Snap, and Iter. The use of H enables a client of
our specification to consider each abstract structure to be separate or disjoint
from the rest of the abstract structures and thus the client can reason modu-
larly about client code using only those abstract structures she needs; the rest
can be framed out. Since the abstract predicate H is existentially quantified,
the client has no knowledge of how an implementation defines H (see [3, 16] for
more on abstract predicates in higher-order separation logic). The implementor
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of the tree data structure has a global view on the tree with its snapshots and
iterators, and is able to define which parts of the abstract structures are shared
in the concrete heap. Section 4 defines H for the A1B1 case from Section 2.3.

The Tree abstract structure consists of a handle (reference) to the tree and
a model, which is an ordered finite set, containing the elements of the tree. The
Snap structure is similar to Tree. The Iter structure consists of a handle to
the iterator and a model, which is a list containing the remaining elements for
iteration. Because H is tree-global, exactly one Tree structure must be present
(“the tree”), while the number of Snap and Iter structures is not constrained.

3.1 Specification of the ITree Interface

We now present the formal abstract specification of the ITree interface informally
described in Section 2.1. The specification also contains five axioms, which are
useful for a client and obligations to an implementor of the interface. The specifi-
cation is parametrized over an implementation class C and the above-mentioned
predicate H, and each method specification is universally quantified over the
model τ , a finite set of integers and a finite set of abstract structures φ.
interface ITree {
{H({Tree(this, τ)} ] φ)} contains(x) {ret = x ∈ τ ∧H({Tree(this, τ)} ] φ)}
{H({Snap(this, τ)} ] φ)} contains(x) {ret = x ∈ τ ∧H({Snap(this, τ)} ] φ)}
{H({Tree(this, τ)} ] φ)} add(x) {ret = x 6∈ τ ∧H({Tree(this, {x} ∪ τ)} ] φ)}
{H({Tree(this, τ)} ] φ)} snapshot() {H({Snap(ret, τ)} ] {Tree(this, τ)} ] φ)}
{H({Snap(this, τ)} ] φ)} iterator() {H({Iter(ret, [τ ])} ] {Snap(this, τ)} ] φ) ∧

ret <: Iterator}
(a) H({Tree(t, τ)} ] φ) ` t : C
(b) H({Snap(s, τ)} ] φ) ` s : C
(c) τ = τ ′ ∧H({Tree(t, τ)} ] φ) ` H({Tree(t, τ ′)} ] φ)
(d) H({Snap(s, τ)} ] φ) ` H(φ)
(e) H({Iter(it, α)} ] φ) ` H(φ)
}
These specifications can be read as follows:

– contains requires either a Snap or Tree structure (written as separate spec-
ifications) for the this handle and some set τ . The structure is unmodified
in the postcondition, and the return value ret is true if the item x is in the
set τ , otherwise false.

– add requires a Tree structure for the this handle and some set τ . The
postcondition states that the given item x is added to the set τ . The return
value indicates whether the tree was modified, which is the case if the item
was not already present in the set τ .

– snapshot requires a Tree structure for the this handle and some set τ . The
postcondition constructs a Snap structure for the returned handle ret and
the set τ . So the Tree and the Snap structure contain the same elements.

– iterator requires a Snap structure for the this handle and some set τ . The
postcondition constructs an Iter structure with the return handle and the
set τ converted to an ordered list, written [τ ]. The returned handle conforms
(written <:) to the Iterator specification shown in Section 3.2.
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The five axioms state that (a) the static type of the tree is the given class C;
(b) the static type of a snapshot is C; (c) the model τ of the tree can be replaced
by an equal model τ ′ 1; and we can forget about snapshots (d) and iterators (e).

In contrast to the description in Section 2.1 we leave iterators over the tree
for future work. We could use the ramification operator [10] to express that any
iterators over the tree become invalid when the tree is modified.

The abstract separation can be observed, e.g., in the specification of add:
it only modifies the model of the Tree structure and does not affect the rest of
the abstract structures (φ is preserved in the postcondition). Hence the client
can reason about calls to add locally, independently of how many snapshots and
iterators there are.

In our Coq formalization we do not have any syntax for interfaces at the
specification logic level [2], but represent interfaces using Coq-level definitions.
Appendix A contains the formal representations (ITree, Iterator, Stack).

3.2 Iterator Specification

Our iterator specification is also parametrized over a class IC and a predicate
H, and each method specification is universally quantified over a list of integers
α and a finite set of abstract structures φ.
interface Iterator<Integer> {
{H({Iter(this, α)} ] φ)} hasNext() {ret = (|α| 6= 0) ∧H({Iter(this, α)} ] φ) }
{H({Iter(this, x :: α)} ] φ)} next() {ret = x ∧H({Iter(this, α)} ] φ)}
}

The specification of the Iterator interface requires an Iter structure with the
this handle and some list α. The return value of the method hasNext captures
whether the list α is non-empty. The Iter structure in the postcondition is not
modified. The method next requires an Iter structure with a non-empty list
(x :: α). The list head is returned and the model of the Iter structure is updated
to the remainder of the list.

3.3 Client Code Verification

To verify the client code from Section 2.2 we assume we are given a class C
such that ITree C H holds for some H and then verify the client code under the
precondition {H({Tree(t, {})})}.

Figure 1 gives a step-by-step proof of the client code from Section 2.2, with
client code lines to the left and their postconditions to the right.

After inserting some items (line 1) to the tree, the model contains these items,
{1, 2, 3}. In line 2, a snapshot s of the tree t is created. The invariant H now
consists of the Tree structure and a Snap structure containing the same elements.
For the client the abstract structures are disjoint, but in an implementation, they
will be realized using sharing. Indeed, for the A1B1 implementation, the concrete

1 This is explicit for technical reasons: in our implementation H is defined inside a
monad [2], and the client should not have to discharge obligations inside the monad.
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1: t.add(2);t.add(1);t.add(3);
{
H({Tree(t, {1, 2, 3})})

}

2: ITree s = t.snapshot();
{
H({Tree(t, {1, 2, 3})} ] {Snap(s, {1, 2, 3})})

}

3: Iterator<Integer> it =

s.iterator();

{
H({Tree(t, {1, 2, 3})} ] {Snap(s, {1, 2, 3})} ]
{Iter(it, [1, 2, 3])})

}

4: boolean lc =

it.hasNext();

{
lc = true ∧ H({Tree(t, {1, 2, 3})} ]
{Snap(s, {1, 2, 3})} ] {Iter(it, [1, 2, 3])})

}

5: while (lc) { invariant: ∃α, β.α@β = [1, 2, 3] ∧ lc = (|β| 6=
0) ∧ H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α}))} ]
{Snap(s, {1, 2, 3})} ] {Iter(it, β)})

6: int x = it.next();
{
α@β = [1, 2, 3] ∧ lc = (|β| 6= 0) ∧ β =

x :: β′ ∧ H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α})} ]
{Snap(s, {1, 2, 3})} ] {Iter(it, β′)})

}

7: t.add(x * 3);
{
α@β = [1, 2, 3] ∧ lc = (|β| 6= 0) ∧ β = x ::
β′ ∧ H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α} ∪ {3x})} ]
{Snap(s, {1, 2, 3})} ] {Iter(it, β′)})

}

8: lc = it.hasNext();
{
α@β = [1, 2, 3] ∧ lc = (|β′| 6= 0) ∧ β = x ::
β′ ∧ H({Tree(t, {1, 2, 3} ∪ {3z|z ∈ α} ∪ {3x})} ]
{Snap(s, {1, 2, 3})} ] {Iter(it, β′)})

}

9: }
{
H({Tree(t, {1, 2, 3, 6, 9})} ] {Snap(s, {1, 2, 3})})

}

Fig. 1. Client code verification

heap will be as shown in Figure 2, where all the nodes are shared between the
tree and the snapshot.

In line 3 an iterator it over the snapshot s is created. To apply the call rule of
the iterator method, only the Snap structure is taken into account, the rest (the
Tree structure) is framed out inside ofH (via appropriate instantiation of φ in the
iterator specification). The result is that an Iter structure is constructed, whose
model contains the same values as the model of the snapshot, but converted to
an ordered list. We introduce the loop condition lc in line 4, and again use
abstract framing to call hasNext.

Lines 5–9 contain a while loop with loop condition lc. The loop invariant
splits the iteration list [1, 2, 3] into the list α containing the elements already
iterated over and the list β containing the remainder. The loop variable lc is
false iff β is the empty list. The invariant H contains the Tree structure whose
model is the initial set {1, 2, 3} joined with the set of the elements of α, each
multiplied by 3. H also contains the Iter and the Snap structures.

We omit detailed explanation of the remaining lines of verification.
Note that in the final postcondition, the client sees two disjoint structures

(axiom (e) is used to forget the empty iterator), but in the A1B1 implementation,
the concrete heap will involve sharing, as shown in Figure 3. Only the left subtree
is shared by the tree and the snapshot; the root and right subtree were unshared
by the first call to add in the loop.

In summary, we have shown the following theorem, which says that given
any H and any classes C and IC satisfying the ITree and Iterator interface
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Fig. 2. Heap after snapshot construction
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Fig. 3. Live heap after loop

specifications, the client code satisfies its specification. The postcondition states
that snapshot s contains 1, 2 and 3, and tree t contains additionally 6 and 9.

Theorem 1. ∀H.∀C.∀IC.ITree C H ∧ Iterator IC H
` {H({Tree(t, {})})} client code {H({Tree(t, {1, 2, 3, 6, 9})}]{Snap(s, {1, 2, 3}))}

4 Implementation A1B1

In this section we show the partial correctness verification of the A1B1 imple-
mentation with respect to the abstract specification from the previous section.
This involves defining a concrete H and showing that the methods satisfy the
required specifications for this concrete H. The development has been formally
verified in Coq (as has the client program verification above).

The Coq formalization uses a shallow embedding of higher-order separation
logic, developed for verification of OO programs using interfaces. See [2].

Invariant H is radically different depending on whether snapshots of the tree
are present or not. The reason is that method add mutates the existing tree if
there are no snapshots present, see Section 5 for details. Here we focus on the
case where snapshots are present.

The A1B1Tree class stores its data in three fields: the root node, a boolean
field isSnapshot, indicating whether it is a snapshot, and a field hasSnapshot,
indicating whether it has snapshots. The stamp field mentioned in Section 2.3
is only required for iterators over the tree and so not further discussed here.

The Node class is a nested class of the A1B1Tree with three fields, item

containing its value, and a handle to the right (rght) and left (left) subtree.
In the following we use standard separation logic connectives, in particular

the separating conjunction ∗ and the points to predicate 7→.
We now define our concrete H and also the realization of the abstract struc-

tures. We first explain the realization of Tree and Snap; the Iter structure is
described in Section 4.1. Recall that φ ranges over finite sets of abstract struc-
tures (Tree, Snap, Iter), with exactly one Tree structure, and recall that H, given
a φ, returns a separation logic predicate. The definition of H is:

H(φ) , ∃σ.wf(σ) ∧ heap(σ) ∗ σ � φ



40 Hannes Mehnert, Filip Sieczkowski, Lars Birkedal, and Peter Sestoft

Here σ is a finite map of type ptr → ptr × Z × ptr, with ptr being the type of
Java pointers (handles), corresponding to the Node class. The map σ must be
well-formed (pure predicate wf(σ)), which simply means that all pointers in the
codomain of σ are either null or in the domain of σ.

The heap function maps σ to a separation logic predicate, which describes
the realization of σ as a linked structure in the concrete heap, starting with >:

heap(σ) , fold (λp n Q. match n with (pl, v, pr)⇒
p.left 7→ pl ∗ p.item 7→ v ∗ p.rght 7→ pr ∗ Q) > σ

Finally, we present the definition of σ � φ (we defer the definition of σ �
{Iter( , )} to the following subsection):

σ � φ ] ψ , σ � φ ∗ σ � ψ
σ � {Tree(ptr, τ)} , ∃p.Node(σ, p, τ) ∧ ptr.root 7→ p ∗

ptr.isSnapshot 7→ false ∗ ptr.hasSnapshot 7→ true

σ � {Snap(ptr, τ)} , ∃p.Node(σ, p, τ) ∧ ptr.root 7→ p ∗
ptr.isSnapshot 7→ true ∗ ptr.hasSnapshot 7→ false

The spatial structure of all the nodes is covered by heap(σ) so σ � φ just
needs to describe the additional heap taken up by Tree, Snap, and Iter structures.

The pure Node predicate is defined inductively on τ below. It is used to
express that τ is the finite set of items reachable from p in σ.

Node(σ, p, τ) ,
(
p = null ∧ τ = {}

)
∨(

p ∈ dom(σ) ∧ ∃pl, v, pr. σ[p] = (pl, v, pr) ∧
∃τl, τr.τ = τl ∪ {v} ∪ τr ∧
(∀x ∈ τl.x < v) ∧ (∀x ∈ τr.x > v) ∧
Node(σ, pl, τl) ∧Node(σ, pr, τr)

)

The sortedness constraint (a strict total order) in the Node predicate enforces
implicitly that σ has the right shape: σ cannot contain cycles and the left and
right subtrees must be disjoint. The set τ is split into three sets, one with strictly
smaller elements (τl), the singleton v and with strictly bigger elements (τr).

4.1 Iterator

The TreeIterator class implements the Iterator interface. It contains a single
field, context, which is a stack of Node objects.

The constructor of the TreeIterator pushes all nodes on the leftmost path
of the tree onto the stack. The method next pops the top node from the stack
and returns the value held in that node. Before returning, it pushes the leftmost
path of the node’s right subtree (if any) onto the stack. The method hasNext

returns true if and only if the stack is empty.
The verification of the iterator depends on the following specification of a

stack class, generic in C. The specification is parametrized over a representation
type T and existentially over a representation predicate SR (of type classname→
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(val → T → HeapAsn) → val → T ∗ → HeapAsn). The second argument is the
predicate P (of type val→ T → HeapAsn) , which holds for every stack element.
This specification is kept in the style of [17], although we use a different logic.
class Stack<C> {
> new() SR C P ret nil
SR C P this α empty() ret = (α = nil) ∧ SR C P this α
SR C P this α ∗ P x t ∧ x : C push(x) SR C P this (t :: α)
SR C P this (t :: α) pop() P ret t ∗ SR C P this α
SR C P this (t :: α) peek() P ret t ∗(∀u.P ret u −∗ SR C P this (u :: α))

(a) P v t ` P ′ v t =⇒ SR C P v α ` SR C P ′ v α

}
For the purpose of specifying the iterators over snapshotable trees, we instan-

tiate the type T with Z∗; the model of a node on the stack is a list of integers.
Intuitively, this list corresponds to the node value and the element list of its right
subtree. The iterator is modelled as a list that is equal to the concatenation of
the elements of the stack. We also require that the topmost element of the stack
is nonempty (if present). This intuition is formalized in the interpretation of the
Iter structure, where SR is a representation predicate of a stack:

σ � {Iter(p, α)} , ∃st. p.context 7→ st ∗ ∃β.stack inv(β, α)∧
SR Node (NS σ) st β.

To make this definition complete, we provide the definitions of stack inv ,
which connects the representation of the stack with the representation of the
iterator, and the definition of the NS predicate.

stack inv(xss, ys) , ys = concat(xss) ∧
{
> iff xss = nil
xs 6= nil iff xss = xs :: xss′

NS σ node α , Node(σ, node, τ) ∧ α = [{x ∈ τ |x ≥ node.item}]

These definitions, along with an assumption that SR is the representa-
tion predicate of Stack (i.e., fulfills all the method specifications and axioms
of Stack spec) suffice to show the correctness of Iter-dependent methods. The
axiom present in Stack spec is needed to preserve iterators if some new memory
is added to σ: it allows us to replace (NS σ) with (NS σ′) as a representation
predicate of stack objects under certain side conditions.

5 On the Verification of Implemented Code

We now give an intuitive description of how the A1B1 implementation was ver-
ified, given the concrete H defined above. We verified the complete implemen-
tation in Coq but only discuss the add method here. We used Kopitiam [13] to
transform the Java code into SimpleJava, the fragment represented in Coq.

Method add calls method addRecursive with the root node to insert the
item into the binary tree, respecting the ordering. Method addRecursive, shown
below, must handle several cases:
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– if there are no snapshots present, then
• if the item x is already in the tree, then the heap is not modified.
• if the item x is not in the tree, then a new node is allocated and destruc-

tively inserted into the tree.
– if there are snapshots present, then
• if the item x is already in the tree, then the heap is not modified.
• if the item x is not in the tree, then a new node is allocated and every

node on the path from the root to the added node is replicated, so that
the snapshots are unimpaired.

The implementation of addRecursive walks down the tree until a node with
the same value, or a leaf, is reached. It uses the call stack to remember the path
in the tree. If a node was added, either the entire path from the root to the
added node is duplicated (if snapshots are present) or the handles to the left or
right subtree are updated (happens destructively exactly once, the parent of the
added node updates its left or right handle, previously pointing to null):

Node addRecursive (Node node, int item, RefBool updated) {

Node res = node;

if (node == null) {

updated.value = true;

res = new Node(item);

} else {

if (item < node.item) {

Node newLeft = addRecursive(node.left, item, updated);

if (updated.value && this.hasSnapshot)

res = new Node(newLeft, node.item, node.rght);

else

node.left = newLeft;

} else if (node.item < item) {

Node newRght = addRecursive(node.rght, item, updated);

if (updated.value && this.hasSnapshot)

res = new Node(node.left, node.item, newRght);

else

node.rght = newRght;

} //else item == node.item so no update

}

return res;

}

We now show the pre- and postcondition of addRecursive for the two cases
where snapshots are present. If the item is already present in the tree, the pre-
and postcondition are equal:

{updated.value 7→ false ∗ this.hasSnapshot 7→ true ∗
heap(σ) ∗ wf(σ) ∧Node(σ, node, τ) ∧ item ∈ τ}

addRecursive(node, item, updated)

{updated.value 7→ false ∗ this.hasSnapshot 7→ true ∗
heap(σ) ∗ ret = node}
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The postcondition in the case that the item is added to the tree extends the
map σ to σ′, for which the heap layout and the well-formedness condition must
hold. The Node predicate uses σ′ and the finite set is extended with item:

{updated.value 7→ false ∗ this.hasSnapshot 7→ true ∗
heap(σ) ∗ wf(σ) ∧Node(σ, node, τ) ∧ item 6∈ τ}

addRecursive(node, item, updated)

{updated.value 7→ true ∗ this.hasSnapshot 7→ true ∗
∃σ′.σ ⊆ σ′ ∧ heap(σ′) ∗ wf(σ′) ∧Node(σ′, ret, {item} ∪ τ)}

The call to addRecursive inside of add is verified for each specification of
addRecursive independently.

To summarize Sections 4 and 5, we state the following theorem, which says
there exists an H that given a stack fulfilling the stack specification, the TreeIt-
erator class meets the Iterator specification and the A1B1 class meets the ITree
specification, and the constructor for the A1B1Tree establishes the H predicate.

Theorem 2. ∃H.Stack spec ` Iterator TreeIterator H ∧ ITree A1B1 H ∧
{>} A1B1Tree() {H({Tree(ret, {})})}

The client code, independently verified, can be safely linked with the A1B1
implementation!

6 Related Work

Malecha and Morrisett [12] presented a formalization of a Ynot implementation
of B-trees with an iterator method. In their case, the iterator and the tree also
share data in the concrete heap. However, they can only reason about “single-
threaded” uses of trees and iterators: their specification of the iterator method
transforms the abstract tree predicate into an abstract iterator predicate, which
prohibits calling tree methods until the client turns the iterator back into a tree.
In our setup, we have one tree, but multiple snapshots and iterators, and the tree
can be updated after an iterator has been created. To permit sharing between
a tree and an iterator, Malecha and Morrisett use fractional permissions, where
we use the H predicate. They work in an axiomatic extension of Coq, whereas
our proofs are done in a shallowly embedded program logic, since our programs
are written in an existing programming language (Java).

Dinsdale-Young et al. [5] present another approach to reasoning about shared
data structures, which gives the client a fiction of disjointness. Roughly speaking,
they define a new abstract program logic for each module (they can be combined)
for abstract client reasoning. Their approach allows one to give a client specifi-
cation similar to ours, but without using the H and with the abstract structures
(Tree / Snap / Iter) being predicates in the (abstract) program logic. This has
the advantage that one can use ordinary framing for local reasoning.

Dinsdale-Young et al. [4] also presented an approach to reasoning about
sharing. Sharing can happen in certain regions, and the module implementor
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has to define a protocol that describes how data in the shared region can evolve.
What corresponds to our abstract structures can now be seen as separation logic
predicates and thus one can use ordinary framing for local reasoning.

In both approaches [5] and [4] the module implementor has more proof obli-
gations than in our approach: In [5] he must show that the abstract operations
satisfy some conditions related to the realization of the abstract structures in
the concrete heap. In [4] she must show related properties phrased in terms of
certain stability conditions.

Compared to the work of Dinsdale-Young et al., our approach has the advan-
tage that it is arguably simpler, with no need to introduce new separation (or
context) algebras for the modules. That is why we could build our formalization
on an implementation of standard separation logic in Coq.

Rustan Leino made a solution for a custom implementation of this data
structure (A1B1) using Dafny [11]. Dafny verifies that if a snapshot is present,
the nodes are shared and not mutated by the tree operations. His solution does
not (yet) verify the content of the tree, snapshots or iterators. Our verification
specifies the concrete heap layout. Dafny does not support abstract specification
due to the lack of inheritance. The trusted code base is different: Dafny relies
on Boogie, Z3 and the CLR, whereas our proof trusts Coq.

7 Conclusion and Future Work

We have presented snapshotable trees as a challenge for formalized modular
reasoning about mutable data structures that use sharing extensively, and given
an abstract specification of the ITree interface. Moreover, we have presented a
formalization of the A1B1 implementation of snapshotable trees.

The overall size of the formalization effort is roughly 5000 lines of Coq code
and it takes 2 hours to Qed the proofs. This is quite big compared to other
formalization efforts of imperative programs in Coq, such as Hoare Type Theory
/ Ynot [14, 15]. The main reason is that we are working in a shallowly embedded
program logic for a Java-like language, whereas Hoare Type Theory / Ynot is an
axiomatic extension of Coq. Thus our formalization includes both the operational
semantics of the Java subset and the soundness theorems for the program logic;
also, Java program variables cannot simply be represented by Coq variables.

We also plan to verify the even subtler implementations A1B2, A2B1 and
A2B2, which are expected to provide further insight into the challenges of deal-
ing with shared mutable data and unobservable state changes. Through those
more complex applications of separation logic we hope to learn more about de-
sirable tool support, including how to automate the “obvious” reasoning that
currently requires much thought and excessive amounts of proof code. Although
we have not formally verified these implementations yet, we are fairly certain
they would match the interface specification presented in Section 3. In all four
implementations the tree is conceptually separate from its snapshots, which is
the property required by the interface, and the invariant H allows us to describe
the heap layout very precisely, using techniques shown in Section 4.
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Finally, we would like to explore how to combine the advantages of our ap-
proach and those of Dinsdale-Young’s approach discussed above.

References

1. A. Andersson. Balanced search trees made simple. In F. Dehne et al., editors,
Algorithms and Data Structures. LNCS 709, pages 60–71. Springer-Verlag, 1993.

2. J. Bengtson, J. B. Jensen, F. Sieczkowski, and L. Birkedal. Verifying object-
oriented programs with higher-order separation logic in Coq. In ITP 2011, 2011.

3. B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines, higher-order sep-
aration logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5), 2007.

4. T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Con-
current abstract predicates. In T. DHondt, editor, ECOOP 2010, volume 6183 of
LNCS, pages 504–528. Springer Berlin / Heidelberg, 2010.

5. T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Abstraction and refinement
for local reasoning. In VSTTE, pages 199–215, Berlin, Heidelberg, 2010. Springer.

6. J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data structures persistent.
Journal of Computer and Systems Sciences, 38(1):86–124, 1989.

7. L. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In 19th
FCS, Ann Arbor, Michigan, pages 8–21, 1978.

8. N. Kokholm and P. Sestoft. The C5 Generic Collection Library for C# and CLI.
Technical Report ITU-TR-2006-76, IT University of Copenhagen, January 2006.

9. N. Krishnaswami. Verifying Higher-Order Imperative Programs with Higher-Order
Separation Logic. PhD thesis, Carnegie Mellon University, 2011. Forthcoming.

10. N. R. Krishnaswami, L. Birkedal, and J. Aldrich. Verifying event-driven programs
using ramified frame properties. In TLDI, pages 63–76. ACM, 2010.

11. K. R. M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In E. M. Clarke and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning. LNCS 6355, pages 348–370, 2010.

12. G. Malecha and G. Morrisett. Mechanized verification with sharing. In 7th Inter-
national Colloquium on Theoretical Aspects of Computing, Sept. 2010.

13. H. Mehnert. Kopitiam: Modular incremental interactive full functional static ver-
ification of java code. In M. Bobaru, K. Havelund, G. Holzmann, and R. Joshi,
editors, NASA Formal Methods, volume 6617, pages 518–524. Springer, 2011.

14. A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: depen-
dent types for imperative programs. In J. Hook and P. Thiemann, editors, Proc.
of 13th ACM ICFP 2008, pages 229–240. ACM, 2008.

15. A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification of heap-
manipulating programs. In Proceedings of POPL, 2010.

16. M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In Pro-
ceedings of POPL, pages 247–258, 2005.

17. R. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A realizability model for
impredicative hoare type theory. In S. Drossopoulou, editor, ESOP 2008, volume
4960 of Lecture Notes in Computer Science, pages 337–352. Springer, 2008.

18. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. IEEE
Proc. of 17th Symp. on Logic in CS, Nov 2002.

19. R. Sedgewick. Left-leaning red-black trees. At
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf.

20. K. Svendsen, L. Birkedal, and M. Parkinson. Verifying generics and delegates. In
ECOOP’10, pages 175–199. Springer-Verlag, 2010.



46 Hannes Mehnert, Filip Sieczkowski, Lars Birkedal, and Peter Sestoft

A Appendix

We define here the ITree and the Iterator interface specification as Coq defini-
tions, as well as the Stack class. We use the name SPred for the finite set of
abstract structures containing exactly one Tree structure and any number of
Snap and Iter structures.

The notation f̂ lifts the function f such that it operates on expressions rather
than values.

A detailed explanation of the notation and of lifting can be found in [2].

ITree , λC : classname. λH : Pfin(SPred)→ HeapAsn.

(∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::contains(this, x) 7→
{Ĥ({T̂ree(this, τ)} ] φ)} {r. Ĥ({T̂ree(this, τ)} ] φ) ∧ r = (x ∈ τ)})

∧ (∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::contains(this, x) 7→
{Ĥ({Ŝnap(this, τ)} ] φ)} {r. Ĥ({Ŝnap(this, τ)} ] φ) ∧ r = (x ∈ τ)})

∧ (∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::add(this, x) 7→
{Ĥ({T̂ree(this, τ)} ] φ)} {r. Ĥ({T̂ree(this, {x} ∪ τ)} ] φ) ∧ r = (x 6∈ τ)})

∧ (∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::snapshot(this) 7→
{Ĥ({T̂ree(this, τ)} ] φ)} {r. Ĥ({T̂ree(this, τ), Ŝnap(r, τ)} ] φ)})

∧ (∀τ : Pfin(Z). ∀φ : Pfin(SPred). C::iterator(this) 7→
{Ĥ({Ŝnap(this, τ)} ] φ)} {r. ∃IC : classname. Iterator IC H ∧ r : IC∧
Ĥ({Ŝnap(this, τ), Îter(r, [τ ])} ] φ)})

∧ (∀v : val . ∀τ : Pfin(Z). ∀φ : Pfin(SPred).

(H({Tree(v, τ)} ] φ) =⇒ v : C) ∧ (H({Snap(v, τ)} ] φ) =⇒ v : C))

∧ (∀v : val . ∀τ : Pfin(Z). ∀φ : Pfin(SPred).

(H({Snap(v, τ)} ] φ) ` H(φ)))

∧ (∀v : val . ∀α : Z∗. ∀φ : Pfin(SPred).

(H({Iter(v, α)} ] φ) ` H(φ)))

∧ (∀v : val . ∀τ, τ ′ : Pfin(Z). ∀φ : Pfin(SPred).

τ = τ ′ =⇒ (H({Tree(v, τ)} ] φ) ` H({Tree(v, τ ′)} ] φ)))

Iterator , λC : classname. λH : Pfin(SPred)→ HeapAsn.

(∀α : Z∗. ∀φ : Pfin(SPred). C::hasNext(this) 7→
{Ĥ({Îter(this, α)} ] φ)} {r. Ĥ({Îter(this, α)} ] φ) ∧ r = (α 6= nil)})

∧ (∀x : Z. ∀α : Z∗. ∀φ : Pfin(SPred). C::next(this) 7→
{Ĥ({Îter(this, x::α)} ] φ)} {r. Ĥ({Îter(this, α)} ] φ) ∧ r = x})
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Stack spec , ∀T : Type.

∃SR : classname → (val → T → HeapAsn)→ val → T ∗ → HeapAsn.

(∀C : classname. ∀P : val → T → HeapAsn.

Stack::new() 7→ {>} {r. ŜR C P r nil}
∧ (∀α : T ∗. Stack::empty(this) 7→
{ŜR C P this α} {r. ŜR C P this α ∧ r = (α = nil)})

∧ (∀α : T ∗. ∀t : T . Stack::push(this, x) 7→
{ŜR C P this α ∗ P̂ x t ∧ x : C} {ŜR C P this (t :: α)})

∧ (∀α : T ∗. ∀t : T . Stack::pop(this, x) 7→
{ŜR C P this (t :: α)} {r. P̂ r t ∗ ŜR C P this α})

∧ (∀α : T ∗. ∀t : T . Stack::peek(this, x) 7→
{ŜR C P this (t :: α)} {r. P̂ r t∗
(∀u : T . P̂ r u −∗ ŜR C P this (u :: α))}))

∧ (∀C : classname. ∀P, P ′ : val → T → HeapAsn.

(∀v : val . ∀t : T . (P v t ` P ′ v t)) =⇒
∀v : val . ∀α : T ∗. (SR C P v α ` SR C P ′ v α))
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Abstract
Modern multiprocessors and mainstream concurrent programming
languages do not provide the strong sequentially consistent shared
memory that has been assumed by most work on program logics
for concurrent programs. Rather, they typically implement weak
memory models and the programmer can observe reorderings of
memory operations caused by the weak behavior. In particular, pro-
grammers have to reason about weak behavior when implement-
ing low-level efficient algorithms, e.g., synchronization primitives.
However, in practice, low-level algorithms are often implemented
in such a way that clients do not have to reason about weak behav-
ior; instead clients can pretend that they are working with a sequen-
tially consistent model.

In this paper we present a new program logic, iCAP-TSO, for
a TSO memory model. The logic supports formal reasoning at
both levels of abstraction that programmers use informally. Our
logic can be used to verify efficient low-level implementations of
libraries against specifications that provide clients with a fiction of
sequential consistency. Hence client-side reasoning can be done
as in earlier program logics that assumed a sequentially consistent
memory model.

1. Introduction
What? Modern multiprocessors and mainstream concurrent pro-
gramming languages do not provide the strong sequentially con-
sistent (SC) shared memory that has been assumed by most work
on program logics for concurrent programs. Rather, they typically
implement weak memory models with observable buffering and re-
orderings of memory operations. In the case of the Total Store Or-
der (TSO) memory model, each thread is connected to main mem-
ory via a FIFO store buffer that buffers writes before committing
them to main memory.

It is possible to extend existing program logics to a setting with
a TSO memory model by reasoning explicitly about these store
buffers. Ridge [14] defines a Rely-Guarantee-based program logic
for reasoning about x86-TSO assembly code and Wehrman [18] de-
fines a separation logic for a low-level language with a TSO mem-
ory model. Both of these logics can be used to reason about TSO
programs that exhibit racy behavior. Importantly, large classes of
programs (e.g., well-synchronized programs) only exhibit sequen-
tially consistent behavior. Intuitively, for most programs, explicit
reasoning about store buffers is thus unnecessary and if we are

[Copyright notice will appear here once ’preprint’ option is removed.]

forced to reason about store buffers, we will never be able to scale
our techniques to realistic systems. Ridge’s and Wehrman’s log-
ics both suffer from this scalability issue, by requiring explicit rea-
soning about store buffers even for well-behaved clients. The main
challenge is thus to develop a program logic that supports simple
high-level reasoning for well-behaved clients and low-level reason-
ing about racy library implementations.

In this paper we present a new program logic, iCAP-TSO, for
a TSO memory model. This logic features two higher-order sepa-
ration logics, a TSO logic for reasoning about racy low-level code
and an SC logic with standard separation logic assertions and proof
rules for reasoning about well-behaved client code. Crucially, our
logic supports simple reasoning about programs that only exhibit
sequentially consistent behaviors despite using libraries with racy
implementations. Intuitively, these libraries provide clients with a
fiction of sequential consistency and our logic exploits this to sim-
plify reasoning about clients.

How? In the TSO memory model, each thread is connected to
main memory via a FIFO store buffer, modeled as a sequence of
(address, value) pairs, see, e.g., [15]. When a value is written to an
address, the write is recorded in the writing thread’s store buffer.
Threads can commit these buffered writes to main memory at any
point in time. When reading from a location, threads first consult
their own store buffer and only consult main memory if their own
store buffer does not contain a buffered write for the given location.
If it does, the thread reads the value of the last buffered write in its
own store buffer. Each thread thus has its own subjective view of
the current state of memory, which might differ from other threads.

In contrast, in a sequentially consistent memory model, threads
read and write directly to main memory and thus share an objec-
tive view of the current state of the memory. In separation logics
for languages with sequentially consistent memory models we thus
use assertions such as x 7→ 1, which express an objective prop-
erty about the value of location x. Since in the TSO setting each
thread has a subjective view of the state, in order to preserve the
standard proof rules for reading and writing, we need a subjective
interpretation of pre- and postconditions.

In our SC logic we thus have specifications of the form

[P] e [r.Q],

which express that if e is executed by thread t from an initial state
that satisfies P from the point of view of t and e terminates with
value v, then the terminal state satisfies Q[v/r] from the point of
view of thread t. Informally, an assertion P holds from point of
view of a thread t if P’s assertion about the heap hold from the
point of view of main memory and t’s store buffer and no other
thread’s store buffer contains pending writes to these parts of the
heap. In particular, x 7→ v holds from the point of view of thread
t, if the value of x that t can observe is v. We shall see that this
interpretation justifies the standard separation logic read and write
rules.
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What about transfer of resources? In separation logics for se-
quentially consistent memory models, assertions about resources
are objective and can thus be transferred freely. However, since as-
sertions in the SC logic are interpreted subjectively, they may not
hold from the point of view of other threads. Clearly, to transfer re-
sources between threads, their views of the resources must match.
In general, we thus cannot reason directly about code that facili-
tates resource transfer in the SC logic. To reason about such code,
we use the TSO logic, which allows us to reason about the com-
plete TSO machine state, including store buffers. Importantly, in
cases where the implementation that facilitates the resource trans-
fer between two threads does ensure that their views match, we can
verify the implementation against an SC specification! This gives
us a fiction of sequential consistency and allows us to reason about
clients using the SC logic.

Example. To illustrate, consider a simple spin-lock library with
acquire and release methods. We can specify the lock in the SC
logic as follows.

∃isLock, locked : PropSC × Val→ PropSC.

∀R : PropSC. stable(R) ⇒
[R] Lock() [r. isLock(R, r)]
∧ [isLock(R, this)] Lock.acquire() [locked(R, this) ∗ R]

∧ [locked(R, this) ∗ R] Lock.release() [>]
∧ valid(∀x : Val. isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x))
∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))

Here PropSC is the type of propositions of the SC logic, and isLock
and locked are thus abstract representation predicates. isLock(R, x)
expresses that x is a lock protecting the resource invariant R and
locked(R, x) expresses that the lock x is indeed locked. Acquiring
the lock grants ownership of R, while releasing the lock requires
the client to relinquish ownership of R. Since the resource invari-
ant R is universally quantified, this is a very strong specification;
in particular, the client is free to instantiate R with any SC proposi-
tion. This specification requires the resource invariant to be stable,
stable(R). The reason is that R could in general refer to shared
resources and to reason about shared resources we need to ensure
we only use assertions that are closed under interference from the
environment. This is what stability expresses.

Note that this specification is expressed in the SC logic and the
specification of the acquire method thus grants ownership of the
resource R from the caller’s point of view. Likewise, the release
method only requires that R holds from the caller’s point of view.
This specification thus provides a fiction of sequential consistency,
by allowing transfer of SC resources. Crucially, since the lock
specification is an SC specification, we can reason about well-
synchronized clients entirely using the standard proof rules of the
SC logic. We illustrate this by verifying a shared bag in Section 3.

Using the TSO logic we can verify that an efficient spin-lock
implementation satisfies this specification. The spin-lock that we
verify is inspired by the Linux spin-lock implementation [1] which
allows the release to be buffered. To verify the implementation
we must prove that between releasing and acquiring the lock, the
releasing and acquiring threads’ views of the resource R match.
Intuitively, this is the case because if R holds from the point of
view of the releasing thread, once the buffered release makes it to
main memory, R holds objectively. This style of reasoning relies on
the ordering of buffered writes. To capture this style of reasoning,
we introduce a new operator in the TSO logic for expressing such
ordering dependencies. In Section 5 we illustrate how to use the
TSO logic to verify the spin-lock.

Val 3 v ::= x | null | this | o | n | b | ()
Exp 3 e ::= v | let x = e1 in e2 | if v then e1 else e2 | new C(v̄)

| v.f | v1.f := v2 | v.m(v̄) | CAS(v1.f, v2, v3) | fork(v.m)

Figure 1. Syntax of the programming language. In the definition
of values, n ranges over machine integers, b over booleans, and
o over object references. In the definition of expressions, f ranges
over the field names, and m over the method names.

Technical Overview. While our proof system consists of two
logics, SC triples are in fact interpreted as TSO triples, through
an embedding that formalizes our subjective interpretation of SC
assertions. Soundness of the standard read and write rules in the
SC logic follow from this subjective interpretation. Soundness of
the standard structural rules in the SC logic follow from the fact
that this embedding is well-behaved with respect to the connectives
and quantifiers of the TSO logic (Lemma 2).

iCAP-TSO builds on iCAP [16], a recent extension of higher-
order separation logic [3] for modular reasoning about concurrent
higher-order programs with shared mutable state.

Summary of Contributions. We provide a new program logic,
iCAP-TSO, for a TSO memory model, which features:

• a novel logic for reasoning about low-level racy code on a
TSO memory model, called TSO logic; this logic features new
connectives for expressing ordering dependencies introduced
by store buffers
• a standard separation logic, called SC logic, that allows simple

reasoning from the perspective of a single thread
• and, importantly, a fiction of sequential consistency which al-

lows us to reason about ownership transfer within the SC logic

Moreover, we prove soundness of iCAP-TSO with respect to a
model. Using this logic we verify an efficient spin-lock implemen-
tation against an SC lock specification. Crucially, this means that
we can reason about well-synchronized clients entirely using stan-
dard separation logic proof rules!

Outline. In Section 2 we introduce the programming language
that we reason about and its operational semantics. Section 3 illus-
trates how the fiction of sequential consistency allows us to rea-
son about shared resources using standard separation logic. Sec-
tion 4 introduces the TSO logic and connectives introduced to rea-
son about store buffers. In Section 5 we illustrate the use of the
TSO logic to verify an efficient spin-lock. In Section 6 we discuss
the iCAP-TSO soundness theorem. Finally, in Sections 7 and 8 we
discuss related work and future work and conclude. Details and
proofs can be found in the accompanying technical report [12].

2. Language
We build our logic for a simple, class-based programming lan-
guage. For simplicity of both semantics and the logic, the language
uses let-bindings and expressions, but it stays relatively low-level
by ensuring that all the values are machine-word size. The val-
ues include variables, natural numbers, booleans, unit, object refer-
ences (pointers), the null pointer and the special variable this. The
expressions include values, let bindings, conditionals, constructor
and method calls, field reads and writes, atomic compare-and-swap
expression and a fork call. The syntax of values and expressions
is shown in Figure 1. The class and method definitions are stan-
dard and so omitted here; they can be found in the accompanying
technical report.
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Following the Views framework [7], the operational semantics
is split into two components: a thread-local small-step semantics
labeled with actions that occur during the step, and action semantics
that defines the effect of the action on the machine state — in
our case, the heap and the store buffer pool. In the thread-local
semantics, a thread, consisting of a thread identifier and expression
takes a single step of evaluation to a finite map of threads that
contains besides the original thread also the threads spawned by
this step. It also emits the action that describes the interaction with
the memory state. For instance, the WRITE rule in Figure 3 applies
when the expression associated with thread t is an assignment
(possibly in some evaluation context). It reduces by replacing the
assignment with a unit value, and emits a write action that states
that thread t wrote the value v to the field f of object o.

The non-fault memory state consists of a heap — a finite map
from pairs of an object reference and a field to semantic values
(i.e., all the values that are not variables) — and a store buffer
pool, which contains a sequence of buffered updates for each of
the finitely many thread identifiers. The memory can also be in a
fault state (written �), which means that an error in the execution
of the program has occurred. The action semantics interprets the
actions as functions from memory states to sets of memory states:
if it is impossible for the action to occur in the given state, the result
is an empty set; if, however, the action may occur in the given state
but it would be erroneous, the result is the fault state. Consider the
write action emitted by reducing an assignment. In Figure 4 we can
see the interpretation of the action: there are three distinct cases.
The action is successful if there is a store buffer associated with the
thread that emitted the action and the object is allocated in the heap,
and has the appropriate field. In this case, the write gets added to the
end of the buffer. However, the write action can have two additional
outcomes: if there is no store buffer associated with the thread in
the store buffer pool, the initial state had to be ill-formed, and so the
interpretation of the action is an empty set; however, if the thread is
defined, but the reference to the field o.f is not found in the heap,
the program is erroneous, and the interpretation of the action is a
fault state.

The state of a complete program consists of the thread pool and
a memory state, and is consistent if the memory state is a fault,
or the domain of the store buffer pool equals the domain of the
thread pool. The complete semantics proceeds by reducing one
of the threads using the thread-local semantics, then interpreting
the resulting action with the action semantics, and reducing to a
memory state in the resultant set, as in Figure 2. Note how in some
cases, notably read, this might require “guessing” the return value,
and checking that the guess was right using the action semantics.
Some of the cases of the semantics are written out in Figures 3
and 4. In particular, we show the reduction and action semantics
that correspond to the (nondeterministic) flushing of a store buffer:
a flush action can be emitted by a thread at any time, and the
action is interpreted by flushing the oldest buffered write to the
memory. Note also the rules for the compare-and-swap expression:
similarly to reading, the return value has to be guessed by the thread
local semantics. In the case when the guess does not match the
state of the memory, the result of the action semantics is empty
set, much like when reading. However, if the compare-and-swap
succeeds and the return value matches the outcome, the new value
is not just written to the store buffer: instead, the whole content of
the buffer, including the update resulting from compare-and-swap,
is written to main memory. Thus, this expression can serve as a
synchronization primitive.

Note that our operational semantics is relatively high-level with
respect to the canonical TSO semantics [15]. However, it exhibits
all the necessary weak behaviors of the TSO model, and as such
can serve as a vehicle for studying the problem.

t ∈ domT (t, T (t))
a−→ T ′ µ′ ∈ JaK(µ)

(µ, T )→ (µ′, (T − t) ] T ′)

Figure 2. Single step evaluation of a thread pool.

(t, E[o.f := v])
write(t,o,f,v)−−−−−−−−−→ {(t, E[()])}

WRITE

(t, E[o.f])
read(t,o,f,v)−−−−−−−−→ {(t, E[v])}

READ

(t, E[CAS(o.f, vo, vn)])
cas(t,o,f,vo,vn,r)−−−−−−−−−−−→ {(t, E[r])}

CAS

(t, e)
flush(t)−−−−−→ {(t, e)}

FLUSH

Figure 3. Selected cases of the thread-local operational semantics.

3. Reasoning in the SC logic
The SC logic of iCAP-TSO allows us to reason about well-behaved
code, using standard separation logic, without having to reason
about store buffers. Naturally, this class of well-behaved code in-
cludes standard mutable data structures without any sharing. We
can thus easily verify a list library in the SC logic against the stan-
dard separation logic specification as it enforces a unique owner.
Crucially, this class of well-behaved code also includes the large
class of well-synchronized programs with sharing. Using the lock
specification from the Introduction and the fiction of sequential
consistency that it provides, we illustrate how to verify a well-
synchronized program with sharing in the SC logic. In particular,
we verify a shared bag library implemented using a list protected
by a lock.

The SC logic. The SC logic is an intuitionistic higher-order sep-
aration logic. Recall that the SC logic features Hoare triples of
the form [P] e [r. Q], where P and Q are SC assertions. Formally,
SC assertions are terms of type PropSC. SC assertions include the
usual connectives and quantifiers of higher-order separation logic
and language specific assertions such as points-to, x.f 7→ v, for
asserting the value of field f of object x.

Recall that SC triples employ a subjective interpretation of
the pre- and postcondition: [P] e [r. Q] expresses that if thread t
executes the expression e from an initial state where P holds from
the point of view of thread t and e terminates with value v then
Q[v/r] holds for the terminal state from the point of view of thread
t. An assertion P holds from the point of view of a thread t if P’s
assertions about the heap hold from the point of view of t’s store
buffer and main memory and no other thread’s store buffer contains
a buffered write to these parts of the heap. The assertion x.f 7→ v
thus holds from the point of view of thread t if

• the value of the most recently buffered write to x.f in t’s store
buffer is v

• or t’s store buffer does not contain any buffered writes to x.f
and the value of x.f in main memory is v

and no other threads store buffer contains a buffered write to x.f.
The condition that no other thread’s store buffer can contain a
buffered write to x.f ensures that flushing of store buffers cannot
invalidate x.f 7→ v from the point of view of a given thread.

If x.f 7→ v holds from the point of view of thread t and thread
t attempts to read x.f it will thus read the value v either from main
memory or its own store buffer. Likewise, if x.f 7→ v1 holds from
the point of view of thread t and thread twrites v2 to x.f, afterwards

51 2013/11/28



Jread(t, o, f, v)K(h, U) =





{(h, U)} if (o, f) ∈ domh and lookup(o.f, U(t), h) = v

∅ if t 6∈ domU or (o, f) ∈ domh and lookup(o.f, U(t), h) 6= v

{�} if (o, f) 6∈ domh

Jwrite(t, o, f, v)K(h, U) =





{(h, U [t 7→ U(t) · (o, f, v)])} if (o, f) ∈ domh and t ∈ domU

{�} if (o, f) 6∈ domh

∅ if t 6∈ domU

Jcas(t, o, f, vo, vn, r)K(h, U) =





{(flush(h, U(t) · (o, f, vn)), U [t 7→ ε])} if (o, f) ∈ domh, r = true and lookup(o.f, U(t), h) = vo
{(h, U)} if (o, f) ∈ domh, r = false and lookup(o.f, U(t), h) 6= vo
{�} if (o, f) 6∈ domh

∅ otherwise

Jflush(t)K(h, U) =

{
{(h[(o, f) 7→ v], U [t 7→ α])} if U(t) = (o, f, v) · α and (o, f) ∈ domh

∅ if t 6∈ dom(U), U(t) = ε, or (o, f) 6∈ domh

Figure 4. Selected cases of the action semantics. The lookup function finds the newest value associated with the field, including the store
buffer, while the flush function applies all the updates from the store buffer to the heap in order.

[x.f 7→ v] x.f [r. x.f 7→ v ∗ r = v]
S-READ

[x.f 7→ v1] x.f := v2 [r. x.f 7→ v2]
S-WRITE

.([P] C(x̄) [r. Q])

[P[v̄/x̄]] new C(v̄) [r. Q[v̄/x̄]]
S-NEW

.([P] C.m(ȳ) [r. Q])

[P[v̄/ȳ, x/this] ∗ x : C] x.m(v̄) [r. Q[v̄/ȳ, x/this]]
S-CALL

[P] e1 [r. Q] [Q[x/r]] e2 [r. R]

[P] let x = e1 in e2 [r. R]
S-BIND

[>] v [r. r = v]
S-VAL

P1 ` P2 [P2] e [r. Q2] Q2 ` Q1

[P1] e [r. Q1]
S-CONS

[P] e [r. Q] stable(R)

[P ∗ R] e [r. Q ∗ R]
S-FRAME

Figure 5. Selected proof rules for the sequentially consistent logic.

x.f 7→ v2 holds from the point of view of thread t. We thus get the
standard rules for reading and writing to a field in our SC logic
(rules S-READ and S-WRITE in Figure 5.)

The S-NEW and S-CALL rules are the object allocation and
method call rules of the SC logic. The assertion x : C expresses
that x refers to an object of class C. The method call rule (S-
CALL) thus allows us to reason about a call to a method m of
a class C. The later operator, written . in the premise of the S-
CALL rule expresses that the given specification must hold one
step later. Among other things, these later operators internalizes
a notion of steps of evaluation. This allows us to reason about
mutually recursive methods using Löb induction. The later operator
goes back to Gödel-Löb logic and has been used in several models
and logics for reasoning about higher-order code, e.g., [2, 11, 17].
Note the side condition that R is stable in the S-FRAME rule: this is
a requirement similar to the one we have seen in the specification
of the lock in the Introduction, and asserts that the interference of
the environment cannot invalidate the frame.

A list library. The standard separation logic specification for a list
library enforces a unique owner and thus ensures that the underly-
ing heap representation is not shared. We can express the standard

list specification in our SC logic as follows.

∃lst : Val× seq Val→ PropSC.

[>] List() [r. lst(r, ε)] ∧
∀l. [lst(this, l)] List.push(x) [lst(this, x :: l)] ∧
∀l. [lst(this, l)]

List.pop()
[

r. (r = null ∗ l = ε ∗ lst(this, l))
∨ (r = hd(l) ∗ lst(this, tail(l)))

]
∧

∀x : Val. ∀l1, l2 ∈ seq Val. valid(lst(x, l1) ∗ lst(x, l2)⇒ ⊥)
Here Val is the type of values of our programming language and
seq Val the type of finite sequences with elements of type Val. The
lst predicate is a representation predicate relating a mathematical
model of a list with its concrete heap representation. We use higher-
order quantification to existentially quantify the lst predicate and
thus hide the internal data representation of implementations from
clients.

Consider the specification of the list constructor. Due to the
subjective interpretation of SC triples the constructor specification
expresses that if thread t creates a new list, then there exists a new
list from the point of view of thread t. It says nothing about the
list from the point of view of other threads (other than that other
thread’s store buffers cannot contain buffered writes to the list).
Likewise, for the other methods: if the list contains the values l
from the point of view of thread t and thread t pushes an element x,
afterwards the list contains the values x :: l from the point of view
of t.

This specification also explicitly rules our sharing, by asserting
that lst is non-duplicable. Due to this subjective interpretation and
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Bag {
Lock lock; List elms;

pop() {
let x = this.lock in let y = this.elms in

x.acquire(); let z = y.pop() in x.release(); z
}

...
}

Figure 6. Sketch of a shared bag implementation.

the lack of sharing, the verification of a linked-list implementation
against this specification is as in separation logic for sequentially
consistent memory models. We can instantiate the lst representation
predicate with the usual definition and verify the implementation
using the usual proof rules.

We can thus reason about mutable data structures without any
sharing in the SC logic as if we were in standard separation logic.
However, the real power of our proof system comes from the fact
that we can still reason as in standard separation logic about sharing
of such lists through libraries that provide a fiction of sequential
consistency.

A shared bag. To illustrate, consider a shared bag implemented
using a list. Each shared bag maintains a list of elements and a
lock to ensure exclusive access to the list of elements. Each bag
method acquires the lock and calls the corresponding method of
the list library before releasing the lock. In Figure 6 we sketch an
implementation of a shared bag.

We take the following specification, which allows unrestricted
sharing of the bag, to be our specification of a shared bag. This is
not the most general specification we can express, but it suffices to
illustrate that verification of the shared bag against such specifica-
tions is standard. Since the specification allows unrestricted sharing
(the bag predicate is duplicable), no client can know the contents of
the bag; instead, the specification allows clients to associate owner-
ship of additional resources (expressed using the predicate P) with
each element in the bag.

∃bag : Val× (Val→ PropSC)→ PropSC. ∀P : Val→ PropSC.

(∀x : Val. stable(P(x))) ⇒
[>] Bag() [r. bag(r,P)] ∧
[bag(this,P) ∗ P(x)] Bag.push(x) [>] ∧
[bag(this,P)] Bag.pop() [r. (P(r) ∨ r = null)] ∧
∀x : Val. valid(bag(x,P)⇔ bag(x,P) ∗ bag(x,P))

Pushing an element x thus requires the client to transfer ownership
of P(x) to the bag. Likewise, either pop returns null or the client
receives ownership of the resources associated with the returned
element.

To verify the implementation against this specification, we first
have to define the abstract bag representation predicate. To define
bag we first need to define the resource invariant of the lock.
Intuitively, the lock owns the list of elements and the resources
associated with the elements currently in the list. This is expressed
by the following resource invariant Rbag(x,P), where x refers to
the list of elements.

Rbag(x,P)
def
= ∃l : seq Val. lst(x, l) ∗~y∈mem(l)P(y)

The bag predicate asserts read-only ownership of the lock and elms
fields, and that the lock field refers to a lock with the above resource

pop() {
[bag(this,P)]

let x = this.lock in
let y = this.elms in

x.acquire();
[this.elms 7→ y ∗ locked(x,Rbag(P)) ∗ Rbag(P)]

let z = y.pop() in
[locked(x,Rbag(P)) ∗ Rbag(P) ∗ (z = null ∨ P(z))]

x.release();
[isLock(x,Rbag(P)) ∗ (z = null ∨ P(z))]

z
[r. r = null ∨ P(r)]
}

Figure 7. Proof outline of the bag Pop method.

invariant.

bag(x,P) def
= ∃y, z : Val. x.lock 7→ y ∗ x.elms 7→ z

∗ isLock(y,Rbag(z,P))

Now, we are ready to verify the bag methods. The most interesting
method is Pop, as it actually returns the resources associated with
the elements it returns. Figure 7 contains a proof outline of Pop. The
crucial thing to note is that from the specification of the lock, once
a thread t acquires the lock, it receives ownership of the resource
invariant Rbag(P) from the point of view of t. This is exactly what
we need to use the SC specification of the List.pop method with the
S-CALL rule!

In general, we can thus reason about well-synchronized code
with sharing in the SC logic as in separation logics for sequentially
consistent memory models.

4. TSO logic and connectives
In this section we describe the TSO logic and introduce our new
TSO connectives that allow us to reason about the kinds of weak
behaviors that occur in low-level concurrency libraries.

We can express the configurations that lead to these weak be-
haviors by extending the space of states over which the assertions
are built — in the case of our TSO model, we include the store
buffer pool as an additional component of the memory state. How-
ever, reasoning about the buffers directly would be extremely com-
plicated and contrary to the spirit of program logics. Hence, we
introduce new logical connectives that help express these new con-
figurations in a useful, abstract manner, and provide appropriate
reasoning rules.

The triples and assertions of the TSO logic First, however, we
need to consider how the TSO logic is built. As mentioned in the
Introduction, its propositions extend the propositions of SC logic
by adding the store buffer pool component. Just like SC assertions,
this space forms a higher-order intuitionistic separation logic, with
the usual rules for reasoning about assertion entailment. However,
we are still reasoning about the code running in some thread and we
often need to state properties that hold of its — or other thread’s —
store buffer. Thus, formally, the typing rule for the TSO logic triples
is as follows:

P : TId→ PropTSO Q : TId→ Val→ PropTSO

{P} e {Q} : Spec

where TId is the type of thread identifiers and Spec is the type
of specifications. We usually keep this quantification over thread
identifiers implicit, by introducing appropriate syntactic sugar for
the TSO-level connectives. The logic also include another family
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.x.f 7→ v `w x.f 7→ v,>
W-AX

P `w x.f 7→ v,R

P ∗ .Q `w x.f 7→ v,Q ∗ R
W-*

Q `w x.f 7→ v,R

P U Q `w x.f 7→ v,R
W-U

P `r x.f 7→ v

〈P〉 x.f 〈r. P ∗ r = v〉C
A-READ

P `w x.f 7→ v′,Q

〈P〉 x.f := v 〈 . P U (pQ ∗ x.f 7→ vq)〉C
A-WRITE

P `w x.f 7→ v,Q

〈P〉 CAS(x.f, v′, v) 〈r. r = true ∗ pQ ∗ x.f 7→ v′q〉C
A-CAS-TRUE

P `r x.f 7→ v v 6= v2

〈P〉 CAS(x.f, v1, v2) 〈r. r = false ∗ P 〉C
A-CAS-FALSE

〈P〉 e 〈Q〉C atomic(e)

{P} e {Q} A-START

{P} e1 {r. Q(r)} {Q(x)} e2 {r. R(r)}
{P} let x = e1 in e2 {r. R(r)} BIND

{P} e {Q} stable(R)

{P ∗ R} e {Q ∗ R} FRAME
{P} e {Q}
[P] e [Q]

S-SHIFT

Figure 8. Select rules of the TSO logic.

of Hoare triples, the atomic triples, with the following typing rule:

atomic(e)
P : TId→ PropTSO Q : TId→ Val→ PropTSO

〈P〉 e 〈Q〉C : Spec

As the rule states, these triples can only be used to reason about
atomic expressions — read, write and compare-and-swap. This
feature is inherited from iCAP, as a means of reasoning about the
way the shared state changes at the atomic updates. We give an
example of such reasoning in Section 5.

Two spaces of assertions and the connection between them. As
mentioned in the Introduction, our proof system consists of two
logics, each with a corresponding space of assertions. To provide
the fiction of sequential consistency and show SC specifications
for implementations whose correctness involves reasoning about
buffered updates, we need to use of both of these spaces in the TSO
logic. To this end we use an embedding of PropSC into PropTSO.

The canonical embedding is denoted p−q : PropSC → PropTSO.
The idea is that pPq holds in a state that does include store buffers
if P holds in the state where we ignore the buffers and none of
the buffers contain buffered updates to the locations mentioned by
P. The intuition behind this embedding is that P should hold in
main memory. The condition that no buffered updates whatsoever
to the state in P are allowed may at first seem overly restrictive.
However, it is crucial to our setup, in particular to allow resource
transfer and the fiction of sequential consistency. This is due to the
nondeterministic nature of the store buffers: if more than one thread
contains a buffered update to the same location, no thread can be
certain what values of that location it can observe. Thus, we can
maintain a reasonable level of complexity only as long as a thread
can only write to a location for which no other thread has buffered
updates. However, transferring a resource must mean passing the
right to update it to a different thread. Thus, the thread that gives up
a resource also can have no buffered writes at the point when the
transfer occurs, so no updates of the resource can be buffered at all
when the transfer occurs.

For a concrete example of what this embedding means, consider
an assertion x.f 7→ v : PropSC. Clearly, we can use our embedding
to get px.f 7→ vq — an assertion that means precisely that the
reference x.f is defined, its associated value in the heap is v, and
there are no buffered updates in any of the store buffers to the field
x.f.

Reasoning about buffered updates. Even though there must be
no buffered updates of the resource when we transfer resources
between threads, most of the time we reason about situations where
buffered updates are possible. Therefore we define two additional
connectives that allow us to reason about the presence of buffered
updates. The first of these is a binary function p− in −q : PropSC×

TId→ PropTSO. Intuitively, pP in tq means that P holds from the
perspective of thread t — including the possible buffered updates
in the store buffer of t. However, for the reasons discussed prior,
we have to disallow buffered updates to the locations described by
P in any of the other store buffers.

The second of this pair of connectives is the one that allows
us to express how the state changes due to an update. Because of
its role, it has a certain temporal feel: in fact, it behaves in a way
that is somewhat similar to the classic “until” operator. Intuitively,
P Ut Q means that there exists a buffered update in the store buffer
of thread t, such that until this update is flushed the assertion P
holds, while after the update gets written to memory, the assertion
Q holds. Thus, it can be used to describe the ordering dependencies
introduced by the presence of store buffers. This intuition should
become clearer by observing the proof rules in Figure 8 (explained
in the following).

Coming back to our example, consider first the assertion
px.f 7→ v in tq. This proposition holds in any state where all
the buffered updates to x.f are in the store buffer associated with
thread t — including the boundary case when there are no buffered
updates to x.f at all. Thus, if we are reasoning from the perspec-
tive of thread t, we know precisely the value we can read from the
field x.f, but no other thread has any knowledge about the state,
save that x.f is defined. On the other hand, in the state described by
px.f 7→ 1q Ut px.f 7→ 2q, we have information that any thread can
use: we know that the value of x.f in the heap is 1, and that there
exists a buffered update in thread t, such that before that update
there is no updates to x.f, i.e., it is the first update to x.f in the store
buffer of t, and after it gets flushed px.f 7→ 2q holds — so the up-
date must set x.f to 2. Additionally, we know that there are no other
buffered updates to x.f. This means that the thread t can observe
the value of x.f to be 2, while all of the other threads can observe
it to be 1. Note that, since U is a binary operator on PropTSO, it is
possible to use it to express multiple buffered updates.

Since most of the time we are reasoning from the perspective
of a particular thread, we also include some syntactic sugar: U is a
shorthand for an update in the current thread, while U is a shorthand
for an update in some thread other than the current one. We also
use p as a shorthand for pp in tq, where t is the current thread.

Reading and writing state. The presence of additional connec-
tives that mention the state makes reading fields of an object and
writing to them more involved than in standard separation logic.
We deal with this by introducing additional judgments that spec-
ify when we can read or write a value. Intuitively, P `r x.f 7→ v
specifies that, from the perspective of the current thread x.f has
the value v — and so the read expression can proceed. Similarly,
P `w x.f 7→ v,Q means that in the state specified by P the current
thread has permission to write to x.f, the value of x.f from its per-
spective is v, and that once an update to x.f reaches main memory,
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Q will additionally hold in main memory. In this sense, Q behaves
like a frame; however, since the rule is used to reason about writes,
which affect the store buffers, we can learn something about the or-
der of writes in the buffer, which we would not be able to do using
the frame rule. Note that the reading of the write judgment corre-
sponds to the intuitive understanding of the postcondition of the
A-WRITE rule in Figure 8: the write we are performing introduces
a buffered update, before which the precondition still holds, and af-
ter which pQ ∗ x.f 7→ vq holds. This setup allows us to retain some
knowledge of the order in which updates reach the main memory
in an abstract manner; a property that is crucial to allow resource
transfer in the presence of the store buffers. Note also that the A-
CAS-TRUE rule can be viewed as a combination of writing and
flushing. As mentioned above, a write adds a buffered write to the
appropriate store buffer, which is expressed using U in A-WRITE.
However, if at that moment we flush the store buffer, we get a con-
dition under which the right-hand side of U is defined to hold: thus,
we get to know that pQ ∗ x.f 7→ v′q holds in the postcondition of
A-CAS-TRUE.

Also of interest are some of the proof rules for the write judg-
ment (the read judgment behaves in a similar manner, with some
complications when reading from U). Note how in rules W-AX
and W-* the later operators (.) appear. These arise from the fact
that the model is defined using guarded recursion to break circular-
ities and, since they play the role of guards, they can be removed at
the atomic steps of the proof, as expressed by the rules. Moreover,
the rules also match the intuition we gave about the store buffer re-
lated connectives. First, the judgment means that it is enough that
we know the value of x.f from the thread’s perspective: hence, we
are interested in the most recent updates, and look to the right of U
in W-U . For the same reason, it is enough to use − in W-AX. Sec-
ond, due to the way we interpret the “frame” in the write judgment,
we only need Q to hold from the thread’s perspective in W-*. This
is also why we can use the frame taken from the right-hand-side
of U in W-U : the update that we are reasoning about in the write
judgment will happen after the buffered update asserted in the def-
inition of U , so the frame taken from after the first update will hold
in the memory by the time the later one reaches it.

Stability and stabilization. There is one potentially worrying is-
sue with the explanation of the Ut operator given in this section:
since at any point in the program a flush action can occur nonde-
terministically, how can we know that there still exists a buffered
update as asserted by Ut? After all, it might have been flushed to
the memory. This is the question of stability1 of the until operator
— and the answer is that it is unstable by design. The rationale
behind this choice is simple: Suppose we had made it stable by
allowing the possibility that the buffered update has already been
flushed. Then, if we were to read a field that had a buffered write
to it in a different thread, we would not know whether the write
was still buffered or had been flushed, and so we would not know
what value we read. With the current definition, when we read,
we know that the update is still buffered and so the result of the
read is known. However, we only allow reasoning with unstable
assertions in the atomic triples, i.e., when reasoning about a sin-
gle read, write or compare-and-swap expression. Hence, we need
a way to make U stable. For this reason, we define an explicit sta-
bilization operator, L−M. It is a closure operator, which means we
have P ` LP M. Moreover, for stable assertions, the other direction
LPM ` P also holds. The important part, however, is how stabiliza-
tion behaves with respect to U : provided P and Q are stable, we
have LP Ut QM a` (P Ut Q) ∨ Q. This does indeed correspond
with our intuition — even for stable assertions P and Q, the interfer-
ence can flush the buffered update that is asserted in the definition

1 Recall an assertion is stable, if it cannot be invalidated by the environment.

of U , which would transition to a state in which Q holds. However,
since P and Q are stable, this is also the only problem that the in-
terference could cause. Explicit stabilization is not a new idea: it
has been used recently in the context of program logics, most com-
monly in connection with rely-guarantee reasoning. In particular,
Wickerson studies explicit stabilization in RGSep in his PhD the-
sis [19, Chapter 3], and Ridge [14] uses it to reason about the x86-
TSO.

Considering stability of the other TSO-level connectives ex-
poses a different issue: the fact that there are two distinct parts to
the interference a thread is subject to — the effect of store buffer
actions, and the effect other threads can have on shared state. We
follow the CAP approach [8] of reasoning about shared state us-
ing shared regions with protocols. See Section 5 for an example.
We thus have two notions of stability: r−stable and b−stable. The
first of these considers the shared regions, and is the only kind of
stability that concerns the SC-logic; it corresponds to stability in
iCAP [16]. The second only considers the additional guarantees
required by the TSO logic. Stability is defined as the conjunction
of the two. Thanks to the restrictions of the contents of the store
buffers imposed by the embeddings, for any P : PropSC we have
b−stable(pPq) and b−stable(pP in tq). These two facts in con-
junction with the explicit stabilization operator suffice for reason-
ing about low level implementations. Although important for rea-
soning about shared regions, stability under region interference is
much as in iCAP, so we elide the proof rules for inferring that a
predicate is r−stable and refer the reader to the technical report for
details [12].

Interpretation of the SC logic. Note that the same intuition that
lies behind the SC logic, discussed in the previous section, is ex-
pressed by the p− in tq embedding. This is more formally ex-
pressed by the rule S-SHIFT in Figure 8 (recall P is syntactic sugar
for λt. pP in tq), which states that the two ways of expressing that
a triple holds from the perspective of the current thread are equiv-
alent. In fact, we take this rule as the definition of the SC triples,
and so we can prove that the SC triples actually form a standard
separation logic by proving that the proof rules of SC logic corre-
spond to admissible rules in the TSO logic. This is expressed by
the following theorem:

Theorem 1 (Soundness of SC logic). The SC logic is sound wrt. its
interpretation within TSO logic, i.e., the proof rules (in particular
those shown in Figure 5) composed with the rule S-SHIFT are
admissible rules of the TSO logic.

For most of the proof rules, the soundness follows directly; the only
ones that require additional properties to be proved are the frame,
consequence, and standard quantifier rules, which additionally re-
quire the following property:

Lemma 2. The embeddings p−q and p− in tq distribute over
quantifiers and separating conjunction, and preserve entailment.

The formal statement of this property, along with the proof, can be
found in the accompanying technical report.

5. Reasoning in the TSO logic
In Section 3 we illustrated that the fiction of sequential consistency
provided by the lock specification allows us to reason about shared
mutable data structures shared through locks, without explicitly
reasoning about the underlying weak memory model. Of course,
to verify a lock implementation against this lock specification, we
do have to reason about the weak memory model. In this section
we illustrate how to achieve this using our TSO logic. We focus on
the use of the TSO-connectives introduced in Section 4 to describe
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Lock {
bool locked;

Lock() {
CAS(this.locked, false, null)
}

acquire() {
let x = CAS(this.locked, true, false) in
if x then () else acquire()

}

release() {
this.locked := false
}
}

Figure 9. Spin-lock implementation.

the machine states of the spin-lock and elide the details related to
the use of concurrent abstract predicates.

The spin-lock implementation that we wish to verify is given
in Figure 9. It uses a compare-and-swap (CAS) instruction to at-
tempt to acquire the lock, but only a primitive write instruction to
release the lock. While CAS flushes the store buffer of the thread
that executes the CAS, a primitive write does not. To verify this
implementation, we thus have to explicitly reason about the possi-
bility of buffered releases in store buffers.

Specification. In the Introduction we introduced a lock specifi-
cation expressed in our SC logic. When verifying the spin-lock
implementation, we actually verify the implementation against the
following slightly stronger specification, from which we can easily
derive the SC specification.

∃isLock, locked : PropSC × Val→ PropSC.

∀R : PropSC. stable(R) ⇒
{R} Lock() {r. isLock(R, r)}

∧ {isLock(R, x)} Lock.acquire() {locked(R, x) ∗ pRq}
∧ {locked(R, x) ∗ R} Lock.release() {>}
∧ valid(∀x : Val. isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x))
∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))

Note that this stronger specification is expressed using TSO triples.
This specification of the Acquire method is slightly stronger: this
specification asserts that upon termination of Acquire, the resource
invariant R holds in main memory and there are no buffered writes
affecting R in any store buffer (pRq). The weaker SC specification
only asserts that the resource invariant R holds from the point of
view of the acquiring thread and that there are no buffered writes
affecting R in any of the other threads’ store buffers (R).

Lock protocol. To verify the spin-lock implementation against
the above specification, we first need to define the abstract rep-
resentation predicates isLock and locked. Following CAP [8] and
iCAP [16], to reason about sharing iCAP-TSO extends separation
logic with shared regions, with protocols governing the resources
owned by each shared region. In the case of the spin-lock, upon
allocation of a new spin-lock the idea is to allocate a new shared
region governing the state of the spin-lock and ownership of the
resource invariant.

Conceptually, a spin-lock can be in one of two states: locked
and unlocked. In iCAP-TSO, we express this formally using the
following labeled transition system.

LU

REL

ACQ

The above labeled transition system specifies an abstract model
of the lock; to relate it to the concrete implementation, for each
abstract state (L and U), we choose an assertion that describes the
resources the spin-lock owns in the given abstract state.

Since acquiring the lock flushes the store buffer of the acquiring
thread, the locked state is fairly simple. In the locked state the spin-
lock owns the locked field, which contains the value true in main
memory and there are no buffered writes to locked in any store
buffer. The spin-lock x with resource invariant R thus owns the
resources described by IL(x,R, n) in the abstract locked state.

IL(x,R, n) = px.locked 7→ trueq
Due to the possibility of buffered releases in store buffers, the
unlocked state is more complicated. In the unlocked state,

• either locked is false in main memory and there are no buffered
writes to locked in any store buffer
• or locked is true in main memory, and there is exactly one store

buffer with a buffered write to locked, and the value of this
buffered write is false

Furthermore, in case there is a buffered write to locked that changes
its value from true to false, then, once the buffered write reaches
main memory, the resource invariant holds in main memory. Intu-
itively, the resource invariant holds from the point of view of the re-
leasing thread before the lock is released; hence any buffered writes
affecting the resource invariant must reach main memory before the
buffered release. We can express this ordering dependency using
the until operator as follows.

IU(x,R, n) = ∃t : TId. Lpx.locked 7→ trueq Ut
px.locked 7→ false ∗ R ∗ [REL]n1qM

Here [REL]n1 is a CAP action permission used to ensure that only
the current holder of the lock can release the lock. Since this is
orthogonal to the underlying memory model, we refer the interested
reader to the technical report [12] for details.

Since both arguments of Ut are stable, as explained in Section
4, IU(x,R, n) is equivalent to the following assertion.

∃t : TId.

px.locked 7→ false ∗ R ∗ [REL]n1q ∨
(px.locked 7→ trueq Ut px.locked 7→ false ∗ R ∗ [REL]n1q)

The first disjunct corresponds to the case where the release has
already made its way to main memory and the second disjunct to
the case where it is still buffered.

The definition of isLock in terms of IL and IU now follows
standard iCAP.2 The isLock predicate asserts the existence of a
shared region governed by the above labeled transition system,
where the resources owned by the shared region in the two abstract
states are given by IL and IU. It further asserts that the abstract
state of the shared region is either locked or unlocked and also a
non-exclusive right to acquire the lock.

Proof outline. To verify the spin-lock implementation, it remains
to verify each method against the specification instantiated with the
concrete isLock and locked predicates. To illustrate the reasoning
related to the weak memory model, we focus on the verification of
the acquire method and the compare-and-swap instruction in par-

2 See the accompanying technical report for a formal definition of isLock.

56 2013/11/28



ticular. The full proof outline is given the accompanying technical
report.

As the name suggests, the resources owned by a shared region
are shared between all threads. Atomic instructions are allowed to
access and modify resources owned by shared regions, provided
they follow the protocol imposed by the region. In the case of the
spin-lock, the spin-lock region owns the shared locked field and we
thus need to follow the spin-lock protocol to access and modify the
locked field. Since the precondition of acquire asserts that the lock
is either in the locked or unlocked state, we need to consider two
cases.

If the spin-lock region is already locked, then the compare-and-
swap fails and we remain in the locked state. This results in the
following proof obligation:

〈.IL(this,R, n)〉
CAS(this.locked, true, false)
〈r. . IL(this,R, n) ∗ r = false〉
That is, if locked contains the value true from the point of view of a
thread t, then CAS’ing from false to true in thread t will fail. This
is easily shown to hold by rule A-CAS-FALSE.

If the spin-lock region is unlocked, then the compare-and-swap
may or may not succeed, depending on whether the buffered release
has made it to main memory and which thread performed the
buffered release. If it succeeds, the acquiring thread transitions
the shared region to the locked state and takes ownership of the
resource invariant; otherwise, the shared region remains in the
unlocked state. This results in the following proof obligation:

〈.IU(this,R, n)〉
CAS(this.locked, true, false)
〈r. ∃y ∈ {U, L}. . Iy(this,R, n) ∗Q(y, r, n)〉
where

Q(y, r, n) = (y = U ∗ r = false) ∨
(y = L ∗ [REL]n1 ∗ pRq ∗ r = true)

Rewriting the explicit stabilization to a disjunction and commuting
in ., this reduces to the following proof obligation:

〈∃t : TId. . px.locked 7→ false ∗ R ∗ [Rel]n1q ∨
(.px.locked 7→ trueq Ut .px.locked 7→ false ∗ R ∗ [Rel]n1q)〉
CAS(this.locked, true, false)
〈r. ∃y ∈ {U, L}. . Iy(this,R, n) ∗Q(y, r, n)〉
In case the second disjunct holds and there exists buffered releases
in store buffer t, the CAS will succeed if executed by thread t
and fail if executed by any other thread. To prove this obligation,
we thus do case analysis on whether t is our thread or not. This
leaves us with three proof obligations (after strengthening the post-
condition):

• either the buffered release is in our store buffer

〈.pthis.locked 7→ trueq U .px.locked 7→ false ∗ R ∗ [Rel]n1q〉
CAS(this.locked, true, false)
〈r. . IL(this,R, n) ∗ [Rel]n1 ∗ pRq ∗ r = true〉

• or in some other thread’s store buffer

〈.pthis.locked 7→ trueq U .px.locked 7→ false ∗ R ∗ [Rel]n1q〉
CAS(this.locked, true, false)
〈r. . IU(this,R, n) ∗ r = false〉

• or it has already been flushed

〈.px.locked 7→ false ∗ R ∗ [Rel]n1q〉
CAS(this.locked, true, false)
〈r. . IL(this,R, n) ∗ [Rel]n1 ∗ pRq ∗ r = true〉

These three proof obligations are easily discharged using rules A-
CAS-TRUE and A-CAS-FALSE.

Note that our TSO logic forces us to consider exactly those four
cases that intuitively one has to consider when considering a TSO
weak memory model.

6. Soundness
We prove soundness of iCAP-TSO with respect to a kind of Kripke
model in which worlds consist of allocated regions and their as-
sociated protocols. Since iCAP-TSO inherits iCAP’s impredicative
protocols [16], worlds need to be recursively defined. Hence we use
a meta-theory that supports the definition of sets by guarded recur-
sion, namely the so-called internal language of the topos of trees
[4]. As the overall structure of the model construction remains un-
changed from iCAP, we elide the details. We refer the interested
reader to the accompanying technical report [12] for details and
proofs.

Following the Views framework [7], TSO assertions (terms of
type PropTSO) are modeled as predicates over instrumented states.
In addition to the underlying machine state, instrumented states
contain shared regions and protocols. Soundness is proven by re-
lating the machine semantics with an instrumented semantics that,
for instance, enforces that clients obey the chosen protocols when
accessing shared state. This relation is expressed through an erasure
function, b−c, that erases an instrumented state to a set of machine
states.

The soundness theorem is stated in terms of the following
eval(µ, T, q) predicate, which asserts that for any terminating exe-
cution of the thread pool T from initial state µ, the predicate q must
hold for the terminal state and thread pool. The eval predicate is
defined as a guarded recursive predicate (the recursive occurrence
of eval is guarded by .), to express that each step of evaluation in
the machine semantics corresponds to a step in the topos of trees.

eval(µ, T, q)
def
= (irr(µ, T ) ∧ (µ, T ) ∈ q) ∨

(∀T ′, µ′. (µ, T )→ (µ′, T ′)⇒ .eval(µ′, T ′, q))

Here irr(µ, T ) means that (µ, T ) is irreducible. We can now state
the soundness of iCAP-TSO.

Theorem 3 (Soundness). If {P}e{r.Q} and µ ∈ bJPK(t)c then

eval(µ, [t 7→ e], λ(µ′, T ). µ′ ∈ bJQK(t)(T (t))c)
This theorem expresses that if a specification {P}e{r. Q} holds

and the execution of the thread pool [t 7→ e] with a single thread
t from an initial state µ in the erasure of P terminates (including
threads spawned by t), then the terminal state is in the erasure of Q
instantiated with the return value T (t) of thread t.

7. Related Work
Our work builds directly on iCAP [16], which is an extension of
separation logic for modular reasoning about concurrent higher-
order programs with shared mutable state. Our work extends the
model of iCAP with store buffers to implement a TSO memory
model, extends the iCAP logic with TSO-connectives for reasoning
about these store buffers and, importantly, defines a new logic for
reasoning about sequentially consistent clients.

There has been a lot of previous work on reasoning about TSO-
like and even weaker memory models. Owens [13] defines a prop-
erty on the set of sequentially consistent traces of an x86 program,
which ensures that every TSO trace of the program has a ”memory
equivalent” sequentially consistent trace. Owens shows how this
property allows clients of synchronization primitives to reason as if
the underlying memory model was sequentially consistent, despite
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racy implementations of these synchronization primitives. In par-
ticular, he proves that all traces of spin-lock well-synchronized x86
programs satisfy this property. Unfortunately, Owens’ approach is
non-compositional: while Owens proves similar results for multiple
synchronization primitives in isolation, these results do not apply
to clients that combine two or more of these synchronization prim-
itives. Our approach is compositional in this sense and we can rea-
son about clients that combine multiple libraries with racy imple-
mentations that have been verified independently, without having
to re-verify the library implementations.

Ridge [14] proposes a Rely-Guarantee-based proof system for
reasoning about assembly code on the x86-TSO memory model. To
ensure sound reasoning in the presence of a TSO memory model,
the proof system enforces that the rely relation includes possible in-
terference from write buffers. Ridge uses this proof system to verify
an implementation of Simpson’s four slot algorithm. Ridge’s proof
system does not provide anything like the fiction of sequential con-
sistency provided by our logic or Owens’ approach; in particular,
to reason about clients of Simpson’s four slot algorithm in Ridge’s
system, we would still have to explicitly reason about possible in-
terference from store buffers.

In his thesis, Wehrman [18] proposes a program logic for rea-
soning about low-level code in a language with built-in locks and a
TSO memory model. Wehrman’s logic is based on separation logic,
which he also extends with temporal operators to reason about the
orderings introduced by the weak memory model. Wehrman’s tem-
poral operators differ from ours; in particular, Wehrman’s temporal
operators concern all store buffers, whereas our temporal operator
refers to a particular store buffer. Wehrman’s objective is to allow
local reasoning about racy implementations and his logic does not
provide any fiction of sequential consistency to simplify reasoning
about clients. In his conclusion, Wehrman points out that it would
be beneficial with a program logic for a weak memory model that
reduces to a standard logic for non-racy clients. This is exactly what
our SC logic and fiction of sequential consistency provides!

Another verification technique for programs in the TSO mem-
ory model, which does not involve explicit reasoning about store
buffers, is to restrict programs to follow a certain programming dis-
cipline that ensures that all program behaviors can be simulated by
a sequentially consistent machine. Cohen and Schirmer [6] propose
such a programming discipline based on ownership. With this ap-
proach one can, of course, only reason about programs that follow
the discipline. For instance, as Cohen and Schirmer remark, an effi-
cient spin-lock implementation with a buffered release, like the one
we verify in Section 5, does not obey their programming discipline.
Essentially, the problem is one of compositionality: The program-
ming discipline is formalized as a property of the set of reachable
states of a complete program. This is a non-compositional property
and the authors do not provide a compositional method for reason-
ing about it.

Gotsman et al. [10] propose another approach for providing
clients with a fiction of sequential consistency based on lineariz-
ability. By relating racy library implementations on a TSO archi-
tecture with abstract specifications on an SC architecture, they can
reason about data-race free clients that call racy libraries using an
SC memory model. Their approach is only compositional for non-
interacting libraries: assuming two libraries are linearizable with
respect to SC specifications and the set of locations accessed by
the libraries are disjoint, then the composition of the two libraries
is linearizable with respect to the composition of the specifica-
tions. Their approach also requires the client and any libraries to be
non-interacting. Our work does not suffer from either of these re-
strictions. Furthermore, these restrictions make it very unclear how
to extend the their approach to higher-order languages, as higher-
order languages blur the lines between library and client. In con-

trast, our work extends easily to a higher-order programming lan-
guage, by following the iCAP methodology [16].

8. Conclusion and Future Work
We have presented a new proof system, iCAP-TSO, to support
modular and scalable reasoning for a language with a TSO mem-
ory model. The proof system consists of two logics, a TSO logic
for reasoning about racy low-level code and an SC logic for rea-
soning about well-behaved code. This class of well-behaved code
includes standard mutable data structures without any sharing but
also well-synchronized code with sharing. For this class of well-
behaved code the SC logic allows us to reason much as in stan-
dard separation logic, without having to worry about the underlying
weak memory model.

In particular, we use the TSO logic to verify an efficient spin-
lock implementation against an SC specification. This allows us to
reason about well-synchronized clients with sharing entirely from
within the SC logic! We illustrate this by verifying a standard list
library and using it to verify a shared bag library. Both of these
libraries can be verified entirely in the SC logic and their proofs are
as in separation logics for sequentially consistent memory models.

We think of iCAP-TSO as a first steps towards more automat-
ed/interactive tools for reasoning about the TSO memory model. In
this paper we have focused on the foundational issues of construct-
ing a logic that allows simple reasoning for well-behaved code. As
future work it would be interesting to try to extend tools like [5, 9]
to support mostly automated verification in the SC logic, while re-
quiring more interactive verification of low-level racy code in the
TSO logic.

Acknowledgements
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Abstract
We present a logical relation for showing the correctness of program transformations based on a
new type-and-effect system for a concurrent extension of an ML-like language with higher-order
functions, higher-order store and dynamic memory allocation.

We show how to use our model to verify a number of interesting program transformations that
rely on effect annotations. In particular, we prove a Parallelization Theorem, which expresses
when it is sound to run two expressions in parallel instead of sequentially. The conditions are
expressed solely in terms of the types and effects of the expressions. To the best of our knowledge,
this is the first such result for a concurrent higher-order language with higher-order store and
dynamic memory allocation.
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1 Introduction

Relational reasoning about program equivalence is useful for reasoning about the correct-
ness of program transformations, data abstraction (representation independence), compiler
correctness, etc. The standard notion of program equivalence is contextual equivalence and
in recent years, there have been many improvements in reasoning methods for higher-order
ML-like languages with general references, based on bisimulations, e.g., [1, 2, 3], traces [4],
game semantics [5], and Kripke logical relations, e.g., [6, 7, 8, 9].

In this paper we present the first Kripke logical relation for reasoning about equivalence
of a concurrent higher-order ML-like language with higher-order store and dynamic memory
allocation.

To state and prove useful equivalences about concurrent programs, it is necessary to
have some way of restricting the contexts under which one proves equivalences. This point
was made convincingly in the recent paper by Liang et. al. [10], who presented a rely-
guarantee-based simulation for verifying concurrent program transformations for a first-order
imperative language (with first-order store). Here is a very simple example illustrating the
point. Consider two expressions

e1 ≡ x := 1; y := 1 and e2 ≡ y := 1;x := 1.

Here x and y are variables of type ref int. The expressions e1 and e2 are not contextually
equivalent. (To see why, consider expression e3 ≡ x := 0; y := 0, and note that running e1
in parallel with e3 may result in a state with !x = 0 and ! y = 1, but that cannot be the
case when we run e2 in parallel with e3.) The issue is, of course, that the context may also
modify the references x and y. On the other hand, if we know that no other threads have
access to x or y, then it should be the case that e1 and e2 are equivalent. We can express
this restriction on the contexts using a refined region-based type-and-effect system.
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We first recall that a type-and-effect system is a type system that classifies programs
according to which side effects the programs may have. A variety of effect systems have
been proposed for higher-order programming languages, e.g., [11, 12, 13], see [14] for a
recent overview. Effect systems can often be understood as specifying the results of a static
analysis, in the sense that it is possible to automatically infer types and effects. Effect
systems can be used for different purposes: they were originally proposed by Lucassen and
Gifford [12] for parallelization purposes but they have also, e.g., been used as the basis for
implementing ML using a stack of regions for memory management [13, 15]. In a recent
series of papers, Benton et. al. have argued that another important point of effect systems
is that they can be used as the basis for effect-based program transformations, e.g., compiler
optimizations, [16, 17, 18, 19], see also [20]. The idea is that certain program transformations
are only sound under additional assumptions about which effects program phrases may, or
rather may not, have.

Now, returning to our example, we refine the types of x and y to be refρint and refσ int,
respectively. Intuitively, this expresses that x and y are references in different regions, but
it does not put any restrictions on whether other threads may access x or y. Thus, when we
type e1 and e2 we will use two contexts of region variables, one for public regions that can be
used by other concurrently running threads, and one for private regions that are under the
control of the present thread. This idea is inspired by recent work on concurrent separation
logic, e.g., [21, 22, 23, 24]. We use a vertical bar to separate public and private regions: the
typing context

ρ, σ | ∅ | x : refρint, y : refσ int

expresses that ρ and σ are public regions, whereas the typing context

∅ | ρ, σ | x : refρint, y : refσ int

expresses that ρ and σ are private regions. The expressions e1 and e2 are well-typed in the
latter context and, with this refined typing, they are indeed contextually equivalent, because
our type-and-effect system guarantees that no well-typed context can access regions ρ or σ.
(The expressions are also well-typed in the former context, but not contextually equivalent
with that refined typing.)

In this paper we present a step-indexed Kripke logical relations model of a type-and-effect
system with public and private regions for a concurrent higher-order language with general
references. Our model is constructed over the operational semantics of the programming
language, and builds on recent work by Thamsborg and Birkedal on logical relations for the
sequential sub-language [20]. Note that the type-and-effect annotations are just annotations;
the operational semantics of the language is standard and regions only exist in our semantic
model, not in the operational semantics.

As an important application of our model we prove a Parallelization Theorem, which
expresses when it is sound to run two expressions in parallel instead of sequentially. To the
best of our knowledge, this is the first such result for a higher-order language with higher-
order store and dynamic memory allocation. Here is a very simple instance of the theorem.
Consider two expressions

e1 ≡ y := !x+ ! y and e2 ≡ z := !x+ ! z,

each well-typed in a context

∅ | ρx, ρy, ρz | x : refρx int, y : refρy int, z : refρz int,
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i.e., where x, y, and z are references in distinct private regions. In this context, running e1
and e2 sequentially is contextually equivalent to running e1 and e2 in parallel. Intuitively,
this also makes sense: e1 and e2 update references in distinct regions, and it is unproblematic
that they both read (but not write) from the same region.

As mentioned, this was a simple instance of the Parallelization Theorem. We stress that
the theorem is expressed solely in terms of the type and efffects of the expressions e1 and
e2, so a compiler may automatically infer that it is safe to parallelize two expressions by
looking at the inferred effect types, and without reasoning about all interleavings. Moreover,
the theorem applies to contexts and expressions with general higher types (not just with
references to integers and unit types). Note that the distinction between private and public
regions is also crucial here (parallelization would not be sound if the effects of the expressions
were on public regions).

Our type-and-effect system crucially also includes a region-masking rule. Traditionally,
this rule has been used to hide local effects on regions, which makes it possible to view a
computation as pure even if it uses effects locally and makes the effect system stronger, in
the sense that it can justify more program transformations. Here we also observe that the
masking rule can be used for introducing private regions, since the masking rule intuitively
guarantees that effects on a region are not leaked to the context. It is well-known that region-
masking makes the model construction for a sequential language technically challenging, see
the extensive discussion in [20]. Here it is yet more challenging because of concurrency; we
explain how our model ensures soundness of the masking rule in Section 3.

The extension with concurrency also means that when we define the logical relation for
contextual approximation and relate two computations e1 and e2, we cannot simply require
relatedness after e1 has completed evaluation (as in the sequential case), since other threads
should be allowed to execute as well. We explain our approach to relating concurrent
computations in Section 3; it is informed by recent soundness proofs of unary models of
concurrent separation logic [25, 26].

Another challenge arises from the fact that since our language includes dynamically
allocated general references, the existence of the logical relation is non-trivial; in particular,
the set of Kripke worlds must be recursively defined. Here we build on our earlier work [27]
and define the worlds as a solution to a recursive metric-space equation. Indeed, to focus on
the essential new aspects due to the extension with concurrency, we deliberately choose to
use the exact same notion of worlds as we used for the sequential sub-language in [20]. In the
same vein, we here consider a monomorphically typed higher-order programming language
with general references, but leave out universal and existential types as well as recursive
types. However, we want to stress that since our semantic techniques (step-indexed Kripke
logical relations over recursively defined worlds) do indeed scale well to universal, existential,
and recursive types, e.g. [27, 9], it is possible to extend our model to a language with such
types. We conjecture that it is also possible to extend our model to richer effect systems
involving region and effect polymorphism, but we have not done so yet.

2 Language and Typing

We consider a standard call-by-value lambda calculus with general references, and extended
with parallel composition and an atomic construct. We assume countably infinite, pair-
wise disjoint sets of region variables RV (ranged over by ρ), locations L (ranged over by
l) and program variables (ranged over by x, y, f). As usual, the reduction relation is be-
tween configurations, (e |h) 7−→ (e′ |h′) where heaps H are finite maps from locations to
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π ::= rdρ |wrρ | alρ
ε ::= π1, . . . , πn

τ ::= 1 | int | τ1× τ2 | refρ τ
| τ1 →Π,Λ

ε τ2

v ::= x | 〈〉 | 〈v1, v2〉
| fun f(x).e | l

e ::= v | proji v | v e | ref v | ! v
| v1 := v2 | par e1 and e2

| cas (v1, v2, v3) | atomic e
E ::= [ ] | v E | par E and e2

| par e1 and E

Figure 1 Syntax

(E[proji 〈v1, v2〉] |h) 7−→ (E[vi] |h)
(E[(fun f(x).e) v] |h) 7−→ (E[e[fun f(x).e/f, v/x]] |h)

(E[ref v] |h) 7−→ (E[l] |h[l 7→ v]) if l /∈ dom(h)
(E[l := v] |h) 7−→ (E[〈〉] |h[l:=v]) if l ∈ dom(h)

(E[! l] |h) 7−→ (E[h(l)] |h) if l ∈ dom(h)
(E[par v1 and v2] |h) 7−→ (E[〈v1, v2〉] |h)
(E[cas (l, n1, n2)] |h) 7−→ (E[1] |h[l:=n2])

if l ∈ dom(h) and h(l) = n1

(E[cas (l, n1, n2)] |h) 7−→ (E[0] |h)
if l ∈ dom(h) and h(l) 6= n1

(E[atomic e] |h) 7−→ (E[v] |h′)
if (e |h) 7−→∗ (v |h′)

(E[atomic e] |h) 7−→ (E[atomic e] |h)

Figure 2 Operational semantics

values. Figures 1 and 2 give the syntax and operational semantics; we denote the set of
expressions E and the set of values V. The evaluation contexts allow parallel evaluation in-
side par expressions, and there is a new primitive reduction covering the case when the two
subcomputations have terminated. For technical simplicity, we allow an atomic e expression
to reduce to itself, possibly introducing more divergence than the diverging behaviours of
e. The syntax is kept minimal; in examples we may use additional syntactic sugar, e.g.,
writing let x = e1 in e2 for (fun f(x).e2) e1 for some fresh f . For e ∈ E , we write FV(e)
and FRV(e) for the sets of free program variables and region variables, respectively; also we
define rds ε = {ρ ∈ RV | rdρ ∈ ε} and similarly for writes and allocation.

The form of the judgments of our type-and-effect system is standard with one important
refinement: regions are partitioned into public and private regions, with the purpose of
restricting interference from the environment. In greater detail, a typing judgement looks
like this:

Π |Λ |Γ ` e : τ, ε.

The Γ, e and τ are the usual: the variable context Γ assigns types to program variables in
the expression e, with the resulting type of τ . To get an idea of — or rather an upper bound
of — the side-effects of e, we split the heap into regions; these are listed in Π and Λ. We
track memory accesses by adding a set ε of effects of the form rdρ, wrρ and alρ, where ρ is a
region. Roughly, a computation with effect rdρ may read one or more locations in region ρ,
and similarly for writes and allocation. This setup goes back to Lucassen and Gifford [12].

The novelty, as mentioned in the Introduction, is our partition of regions into the public
ones Π and the private ones Λ. As opposed to the rest of the judgment, this public-private
division does not make promises about the behavior of e. Instead, it states the expectations
that e has of the environment: threads running in parallel with e may — in a well-typed
manner — read, write and allocate in the public regions but must leave the private regions
untouched.

When running parallel threads, the private regions of the parent are shared between
the children, and so are public from their point of view; this is reflected in the typing
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Π |Λ |Γ, x : τ ` x : τ, ∅ Π |Λ |Γ ` 〈〉 : 1, ∅
Π |Λ |Γ ` v : τ1 × τ2, ε
Π |Λ |Γ ` proji v : τi, ε

Π |Λ |Γ ` v1 : τ1, ε1 Π |Λ |Γ ` v2 : τ2, ε2

Π |Λ |Γ ` 〈v1, v2〉 : τ1 × τ2, ε1 ∪ ε2

Π |Λ |Γ, f : τ1 →Π,Λ
ε τ2, x : τ1 ` e : τ2, ε

Π |Λ |Γ ` fun f(x).e : τ1 →Π,Λ
ε τ2, ∅

Π |Λ |Γ ` v : τ1 →Π,Λ
ε τ2, ε1 Π |Λ |Γ ` e : τ1, ε2

Π |Λ |Γ ` v e : τ2, ε1 ∪ ε2 ∪ ε
Π |Λ |Γ ` v : τ, ε ρ ∈ Π,Λ

Π |Λ |Γ ` ref v : refρτ , ε ∪ {alρ}
Π |Λ |Γ ` v1 : refρτ , ε1 Π |Λ |Γ ` v2 : τ, ε2

Π |Λ |Γ ` v1 := v2 : 1, ε1 ∪ ε2 ∪ {wrρ}
Π |Λ |Γ ` v : refρτ , ε

Π |Λ |Γ ` ! v : τ, ε ∪ {rdρ}
Π |Λ, ρ |Γ ` e : τ, ε

Π |Λ |Γ ` e : τ, ε− ρ
(ρ /∈ FRV(Γ, τ))

· |Π,Λ |Γ ` e : τ, ε
Π |Λ |Γ ` atomic e : τ, ε

(als ε ⊆ rds ε ∩ wrs ε)

Π,Λ | · |Γ ` e1 : τ1, ε1 Π,Λ | · |Γ ` e2 : τ2, ε2

Π |Λ |Γ ` par e1 and e2 : τ1 × τ2, ε1 ∪ ε2

Π |Λ |Γ ` v1 : refρint, ε1 Π |Λ |Γ ` v2 : int, ε2 Π |Λ |Γ ` v3 : int, ε3

Π |Λ |Γ ` cas (v1, v2, v3) : int, {wrρ, rdρ} ∪ ε1 ∪ ε2 ∪ ε3

Π |Λ |Γ ` e : τ1, ε1 Π,Λ ` τ1 ≤ τ2 ε1 ⊆ ε2

Π |Λ |Γ ` e : τ2, ε2
(FRV(ε2) ⊆ Π,Λ)

Θ ` τ ≤ τ
(FRV(τ) ⊆ Θ)

Θ ` τ1 ≤ τ ′1 Θ ` τ2 ≤ τ ′2
Θ ` τ1 × τ2 ≤ τ ′1 × τ ′2

Θ ` τ ′1 ≤ τ1 Θ ` τ2 ≤ τ ′2 ε1 ⊆ ε2 Π1 ⊆ Π2 Λ1 ⊆ Λ2

Θ ` τ1 →Π1,Λ1
ε1 τ2 ≤ τ ′1 →Π2,Λ2

ε2 τ ′2
(FRV(ε2),Π2,Λ2 ⊆ Θ)

Figure 3 Typing and subtyping relations. Notice that for a typing judgement Π |Λ |Γ ` e : τ, ε
we always have FRV(Γ, τ, ε) ⊆ Π ∪ Γ.

rule for parallel composition, c.f. Figure 3. Note that the parent thread only continues
once both children have terminated; as a consequence, the parent regains ownership of its
private regions before it goes on. Running an expression atomically temporarily makes all
regions private. The side condition is a technical necessity. Finally, new, private regions are
introduced by the so-called masking rule:

Π |Λ, ρ |Γ ` e : τ, ε
Π |Λ |Γ ` e : τ, ε− ρ

(ρ /∈ FRV(Γ, τ))

The subtraction of ρ in the conclusion removes any read, write or allocation effects tagged
with ρ. The reading of the masking rule is that we make a brand new, empty region ρ for
e to use, but once e has terminated we forget about ρ again; this works out since the side
condition prevents e from leaking locations from ρ. Traditionally, the masking rule has been
used to do memory-management [13] as well as a means of hiding local effects to facilitate
effect-based program transformations [17, 20]. Here we make another use of the rule: we
observe that, moreover, e cannot leak locations from ρ while running and so ρ is a private
region for the duration of e. After all, the only means of inter-thread communication is
shared memory. Note that from the perspective of the context, this rule allows to remove a
private region, and prepare a setup for application of the parallel composition.

All the typing rules are in Figure 3. Note how reference types are tagged with the region



66 A Concurrent Logical Relation

where the location resides and that function arrows are tagged with the latent effects as well
as with the public and private regions that the function expects; the latter is natural once
we remember that a function is basically just a suspended, well-typed expression.

Because of the nondeterminism arising from par and shared references, the definition of
contextual equivalence could take into account both may- and must-convergence. In this
paper we only consider may-equivalence and formally we define (may-) contextual approxi-
mation by:

I Definition 1. Π |Λ |Γ ` e .↓ e′ : τ, ε if and only if for all h and C typed such that
C : (Π |Λ |Γ ` τ, ε) (· | · | · ` int, ∅), whenever (C[e] |h) ↓ then (C[e′] |h) ↓.

Here, as usual, (e |h) ↓ means that (e |h) 7−→ ∗(v |h′) for some value v and some h′. Typing
for contexts is defined in a standard way; selected rules are presented in Appendix A.1.

Contextual equivalence, Π |Λ |Γ ` e ≈ e′ : τ, ε, is then defined as Π |Λ |Γ ` e .↓ e′ :
τ, ε and Π |Λ |Γ ` e′ .↓ e : τ, ε. Note that the diverging behaviours introduced by our
operational semantics of atomic e do not influence may-contextual equivalence.

3 Definition of the logical relation

Semantic Types and Worlds We give a Kripke or world-indexed logical relation. This
is a fairly standard approach to modeling dynamic allocation; in combination with higher-
order store, however, it comes with a fairly standard problem: the type-world circularity.
Roughly, semantic types are indexed over worlds and worlds contain semantic types, so both
need to be defined before the other. A specific instance of this circularity was solved recently
by Thamsborg and Birkedal [20] based on metric-space theory developed by Birkedal et. al.
[27]; we re-use that solution here. Semantic types (and worlds) are constructed as a fixed-
point of a endo-functor on a certain category of metric-spaces. We do not care about that,
though; we just give the result of the construction. In addition, we largely ignore the fact
that we actually deal in metric spaces and not just plain sets; the little metric machinery
we need is deferred to Appendix A.2.

There is a set T of semantic types and a set W of worlds; types are world-indexed rela-
tions on values and worlds describe the regions and type-layouts of heaps, roughly speaking.
Take a type µ ∈ T and apply it to a world w ∈W and you get an indexed relation on values,
i.e., µ(w) ⊆ N × V × V. These relations are downwards closed in the first coordinate; we
read (k, v1, v2) ∈ µ(w) as saying that v1 and v2 are related at type µ up to approximation
k assuming world w.

We assume a countably infinite set of region names RN ; a world w ∈W contains finitely
many such |w| ⊆fin RN . Some of these dom(w) ⊆ |w| are live and the rest are dead. To each
live region r ∈ dom(w) we associate a finite partial bijection w(r) on locations decorated
with types, i.e., w(r) ⊆fin L×L× T̂ such that for (l1, l2, µ), (m1,m2, ν) ∈ w(r) we have that
both l1 = m1 and l2 = m2 imply l1 = m1, l2 = m2 and µ = ν. We write dom1(w(r)) for
the set of left hand side locations in the bijection and dom2(w(r)) for the right hand side
ones; different regions must have disjoint left and right hand side locations. For convenience,
we set domA

1 (w) =
⋃
r∈A∩dom(w) dom1(w(r)) whenever A ⊆ |w|, and we write dom1(w) for

dom|w|1 (w), i.e., the set of all left hand side locations. Similarly for the right hand side.
Worlds evolve and types adapt. Triples of two locations and a type can be added to a live

region, as long as different regions remain disjoint. Orthogonal to this, one can add a fresh,
i.e., neither live nor dead, region name with an associated empty partial bijection. And one
can kill any live region, rendering it dead and losing the associated the partial bijection in
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the process. The reflexive, transitive closure of all three combined is a preorder v on worlds;
it is a crucial property of types that they respect this, i.e., that w v w′ =⇒ µ(w) ⊆ µ(w′)
for any two w,w′ ∈ W and any µ ∈ T. This is type monotonicity and it prevents values
from fleeing types over time.

Finally, to tie the knot, there is an isomorphism ι : T̂→ T from the odd types stored in
worlds to proper types. Whenever a type is extracted from a world it needs to be coerced
by this isomorphism before it can be applied to some world.

The Logical Relation and Interpretation of Types Often, a logical relation goes like
this: two computations are related if they (from related heaps) reduce to related values (and
heaps); this is the extensional view: we do not care about the intermediate states. As we
consider concurrency, however, a computation can be interrupted and so we need to start
caring. In our setup, public regions are accessible from the environment. To address this,
we assume that before each reduction step, the public regions hold related values; in return,
we promise related values after the step. In other words, the granularity of extensionality
is just one step for the public regions. For private regions, however, there is no interference
and the granularity is an entire computation as usual. This is the fundamental idea; it is
how we propose to stay extensional in the face of concurrency.

Without further ado, let us look into the cornerstone of our model: the safety relation
defined in Figure 6; auxiliary relations are defined in Figure 8. What does it mean to have

(k, h◦1, h◦2, e1, e2, h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w◦, w?

Overall, it says that after environment interference, we can match the behavior of e1, i.e.,
termination or any one-step reduction, by zero or more steps of e2; match in the sense of
(re-)establishing certain relations, including safety itself. Safety is a local property of a pair
of computations, this is crucial: it has no knowledge of computations running concurrently
and h1 and h2 are the local heaps, i.e., the parts of the global heaps that the e1 respectively
e2 control exclusively. The computations consider R(Π) to be their public, R(Λ) to be their
private and A to be their anonymous regions. The latter intuitively are private regions
that have been masked out: they exist only for the duration of these computations, but
we have to track them to deny the environment access; this is another difficulty imposed
by concurrency. Safety is indexed by a world w as well; note that worlds are global things:
all concurrent threads share one world, i.e., they agree about the division of the heap into
regions and the types associated to locations. Finally k is intuitively the number of steps
we are safe for, h◦1 and h◦2 are the (private parts of) the initial local heaps, τ is the expected
return type, ε the effects and w◦ the initial world.

We unroll the definition in writing. The first pair of big square brackets — the prerequi-
sites — translates to ‘the environment interferes’. This yields a new world w′ subject to the
constraints of the environment transition relation: no public, private or anonymous regions
are killed, and the latter two see no allocation either. The actual contents of the public
regions are unknown, but we are free to assume that they hold related values of the proper
type, at least where we have read effects; this is the public heaps g1 and g2 in the precondition
relation. In addition we have frames f1 and f2 that cover the remainder of the world and
a triple-split relation that ensures coherence between the domains of corresponding parts of
the world and the heaps, see Figures 4 and 8.

The left hand side is irreducible in the termination branch and takes one step in the
progress branch. In either case, we must match this in zero or more steps on the right hand
side, not touching the frame; this means finding a future world w′′ and relating a number of
things. The choice of future world is restricted by the self transition relation: we must not
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domR(Π)
1 (w)︷ ︸︸ ︷

−−−−−
domR(Λ)

1 (w)︷ ︸︸ ︷
−−−−−

domA
1 (w)︷ ︸︸ ︷

−−−−−−−−
−−−−−︸ ︷︷ ︸

dom(g1)

−−−−−︸ ︷︷ ︸
dom(h1)

−−−−−︸ ︷︷ ︸
dom(h1)

−−−−−−︸ ︷︷ ︸
dom(f1)

−−−︸ ︷︷ ︸
dom(h1)

Figure 4 The left hand side of the triple-split relation. The top dashed line is dom1(w), the bot-
tom dashed line dom(g1 · h1 · f1). The local heap h1 has a private part matching the private regions,
an anonymous part matching the anonymous regions and an off-world part outside the domain of
the world. The frame f1 must cover regions that are neither public, private nor anonymous.

kill private or public regions, but we can allocate in them, and regions that we know nothing
about must be left untouched; this is our promise to the environment. In the termination
branch, we are furthermore required to kill off all anonymous regions as the computation is
done; any new regions added in the progress branch go to the set of anonymous regions. In
both branches, the changes made to the public heap must be well-typed and permitted by
the effects and, if we are done, we check the changes made to (the private part of) the local
heaps as well; the fact that the public heaps are compared across a single stage and the
(private parts of) the local heaps are compared across the entire computations is the crux
of the idea of having different granularities of extensionality.

In addition to performing actual allocation, we have the possibility of moving existing
locations from, say, the off-world part of the local heap into the public heap or the private
part of the local heap; this is a subtle point that permits the actual allocation of new
locations and the corresponding extension of the world to be temporarily out of sync.

We have glossed over one aspect of safety: the right hand side takes steps in the ordi-
nary operational semantics, but the left hand side works in the instrumented operational
semantics. A reduction (e |h)→n

µ (e′ |h′) in the latter implies a similar reduction in former;
in addition it counts the steps of a reduction with all atomic commands ‘unfolded’ (with
unfolding itself counting one step) and it records all heap accesses; the formal definition is
deferred to the Appendix. We need the former for compatibility of the atomic typing rule
below: atomic commands really unfold as they execute, hence we must count the number
of ‘unfolded’ steps. It is less immediate that we must test the actual reads, writes and
allocations, recorded by µ, against the effects described by ε, as done in the progress branch
of safety. But if omitted, our present proof of the Parallelization Theorem falls short, since
it relies on the following simple, but crucial commutation property:

I Lemma 2. If we have l /∈ µ and (e |h)→n
µ (e′ |h′), then (e |h[l 7→ v])→n

µ (e′ |h′[l 7→ v]).

The actual logical relation is given in Figure 7. The existentially quantified a ∈ N is
the minimal number of anonymous regions required to run; apart from that it uses safety
in a straightforward way. There is some asymmetry to these definitions: the anonymous
regions A are required to exist (and be empty) in the world beforehand, but are killed
off in the termination branch; also the precondition on the (private parts of) the initial
local heaps is in the logical relation whereas the postcondition lives in the termination
branch. The interpretation of types is in Figure 5. Interpreting the function type looks
daunting, but a function is just a suspended expression with a single free variable, hence
we have to restate most of the logical relation in the definition. Apart from that, we just
remark that the R(ρ) /∈ dom(w) case of reference interpretation is part of an approach to
handling dangling pointers (due to region masking) proposed recently in [20]; similarly for
the R(FRV(ε)) * dom(w).
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J1KRw = {(k, (), ()) | k ∈ N} JintKR w = {(k, n, n) | k ∈ N ∧ n ∈ Z}

Jτ1 × τ2KRw =
{

(k, (v11, v21), (v12, v22)) | (k, v11, v12) ∈ Jτ1KR w ∧ (k, v21, v22) ∈ Jτ2KR w
}

JrefρτKRw =





{
(k, l1, l2) | ∃µ ∈ T̂. (l1, l2, µ) ∈ w(R(ρ)) ∧

∀w′ w w. JτKR w′ k= (ι µ)(w′)

}
R(ρ) ∈ dom(w)

{(k, v1, v2) | k ∈ N ∧ v1, v2 ∈ V} R(ρ) /∈ dom(w)
q
τ1 →Π,Λ

ε τ2
y
Rw =









(k, fun f(x).e1, fun f(x).e2) | ∃a ∈ N.∀j < k. ∀w′ w w.
∀A ⊆ dom(w′).∀v1, v2 ∈ V.∀h1, h2, h

′
1, h
′
2 ∈ H.[

R(FRV(ε)) ⊆ dom(w′) ∧ A # R(Π ∪ Λ) ∧ |A| ≥ a ∧ w′(A) = ∅ ∧
(j, v1, v2) ∈ Jτ1KR w′ ∧ h′1 ⊆ h1 ∧ h′2 ⊆ h2 ∧ (j, h′1, h′2) ∈ PΛ,R

ε w′

]
⇒

(j, h′1, h′2, (fun f(x).e1) v1, (fun f(x).e2) v2, h1, h2) ∈ safeΠ,Λ,A,R
τ2,ε w′, w′





R(FRV(ε)) ⊆ dom(w)
{(k, v1, v2) | k ∈ N ∧ v1, v2 ∈ V} R(FRV(ε)) * dom(w)

Figure 5 Interpretation of types. We require R : RV ⇀fin RN injective with FRV(τ) ⊆ dom(R).
We assume R(FRV(τ)) ⊆ |w| above, otherwise we define JτKRw to be the empty set. We get that
JτKR ∈ T.

To conclude this subsection we give a theorem that, combined with the upcoming com-
patibility, means that logical relatedness implies contextual may-approximation. The proof
is in Appendix A.4 and it is not hard, but it is worth noting that we need a proof at all:
with sequential languages, this is a result one reads off the definition of the logical relation.

I Theorem 3 (May-Equivalence). Assume that · | · | · |= e1 � e2 : int, ∅ holds. Take any
h1, h2 ∈ H. If there are e′1, h′1 with (e1 |h1) ∗7−→ (e′1 |h′1) such that irr(e′1|h′1) holds, then
there is n ∈ Z such that e′1 = n and h′2 such that (e2 |h2) ∗7−→ (n, h′2).

Compatibility of the Logical Relation The logical relation is compatible, i.e., respects
all typing rules. This is a sine qua non of logical relations; it implies the fundamental lemma
stating that every well-typed expression is related to itself. And, as discussed just above, it
makes the logical relation approximate contextual may-approximation:

I Theorem 4. Π |Λ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ ` e1 .↓ e2 : τ, ε.

Compatibility means that each typing rule induces a lemma by reading the (unary) typing
judgments as the corresponding (binary) logical relations.The three most interesting of these
have to do with concurrency and the divide between public and private regions; they are
listed here and proofs are given in Appendix A.6:

I Lemma 5. Π |Λ, ρ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ |= e1 � e2 : τ, ε− ρ provided that
ρ /∈ FRV(Γ, τ).

I Lemma 6. · |Π,Λ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ |= atomic e1 � atomic e2 : τ, ε if
als ε ⊆ rds ε ∩ wrs ε.

I Lemma 7. Π,Λ | · |Γ |= e1 � e2 : τ, ε and Π,Λ | · |Γ |= e†1 � e†2 : τ †, ε† together imply
Π |Λ |Γ |= par e1 and e†1 � par e2 and e†2 : τ × τ †, ε ∪ ε†.
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(k, h◦1, h◦2, e1, e2, h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w◦, w

⇐⇒
∀j ≤ k. ∀w′, g1, g2, f1, f2.[

envtranΠ,Λ,A,R w,w′ ∧ (j, g1, g2) ∈ PΠ,R
ε w′ ∧

(g1, h1, f1, g2, h2, f2) ∈ splitsΠ,Λ,A,R w′
]
⇒

[
irr(e1|g1 · h1 · f1)⇒

∃e′2, w′′, h′1, h′2, g′1, g′2.
(e2 | g2 · h2 · f2) ∗7−→ (e′2 | g′2 · h′2 · f2) ∧ selftranΠ,Λ,A,R w′, w′′ ∧
∅ = (A ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)) ∧ g1 · h1 = g′1 · h′1 ∧
(g′1, h′1, f1, g

′
2, h
′
2, f2) ∈ splitsΠ,Λ,∅,R w′′ ∧ (j, g1, g2, g

′
1, g
′
2) ∈ QΠ,R

ε w′, w′′ ∧

(j, e1, e
′
2) ∈ JτKR (w′′) ∧ ∃h′′1 ⊆ h′1, h′′2 ⊆ h′2. (j, h◦1, h◦2, h′′1 , h′′2) ∈ QΛ,R

ε w◦, w′′
]
∧

[
∀e′1, h†1, µ, n ≤ j. (e1 | g1 · h1 · f1)→n

µ (e′1 |h†1)⇒

∃e′2, w′′, A′, h′1, h′2, g′1, g′2.
(e2 | g2 · h2 · f2) ∗7−→ (e′2 | g′2 · h′2 · f2) ∧ selftranΠ,Λ,A,R w′, w′′ ∧
A′ = (A ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)) ∧ h†1 = g′1 · h′1 · f1 ∧
(g′1, h′1, f1, g

′
2, h
′
2, f2) ∈ splitsΠ,Λ,A′,R w′′ ∧ (j − n, g1, g2, g

′
1, g
′
2) ∈ QΠ,R

ε w′, w′′ ∧

µ ∈ effsA
′,R

ε,h′1
w′′ ∧ (j − n, h◦1, h◦2, e′1, e′2, h′1, h′2) ∈ safeΠ,Λ,A′,R

τ,ε w◦, w′′
]

Figure 6 Safety. The predicate is defined by well-founded induction. Nontrivial requirements
are: Π # Λ, FRV(τ, ε) ⊆ Π ∪ Λ, FV(e1, e2) = ∅, R : Π ∪ Λ ↪→ |w◦|, R(FRV(ε)) ⊆ dom(w◦) and
w w w◦ with dom(w◦) ∩ R(Π ∪ Λ) ⊆ dom(w), A ⊆ dom(w) and A#R(Π ∪ Λ). See Figure 8 for
auxiliary definitions. We refer to the contents of the big square brackets as the prerequisites, the
termination branch and the progress branch, respectively.

Π | Λ | Γ |= e1 � e2 : τ, ε
⇐⇒

∃a ∈ N.∀k ∈ N.∀w ∈W.∀R : Π ∪ Λ ↪→ |w|.∀A ⊆ dom(w).
∀γ1, γ2 ∈ V |Γ|.∀h1, h2, h

′
1, h
′
2 ∈ H.[

R(FRV(ε)) ⊆ dom(w) ∧ A#R(Π ∪ Λ) ∧ |A| ≥ a ∧ ∀r ∈ A.w(r) = ∅ ∧

(k, γ1, γ2) ∈ JΓKRw ∧ h′1 ⊆ h1 ∧ h′2 ⊆ h2 ∧ (k, h′1, h′2) ∈ PΛ,R
ε w

]
⇒

(k, h′1, h′2, e1[γ1/Γ], e2[γ2/Γ], h1, h2) ∈ safeΠ,Λ,A,R
τ,ε w,w.

Figure 7 The logical relation with anonymous regions. We require that Π # Λ, FRV(Γ, τ, ε) ⊆
Π ∪ Λ and, as always, that FV(e1, e2) ∈ |Γ|.
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envtranΠ,Λ,A,R w,w′ ⇐⇒ w v w′ ∧ ∀r ∈ dom(w) ∩ (R(Π ∪ Λ) ∪A). r ∈ dom(w′)
∧ ∀r ∈ dom(w) ∩ (R(Λ) ∪A). w(r) = w′(r).

selftranΠ,Λ,A,R w,w′ ⇐⇒ w v w′ ∧ ∀r ∈ dom(w) \A. r ∈ dom(w′)
∧ ∀r ∈ dom(w) \ (R(Π ∪ Λ) ∪A). w(r) = w′(r).

(g1, h1, f1, g2, h2, f2) ∈ splitsΠ,Λ,A,R w ⇐⇒
dom(h1) # dom(g1) # dom(f1) ∧ dom(h2) # dom(g2) # dom(f2) ∧
domR(Π)

1 (w) = dom(g1) ∧ domR(Λ)∪A
1 (w) ⊆ dom(h1) ∧

domdom(w)\(R(Π∪Λ)∪A)
1 (w) ⊆ dom(f1) ∧

domR(Π)
2 (w) = dom(g2) ∧ domR(Λ)∪A

2 (w) ⊆ dom(h2) ∧
domdom(w)\(R(Π∪Λ)∪A))

2 (w) ⊆ dom(f2).

(k, h1, h2) ∈ PΘ,R
ε w ⇐⇒ dom(h1) = domR(Θ)

1 (w) ∧ dom(h2) = domR(Θ)
2 (w) ∧

∀r ∈ R(Θ) ∩ dom(w).∀(l1, l2, µ) ∈ w(r).
r ∈ R(rds ε)⇒ k > 0⇒ (k − 1, h1(l1), h2(l2)) ∈ (ι µ)(w).

(k, h1, h2, h
′
1, h
′
2) ∈ QΘ,R

ε w,w′ ⇐⇒
dom(h1) = domR(Θ)

1 (w) ∧ dom(h2) = domR(Θ)
2 (w) ∧

dom(h′1) = domR(Θ)
1 (w′) ∧ dom(h′2) = domR(Θ)

2 (w′) ∧
(
∀r ∈ R(Θ) ∩ dom(w).∀(l1, l2, µ) ∈ w(r).
[h1(l1) = h′1(l1) ∧ h2(l2) = h′2(l2)] ∨ [r ∈ R(wrs ε) ∧
k > 0⇒ (k − 1, h′1(l1), h′2(l2)) ∈ (ι µ)(w′)]

)
∧

(
∀r ∈ R(Θ) ∩ dom(w).
∀(l1, l2, µ) ∈ w′(r) \ w(r). r ∈ R(als ε) ∧
k > 0⇒ (k − 1, h′1(l1), h′2(l2)) ∈ (ι µ)(w′)

)
.

µ ∈ effsA,Rε,h w ⇐⇒ {l | rdl ∈ µ} ∩ dom1(w) ⊆ domR(rds ε)∪A
1 (w) ∧

{l | wrl ∈ µ} ∩ dom1(w) ⊆ domR(wrs ε)∪A
1 (w) ∧

{l | all ∈ µ} ∩ dom1(w) ⊆ domR(als ε)∪A
1 (w) ∧

{l | rdl ∈ µ ∨ wrl ∈ µ ∨ all ∈ µ} \ dom1(w) ⊆ dom(h).

Figure 8 Six auxiliary definitions. The environment transition and self transition relations are
defined for Π # Λ, R : Π ∪ Λ ↪→ |w|, A ⊆ dom(w) and R(Π ∪ Λ) #A. The triple-split relation
has the same prerequisites. The precondition relation is defined for R : RV ⇀fin |w| injective
with Θ ∪ FRV(ε) ⊆ dom(R). The postcondition relation additionally requires w′ w w such that
dom(w) ∩ R(Θ) ⊆ dom(w′). Finally the actual-effects relation expects R : RV ⇀fin |w| injective
with FRV(ε) ⊆ dom(R) and A ⊆ dom(w).
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4 Applications

4.1 Parallelization Theorem: Disjoint Concurrency
We now explain our Parallelization Theorem, which gives us an easy way to prove properties
about the common case of disjoint concurrency, where disjointness is captured using private
regions and effect annotations.

I Theorem 8 (Parallelization). Assuming that
1. Π,Λ | · | Γ ` e1 : τ1, ε1,
2. Π,Λ | · | Γ ` e2 : τ2, ε2,
3. rds ε1 ∪ wrs ε1 ∪ rds ε2 ∪ wrs ε2 ⊆ Λ,
4. rds ε1 ∩ wrs ε2 = rds ε2 ∩ (wrs ε1 ∪ als ε1) = wrs ε1 ∩ wrs ε2 = ∅,
the following property holds:

Π | Λ | Γ |= 〈e1, e2〉 ∼= par e1 and e2 : τ1 × τ2, ε1 ∪ ε2.

Intuitively, item 3 keeps the environment from detecting anything, and item 4 prevents the
two computations from talking among themselves, thereby making them independent; the
als ε1 in item 4 is a technicality that we cannot do without. We showed a concrete simple
application of this theorem in the Introduction. More generally, example usage includes
situations where we operate on two imperative data structures (say linked lists or graphs);
if we only mutate parts of the data structures that are in different regions, then we may
safely parallelize operations on the data structures.

The masking rule makes it possible to do more optimizations via the Parallelization
Theorem: Consider, for simplicity, the familiar example of an efficient implementation fib
of the Fibonacci function using two local references. We can use the masking rule to give it
type and effect int→·,·∅ int, ∅. This allows us to view the imperative implementation as pure,
and thus by Theorem 8 we find that it is sound to optimize two sequential calls to fib to two
parallel calls. This may sound like a simple optimization, but the point is that a compiler
can perform it automatically, just based on the effect types. It also underlines how we are
able to reason about more involved behaviors of concurrent threads, even though the type
system provides only rough bounds on interference through the private-public distinction.

The proof of the Parallelization Theorem is quite tricky. Please see the appendix for an
informal overview of the proof and the technical details.

4.2 Non-disjoint Concurrency
We now exemplify how our logical relations model can also be used to reason compositionally
about equivalences of fine-grained concurrent programs operating on public regions.

Consider the following type

τ ≡ refρint→ρ,∅
{rdρ,wrρ} 1

of functions that take an integer reference in a public region, possibly read and write from
the reference, and return unit. The following two functions

fun inc1(x). let y = !x in let z = y + 1 in
if cas (x, y, z) then 〈〉 else inc1 (x)

and fun inc2(x). atomic (x := !x+ 1)

both have type τ . (We have allowed ourselves to use a standard conditional expression; 1
corresponds to true and 0 to false.) Both functions increment the integer given in their ref-
erence arguments; inc1 uses the fine-grained compare-and-swap to do it atomically, whereas
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inc2 uses the brute-force atomic operation. Using our logical relations model, we can prove
that inc1 and inc2 are contextually equivalent:

ρ | · | · ` inc1 ≈ inc2 : τ, ∅. (1)

Hence, replacing inc2 with inc1 in any well-typed client gives two contextually equivalent
expressions. Thus our logical relation models a form of data abstraction for concurrency
(where we abstract over the granularity of concurrency in the module).

We now show how to use the equivalence of inc1 and inc2 to derive equivalences of two
different clients using the fine-grained concurrency implementation inc1.

To this end, consider the following two client programs of type

σ ≡ τ →ρ,∅
∅ refρint→ρ,∅

{rdρ,wrρ} int,

fun c1(inc).λ n.incn; incn; !n and fun c2(inc).λ n.(par incn and incn); !n

Note that c1 makes two sequential calls to inc, whereas c2 runs the two calls in parallel.
Because of the use of compare-and-swap in inc1, we would hope that the c1 inc1 and c2 inc1
are contextually equivalent (in typing context ρ | ∅ | ∅). We can prove that this is indeed
the case using compositional reasoning as follows. Using our logical relation, we prove that
c1 inc2 is contextually equivalent to c2 inc2, i.e.,

ρ | · | · ` c1 inc2 ≈ c2 inc2 : refρint→ρ,∅
{rdρ,wrρ} int, ∅. (2)

Finally, we conclude that c1 inc1 is contextually equivalent to c2 inc1 by transitivity of con-
textual equivalence (using (1), (2) and (1) again for the respective steps):

c1 inc1 ≈ c1 inc2 ≈ c2 inc2 ≈ c2 inc1

This proof illustrates an important point: to show equivalence of two clients of a module
implemented using fine-grained concurrency, it suffices to show that the clients are equiv-
alent wrt. a coarse-grained implementation, and that the coarse-grained implementation is
equivalent to the fine-grained implementation. This is often a lot simpler than trying to
show the equivalence of the clients wrt. the fine-grained implementation directly. We can
think of the coarse-grained implementation of the module (here inc2) as the specification of
the module and the fine-grained implementation (here inc1) as its implementation.

The formal proofs of (1) and (2) follow by straightforward induction.

5 Discussion

Gifford and Lucassen [11, 12] originally proposed type-and-effect systems as a static analysis
for determining which parts of a higher-order imperative program could be implemented
using parallelism. Here we are able to express the formal correctness of these ideas in a
succinct way by having a parallel construct in our programming language and establishing
the Parallelization Theorem.

In Section 4.2 we showed how contextual equivalence can be used to state that compare-
and-swap can be used to implement a simple form of locking, and how our logical relations
model could be used to prove this statement. We believe that it should be possible to give
similar succinct statements and proofs of other implementations of synchronization. For
instance, we are currently working on a similar relational specification and correctness proof
of Peterson’s mutual exclusion algorithm, which involves (for succinctness of specification)
extending the language with a primitive notion of critical section.
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As mentioned earlier, we have deliberately used the same definition of worlds here as
in [20]. As discussed there [20, Section 8.2], this notion of world has somewhat limited
expressiveness: the only heap invariants we can state are those that relate values at two
locations by a semantic type. To increase expressiveness, it would thus be interesting to ex-
tend our model using ideas from [9], where worlds are defined using state-transition systems,
and then investigate more examples of equivalences.

Recently, Liang et. al. [10] have proposed RGSim, a simulation based on rely-guarantee,
to verify program transformations in a concurrent setting. Their actual definition [10, Defi-
nition 4] bears some resemblance to our safety relation; indeed, an early draft of loc.cit. was
a source of inspiration. They have no division of the heap into public and private parts,
instead they give a pair of rely and guarantee that, respectively, constrain the interference of
the environment and the actions of the computation. Their approach is essentially untyped;
one point of view is that we ‘auto-instantiate’ the many parameters of their simulation
based on our typing information. They consider first-order languages with ground store;
this obviously keeps life simple, but the example equivalences they give are not.

Our simple example of data abstraction for concurrency in Section 4.2 suggests that
there could be a relationship to linearizability. In [28], Filipović et. al. show a formal con-
nection between linearizability and simulation relations, for a simple first-order imperative
programming language. We intend to explore whether a similar kind of formal relationship
can be established in our higher-order setting.

6 Conclusion and Future Work

We have presented a logical relations model of a new type-and-effect system for a concurrent
higher-order ML-like language with general references. We have shown how to use the model
for reasoning about both disjoint and non-disjoint concurrency. In particular, we have proved
the first automatic Parallelization Theorem for such a rich language.

In this paper, we have focused on may contextual equivalence. Future work includes
investigating models for must contextual equivalence. Since our language allows the encoding
of countable nondeterminism, must equivalence is non-trivial, and will probably involve
indexing over ω1 rather than ω [29]. Future work also includes extending the model to
region and effect polymorphism, as well as the extension to more expressive worlds, and to
other concurrency constructs such as fork-join.

In this paper we have used logical relations for reasoning about contextual equivalence
for a concurrent higher-order imperative language with a type-and-effect system. In the
future, it would be interesting to explore also the application of other methods, such as
bisimulations and game semantics.

The authors would like to thank Jan Schwinghammer and Xinyu Feng for discussions of
aspects of this work.
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A Appendix

A.1 Typing of Contexts
As usually, typing rules for contexts are simple extensions of the type basic type system.
It is, however, interesting to observe the region dynamics in the analogues of masking and
parallel composition rules, since these allow contexts (when read top-to-bottom) to “kill off”
private regions and change public regions into private ones. Selected rules are presented in
Figure 9.

[ ] : (Π |Λ |Γ ` τ, ε) (Π |Λ |Γ ` τ, ε)
C : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′, ρ |Γ′ ` τ ′, ε′)
C : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′ |Γ′ ` τ ′, ε′ − ρ)

(ρ /∈ FRV(Γ′, τ ′))

C : (Π |Λ |Γ ` τ, ε) (Π′,Λ′ | · |Γ′ ` τ1, ε1) Π′,Λ′ | · |Γ′ ` e : τ2, ε2

par C and e : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′ |Γ′ ` τ1 × τ2, ε1 ∪ ε2)

C : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′ |Γ′ ` τ1 →Π′,Λ′
ε′ τ2, ε1) Π′ |Λ′ |Γ′ ` e : τ1, ε2

C e : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′ |Γ′ ` τ2, ε1 ∪ ε2 ∪ ε′)
C : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′ |Γ′ ` τ1, ε2) Π′ |Λ′ |Γ′ ` e : τ1 →Π′,Λ′

ε′ τ2, ε1

eC : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′ |Γ′ ` τ2, ε1 ∪ ε2 ∪ ε′)
C : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′ |Γ′, f : τ1 →Π,Λ

ε′ τ2, x : τ1 ` τ2, ε′)
fun f(x).C : (Π |Λ |Γ ` τ, ε) (Π′ |Λ′ |Γ′ ` τ1 →Π,Λ

ε′ τ2, ∅)

Figure 9 Selected typing rules for contexts

A.2 Well-definedness of Interpretation of Types
As explained in the main text, we import the worlds and types of Thamsborg and Birkedal
[20] wholesale; hence their non-trivial construction is for free. The details of the construction,
including metric prerequisites, can be found in Appendices A.1 and A.2 of the long version
of loc. cit.; it is available online.1 Thus it only remains to verify that interpreting a syntactic
type actually gives a semantic ditto.

In metric terms, this means that for any syntactic type τ and any R : RV ⇀fin RN with
FRV(τ) ⊆ dom(R) we must have

JτKR ∈ T = W→mon URel(V),

i.e., it should map worlds to indexed, downwards closed relations on values in a non-expansive
and monotone manner. To prove this, we need two lemmas on the pre- and postcondition
relations:

I Lemma 9. We have PΘ,R
ε w ∈ URel(H). And for w1, w2 ∈ W with w1

n= w2 we have
PΘ,R
ε w1

n= PΘ,R
ε w2 as well.

1 www.itu.dk/people/thamsborg/longcarnival.pdf



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg 77

I Lemma 10. We have QΘ,R
ε w,w′ ∈ URel(H × H). And for w1, w

′
1, w2, w

′
2 ∈ W with

w1
n= w2 and w′1

n= w′2 we have QΘ,R
ε w1, w

′
1
n= QR

ε w2, w
′
2 too.

The proofs a quite straightforward. Then, by simultaneous induction, we can prove the
following two propositions and we are done:
I Proposition 11. We have JτKR ∈ T.
I Proposition 12. For w◦1 , w1, w

◦
2 , w2 ∈ W we have that w◦1

n= w◦2 together with w1
n= w2

implies safeΠ,Λ,A,R
τ,ε w◦1 , w1

n= safeΠ,Λ,A,R
τ,ε w◦2 , w2.

A.3 Instrumented Operational Semantics

(E[proji 〈v1, v2〉] |h)→1
∅ (E[vi] |h)

(E[(fun f(x).e) v] |h)→1
∅ (E[e[f :=fun f(x).e, x:=v]] |h)

(E[ref v] |h)→1
{all} (E[l] |h[l 7→ v]) if l /∈ dom(h)

(E[l := v] |h)→1
{wrl} (E[〈〉] |h[l:=v]) if l ∈ dom(h)

(E[! l] |h)→1
{rdl} (E[h(l)] |h) if l ∈ dom(h)

(E[par v1 and v2] |h)→1
∅ (E[〈v1, v2〉] |h)

(E[cas (l, n1, n2)] |h)→1
{rdl,wrl} (E[1] |h[l:=n2])

if l ∈ dom(h) and h(l) = n1

(E[cas (l, n1, n2)] |h)→1
{rdl} (E[0] |h)

if l ∈ dom(h) and h(l) 6= n1

(E[atomic e] |h)→n+1
µ (E[v] |h′) if (e |h) ∗→n

µ (v |h′)
(E[atomic e] |h)→1

∅ (E[atomic e] |h)

(e |h) ∗→0
∅ (e′ |h′) ⇐⇒ e = e′ ∧ h = h′

(e |h) ∗→n

µ (e′′ |h′′) ⇐⇒ (e |h)→n1
µ1 (e′ |h′) ∧

(e′ |h′) ∗→n2
µ2 (e′′ |h′′) ∧

n = n1 + n2 ∧ µ = µ1 ∪ µ2.

Instrumented operational semantics is presented above. (e |h) →n
µ (e′ |h′) is defined for

e, e′ ∈ E with FV(e, e′) = ∅, h, h′ ∈ H, n ≥ 1 and µ ⊆ {all | l ∈ L}∪{wrl | l ∈ L}∪{rdl | l ∈
L}; the starred version additionally permits a zero as superscript. Note that (e|h) 7−→ (e′|h′)
if and only if there are n and µ such that (e |h)→n

µ (e′ |h′).

A.4 Proof of May-Equivalence Theorem
Theorem 3. Assume that · | · | · |= e1 � e2 : int, ∅ holds. Take any h1, h2 ∈ H. If there
are e′1, h′1 with (e1 |h1) ∗7−→ (e′1 |h′1) such that irr(e′1|h′1) holds, then there is n ∈ Z such that
e′1 = n and h′2 such that (e2 |h2) ∗7−→ (n, h′2).

Proof. Pick, by assumption, n ∈ N such that (e1 |h1) n7−→ (e′1 |h′1). We name the configu-
rations in this multi-step reduction (e0

1 |h0
1), (e1

1 |h1
1), . . . , (en1 |hn1 ) in order, i.e., such that

(e1 |h1) = (e0
1 |h0

1) 7−→ (e1
1 |h1

1) 7−→ · · ·
7−→ (en1 |hn1 ) = (e′1 |h′1).
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For each of these standard reductions, there is a corresponding instrumented reduction. This
means, that we can pick n1, n2, . . . , nn ∈ N non-zero and µ1, µ2, . . . , µn such that

(e0
1 |h0

1)→n1
µ1 (e1

1 |h1
1)→n2

µ2 · · · →nn
µn (en1 |hn1 ).

For convenience, we furthermore write Nm =
∑n
i=m+1 ni for each 0 ≤ m ≤ n.

Now let a ∈ N be the required number of anonymous regions according to the definition
of the logical relation, and let w ∈W be any world with a empty, live regions and nothing
else. We now prove by induction that for all 0 ≤ m ≤ n the following holds:

∃e′2, h′2, w′. (e2 |h2) ∗7−→ (e′2 |h′2) ∧
dom(hm1 ) ⊇ dom1(w′) ∧ dom(h′2) ⊇ dom2(w′) ∧
(Nm, [], [], em1 , e′2, hm1 , h′2) ∈ safe∅,∅,dom(w′),∅

int,∅ w,w′.

The base case is easy by the definition of the logical relation: Pick e′2 = e2, h′2 = h2, and
w′ = w and apply the assumption that · | · | · |= e1 � e2 : int, ∅.

For the inductive case, let 0 < m ≤ n and unroll the assumptions for m− 1: we have e′2,
h′2, w′ with (e2 |h2) ∗7−→ (e′2 |h′2) and dom(hm−1

1 ) ⊇ dom1(w′), dom(h′2) ⊇ dom2(w′), and

(Nm−1, [], [], em−1
1 , e′2, h

m−1
1 , h′2) ∈ safe∅,∅,dom(w′),∅

int,∅ w,w′.

By the overall setup, we know that (em−1
1 |hm−1

1 )→nm
µm (em1 |hm1 ) and the progress branch of

safety provides for us: There are e′′2 and h′′2 with (e′2 |h′2) ∗7−→ (e′′2 |h′′2) and hence (e2 |h2) ∗7−→
(e′′2 |h′′2). There is w′′ with dom(hm1 ) ⊇ dom1(w′′) and dom(h′′2) ⊇ dom2(w′) and, finally,

(Nm, [], [], em1 , e′′2 , hm1 , h′′2) ∈ safe∅,∅,dom(w′′),∅
int,∅ w,w′′.

We have now finished the induction proof; all that remains is to observe that the property
proved implies the overall goal in the case m = n by the termination branch of safety. J

A.5 Properties of the Pre- and Postcondition Relations
I Lemma 13 (Precondition Separation). Assume that we have Π # Λ, h1 = f1 �domR(Λ)

1 (w),
g1 = f1 �domR(Π)

1 (w), h2 = f2 �domR(Λ)
2 (w) and g2 = f2 �domR(Π)

2 (w). Then it holds that

(k, h1, h2) ∈ PΛ,R
ε w ∧ (k, g1, g2) ∈ PΠ,R

ε w

⇐⇒
(k, f1, f2) ∈ PΠ∪Λ,R

ε w

I Lemma 14 (Postcondition Separation). Assume that we have Π # Λ, h1 = f1 �domR(Λ)
1 (w),

g1 = f1 �domR(Π)
1 (w), h2 = f2 �domR(Λ)

2 (w), g2 = f2 �domR(Π)
2 (w), h

′
1 = f ′1 �domR(Λ)

1 (w′), g
′
1 =

f ′1 �domR(Π)
1 (w′), h

′
2 = f ′2 �domR(Λ)

2 (w′) and g′2 = f ′2 �domR(Π)
2 (w′). Then

(k, h1, h2, h
′
1, h
′
2) ∈ QΛ,R

ε w,w′ ∧
(k, g1, g2, g

′
1, g
′
2) ∈ QΠ,R

ε w,w′

⇐⇒
(k, f1, f2, f

′
1, f
′
2) ∈ QΠ∪Λ,R

ε w,w′.
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I Lemma 15 (Precondition Composition).

(k, h1, h2) ∈ PΘ,R
ε w ∧ (k, h1, h2, h

′
1, h
′
2) ∈ QΘ,R

ε w,w′

=⇒
(k, h′1, h′2) ∈ PΘ,R

ε w′.

I Lemma 16 (Postcondition Composition).

(k, h1, h2, h
′
1, h
′
2) ∈ QΘ,R

ε w,w′ ∧
(k, h′1, h′2, h′′1 , h′′2) ∈ QΘ,R

ε w′, w′′

=⇒
(k, h1, h2, h

′′
1 , h
′′
2) ∈ QΘ,R

ε w,w′′.

A.6 Some Cases of Proof of Compatibility
Lemma 5. Π |Λ, ρ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ |= e1 � e2 : τ, ε− ρ provided that
ρ /∈ FRV(Γ, τ).

Proof. Let a ∈ N be the required number of anonymous regions from the assumption. To
prove the desired, we unroll the definition of the logical relation: choose a+1, pick arbitrary
k◦ ∈ N, w◦ ∈W, R : Π ∪ Λ ↪→ |w◦|, A◦ ⊆ dom(w◦), γ1, γ2 ∈ V |Γ| and h◦1, h◦2, h′◦1 , h′◦2 ∈ H.
Assume that R(FRV(ε− ρ)) ⊆ dom(w◦), A◦#R(Π ∪ Λ), |A◦| ≥ a, ∀r ∈ A◦. w◦(r) = ∅,
(k◦, γ1, γ2) ∈ JΓKRw◦, h′◦1 ⊆ h◦1, h′◦2 ⊆ h◦2, and (k◦, h′◦1 , h′◦2 ) ∈ PΛ,R

ε−ρw
◦. We must show that

(k◦, h′◦1 , h′◦2 , e1[γ1/Γ], e2[γ2/Γ], h◦1, h◦2) ∈ safeΠ,Λ,A◦,R
τ,ε−ρ w◦, w◦.

We need, obviously, to make use of the assumption of the lemma. To do so, we claim
that to have

(k, h′◦1 , h′◦2 , e1, e2, h1, h2) ∈ safeΠ,Λ,A,R
τ,ε−ρ w◦, w (3)

it suffices to know that

(k, h′◦1 , h′◦2 , e1, e2, h1, h2) ∈ safeΠ,Λ,ρ,A\{r},R[ρ7→r]
τ,ε w◦, w (4)

whenever r ∈ A holds. Observe first, that if we can prove this, then we are done by an easy
application of the assumption of the lemma. So all that remains is to prove the claim; this
we do by well-founded induction on k ∈ N.

Assume that the claim holds for all naturals strictly less than k ∈ N; we will try to
prove it for k. To prove (3) we proceed to unroll the definition of safety. Pick arbitrary
j ≤ k, w′ ∈W and g1, g2, f1, f2 ∈ H. Assume that the prerequisites hold, i.e., that we have
envtranΠ,Λ,A,R w,w′, (j, g1, g2) ∈ PΠ,R

ε−ρ w
′ and (g1, h1, f1, g2, h2, f2) ∈ splitsΠ,Λ,A,R w′.

Before we look into the termination and progress branches, observe that the w′ and the
g1, g2, f1, f2 match the prerequisites of safety for (4) as well, since R(Λ) ∪ A = R[ρ 7→
r](Λ, ρ) ∪A \ {r}.

So we follow the termination branch and assume that irr(e1|g1 · h1 · f1) holds. From (4)
we get e′2, w′′, h′1, h′2, g′1 and g′2 with properties aplenty:

(e2 | g2 · h2 · f2) ∗7−→ (e′2 | g′2 · h′2 · f2).
selftranΠ,Λ,ρ,A\{r},R[ρ 7→r] w′, w′′.
∅ = ((A \ {r}) ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)).
g1 · h1 = g′1 · h′1.
(g′1, h′1, f1, g

′
2, h
′
2, f2) ∈ splitsΠ,Λ,ρ,∅,R[ρ7→r] w′′.
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(j, e1, e2) ∈ JτKR[ρ7→r] (w′′).
(j, g1, g2, g

′
1, g
′
2) ∈ QΠ,R[ρ7→r]

ε w′, w′′.
∃h′′1 ⊆ h′1, h′′2 ⊆ h′2. (j, h′◦1 , h′◦2 , h′′1 , h′′2) ∈ QΛ,ρ,R[ρ7→r]

ε w◦, w′′.
Now note that we must have r ∈ dom(w′′) and so we define the world w′′′ by w′′ →mask(r)
w′′′, i.e., we kill off region r. So we need to discharge a number of obligations; most are
straightforward, but the type of the resulting expressions as well as the postcondition on
the local heaps take a bit of scrutiny: Note first that we have

JτKR[ρ7→r] (w′′) ⊆ JτKR[ρ7→r] (w′′′) = JτKR (w′′)

by type monotonicity and since ρ /∈ FRV(τ); this means that the resulting expressions are
indeed well-typed. Now define heaps h′′1 ⊆ h′1 and h′′2 ⊆ h′2 by demanding that dom(h′′1) =
domR(Λ)

1 (w′′′) and dom(h′′2) = domR(Λ)
2 (w′′′), i.e., we restrict to the private parts of the local

heaps, not including the locations (formerly) in region r. One easily verifies that this gives

(j, h◦1, h◦2, h′′1 , h′′2) ∈ QΛ,R
ε−ρ w

◦, w′′′

and the termination branch is done.
Finally we get to the progress branch: we assume that there are e′1, h

†
1, µ and n ≤ j such

that (e1 | g1 · h1 · f1)→n
µ (e′1 |h†1). From (4) we get e′2, w′′, A′, h′1, h′2, g′1, g′2 with a range of

properties:
(e2 | g2 · h2 · f2) ∗7−→ (e′2 | g′2 · h′2 · f2).
selftranΠ,Λ,ρ,A\{r},R[ρ 7→r] w′, w′′.
A′ = (A \ {r} ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)).
h†1 = g′1 · h′1 · f1.
µ ∈ effsA

′,R[ρ7→r]
ε,h′1

w′′.

(g′1, h′1, f1, g
′
2, h
′
2, f2) ∈ splitsΠ,Λ,ρ,A′,R[ρ7→r] w′′.

(j − n, g1, g2, g
′
1, g
′
2) ∈ QΠ,R[ρ7→r]

ε w′, w′′.
(j − n, h′◦1 , h′◦2 , e′1, e′2, h′1, h′2) ∈ safeΠ,Λ,ρ,A′,R[ρ 7→r]

τ,ε w◦, w′′.
Now we must have r ∈ dom(w′′) and letting A′′ = (A ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′))
gives r ∈ A′′ as well as A′′ \ {r} = A′. With A′′ as the choice of new anonymous regions,
the obligations in proving the termination branch of (3) are easily met; we just remark that
we rely on the induction hypothesis to establish

(j − n, h′◦1 , h′◦2 , e′1, e′2, h′1, h′2) ∈ safeΠ,Λ,A′′,R
τ,ε−ρ w◦, w′′.

J

There are many details to the proof, but the idea is simple: we simultaneously view the
computation in two ways, both with ρ as a private region and with ρ masked out. From the
safety of former, we then get safety of the latter. In the masked out case, ρ is no longer a pri-
vate region variable and the region name r associated with ρ joins the anonymous regions. In
most cases, however, (region names associated with) private regions and anonymous regions
are treated the same, so there is work to do only when anonymous regions are considered in
isolation.

Lemma 6. · |Π,Λ |Γ |= e1 � e2 : τ, ε implies Π |Λ |Γ |= atomic e1 � atomic e2 : τ, ε if
als ε ⊆ rds ε ∩ wrs ε.
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Proof. Let a ∈ N be the required number of anonymous regions from the assumption. To
prove the desired, we unroll the definition of the logical relation: choose a, pick arbitrary
k◦ ∈ N, w◦ ∈ W, R : Π ∪ Λ ↪→ |w◦|, A ⊆ dom(w◦), γ1, γ2 ∈ V |Γ| and h◦1, h

◦
2, h
′◦
1 , h

′◦
2 ∈

H. Assume that R(FRV(ε)) ⊆ dom(w◦), A#R(Π ∪ Λ), |A| ≥ a, ∀r ∈ A.w◦(r) = ∅,
(k◦, γ1, γ2) ∈ JΓKRw◦, h′◦1 ⊆ h◦1, h′◦2 ⊆ h◦2, and (k◦, h′◦1 , h′◦2 ) ∈ PΛ,R

ε w◦. We must show that
(k◦, h′◦1 , h′◦2 , atomic e1[γ1/Γ], atomic e2[γ2/Γ], h◦1, h◦2) ∈ safeΠ,Λ,A,R

τ,ε w◦, w◦.
We need to generalize a bit to handle the loopy behavior of atomic: we prove that for

any k ≤ k◦ and any w ∈W with envtranΠ,Λ,A,R w◦, w we have

(k, h′◦1 , h′◦2 , atomic e1[γ1/Γ],
atomic e2[γ2/Γ], h◦1, h◦2) ∈ safeΠ,Λ,A,R

τ,ε w◦, w.

This we do by well-founded induction on k. Unroll the definition of safety. Pick arbitrary
j ≤ k, w′ ∈W and g1, g2, f1, f2 ∈ H. Assume that the prerequisites hold, i.e., that we have
envtranΠ,Λ,A,R w,w′, (j, g1, g2) ∈ PΠ,R

ε w′ and (g1, h1, f1, g2, h2, f2) ∈ splitsΠ,Λ,A,R w′.
Atomic commands always have the possibility of looping; hence we need not consider the
termination branch. So we get to the progress branch: we assume that there are e′1, h

†
1, µ

and n ≤ j−1 such that (atomic e1[γ1/Γ] | g1 ·h1 ·f1)→n+1
µ (e′1 |h†1) and we must match this.

Observe first that envtranΠ,Λ,A,R w◦, w′ holds. If, now, the configuration loops to itself,
we take no steps on the right hand side and conclude with the induction hypothesis. So we
are left to consider the case where (e1[γ1/Γ] | g1 ·h1 · f1) ∗→n

µ (e′1 |h†1) and e′1 ∈ V. Let m ∈ N
be the number of reduction steps, we name the configurations (e0

1 |h0
1), (e1

1 |h1
1), . . . , (em1 |hm1 )

in order and pick n1, n2, . . . , nm ∈ N non-zero and µ1, µ2, . . . , µm such that

(e1[γ1/Γ] | g1 · h1 · f1) = (e0
1 |h0

1)→n1
µ1 (e1

1 |h1
1)→n2

µ2 · · ·
→nm
µm(em1 |hm1 ) = (e′1 |h†1)

with n = n1 + n2 + · · ·+ nm and µ = µ1 ∪ µ2 ∪ · · · ∪ µm. For convenience, we furthermore
write Nj =

∑m
i=j+1 ni for each 0 ≤ j ≤ m.

It is time for the crux: for any 0 ≤ j ≤ m there are w′′, A′ ⊆ dom(w′′), h′1, e′2, h′2 such
that

(e2[γ2/Γ] | g2 · h2 · f2) ∗7−→ (e′2 |h′2 · f2)
selftran·,Π,Λ,A,R w′, w′′
h′1 · f = hj1⋃j
i=1 µi \ (domR(Π∪Λ)

1 (w′′) \ domR(Π∪Λ)
1 (w′)) ∈ effsA

′,R
ε,h′1

w′′

([], h′1, f1, [], h′2, f2) ∈ splits·,Π,Λ,A
′,R w′′

(Nj + j − n, g1 · h1, g2 · h2, e
j
1, e
′
2, h
′
1, h
′
2) ∈ safe·,Π,Λ,A

′,R
τ,ε w′, w′′.

Notice the abuse of notation in item four: we do not really remove locations, we remove any
actual effects tagged with the listed locations. The base case follows from the assumption
of the lemma; the induction simply by unrolling the safety. In the end, we are able to use
the properties in the case j = m to produce a right hand side reduction in the overall proof.
There are many details to this; here we just remark that it would be more more pleasant to
have

j⋃

i=1
µi ∈ effsA

′,R
ε,h′1

w′′

as item four. Unfortunately, that would break in the inductive step, and we are stuck with
the more complex version, which again forces the side condition on the rule. J
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Lemma 7. Π,Λ | · |Γ |= e1 � e2 : τ, ε and Π,Λ | · |Γ |= e†1 � e†2 : τ †, ε† together implies
Π |Λ |Γ |= par e1 and e†1 � par e2 and e†2 : τ × τ †, ε ∪ ε†.

Proof. Let a1, a2 ∈ N be the required numbers of anonymous regions from the respective
assumptions. To prove the desired, we unroll the definition of the logical relation: choose
a1 + a2, pick arbitrary k◦ ∈ N, w◦ ∈ W, R : Π ∪ Λ ↪→ |w◦|, A◦ ⊆ dom(w◦), γ1, γ2 ∈
V |Γ| and h◦1, h

◦
2, h
′◦
1 , h

′◦
2 ∈ H. Assume that R(FRV(ε− ρ)) ⊆ dom(w◦), A◦#R(Π ∪ Λ),

|A◦| ≥ a1 + a2, ∀r ∈ A◦. w◦(r) = ∅, (k◦, γ1, γ2) ∈ JΓKR w◦, h′◦i ⊆ h◦i , and (k◦, h′◦1 , h′◦2 ) ∈
PΛ,R
ε1∪ε2 w

◦. We must show that (k◦, h′◦1 , h′◦2 , par e1 and e†1[γ1/Γ], par e2 and e†2[γ2/Γ], h◦1, h◦2) ∈
safeΠ,Λ,A◦,R

τ1×τ2,ε1∪ε2 w
◦, w◦.

We need, obviously, to make use of the assumptions of the lemma. To this end, we claim
that to have

(k, h′◦1 , h′◦2 , par e1
1 and e2

1, par e1
2 and e2

2,

h1 · h1
1 · h2

1, h2 · h1
2 · h2

2) ∈ safeΠ,Λ,A1∪A2,R
τ1×τ2,ε1∪ε2 w◦, w, (5)

it suffices to know that

(k, h1, h2) ∈ PΛ,R
ε1∪ε2 w (6)

(h, h′◦1 , h′◦2 , h1, h2) ∈ QΛ,R
ε1∪ε2 w

◦, w (7)
(k, ∅, ∅, e1

1, e
1
2, h

1
1, h

1
2) ∈ safeΠ∪Λ,·,A1,R

τ1,ε1 w◦, w (8)
(k, ∅, ∅, e2

1, e
2
2, h

2
1, h

2
2) ∈ safeΠ∪Λ,·,A2,R

τ2,ε2 w◦, w, (9)

whenever A1#A2 and domi
Aj (w) ⊆ dom(hji ) holds. Observe, that if we can prove this,

then we are done by splitting A◦ into two parts of appropriate sizes followed by an easy
application of the assumptions of the lemma. The remaining part is to prove the claim, this
we do by complete induction on k.

Assume the claim holds for all naturals strictly less then k ∈ N; we will now prove
it also holds for k. To prove 5 we unroll the definition of safety. Pick arbitrary j ≤
k,w′ ∈ W and g1, g2, f1, f2 ∈ H. Assume the prerequisites hold, i.e., that we have
envtranΠ,Λ,A1∪A2,R w,w′, (j, g1, g2) ∈ PΠ,R

ε1∪ε2 w
′ and (g1, h1 · h1

1 · h2
1, f1, g2, h2 · h1

2 · h2
2, f2) ∈

splitsΠ,Λ,A1∪A2,R w′. Observe that we can instantiate assumptions 8 and 9 by taking gi · hi
as the public part of the heap, and adding the spare private part to the frame.

We follow the termination branch first, and assume that irr(par e1
1 and e2

1|g1 ·h1 ·h1
1 ·h2

1).
This means each of the subexpressions is also irreducible so from safety assumptions we
learn, among other things, that e1

1, e
2
1 ∈ V. However, this means that (par e1

1 and e2
1|g1 · h1 ·

h1
1 · h2

1) 7−→ (〈e1
1, e

2
1〉|g1 · h1 · h1

1 · h2
1), which contradicts the irreducibility assumption.

For the progress branch, we are left with three possibilities of reduction: either both
e1

1 and e2
1 are values, or the reduction happens inside one of them. We omit the case for

reduction inside e2
1, since it is completely symmetric to the one for e1

1; the other two cases
follow.

Assume that (e1
1 | g1 ·h1 ·h1

1 ·h2
1 · f1)→n

µ (e′11 |h†1) for some n ≤ j. From 8 we get e′12 , w′′,
h′1, h

′
2, g
′
1, g
′
2, h
′1
1 and h′12 , along with the following properties:

(e1
2|g2 · h2 · h1

2 · h2
2 · f2) 7−→∗ (e′12 |g′2 · h′2 · h′12 · h2

2 · f2),
selftranΠ∪Λ,·,A1,R w′, w′′,
A′1 = (A1 ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)),
h†1 = g′1 · h′1 · h′11 · h2

1 · f1,
µ ∈ effsA

′
1,R

ε2,h′11
w′′
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(g′1 · h′1, h′11 , f1 · h2
1, g
′
2 · h′2, h′12 , f2 · h2

2) ∈ splitsΠ∪Λ,·,A′2,R w′′,
(j − n, g1 · h1, g2 · h2, g

′
1 · h′1, g′2 · h′2) ∈ QΠ∪Λ,R

ε1 w′, w′′,

(j − n, ∅, ∅, e′11 , e′12 , h′11 , h′21 ) ∈ safeΠ∪Λ,·,A′2,R
τ1,ε1 w◦, w′′.

Obviously, we can now replay the reduction sequence for the whole right-hand-side expres-
sion. By postcondition separation and postcondition weakening lemmas, we can also split
up the postcondition into separate parts for Π and Λ, the first of which is needed by progress
branch. The other obligations of the progress branch are simple, leaving us with the final
safety requirement: (j − n, h′◦1 , h′◦2 , par e′11 and e2

1, par e′12 and e2
2, h
′
1 · h′11 · h2

1, h
′
2 · h′12 · h2

2) ∈
safeΠ,Λ,A′1∪A2,R

τ1×τ2,ε1∪ε2 w◦, w′′. This follows by induction hypothesis, since n > 0, if we can show
the four assumptions. 6 and 7 hold due to downwards-closure and composition lemmas for
pre- and post-condition, and the Λ part of the assumption above, and 8 we have verbatim
as an assumption. This leaves us only 9 to show. To show it, notice that safety is both
downwards closed in the step index, and closed under environment transitions and observe
that we have envtranΠ∪Λ,·,A2,R w,w′′ by composing the two world transitions above. This,
in conjunction with the original assumption, suffices to finish this part of the proof.

The final case we consider is when e1
1, e

2
1 ∈ V and (par e1

1 and e2
1 | g1 · h1 · h1

1 · h2
1) →1

∅
(〈e1

1, e
2
1〉 | g1 ·h1 ·h1

1 ·h2
1). In this case, we start with instantiating 8 and from the termination

branch obtain:
(e1

2|g2 · h2 · h1
2 · h2

2 · f2) 7−→∗ (e′12 |g′2 · h′2 · h′12 · h2
2 · f2),

selftranΠ∪Λ,·,A1,R w′, w′′,
∅ = (A1 ∩ dom(w′′)) ∪ (dom(w′′) \ dom(w′)),
g1 · h1 · h1

1 = g′1 · h′1 · h′11 ,
(j, e1

1, e
′1
2 ) ∈ Jτ1KR (w′′),

(j, g1 · h1, g2 · h2, g
′
1 · h′1, g′2 · h′2) ∈ QΠ∪Λ,R

ε1 w′, w′′.
Now, with the new heaps, we can instantiate 9, and get:

(e2
2|g′2 · h′2 · h′12 · h2

2 · f2) 7−→∗ (e′22 |g′′2 · h′′2 · h′12 · h′22 · f2),
selftranΠ∪Λ,·,A2,R w′′, w′′′,
∅ = (A2 ∩ dom(w′′′)) ∪ (dom(w′′′) \ dom(w′′)),
g′1 · h′1 · h2

1 = g′′1 · h′′1 · h′21 s,
(j, e1

2, e
′2
2 ) ∈ Jτ2KR (w′′′),

(j, g′1 · h′1, g′2 · h′2, g′′1 · h′′1 , g′′2 · h′′2) ∈ QΠ∪Λ,R
ε2 w′′, w′′′.

Now we can build the complete reduction for the right-hand side: (par e1
2 and e2

2|g2 · h2 · h1
2 ·

h2
2 ·f2) 7−→∗ (〈e′12 , e′22 〉|g′′2 ·h′′2 ·h′12 ·h′22 ·f2), and prove the rest of the required obligations: self-

transition out of the composition of the two given, postcondition of public heap fragments by
postcondition separation, composition and weakening, and the rest by simple manipulations.
This leaves the final safety of two pairs to be proven. We unroll the definition again,
taking i ≤ j − 1, this time only considering the termination branch, since the left-hand
side is a value, and do not do any reductions. This leaves us with proving two interesting
obligations. The first one is (i, 〈e1

1, e
2
1, ,〉〈e′12 , e′22 〉) ∈ Jτ1 × τ2KR (w†). However, since w† w

w′′′, we can easily show this by definition of the denotation of product types, downwards-
and future-world-closure, and the value assumptions obtained above. The other interesting
obligation is showing the postcondition for the local, Λ part of the heap. This is done by
using postcondition separation, composition and weakening on the postcondition properties
obtained from assumptions and by assumption 7 itself. J
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A.7 Proof of the Parallelization Theorem
The proof of the Parallelization Theorem is quite tricky. We sketch the idea of the proof
in the next section, then proceed with the technical formulation of potential safety and
Catch-up Lemma, as well as formal proofs, in the subsequent one.

A.7.1 Informal overview
The left-to-right direction of the theorem is not too hard, intuitively since sequential se-
quencing clearly can always be mimicked by parallel reduction. Thus, the hard part of the
proof is to show the direction

Π | Λ | Γ |= par e1 and e2 .↓ 〈e1, e2〉 : τ1 × τ2, ε1 ∪ ε2. (10)

The challenge is that if we take a step of reduction on the left, then we cannot always
immediately mimick it on the right, because if it is a step in (a derivative of) e2 then we
might not be ready to make it on the right, since we haven’t yet started reducing in e2 on the
right (we only start reducing e2 on the right when we are done with all the e1 reductions).

We address this issue by formulating a notion of potential safety to relate (a derivative
of) e2 on the left with (a derivative of) e2 on the right. Safety, and also potential safety,
really involves configurations (expressions and heaps) rather than just expression), but to
keep the overview, we will continue just using expression notation in the high-level sketch
here. Potential safety of e2 and ẽ2 then allows ẽ2 to catch up by doing some reductions to
reach ẽ′2, and then e2 and ẽ′2 should be safe (in the usual sense).

The idea of the proof of (10) is then to show (for suitable e1, ẽ1, e2, ẽ2 satisfying
conditions corresponding to those in the parallelization theorem) that

safe(e1, ẽ1) ∧ potentially-safe(e2, ẽ2)
=⇒ safe((par e1 and e2), 〈ẽ1, ẽ2〉)).

(11)

Now, for this to work, potential safety actually needs to allow for some transitions by e1
and ẽ1 — and the context — but regulated by the overall assumptions regarding effects,
etc., of the parallelization theorem. Thus potential safety of e2 and ẽ2 actually says that
for any good (in the sense that it is governed by overall assumptions regarding effects, etc.)
pair of transitions, β and β̃, going from e2 to e′2 and ẽ2 to ˜̃e2 respectively, there is some
sequence of catching-up reductions, call them γ, that reaches a ẽ′2 such that e′2 and ẽ′2 are
safe. Diagrammatically:

e2
pot. safe

β

ẽ2
β̃

e′2

safe

˜̃e2
γ��

ẽ′2

To show (11), we proceed by induction on the index used in the safety predicate. There
are three cases to consider, corressponding to possible reductions of par e1 and e2. The
case where e1 reduces is not too hard since we have defined potential safety to accomodate
such reductions (the β’s). The case where e1 and e2 are both values is not too hard either,
intuitively since we can just run ẽ2 until we reach safety with e2 at which point the proof
becomes simple. The case where e2 reduces, say to e′2 by a reduction α, is more tricky. We
proceed by showing potential safety of e′2 and ẽ2 (argument outline follows below), and that
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e2 pot. safe

β
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ẽ′2
α̃†��

ẽ′′2

Figure 10 Proving parallelization: recovering potential safety after α transition.

e1 and ẽ1 stay safe (this follows from the assumption on effects, etc.), which allows us to
conclude by induction.

The argument for the potential safety of e′2 and ẽ2 is outlined in Figure 10 By assumption
e2 and ẽ2 are potentially safe, as depicted by the topmost arrow, and we need to show the
potential safety depicted by the dashed arrow. Hence we consider any β and β̃ as shown, and
we need to show that there exists a catching-up reduction γ′ from ẽ†2 to ẽ′′2 . By properties
of the instrumented operational semantics, we can commute α and β to get β and α†, as
shown in the diagram (essentially, this is Lemma 2). Hence by the assumption of potential
safety of e2 and ẽ2, we get safety of e†2 and ẽ′2, as shown. Using this safety and the α†
reduction, we get a reduction α̃† and the final required safety of e′†2 and ẽ′′2 . Thus the
required catching-up reduction γ′ is γ followed by α̃†. Note that the latter makes intuitive
sense; we did a reduction on the left in e2 and now we have correspondingly extended the
catching-up reduction to be done on the right.

Formally, the Catch-up lemma in Appendix A.7 gives the precise formulation and proof
of (11); item 3 in that lemma gives the precise technical formulation of potential safety.

A.7.2 Technical details
We start by stating and prooving the catch-up lemma mentioned in the explanation in the
paper, that covers most of the proof of the theorem.

I Lemma 17 (Catch-up). Assuming that
1. (k, h1, h2) ∈ PΛ,R

ε1 w,
2. (k, ∅, ∅, e1, ẽ1, h11, h12) ∈ safeΠ∪Λ,·,A1,R

τ1,ε1 w◦, w and
3. for any g1, g2, h

†
1, h
†
2, f1, f2, w

′, j ≤ k such that
envtranΠ∪Λ,·,A2,R w,w′

(g1 · h†1, h21, f1, g2 · h†2, ∅, f2) ∈ splitsΠ∪Λ,·,A2,R w′

(j, h1, h2, h
†
1, h
†
2) ∈ QΛ,R

ε1 w,w′

there exist h′1, h′2, g′1, g′2, h22, h
′
21, ẽ

′
1, w

′′ such that
selftranΠ∪Λ,·,A2,R w′, w′′

(ẽ2|h†2 · g2 · f2) 7−→∗ (ẽ′2|h′2 · g′2 · h22 · f2)
h†1 · g1 · h21 = h′1 · g′1 · h′21
(k, g1, g2, g

′
1, g
′
2) ∈ QΠ,R

ε2 w′, w′′
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(k, h′1, h′2) ∈ PΛ,R
ε2 w′′

(j, h◦1, h◦2, h′1, h′2) ∈ QΛ,R
ε1∪ε2 w

◦, w′′

(k, ∅, ∅, e2, ẽ′2, h
′
21, h22) ∈ safeΠ∪Λ,·,A′2,R

τ2,ε2 w◦, w′′,
we have (k, h◦1, h◦2, par e1 and e2, 〈ẽ1, ẽ2〉, h1·h11·h21, h2·h12) ∈ safeΠ,Λ,A1+A2,R

τ1×τ2,ε1∪ε2 w◦, w, as long
as rds ε1∪wrs ε1∪rds ε2∪wrs ε2 ⊆ Λ, rds ε1# wrs ε2, rds ε2#(wrs ε1∪als ε1), wrs ε1# wrs ε2,
dom(hi1) ⊇ domAi

1 (w), dom(h12) ⊇ domA1
2 (w) and domA2

2 (w) = ∅.

Proof. The proof proceeds by well-founded induction on k. Take any j ≤ k, g1, g2, f1, f2, w1
such that

envtranΠ,Λ,A1+A2,R w,w1
(j, g1, g2) ∈ PΠ,R

ε1∪ε2 w1
(g1, h1 · h11 · h21, f1, g2, h2 · h12, f2) ∈ splitsΠ,Λ,A1+A2,R w1

There are two branches to consider. However, par e1 and e2 can always reduce, so the
termination branch is trivial. In the progress case, we proceed by case analysis on the
reduction to get three subcases.
1. (e1 | g1 · h1 · h11 · h21 · f1)→n

µ (e′1 |h†1)
In this case we can use the assumption (2), which we instantiate with j ≤ k, g1 · h1, g2 ·
h2, f1 · h21, f2, w1. We need to show the prerequisites:

envtranΠ∪Λ,·,A1,R w,w1, which holds by env-transition weakening
(j + 1, g1 · h1, g2 · h2) ∈ PΠ∪Λ,R

ε1 w1, which holds by assumptions, precondition com-
position, precondition weakening and future-world closure of precondition
(g1 · h1, h11, f1 · h21, g2 · h2, h12, f2) ∈ splitsΠ∪Λ,·,A1,R w1, which holds by massaging
the assumption about splits.

From the progress branch we obtain the following properties:
(ẽ1|g2 · h2 · h12 · f2) 7−→∗ (ẽ′1|g′2 · h′2 · h′12 · f2)
selftranΠ∪Λ,·,A1,R w1, w2
A′1 = (A1 ∩ dom(w2)) ∪ (dom(w2) \ dom(w1))
h†1 = g′1 · h′1 · h′11 · f1 · h21

µ ∈ effsA
′
1,R

ε1,h′11
w2

(g′1 · h′1, h′11, f1 · h21, g
′
2 · h′2, h′12, f2) ∈ splitsΠ∪Λ,·,A′1,R w2

(j − n, g1 · h1, g2 · h2, g
′
1 · h′1, g′2 · h′2) ∈ QΠ∪Λ,R

ε1 w1, w2

(j − n, ∅, ∅, e′1, ẽ′1, h′11, h
′
12) ∈ safeΠ∪Λ,·,A′1,R

τ1,ε1 w◦, w2
From these we can conclude that:

(〈ẽ1, ẽ2〉|g2 · h2 · h12 · f2) 7−→∗ (〈ẽ′1, ẽ2〉|g′2 · h′2 · h′12 · f2) (recall pairs of expressions is
syntactic sugar)
selftranΠ,Λ,A1+A2,R w1, w2, by self-transition strengthening
A′1 +A2 = ((A1 +A2)∩dom(w2))∪(dom(w2)\dom(w1)), by self-transition restrictions
(g′1, h′1 · h′11 · h21, f1, g

′
2, h
′
2 · h′12, f2) ∈ splitsΠ,Λ,A′1+A2,R w2, by massaging the splits

assumption
µ ∈ effsA

′
1+A2,R

ε1∪ε2,h′1·h′11·h21
w2, by effs strengthening

(j − n, g1, g2, g
′
1, g
′
2) ∈ QΠ,R

ε1∪ε2 w1, w2, by postcondition separation and postcondition
weakening
(j − n, h′1, h′2) ∈ PΛ,R

ε1 w2, by postcondition separation and precondition composition
envtranΠ∪Λ,·,A2,R w,w2, by envtransition composition and relation of env-transition
and self-transition
(j − n, h1, h2, h

′
1, h
′
2) ∈ QΛ,R

ε1 w,w2, by postcondition separation
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Since 0 < n ≤ j, we can now use the induction hypothesis to discharge the final safety
obligation: we have already obtained preconditions (1) and (2), while (3) is closed under
the world transition that we have made (see the final two properties above).

2. (e2 | g1 · h1 · h11 · h21 · f1)→n
µ (e′2 |h†1)

First, we need to establish that h†1 = g1 · h′1 · h′21 · f1 · h11, dom(h′1) = dom(h1), µ ∈
effsA,Rε2,h′21

w and (j−n, h′1, h2) ∈ PΛ,R
ε1 w1. This can be obtained by using the assumption

(3), as follows. Take g1, g2, h1, h2, f1 · h11, f2 · h12, w1, k ≤ k as the universally quantified
variables in (3). We need to show:

envtranΠ∪Λ,·,A2,R w1, w1, which holds by reflexivity
(g1 · h1, h21, f1 · h11, g2 · h2, ∅, f2 · h12) ∈ splitsΠ∪Λ,·,A2,R w1, by massaging the splits
we have assumed earlier
(k, h1, h2, h1, h2) ∈ QΛ,R

ε1 w1, w1, again, by reflexivity.
From this we obtain a bunch of properties, by unfolding safety. However, we are only
interested in a few, namely that h†1 = gp1 · hl1 · hp1 · f1 · h11, and µ ∈ effsA

†
2,R

ε2,h
p
1
w† and

selftranΠ∪Λ,·,A2,R w1, w
†. Let h‡1 = gp1 · hl1 · hp1.

Now, as witnesses for the progress case, we take e2, w1, A1+A2, h
′
1 ·h11 ·h′21, h2 ·h12, g1, g2,

where h′1 = h‡1 �domR(Λ)
1 (w1) and h′21 = h‡1 �dom1(w1)\domR(Π∪Λ)

1 (w1). It suffices to show:
(ẽ2|g2 · h2 · h12 · f2) 7−→∗ (ẽ2|g2 · h2 · h12 · f2) by reflexivity
selftranΠ,Λ,A1+A2,R w1, w1 by reflexivity
h†1 = g1 · h′1 · h11 · h′21 · f1 by the restriction on actual effects (µ) we know g1 didn’t
change, and we have an assumption to finish this off
(g1, h

′
1 · h11 · h′21, f1, g2, h2 · h12, f2) ∈ splitsΠ,Λ,A1+A2,R w1 by assumption

µ ∈ effsA2,R
ε2,h′21

w1, since any region killed between w1 and w† has to be inA2, dom(hp1) ⊆
dom(h′21), and we have an assumption for the other effects inside the world
(j − n, g1, g2, g1, g2) ∈ QΠ,R

ε1∪ε2 w1, w1 by reflexivity,
so it remains to show that (j − n, h◦1, h◦2, par e1 and e′2, 〈ẽ1, ẽ2〉, h′1 · h11 · h′21, h2 · h12) ∈
safeΠ,Λ,A1+A2,R

τ1×τ2,ε1∪ε2 w◦, w1 holds. We can use induction hypothesis to prove it, provided we
show the three assumptions. The first one ((j − n, h′1, h2) ∈ PΛ,R

ε1 w1) is simple, since
µ is confined to ε2, the second one ((j − n, ∅, ∅, e1, ẽ1, h11, h12) ∈ safeΠ∪Λ,·,A1,R

τ1,ε1 w◦, w1)
holds by env-transition closure and downwards closure of safe. This leaves us the last
precondition to show. To this end, we take h†1, h

†
2, g
†
1, g
†
2, f
†
1 , f2†, i ≤ j − n and w2, such

that
envtranΠ∪Λ,·,A2,R w1, w2
(i, h′1, h2, h

†
1, h
†
2) ∈ QΛ,R

ε1 w1, w2

(g†1 · h†1, h′21, f
†
1 , g
†
2 · h†2, ∅, f†2 ) ∈ splitsΠ∪Λ,·,A2,R w2

Now we can instantiate the original assumption (3) with h1[h†1/h′1], h†2, g
†
1, g
†
2, f
†
1 , f
†
2 , i ≤ k

and w2, where the heap substitution notation means that any change (allocation or
update) from h′1 to h†1 should be replayed on h1 (this is well-specified, since dom(h1) =
dom(h′1)). We need to prove the following:

envtranΠ∪Λ,·,A2,R w,w2, by envtran-comp and envtran-weaken
(i, h1, h2, h1[h†1/h′1], h†2) ∈ QΛ,R

ε1 w,w2, by definition of heap substitution, and assump-
tion
(g†1 · h1[h†1/h′1], h21, f

†
1 , g
†
2 · h†2, ∅, f†2 ) ∈ splitsΠ∪Λ,·,A2,R w2 by assumption, given that

dom(h†1) = dom(h1[h†1/h′1])
By proving these properties, we obtain the following:

(k, h‡1, h
‡
2) ∈ PΛ,R

ε2 w3
selftranΠ∪Λ,·,A2,R w2, w3
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(ẽ2|h†2 · g†2 · f†2 ) 7−→∗ (ẽ′2|h‡2 · g‡2 · h22 · f‡2 )
h1[h†1/h′1] · g†1 · h21 = h‡1 · g‡1 · h‡21
(k, g†1, g

†
2, g
‡
1, g
‡
2) ∈ QΠ,R

ε2 w2, w3

(i, h◦1, h◦2, h
‡
1, h
‡
2) ∈ QΛ,R

ε1∪ε2 w
◦, w3

(g‡1 · h‡1, h‡21, f
†
1 , g
‡
2 · h‡2, h22, f

†
2 ) ∈ splitsΠ∪Λ,·,A′2,R w3

(k, ∅, ∅, e2, ẽ′2, h
‡
21, h22) ∈ safeΠ∪Λ,·,A′2,R

τ2,ε2 w◦, w3

Recall that µ ∈ effsA2,R
ε2,h′21

w1, and (e2 | g1 · h1 · h11 · h21 · f1)→n
µ (e′2 | g1 · h′1 · h′21 · f1 · h11).

Hence, we can use Lemma 2 to get

(e2 | g†1 · h1[h†1/h′1] · h21 · f†1 )→n
µ (e′2 | g†1 · h†1 · h′21 · f†1 ),

which allows us to instantiate the safety predicate above. Note that this argument is
precisely the commutation of α and β in the explanation in Section 4.1 (cf. Figure 10).
We need to show:

envtranΠ∪Λ,·,A′2,R w3, w3, by reflexivity
(j, g‡1, g

‡
2) ∈ PΠ,R

ε2 w3, trivial, since rds ε2#Π
(j, h‡1, h

‡
2) ∈ PΛ,R

ε2 w3, by assumption
(g‡1 · h‡1, h‡21, f1 · h11 · f‡1 , g‡2 · h‡2, h22, f

†
2 ) ∈ splitsΠ∪Λ,·,A′2,R w3, by massaging the as-

sumption.
These facts, along with the reduction step, give us the following:

selftranΠ∪Λ,·,A′2,R w3, w4
(ẽ′2|h‡2 · g‡2 · h22 · f†2 ) 7−→∗ (ẽ′′2 |gf2 · hf2 · hf22 · f†2 )
g†1 · h†1 · h′21 = gf1 · hf1 · hf21
(gf1 · hf1 , hf21, f

†
1 , g

f
2 · hf2 , hf22, f

†
2 ) ∈ splitsΠ∪Λ,·,A′′2 ,R w4

(j − n, g‡1 · h‡1, g‡2 · h‡2, gf1 · hf1 , gf2 · hf2 ) ∈ QΠ∪Λ,R
ε2 w3, w4

(j − n, ∅, ∅, e′2, ẽ′′2 , hf21, h
f
22) ∈ safeΠ∪Λ,·,A′′2 ,R

τ2,ε2 w◦, w4
Now we can show the remaining goals:

selftranΠ∪Λ,·,A2,R w2, w4, by self-transition composition
(ẽ2|g†2 · h†2 · f†2 ) 7−→∗ (ẽ′′2 |gf2 · hf2 · hf22 · ff2 ), by transitivity
h†1 · g†1 · h′21 = gf1 · hf1 · hf21, by assumption
(j − n, g†1, g†2, gf1 , gf2 ) ∈ QΠ,R

ε2 w2, w4, by postcondition composition
(j − n, hf1 , hf2 ) ∈ PΛ,R

ε2 w4, by precondition composition
(i, h◦1, h◦2, h

f
1 , h

f
2 ) ∈ QΛ,R

ε1∪ε2 w
◦, w4, by postcondition composition

(j − n, g‡1 · h‡1, g‡2 · h‡2, gf1 · hf1 , gf2 · hf2 ) ∈ QΠ∪Λ,R
ε2 w3, w4, by assumption

(j − n, ∅, ∅, e′2, ẽ′′2 , hf21, h
f
22) ∈ safeΠ∪Λ,·,A′′2 ,R

τ2,ε2 w◦, w4, by assumption,
which ends this case.

3. (par e1 and e2 | g1 · h1 · h11 · h21 · f1)→1
∅ (〈e1, e2〉 | g1 · h1 · h11 · h21 · f1)

This means in particular that irr(ei|g1 · h1 · h11 · h21 · f1). We only need to consider the
case where j ≥ 1. We start by using the assumption (2). We need to provide:

envtranΠ∪Λ,·,A1,R w,w1, by env-transition weakening
(j, g1 · h1, g2 · h2) ∈ PΠ∪Λ,R

ε1 w1, by precondition separation, assumption and (1)
(g1 ·h1, h11, f1 ·h21, g2 ·h2, h12, f2) ∈ splitsΠ∪Λ,·,A1,R w1, by massaging the assumption
about splits.

From the termination case we can now get:
(ẽ1|g2 · h2 · h12 · f2) 7−→∗ (ẽ′1|g′2 · h′2 · h′12 · f2)
selftranΠ∪Λ,·,A2,R w1, w2
g1 · h1 · h11 = g′1 · h′1 · h′11
(g′1 · h′1, h′11, f1 · h21, g

′
2 · h′2, h′12, f2) ∈ splitsΠ∪Λ,·,∅,R w2
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(j, g1, g2, g
′
1, g
′
2) ∈ QΠ,R

ε1 w1, w2
(j, h1, h2, h

′
1, h
′
2) ∈ QΛ,R

ε1 w1, w2

(j, e1, ẽ′1) ∈ Jτ1KR w2
Note that ẽ′1 is irreducible, as it’s a value. At this point we can use assumption (3). We
need to show:

envtranΠ∪Λ,·,A2,R w,w2, by relation between self-transition and env-transition and
env-transition weakening
(j, h1, h2, h

′
1, h
′
2) ∈ QΛ,R

ε1 w,w2, by assumption
(g′1 · h′1, h21, f1 · h′11, g

′
2 · h′2, ∅, f2 · h′12) ∈ splitsΠ∪Λ,·,A2,R w2, by splits above.

By these facts we are able to obtain the following:
selftranΠ∪Λ,·,A2,R w2, w3
(ẽ2|g′2 · h′2 · f2 · h′12) 7−→∗ (ẽ′2|g′′2 · h′′2 · h22 · f2 · h′12)
h′1 · g′1 · h21 = h′′1 · g′′1 · h′21
(k, g′1, g′2, g′′1 , g′′2 ) ∈ QΠ,R

ε2 w2, w3
(k, h′′1 , h′′2) ∈ PΛ,R

ε2 w3
(j, h◦1, h◦2, h′′1 , h′′2) ∈ QΛ,R

ε1∪ε2 w
◦, w3

(k, ∅, ∅, e2, ẽ′2, h
′′
21, h22) ∈ safeΠ∪Λ,·,A′2,R

τ2,ε2 w◦, w3

(g′′1 · h′′1 , h′′21, f1 · h′11, g
′′
2 · h′′2 , h22, f2 · h′12) ∈ splitsΠ∪Λ,·,A′2,R w3.

Finally, we can instantiate the safety predicate obtained above. We need to show:
envtranΠ∪Λ,·,A′2,R w3, w3, by reflexivity
(j, h′′1 , h′′2) ∈ PΛ,R

ε2 w3, by assumption
(j, g′′1 , g′′2 ) ∈ PΠ,R

ε2 w3, trivial, since rds ε2#Π
(g′′1 · h′′1 , h′′21, f1 · h′11, g

′′
2 · h′′2 , h22, f2 · h′12) ∈ splitsΠ∪Λ,·,A′2,R w3, by assumption.

From the termination branch (by irreducibility of e2), we get:
selftranΠ∪Λ,·,A′2,R w3, w4
(ẽ′2|g′′2 · h′′2 · h22 · f2 · h′12) 7−→∗ (ẽ′′2 |g′′′2 · h′′′2 · h′′′22 · f2 · h′12)
g′′1 · h′′1 · h′′21 = g′′′1 · h′′′1 · h′′′21
(j, g′′1 , g′′2 , g′′′1 , g

′′′
2 ) ∈ QΠ,R

ε2 w3, w4
(j, h′′1 , h′′2 , h′′′1 , h′′′2 ) ∈ QΛ,R

ε2 w3, w4

(j, e2, ẽ′′2) ∈ Jτ2KR w4
(g′′′1 · h′′′1 , h′′′21, f1 · h′11, g

′′′
2 · h′′′2 , h′′′22, f2 · h′12) ∈ splitsΠ∪Λ,·,∅,R w4

At this point we can finally provide witnesses and prove the remaining properties:
selftranΠ,Λ,A1+A2,R w1, w4, by weakening and composition of previous self-transitions
(〈ẽ1, ẽ2〉|g2 · h2 · h12 · f2) 7−→∗ (〈ẽ′1, ẽ′′2〉|g′′′2 · h′′′2 · h′′′22 · h′12 · f2), by transitivity and
irreducibility of ẽ′1
∅ ∈ effs∅,Rε1∪ε2,h′′′1 ·h′11·h′′′21

w4, which is trivially true
g1 · h1 · h11 · h21 = g′′′1 · h′′′1 · h11′ · h′′′21, by congruence closure of equalities
(g′′′1 , h

′′′
1 · h′′′21 · h′11, f1, g

′′′
2 , h

′′′
2 · h′′′22 · h′12, f2) ∈ splitsΠ,Λ,∅,R w4, by massaging the as-

sumption above
(j−1, g1, g2, g

′′′
1 , g

′′′
2 ) ∈ QΠ,R

ε1∪ε2 w1, w4, by weakening and composition of postcondition
assumptions

This leaves us with the final obligation to prove: (j − 1, h◦1, h◦2, 〈e1, e2〉, 〈ẽ′1, ẽ′′2〉, h′′′1 · h′11 ·
h′′′21, h

′′′
2 · h′12 · h′′′22) ∈ safeΠ,Λ,∅,R

τ1×τ2,ε1∪ε2 w
◦, w4. To do this, we assume:

envtranΠ,Λ,∅,R w4, w5
(i, g†1, g

†
2) ∈ PΠ,R

ε1∪ε2 w5

(g†1, h′′′1 · h′11 · h′′′21, f
†
1 , g
†
2, h
′′′
2 · h′12 · h′′′22, f

†
2 ) ∈ splitsΠ,Λ,∅,R w5
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Obviously, both expressions are irreducible, so we take the same values as witnesses.
Most obligations are proved by reflexivity or assumption, the ones left are:

(i, 〈e1, e2〉, 〈ẽ′1, ẽ′′2〉) ∈ Jτ1 × τ2KR w5, which holds by donwards- and future-world-
closure of type denotation, and definition of product types, and
(i, h◦1, h◦2, h′′′1 , h′′′2 ) ∈ QΛ,R

ε1∪ε2 w
◦, w5, which holds by weakening, composition and down-

wards closure of previous postcondition assumptions.
This ends the proof.

J

I Lemma 18 (Parallelization). Assuming that
1. Π,Λ || Γ ` e1 : τ1, ε1,
2. Π,Λ || Γ ` e2 : τ2, ε2,
3. rds ε1 ∪ wrs ε1 ∪ rds ε2 ∪ wrs ε2 ⊆ Λ,
4. rds ε1 ∩ wrs ε2 = rds ε2 ∩ (wrs ε1 ∪ als ε1) = wrs ε1 ∩ wrs ε2 = ∅,
the following property holds:

Π | Λ | Γ |= 〈e1, e2〉 ∼= par e1 and e2 : τ1 × τ2, ε1 ∪ ε2.

Proof. The proof consists of two parts, for two directions of contextual approximation. For
both these direction we need assumptions about e1 and e2, that follow by the fundamental
theorem of logical relations:

Π,Λ || Γ |= e1 � e1 : τ1, ε1 Π,Λ || Γ |= e2 � e2 : τ2, ε2

1. To show: Π | Λ | Γ |= 〈e1, e2〉 � par e1 and e2 : τ1 × τ2, ε1 ∪ ε2.
We start this part, by taking a1 and a2, the witnesses from the logical relations above,
and setting a = a1 + a2 as the witness for the logical relation. Now we can assume the
initial conditions:
R(FRV(ε1 ∪ ε2)) ⊆ dom(w)
A1 +A2#R(Π ∪ Λ)
|Ai| ≥ ai, for i ∈ {1, 2}
∀r ∈ A1 +A2. w(r) = ∅
(k, γ1, γ2) ∈ JΓKR w
h◦i ⊆ hi, for i ∈ {1, 2}
(k, h◦1, h◦2) ∈ PΛ,R

ε1∪ε2 w.
What remains to be shown is safety: (k, h◦1, h◦2, 〈e1

1, e
1
2〉, par e2

1 and e2
2, h1, h2) ∈ safeΠ,Λ,A1+A2,R

τ1×τ2,ε1∪ε2 w,w,
where eji = ei[γj/Γ]. We can also use the initial conditions above to obtain:

(k, ∅, ∅, e1
i , e

2
i , ∅, ∅) ∈ safeΠ∪Λ,·,Ai,R

τi,εi w,w.

We proceed by well-founded induction, keeping the additional assumption that (k, h1 �domR(Λ)
1 (w)

, h2 �domR(Λ)
2 (w)) ∈ PΛ,R

ε1∪ε2 w. After unrolling safety, there are three possibilities. Either
e1
i are both irreducible, in which case we can recover the final reductions for e2

i , replay
those, and reduce the parallel composition to the pair of values related to the left-hand-
side pair, or at least one of e1

i can reduce. In the latter cases, we can use the respective
assumption to obtain the matching reduction, perform it, and use the induction hypoth-
esis (with downwards- and envtran-closure ensuring that the other safety assumption
matches and the precondition assumption fulfilled due to Λ being public). The details
are very similar to the compatibility of parallel composition, and so are omitted.
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2. To show: Π | Λ | Γ |= par e1 and e2 � 〈e1, e2〉 : τ1 × τ2, ε1 ∪ ε2.
We proceed in the similar manner, by taking the witnesses, providing a1 + a2 as the
witness for the whole computation, and obtaining the safety obligations: show that
(k, h◦1, h◦2, par e1

1 and e1
2, 〈e2

1, e
2
2〉, h1, h2) ∈ safeΠ,Λ,A1+A2,R

τ1×τ2,ε1∪ε2 w,w provided that (k, ∅, ∅, e1
i , e

2
i , ∅, ∅) ∈

safeΠ∪Λ,·,Ai,R
τi,εi w,w, where eji = ei[γj/Γ]. However, to show it we use the catch-up

lemma proved above. To do this, we need to show its three preconditions (we let
hl1 = h1 �domR(Λ)

1 (w), h11 = h1 \ hl1, h12 = ∅, and similar for h2):
(k, hl1, hl2) ∈ PΛ,R

ε1 w, which holds by pre-weakening,
(k, ∅, ∅, e1

1, e
2
1, h11, h12) ∈ safeΠ∪Λ,·,A1,R

τ1,ε1 w,w, which is easy to show since h1i is just
some random heap outside the control of the world (regions in A1 are empty),
and the final catching-up precondition. To show this property, take any g1, g2, h

†
1, h
†
2, f1, f2, w

′, j ≤
k such that:

envtranΠ∪Λ,·,A2,R w,w′

(g1 · h†1, ∅, f1, g2 · h†2, ∅, f2) ∈ splitsΠ∪Λ,·,A2,R w′

(j, h1, h2, h
†
1, h
†
2) ∈ QΛ,R

ε1 w,w′

We take the witnesses to be the precise same things, so most of the obligations hold
by reflexivity. The ones left are:

(j, h◦1, h◦2, h
†
1, h
†
2) ∈ QΛ,R

ε1∪ε2 w,w
′, which by post-weaken, since h◦i = hli,

(k, ∅, ∅, e1
2, e

2
2, ∅, ∅) ∈ safeΠ∪Λ,·,A2,R

τ2,ε2 w,w′, which holds by envtran-closure of the
safety assumption, and
(k, h†1, h

†
2) ∈ PΛ,R

ε2 w′, which holds because of disjointness condition on ε1 and ε2

— when cut down to the ε2-read regions, h†i = h◦i , for which we have the right
assumption.

This ends the proof.

J
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1 The Language

We build our logic for a simple, class-based programming language. For simplicity of
both semantics and the logic, the language uses let-bindings and expressions, but it
stays relatively low-level by ensuring that all the values are machine-word size. The
values include variables, natural numbers, booleans, unit, object references (pointers),
the null pointer and the special variable this. The expressions include values, let bindings,
conditionals, constructor and method calls, field reads and writes, atomic compare-and-
swap expression and a fork call. The syntax of values and expressions is shown in Figure 1.
Note that for simplicity classes can have only one constructor each, and that it has to
end with this, which ensures that constructors return the newly allocated value. Actual
object references o cannot occur in the text of the program, but need to be values for
the operational semantics to be able to reduce.

In Figure 2 we present the semantic domains: the interesting part is the machine
state, which in addition to the heap also contains a pool of store buffers, one per thread,
and the program state. The latter is only consistent if the thread pool contains the same
threads that the store buffer pool contains — or if the program has already gone wrong.

Following the Views framework [1], the operational semantics is split into two com-
ponents: a thread-local small-step semantics labeled with actions that occur during the
step, and action semantics that defines the effect of the action on the machine state.
Below, the possible actions are given, and in the Figure 3 we present the thread-local
semantics. The interpretation of actions is shown in Figure 6.

a ∈ Act ::= ε | read(t, o, f, v) | write(t, o, f, v) | cas(t, o, f, vo, vn, r) | new(t, C, o)
| type(t, o, T ) | fork(t, o, T, t′) | �
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ClassDef ::= class C = {T f; CDef; MDef} (Class definition)

MDef ::= T m(T x) = e (Method definition)

CDef ::= C(T x) = (e; this) (Constructor definition)
Val 3 v ::= x | null | this | o | n | b | () (Values)

Expr 3 e ::= v | let x = e1 in e2 | if v then e1 else e2 (Expressions)
| new C(v̄) | v.f | v.f := v | v.m(v) | CAS(v1.f, v2, v3) | fork(v.m)

E ::= [ ] | let x = E in e (Evaluation Contexts)

Figure 1: The syntax of the programming language.

t ∈ TId (Thread Identifiers)
o ∈ OId (Object Identifiers)

v ∈ Val
def
= {null}+ OId + N + 2 + 1 (Semantic Values)

OHeap
def
= OId × FName ⇀fin Val (Object Heaps)

THeap
def
= OId ⇀fin CName (Type Heaps)

h ∈ Heap
def
= OHeap × THeap (Heaps)

s ∈ SBuffer
def
= seq (OId × FName ×Val) (Store Buffers)

T ∈ TPool
def
= TId ⇀fin Expr (Thread Pool)

U ∈ SPool
def
= TId ⇀fin SBuffer (Store Buffer Pool)

µ ∈ MSt
def
= Heap × SPool + {�} (Memory State)

PSt
def
= {(µ, T ) ∈ MSt × TPool | (Program State)
∀h ∈ Heap, U ∈ SPool . µ = (h, U)⇒ domU = domT

Figure 2: Semantic domains
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Note that the action semantics uses two helper functions: lookup and flush. These
are used to determine the result of reading a field from a thread’s perspective, and to
update the state of the heap with a contents of the buffer. These functions are defined
in Figure 5.

(t, E[let x = v in e])
ε−→ {(t, E[e[v/x]])}

Let

(t, E[if true then e1 else e2])
ε−→ {(t, E[e1])}

If-True

(t, E[if false then e1 else e2])
ε−→ {(t, E[e2])}

If-False

(t, E[CAS(o.f, vo, vn)])
cas(t,o,f,vo,vn,r)−−−−−−−−−−→ {(t, E[r])}

CAS

ctorBody(C) = (C(T x) = e)

(t, E[new C(v̄)])
new(t,C,o)−−−−−−→ {(t, E[e[o, v̄/this, x̄]])}

New

(t, E[o.f])
read(t,o,f,v)−−−−−−−→ {(t, E[v])}

Read

(t, E[o.f := v])
write(t,o,f,v)−−−−−−−−→ {(t, E[()])}

Write

body(C,m) = (T m(T x) = e)

(t, E[o.m(v)])
type(t,o,C)−−−−−−→ {(t, E[e[o, v/this, x]])}

Call

body(C,m) = (unit m() = e) t 6= t′

(t, E[fork(o.m)])
fork(t,o,C,t′)−−−−−−−−→ {(t, E[()]), (t′, e[o/this])}

Fork

(t, e)
flush(t)−−−−→ {(t, e)}

Flush

Figure 3: Thread-local semantics — the non-fault cases.

Finally, the complete semantics proceeds by reducing one of the threads using the
thread-local semantics, then interpreting the resulting action with the action semantics,
and reducing to a memory state in the resultant set, as in Figure 4. Note how in some
cases, notably read, this might require “guessing” the return value, and checking that the
guess was right using the action semantics.

t ∈ domT (t, T (t))
a−→ T ′ µ′ ∈ JaK(µ)

(µ, T )→ (µ′, (T − t) + T ′)
Step

Figure 4: Single step program evaluation
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lookup(−.−,−,−) : OId × FName × SBuffer ×Heap ⇀ Val

lookup(o.f, α, h)
def
=





⊥ when (o, f) 6∈ dom(h)

v when h(o, f) = v ∧ ∀v′ ∈ Val . (o, f, v′) 6∈ α
or ∃β, γ ∈ SBuffer . α = β · (o, f, v) · γ ∧
∀v′ ∈ Val . (o, f, v′) 6∈ γ

flush(−,−) : Heap × SBuffer → Heap

flush(h, ε)
def
= h

flush(h, (o, f, v) · α)
def
=

{
flush(h[(o, f) 7→ v], α) when (o, f) ∈ dom(h)

flush(h, α) otherwise

Figure 5: Generic mathematical functions used throughout the report.

Finally, we show one of the simple lemmas about operational semantics, that we
need in the process of building the logic. The decomposition lemma states that the only
terminal program state that is not a fault is the one, in which all the store buffers are
flushed, and all the threads have computed their respective values.

Lemma 1 (Decompose). For any consistent, non-error program state ((h, U), T ) one of
the following holds:

• For any thread t ∈ dom(T ) there exists a value v ∈ Val such that T (t) = v and
U(t) = ε

• There exists a (possibly error) state (µ′, T ′) such that (µ, T )→ (µ′, T ′).

2 Model

The construction in this section follows closely the one presented in iCAP. As in that
case, the non-recursive parts of the model are defined in the category of Sets, Sets, while
the recursive ones — in the topos of trees, S.

2.1 Local States, Shared States and the Treatment of Store Buffers

Local states consist of the usual, physical heap and the state transition capability map.
Shared states consist of an abstract state and a labelled transition system for each shared
region. For the buffered updates we use the physical store buffers defined in Section 1.
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JεK(h, U) = {(h, U)}
J�K(h, U) = {�}

Jread(t, o, f, v)K(h, U) =





{(h, U)} if (o, f) ∈ domh and lookup(o.f, U(t), h) = v

∅ if t 6∈ domU or (o, f) ∈ domh and lookup(o.f, U(t), h) 6= v

{�} if (o, f) 6∈ domh

Jwrite(t, o, f, v)K(h, U) =





{(h, U [t 7→ U(t) · (o, f, v)])} if (o, f) ∈ domh and t ∈ domU

{�} if (o, f) 6∈ domh

∅ if t 6∈ domU

Jnew(t, T, o)K(h, U) =





{(h[(o, f) 7→ null, o 7→ T ], U)} if o 6∈ domh and fields(T ) = f

∅ if o ∈ domh

{�} if fields(T ) undefined

Jcas(t, o, f, vo, vn, r)K(h, U) =





{(flush(h, U(t) · (o, f, vn)), U [t 7→ ε])} if (o, f) ∈ domh, r = true
and lookup(o.f, U(t), h) = vo

{(h, U)} if (o, f) ∈ domh, r = false
and lookup(o.f, U(t), h) 6= vo

{�} if (o, f) 6∈ domh

∅ otherwise

Jtype(t, o, C)K(h, U) =





{(h, U)} if o ∈ domt h and ht(o) = C

∅ if o ∈ domt h and ht(o) 6= C

{�} if o 6∈ domt h

Jfork(t, o, T, t′)K(h, U) =





{(h, U [t′ 7→ ε])} if o ∈ domt h, ht(o) = C and t′ 6∈ domU

∅ if o ∈ domt h and t′ ∈ domU or ht(o) 6= C

{�} if o 6∈ domt h

Jflush(t)K(h, U) =

{
{(h[(o, f) 7→ v], U [t 7→ α])} if U(t) = (o, f, v) · α and (o, f) ∈ domh

∅ if t 6∈ dom(U), U(t) = ε, or (o, f) 6∈ domh

JaK(�) = {�}

Figure 6: Action semantics
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Perm
def
= {q ∈ Q | 0 ≤ q ≤ 1} (Permissions)

Perm+ def
= {q ∈ Perm | 0 < q} (Non-zero permissions)

Cap
def
= {f ∈ (RId ×AId)→ Perm | ∃R ⊆fin RId .

∀r ∈ RId \R. ∀α ∈ AId . f(r, α) = 0}
(Capabilities)

l ∈ LState
def
= Heap × Cap (Local States)

LTS
def
= AId → P(SId × SId) (Transition Systems)

s ∈ SState
def
= RId ⇀fin (SId × LTS ) (Shared States)

AState
def
= LState × SState × SPool

where PVal denotes the least set such that

PVal ∼= Val + Strings + (PVal × PVal).

We write l.h and l.c to refer to the appropriate components of the local state l, while
s(r).s and s(r).p to refer to the state identifier and transition system components of
region r in a shared state s.

Local State Composition

•LState = {(l1, l2, lr) | dom(l1.h) ∩ dom(l2.h) = ∅ ∧ (∀t ∈ ∆(RId ×AId). l1.c(t) + l2.c(t) ≤ 1)

∧ lr.h = l1.h ∪ l2.h ∧ lr.c = l1.c+ l2.c},

where + on finite maps denotes pointwise addition.
The relation is functional, so it induces a partial function

•LState : ∆(LState)×∆(LState) ⇀ ∆(LState) ∈ S

Lemma 2. ∀l1, l2, l3 ∈ ∆(LState). . (l1 = l2 •LState l3)⇒ (l1 = l2 •LState l3 ∨ .⊥)

Proof. Using the theory of upwards-closure from the iCAP technical report [2]

Action Allowed

act◦ : LState × RId → P(AId) ∈ Sets

act◦(l, r)
def
= {α ∈ AId | l.c(r, α) < 1}

Update Allowed

upd◦ : LState × RId × LTS → P(SId × SId) ∈ Sets

upd◦(l, r, p)
def
= {(s1, s2) ∈ SId × SId | ∃α ∈ act◦(l, r). (s1, s2) ∈ p(α)}
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2.2 Interference Relation

In our setup, interference is more complicated then in plain iCAP, due to the existance
of store buffered updates. While in iCAP the interference concerned only the shared
regions and transitions they are allowed to make, we also have to consider the three
kinds of actions the environment can take with respect to the buffers: the allocation of
a new store buffer, a buffered update written into an existing one, or a flushing of an
update from store buffer to the heap. The interference is thus defined as follows.

(l, U1) Rn (l, U2) iff dom(U1) ⊆ dom(U2) ∧ ∀t ∈ dom(U2) \ dom(U1). U2(t) = ε ∧
∀t ∈ dom(U1). U2(t) = U1(t)

(l, U1) Rw (l, U2) iff dom(U1) = dom(U2) ∧
∃t ∈ dom(U2), o ∈ OId , f ∈ FName, v ∈ Val . (o, f) 6∈ dom(l.h) ∧
U2(t) = U1(t) · (o, f, v) ∧ ∀t′ ∈ dom(U2). t 6= t′ ⇒ U1(t) = U2(t)

(l1, U1) Rf (l2, U2) iff dom(U1) = dom(U2) ∧
∃t ∈ dom(U1), o ∈ OId , f ∈ FName, v ∈ Val . U1(t) = (o, f, v) · U2(t)

l2 = flush(l1, (o, f, v)) ∧ ∀t′ ∈ dom(U2). t 6= t′ ⇒ U1(t) = U2(t)

Rsb
def
=(Rn ∪Rw ∪Rf )∗

(l1, s1) R
A
r (l2, s2) iff U1 = U2 ∧ l1 ≤ l2 ∧ dom(s1) ⊆ dom(s2) ∧

∀r ∈ dom(s1). (s1(r).s, s2(r).s) ∈ (
⋃

α∈A,l1.c(r,α)<1

S(r).t(α))∗

(l1, s1, U1) R
′
A(l2, s2, U2) iff ((l1, s1) R

A
r (l2, s2) ∧ U1 = U2) ∨

((l1, U1) Rsb (l2, U2) ∧ (s1 ≤ s2))
RA

def
=(R′A)∗

In the above R∗ denotes the reflexive, transitive closure of R. We use R as a shorthand
for RAId .

2.3 Region Interpretations

We follow the iCAP treatment to give the concrete interpretation to the abstract shared
states in the shared regions — and thus define the type of region interpretations as a
guarded recursive type in the topos of trees, S. We take RIntr to be an object in S that
satisfies the isomorphism

i : RIntr ∼= I((∆(SId)× (∆(RId) ⇀fin RIntr))→mon P↑(∆(AState))),

where ∆(AState) is upwards-closed with respect to the interference relation R, and the
ordering on action models, AMod

def
= ∆(RId) ⇀fin RIntr , is given as

ζ1 ≤ ζ2 def
= dom(ζ1) ⊆ dom(ζ2) ∧ ∀r ∈ dom(ζ1). ζ1(r) = ζ2(r).

99



The ordering on ∆(SId) is discrete.
Now we can define the maps between ∆(SId) × AMod →mon P↑(∆(AState)) and

RIntr as follows:

lam : (∆(SId)×AMod →mon P↑(∆(AState)))→ RIntr

lam
def
= i−1 ◦ next

app : RIntr → (∆(SId)×AMod →mon P↑(∆(AState)))

app
def
= λx : RIntr . λ(s, ζ) : ∆(SId)× (AMod). λa : ∆(AState).

succ(J(J(i(x))(next(s), next(ζ)))(next(a)))

Lemma 3. app ◦ lam = .

2.4 Instrumented States

Instrumented states consist of a concrete local state and store buffer pool, an abstract
state transition system for each shared region, and concrete interpretation of each ab-
stract shared state:

M def
= ∆(LState)×∆(SState)×∆(SPool)×AMod .

We use m.l, m.s, m.U and m.a to refer to the appropriate components of the instru-
mented state m :M.

We also define a subset ofM that omits the store buffers, which we will sometimes
use:

H def
= ∆(LState)×∆(SState)×AMod .

We use analogous projections whenever needed.

Propositions We define two spaces of propositions, PropTSO , which denotes the general
assertions, and PropSC , for assertions that do not mention the store buffers.

PropTSO
def
=P↑(M)

PropSC
def
=P↑(H),

where the orderings are pointwise extension orderings.
We define an interpretation of PropSC in PropTSO as the propositions that have a

“locally flushed” subset:

lfd ⊆ LState × SPool ∈ Sets
lfd(l, U) iff ∀t ∈ TId . ∀(o, f) ∈ dom(l). ∀v ∈ Val . (o, f, v) 6∈ U(t)

p−q : PropSC → PropTSO ∈ S
ppq def

= {(l, s, U, ζ) ∈M | ∃l′ ≤ l. (l′, s, ζ) ∈ p ∧ lfd(l′, U)}

Interpreted in this way PropSC defines a subset of well-behaved propositions that do not
depend on the state of the buffers.
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Erasure

b(s, ζ)cr def
= {(l, U) ∈ LState × SPool | (l, s, U) ∈ app(ζ(r))(s(r).s, ζ)}

b(l, s, U, ζ)cA def
= {(h, U) ∈ Heap × SPool |
∃l′ ∈ LState, sr ∈ dom(s) ∩A→ LState.

h = l′.h ∧ l′ = l •Πr∈dom(s)∩Asr(r) ∧
∀r ∈ dom(s) ∩A. (sr(r), U) ∈ b(s, ζ)cr}

As usual, we use bmc as a shorthand for bmcRId .

Composition
•M def

= •LState × •= × •= × •=

2.5 Logical Connectives

Given below are the definitions for connectives in PropTSO . The definitions for PropSC

are analogous.

emp
def
= M

p ∗ q def
= {m ∈M | ∃m1,m2 ∈M. m = m1 •m2 ∧ m1 ∈ p ∧ m2 ∈ q}

p⇒ q
def
= {m ∈M | ∀m′ ≥ m. m′ ∈ p⇒ m′ ∈ q}

∃τ (p)
def
= {m ∈M | ∃x : τ. m ∈ p(x)}

∀τ (p)
def
= {m ∈M | ∀x : τ. m ∈ p(x)}

Lemma 4. Let X be a total and inhabited object in S. Then

∀p ∈ X → PropTSO . . ∃X(p) ⇐⇒ ∃X(λx. . p(x))

Proof. Let m ∈M such that m ∈ .∃X(p). Then .(m ∈ ∃X(p)) and thus

.(∃x : X. m ∈ p(x)).

By totality and inhabitance, ∃x : X. . (m ∈ p(x)) and thus m ∈ ∃X(λx. . p(x)).
Likewise, let m ∈ M such that m ∈ ∃X(λx. . p(x)) then ∃x : X. . (m ∈ p(x)) and

thus .(∃x : X. m ∈ p(x)).

Properties of the Embedding In order to use the p−q embedding to define the two sep-
aration logics, we need it to satisfy certain properties. These are formalized in the next
few lemmas.

Lemma 5. Embedding preserves the entailment relation, i.e., for any p, q ∈ PropSC ,

(p ⊆ q) ⇐⇒ (ppq ⊆ pqq).
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Proof (⇒). Assume p ⊆ q, and take any (l, s, U, ζ) ∈ ppq. By definition, this gives us
l′ ≤ l, such that (l′, s, ζ) ∈ p and lfd(l′, U). By assumption, we have (l′, s, ζ) ∈ q, so we
can take l′ as a witness, and the properties hold trivially.

Proof (⇐). Assume ppq ⊆ pqq, and take (l, s, ζ) ∈ p. This means (l, s, ∅, ζ) ∈ ppq, since
lfd(l, ∅) holds trivially, and so we get (l, s, ∅, ζ) ∈ pqq. From this, we obtain l′ ≤ l such
that (l′, s, ζ) ∈ q, but since q is upwards closed, (l, s, ζ) ∈ q holds.

Lemma 6. For any p ∈ PropTSO and any m ∈ p there exists a local state l′ ≤ m.l
such that lfd(l′,m.U) and l′ is the maximal state with this property (wrt the extension
ordering).

Proof. Take any p ∈ PropTSO and any (l, s, U, ζ) ∈ p. Let s be the set of all the locations
in the store-buffer pool U : formally,

(o, f) ∈ s iff ∃t ∈ dom(U). ∃v ∈ Val . (o, f, v) ∈ U(t).

Take the state l′ = l |dom(l)\s as the witness. Both l′ ≤ l and lfd(l′, U) clearly hold,
so it suffices to show that this is the biggest state with this property. To this end, take
any l′′ ≤ l′ such that lfd(l′′, U). We need to show that l′′ ≤ l′. To this end, take any
(o, f) ∈ dom(l′′). Since both local states are smaller than l under extension ordering, it
suffices to show that (o, f) ∈ dom(l′) – the values (o, f) gets mapped to will have to agree.
Clearly, we have (o, f) ∈ dom(l), since l′′ ≤ l, so it suffices to show that (o, f) 6∈ s. To this
end, assume (o, f) ∈ s. This gives us t ∈ dom(U) and v ∈ Val such that (o, f, v) ∈ U(t).
However, since lfd(l′′, U), we know that (o, f, v) 6∈ U(t), which ends the proof.

Lemma 7. Embedding preserves limits, i.e., for any τ and p : τ → PropSC ,

∀τ (ppq) = p∀τ (p)q.

Proof (⊆). Take any (l, s, U, ζ) ∈ ∀τ (ppq). By definition of universal quantifier, this
means that ∀x : τ. (l, s, U, ζ) ∈ pp(x)q. By Lemma 6, we get l′, the greatest local state
such that l′ ≤ m.l and lfd(l′, U). Now it suffices to show that (l′, s, ζ) ∈ ∀τ (p). Take
any x : τ . From the assumption, we get l′′ ≤ l such that lfd(l′′, U) and (l′′, s, ζ) ∈ p(x).
However by the universal property of l′, we know that l′′ ≤ l′, and so, by upwards closure
(l′, s, ζ) ∈ p.

Proof (⊇). Take any (l, s, U, ζ) ∈ p∀τ (p)q. By definition, this gives us l′ ≤ l such that
lfd(l′, U) and ∀x : τ. (l′, s, ζ) ∈ p(x). Taking any x : τ , and picking l′ as the witness
trivially finishes the proof.

Lemma 8. Embedding preserves colimits, i.e., for any τ and p : τ → PropSC ,

∃τ (ppq) = p∃τ (p)q.

Proof (⊆). Take any (l, s, U, ζ) ∈ ∃τ (ppq). Unrolling the definitions, this gives us x : τ
and l′ ≤ l such that lfd(l′, U) and (l′, s, ζ) ∈ p(x). Taking l′ and x as witnesses provides
all the properties we need to finish the proof.
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Proof (⊇). Take any (l, s, U, ζ) ∈ p∃τ (p)q. Unrolling the definitions gives us l′ ≤ l such
that lfd(l′, U) and x : τ such that (l′, s, ζ) ∈ p(x). Taking x and l′ as witnesses provides
all the needed properties.

Lemma 9. Embedding preserves separating conjunctions, i.e., for any p, q ∈ PropSC ,

ppq ∗ pqq = pp ∗ qq.

Proof (⊆). Take any (l, s, U, ζ) ∈ ppq ∗ pqq. This means there exist l1, l2 ∈ ∆(LState)
such that l1 • l2 = l, (l1, s, U, ζ) ∈ ppq and (l2, s, U, ζ) ∈ pqq. By definition of the
embedding, this gets us l′1 ≤ l1 and l′2 ≤ l2 such that (l′1, s, ζ) ∈ p, (l′2, s, ζ) ∈ q, lfd(l′1, U)
and lfd(l′2, U). Pick l′1 • l′2 ≤ l as a witness. Obviously, lfd(l′1 • l′2, U), and we can split
the state as l′1 and l′2 to show that (l′1, s, ζ) ∈ p and (l′2, s, ζ) ∈ q.

Proof (⊇). Take any (l, s, U, ζ) ∈ pp ∗ qq. This means that there exists l′ ≤ l, l1 and l2
such that lfd(l′, U), l′ = l1 • l2, (l1, s, ζ) ∈ p and (l2, s, ζ) ∈ q. Pick as witnesses l1 and
l′′ = l |dom(l)\dom(l1). These states compose to give l, so we need to show (l1, s, U, ζ) ∈ ppq
and (l′′, s, U, ζ) ∈ pqq. For the first of these, pick l1 as the witness. Since l1 ≤ l′, we have
lfd(l1, U), and we have (l1, s, ζ) ∈ p by assumption. For the second goal, pick l2 as the
witness. Since l2 is compatible with l1, we get l2 ≤ l′′, and since l2 ≤ l′ — lfd(l2, U). By
assumption we also have (l2, s, ζ) ∈ q.

Validity
valid(p)

def
= ∀m ∈M. m ∈ p

Region Assertion and Interpretation

region : P(∆(SId))×∆(LTS )×∆(RId)→ PropSC ∈ S
region(X, p, r)

def
= {(l, s, ζ) ∈ H | s(r).s ∈ X ∧ s(r).p = p}

rintr : (∆(SId)→ PropTSO)×∆(RId)→ PropSC ∈ S
rintr(I, r)

def
= {(l, s, ζ) ∈ H | r ∈ dom(ζ) ∧ ∀x ∈ ∆(SId), ζ ′ ≥ ζ.

app(ζ(r))(x, ζ ′) = .(λ(l, s, U).I(x)(l, s, U, ζ ′))}

Note that although technically these assertions are in PropSC , we will often omit the
p−q intepretation when using them, since they do not depend at all on the local state,
so one can always pick the empty local state as the appropriate witness.

Action Permission
[α]rπ

def
= {(l, s, ζ) ∈ H | π ≤ l.c(r, α)}
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2.6 Stability

stable
A

(p)
def
=RA(p) ⊆ p

bstable(p)
def
=Rsb(p) ⊆ p

rstable
A

(p)
def
=RAr (p) ⊆ p

As usual, we use stable as a shorthand for stableRId

Lemma 10. ∀p ∈ PropTSO . stable(p) ⇐⇒ bstable(p) ∧ rstable(p)

Lemma 11. R(emp) ⊆ emp ∧ ∀p, q ∈ PropTSO . R(p ∗ q) ⊆ R(p) ∗R(q)

Lemma 12. ∀A ∈ P(∆(RId)), p ∈ PropTSO . stableA(p)⇒ stableA(.p)

Proof. Assume m1 ∈ .p and m1 RA m2. By assumption, RA(p) ⊆ p, and thus, by
monotonicity of .,

.(∀m1,m2 ∈M. m1 ∈ p ∧ m1 RA m2 ⇒ m2 ∈ p).

Thus, sinceM is total and inhabited,

∀m1,m2 ∈M. m1 ∈ .p ∧ .(m1 RA m2)⇒ m2 ∈ .p,

and so m2 ∈ .p.

2.7 View Shift

p vA q def
= ∀r ∈ PropTSO . stable

A
(r)⇒ bp ∗ rcA ⊆ bq ∗ rcA

Again, we write v as a shorthand for vRId .

Lemma 13. ∀p, q, r ∈ PropTSO . stable(r) ∧ p vA q ⇒ p ∗ r vA q ∗ r

Lemma 14. ∀p1, p2, q1, q2 ∈ PropTSO . p1 v q1 ∧ p2 v q2 ⇒ p1 ∗ p2 v q1 ∗ q2

2.8 Atomic Satisfaction

a satA {p} {q} def
= ∀r ∈ PropTSO ,m ∈M, h ∈ Heap, U ∈ SPool .

m ∈ p ∗ .r ∧ (h, U) ∈ bmcA ∧ stable
A

(r)⇒

(. � 6∈ JaK(h, U)) ∧
∀(h′, U ′) ∈ JaK(h, U). ∃m′ ∈M. . (m′ ∈ q ∗ r ∧ (h′, U ′) ∈ bm′cA)

We write a sat {p} {q} for a satRId {p} {q}, as usual.
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Lemma 15.

∀A ∈ P(∆(RId)). ∀a ∈ ∆(Act). ∀p, q ∈ PropTSO . .⊥ ⇒ a satA {p} {q}

Proof. Follows easily as .⊥ implies .� 6∈ JaK(h, U) and .(m′ ∈ q ∗ r ∧ (h′, U ′) ∈ bm′cA)
for any m′, h′ and U ′, andM is inhabited.

Lemma 16 (Atomic-Shift).

∀A ∈ P(∆(RId)), p1, p2, q1, q2 ∈ PropTSO .

p1 vA p2 ∧ a satA {p2} {q2} ∧ .(q2 vA q1)⇒ a satA {p1} {q1}

Proof. Assume r ∈ PropTSO , m ∈M, h, h′ ∈ Heap, and U,U ′ ∈ SPool such that

stable
A

(r) m ∈ p1 ∗ .r (h, U) ∈ bmcA (h′, U ′) ∈ JaK(h, U).

By Lemma 12 it follows that stableA(.r) and thus (h, U) ∈ bp ∗ .rcA ⊆ bq ∗ .rcA. Hence,
there exists m′ ∈M such that .(m′ ∈ q2 ∗ r ∧ (h′, U ′) ∈ bm′cA), and so

.(m′ ∈ bq2 ∗ rcA ⊆ bq1 ∗ rcA),

which ends the proof.

Lemma 17 (Atomic-Frame).

∀A ∈ P(∆(RId)), p, q, r ∈ PropTSO .

stable
A

(r) ∧ a satA {p} {q} ⇒ a satA {p ∗ .r} {q ∗ r}

Proof. Assume r′ ∈ PropTSO , m ∈M, h, h′ ∈ Heap and U,U ′ ∈ SPool such that

stable
A

(r′) m ∈ p ∗ .r ∗ .r′ (h, U) ∈ bmcA (h′, U ′) ∈ JaK(h, U).

This means that m ∈ p ∗ .(r ∗ r′). Since stableA(r ∗ r′), from definition of atomic
satisfiability it follows that there exists an m′ ∈M such that

.(m′ ∈ q ∗ r ∗ c ∧ (h′, U ′) ∈ bm′cA),

which ends the proof.

Corollary 1.

∀A ∈ P(∆(RId)), p, q, r ∈ PropTSO .

stable
A

(r) ∧ a satA {p} {q} ⇒ a satA {p ∗ r} {q ∗ r}

Lemma 18 (Id-Refl). ∀A ∈ P(∆(RId)), p ∈ PropTSO . ε satA {p} {p}
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Proof. Take a r ∈ PropTSO , m ∈M, h ∈ Heap and U ∈ SPool such that

stable
A

(r) m ∈ p ∗ .r (h, U) ∈ bmcA

Since JεK(h, U) = {(h, U)}, so clearly � 6∈ JεK(h, U). Now, it suffices to exhibit m′ such
that (h, U) ∈ bm′cA and .(m′ ∈ p ∗ r), which follow simply by monotnicity of . if we
choose m′ = m.

Lemma 19 (Flush-Refl). For any A ∈ P(∆(RId)), p ∈ PropTSO , t ∈ TId ,

stable
A

(p)⇒ flush(t) satA {p} {p} .

Proof. Take an r ∈ PropTSO , m ∈M, h ∈ Heap and U ∈ SPool such that

stable
A

(r) m ∈ p ∗ .r (h, U) ∈ bmcA.

Since flush never faults, we only need to consider the postcondition branch. Take any
(h′, U ′) ∈ Jflush(t)K(h, U). By definition this means that there exist (o, f) ∈ dom(h) and
v such that h′ = h[(o, f) 7→ v], U(t) = (o, f, v) ·U ′(t) and U(t′) = U ′(t′) for any t′ 6= t. As
a witness we give m′ = (flush(m.l, (o, f, v)),m.s, U ′,m.ζ). Since (m.l, U) Rf (m′.l, U ′)
and stableA(p ∗ .r), we easily have .(m′ ∈ p ∗ r) by monotonicity of .. This means we
only need to show that (h′, U ′) ∈ bm′cA. From (h, U) ∈ bmcA we get lh and sr such
that h = lh.h, lh = m.l • Πr∈dom(m.s)∩Asr(r) and (sr(r), U) ∈ b(m.s,m.ζ)cr for any
r ∈ dom(m.s) ∩ A. Take l′h = flush(lh, (o, f, v)) and sr′(r) = flush(sr(r), (o, f, v)) as the
witnesses. Since flush commutes over composition, we get

flush(lh, (o, f, v)) = flush(m.l •Πr∈dom(m.s)∩Asr(r), (o, f, v))

= m.l′ •Πr∈dom(m.s)∩Asr
′(r).

Since, for every r ∈ dom(m.s)∩A we also have (sr(r), U) Rf (sr′(r), U ′) and the erasures
of shared regions are closed under interference (since they are defined by the application
of an action model), we get (sr′(r), U ′) ∈ b(m.s,m.ζ)cr for each r ∈ dom(m.s)∩A, which
ends the proof.

2.9 Specification Embedding

spec : Ω→ PropTSO ∈ S
spec(s)

def
={m ∈M | s}

Lemma 20 (Sat-Spec-Later).

∀a ∈ Act , p, q ∈ PropTSO , s ∈ Ω.

a sat {p ∗ spec(.s)} {q} ⇒ a sat {p ∗ spec(.s)} {q ∗ spec(s)}
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Proof. Take r ∈ PropTSO , m ∈M, h, h′ ∈ Heap and U,U ′ ∈ SPool such that

stable
A

(r) m ∈ p ∗ spec(.s) ∗ .r (h, U) ∈ bmcA (h′, U ′) ∈ JaK(h, U).

By our assumption, there exists an m′ ∈ M, such that .(m′ ∈ q ∗ r) and .(h′ ∈ bm′c).
Hence, .((m′ ∈ q ∗ r) ∧ s), and so .(m′ ∈ q ∗ spec(s) ∗ r).

Lemma 21 (Later-Star). .(p ∗ q) = (.p) ∗ (.q)

Proof (⊆). Assume m ∈ .(p ∗ q), and so .(m ∈ p ∗ q), and, unfolding the definition of ∗,

.(∃m1,m2 ∈M. m = m1 •m2 ∧ m1 ∈ p ∧ m2 ∈ q).

Now, unfolding the definition of •, we get

.(∃l1, l2 ∈ ∆(LState). m.l = l1•LState l2 ∧ (l1,m.s,m.U,m.a) ∈ p ∧ (l2,m.s,m.U,m.a) ∈ q).

This means we can take the witnesses l1 and l2, such that

.(m.l = l1 •LState l2) . ((l1,m.s,m.U,m.a) ∈ p) . ((l2,m.s,m.U,m.a) ∈ q).

From the first of these properties, by Lemma 2 we get m.l = l1 •LState l2 ∨ .⊥. We
inspect the two cases.

Assume, first, thatm.l = l1•LState l2. Then,m = (l1,m.s,m.U,m.a)•(l2,m.s,m.U,m.a),
and so m ∈ (.p) ∗ (.q).

In the other case, assume .⊥. Now, take the splitting of m = m • (ε,m.s,m.U,m.a).
Since .⊥, .((ε,m.s,m.U,m.a) ∈ q), and so m ∈ (.p) ∗ (.q).

Proof (⊇). Follows by monotonicity of ..

2.10 Thread Safety

We define safety by guarded recursion:

safe : P((TId × Expr)× PropTSO × (Val → PropTSO)) ∈ S
safe

def
= fix f. ŝafe(f),

where

ŝafe(f)((t, e), p, q)
def
=(∃v ∈ Val . e = v ∧ p v q(v)) ∨
∀T ∈ ∆(TPool), a ∈ ∆(Act). (t, e)

a−→ T ⇒
∃p′ : dom(T )→ PropTSO . t ∈ dom(T ) ∧

(∀t ∈ dom(T ). . stable(p′(t))) ∧
a sat {p}

{
~t∈dom(T )p

′(t)
}
∧

. f((t, T (t)), p′(t), q) ∧

. ∀t′ ∈ dom(T − t). f(t′, p′(t′), λv. >)
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Lemma 22 (Stable-Closed).

∀X ∈ P(∆(SId)), p ∈ ∆(LTS ), r ∈ ∆(RId).

(∀α ∈ AId . α 6= αi ⇒ p(α)(X) ⊆ X)⇒ stable(region(X, p, r) ∗~i[αi]r1)

Lemma 23 (ViewShift-Weaken).

∀A,B ∈ P(∆(RId)), p, q ∈ PropTSO . A ⊆ B ∧ p vA q ⇒ p vB q

Lemma 24 (ViewShift-Trans).

∀p, q, r ∈ PropTSO , A ∈ P(∆(RId)). p vA q ∧ q vA r ⇒ p vA r

Lemma 25 (RegInterp-WF).

∀p ∈ ∆(SId)→ PropTSO . stable(p)⇒
(λ(x, ζ). {(l, s, U) | (l, s, U, ζ) ∈ p(x)} ∈ ∆(SId)×AMod →mon P↑(AState))

Proof (Monotonicity). Take x ∈ ∆(SId), ζ1, ζ2 ∈ AMod such that ζ1 ≤ ζ2. By upwards-
closure of p, for any l ∈ LState, s ∈ SState and U ∈ SPool such that (l, s, U, ζ1) ∈ p(x),
(l, s, U, ζ2) ∈ p(x) also holds.

Proof (Upwards-closure). Take x ∈ ∆(SId), ζ ∈ AMod , l1, l2 ∈ LState, s1, s2 ∈ SState
and U1, U2 ∈ SPool such that (l1, s1, U1, ζ) ∈ p(x) and (l1, s1, U1) R (l2, s2, U2). By
stability of p it follows that (l2, s2, U2, ζ) ∈ p(x).

Lemma 26 (Safe-Sat). For any thread t ∈ ∆(TId), closed expression e ∈ ∆(Expr),
p ∈ PropTSO and q ∈ ∆(Val)→ PropTSO we have

(∀a ∈ ∆(Act). ∀v ∈ ∆(Val). (t, e)
a−→ {(t, v)} ⇒ a sat {p} {q(v)}) ∧

stable(p) ∧ (∀v ∈ ∆(Val). stable(q(v))) ∧ atomic(e)

⇒ safe((t, e), p, q).

Proof. The proof proceeds by Löb induction, which we will need to handle the flushing
of the store buffer that can occur before the atomic command is actually executed.

Unfolding the definition of safety, we find that, since e is atomic, we should take the
“progress” case. Take any T ∈ TPool and a ∈ Act such that (t, e)

a−→ T . Since e is
atomic, we only need to consider the cases when a is a read, write, cas or flush action.
We proceed by case analysis.

First, let us consider the flushing. By definition of the semantics, we know that
T = {(t, e)}. We take the map p′ to be the map given by t 7→ p. Thus, stability of p′

follows by stability of p, atomic satisfaction of the flush(t) action – by Lemma 19, and
since we did not fork any threads we only need to show that . safe((t, e), p, q) – which
follows from our Löb inductive hypothesis.

In the other three cases, we have to consider proper reductions. In all of these cases T
has the same shape: we have T = {(t, v)} for some value v. Thus, we can take the map p′
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to be given by t 7→ q(v). Then, the stability of p′ follows by stability of q, and the atomic
satisfaction by the lemma’s assumption. Since we do not allocate any new threads, this
only leaves us with showing that . safe((t, v), q(v), q), which holds trivially by taking the
“value” branch of the safety and showing that .(q(v) v q(v)) by monotonicity of . and
reflexivity of the view-shift.

Lemma 27 (Region-Alloc).

∀F ∈ P(∆(RId)), T ∈ ∆(LTS ), X ∈ P(∆(SId)), x ∈ X.
∀I ∈ ∆(RId)→ ∆(SId)→ PropTSO , P ∈ PropTSO , A,B ∈ P(∆(AId))

(∀r ∈ ∆(RId), s ∈ ∆(SId). stable(I(r)(s))) ∧ F infinite ∧ A,B finite ∧
valid(∀n ∈ F. P ∗~α∈A[α]n1 ⇒ .I(n)(x)) ∧ A ∩B = ∅
⇒ P vF ∃n ∈ F. region(X,T, n) ∗ rintr(I(n), n) ∗~α∈B[α]n1

Proof. By the definition of the view shift, we take any r ∈ PropTSO , m ∈M, h ∈ Heap,
U ∈ SPool such that m ∈ P ∗ r and (h, U) ∈ bmcF . Hence, there have to exist l1, l2, lc ∈
LState, s ∈ SState, ζ ∈ AMod and sr : dom(s) ∩ F → LState such that

h = lc.h lc = l1 •LState l2 •Πr∈dom(s)∩F sr(r) m = (l1 •LState l2, s, U, ζ)

∀r ∈ dom(s) ∩ F. (sr(r), U) ∈ b(s, ζ)cr (l1, s, U, ζ) ∈ P (l2, s, U, ζ) ∈ r

Pick an n ∈ U such that ∀α ∈ AId . lc.c(n, α) = 0 and n 6∈ dom(s) ∪ dom(ζ). Now, let
s′ = s[n 7→ (x, T )], ζ ′ = ζ[n 7→ lam(λ(y, ζ). {(l, s, U) ∈ AState | (l, s, U, ζ) ∈ I(n)(y)})].
Note that ζ ′ is well-defined, by virtue of Lemma 25. We have s ≤ s′ and ζ ≤ ζ ′, and
so (l1, s

′, U, ζ ′) ∈ P and (l2, s
′, U, ζ ′) ∈ r. Furthermore, ((ε, [(n,A) 7→ 1]), s′, U, ζ ′) ∈

~α∈A[α]n1 , and so, by the validity assumption,

(l1 •LState (ε, [(n,A) 7→ 1]), s′, U, ζ ′) ∈ .I(n)(x).

Now, clearly (ε, s′, U, ζ ′) ∈ region(X,T, n). Furthermore, for any ζ ′′ ≥ ζ ′ and y ∈
SId ,

app(ζ ′(n))(y, ζ ′′) =app(lam(λ(y, ζ). {(l, s, U) | (l, s, U, ζ) ∈ I(n)(y)}))(y, ζ ′′)
=(.(λ(y, ζ). {(l, s, U) | (l, s, U, ζ) ∈ I(n)(y)}))(y, ζ ′′)
={(l, s, U) | (l, s, U, ζ ′′) ∈ .I(n)(y)}.

Thus, (ε, s′, U, ζ ′′) ∈ rintr(I, n) also holds. Hence, we have

(l2 •LState (ε, [(n,B) 7→ 1]), s′, U, ζ ′) ∈ region(X,T, n) ∗ rintr(I, n) ∗ (~α∈B[α]n1 ) ∗ r.

Lastly, we also get (h, U) ∈ b(l2 •LState (ε, [(n,B) 7→ 1]), s′, U, ζ ′)cF , which ends the
proof.
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Lemma 28.

∀A ∈ P(∆(RId)), X, Y ∈ P(∆(SId)), T ∈ ∆(LTS ), n ∈ ∆(RId).

∀I ∈ ∆(SId)→ PropTSO , p, q ∈ PropTSO , α ∈ ∆(AId), π ∈ ∆(Perm+), f : X → Y.

stable(p) ∧ n ∈ A ∧ (∀x ∈ X. (x, f(x)) ∈ T (α) ∨ f(x) = x) ∧
(∀x ∈ X. p ∗ (.I(x)) ∗ [α]nπ vA\{n} q ∗ .I(f(x)))

⇒ (region(X,T, n) ∗ rintr(I, n) ∗ p ∗ [α]nπ vA region(Y, T, n) ∗ q)

Proof. Take r ∈ PropTSO , m ∈M, h ∈ Heap and U ∈ SPool such that

stable
A

(r) m ∈ region(X,T, n) ∗ rintr(I, n) ∗ p ∗ [α]nπ ∗ r (h, U) ∈ bmcA.

This means, there exist l1, l2, l3, l4, l5 ∈ LState, s ∈ SState, U ′ ∈ SPool and ζ ∈ AMod
such that

(l1, s, U
′, ζ) ∈ region(X,T, n) (l2, s, U

′, ζ) ∈ rintr(I, n)

(l3, s, U
′, ζ) ∈ p (l4, s, U

′, ζ) ∈ [α]nπ (l5, s, U
′, ζ) ∈ r

m = (l1 •LState l2 •LState l3 •LState l4 •LState l5, s, U
′, ζ).

Let l = m.l. By unfolding (h, U) ∈ bmcA we get that U = U ′, and lc ∈ LState and
sr : dom(s) ∩A→ LState such that

h = lc.h lc = l •LState Πr∈dom(s)∩Asr(r) ∀r ∈ dom(s) ∩A. (sr(r), U) ∈ b(s, ζ)cr.

Since (l1, s, U, ζ) ∈ region(X,T, n), we know n ∈ dom(s), s(n).s ∈ X and s(n).p = T
hold. Since n ∈ dom(s) ∩ A, we get sr(n) ∈ b(s, ζ)cn and π2(sr(n)) = U , and so
(sr(n), s, U) ∈ app(ζ(n))(s(n).s, ζ). Unfolding (l2, s, U, ζ) ∈ rintr(I, n), we get that

∀x ∈ ∆(SId), ζ ′ ≥ ζ. app(ζ(n))(x, ζ ′) = .(λ(l, s, U). I(x)(l, s, U, ζ ′)).

From this, instantiating with s(n).s and ζ, we get that .(I(s(n).s)(sr(n), s, U, ζ)). By
assumption, we know that (s(n).s, f(s(n).s)) ∈ T (α) (in the case where f(s(n).s) =
s(n).s it suffices to use the assumed view-shift). Furthermore, since (l4, s, ζ) ∈ [α]nπ it
follows that π ≤ l4.c(n, α) and thus l3.c(n, α) < 1, sr(n).c(n, α) < 1 and l5.c(n, α) < 1.
Thus,

(l3, s, U) RA (l3, s
′, U) (l5, s, U) RA (l5, s

′, U) (sr(n), s, U) RA (sr(n), s′, U),

where s′ = s[n 7→ (f(s(n).s), s(n).p)]. Hence, by stability of p, .I(s(n).s) and r, it
follows that

(l3, s
′, U, ζ) ∈ p (sr(n), s′, U, ζ) ∈ .I(s(n).s) (l4, s

′, U, ζ) ∈ [α]nπ (l5, s
′, U, ζ) ∈ r.

Furthermore, for every r ∈ dom(s) ∩ (A \ {n}), sr(r).c(n, α) < 1, so

(sr(r), s, U) RA (sr(r), s′, U),
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and so, by stability of region interpretations,

∀r ∈ dom(s′) ∩ (A \ {n}). (sr(r), U) ∈ b(s′, ζ)cr.

Thus, we get that

(l•LStateπ1(sr(n)), s′, U, ζ) ∈
region({f(s(n).s)}, T, n) ∗ (.I(s(n).s)) ∗ [α]nπ ∗ p ∗ r ∗ {m ∈M | ζ ≤ m.a}

and
(h, U) ∈ b(l •LState sr(n), s′, U, ζ)cA\{n}.

Now we can use the assumed view-shift, from which it follows that there exists an
m′ ∈M such that

m′ ∈ q ∗ (.I(f(s(n).s))) ∗ r ∗ region({f(s(n).s)}, T, n) ∗ {m ∈M | ζ ≤ m.a}
(h, U) ∈ bm′cA\{n}.

Thus, there exist l′1, l′2, l′3, l′4, l′5 ∈ LState, s′′ ∈ SState and ζ ′ ∈ AMod such that

m′ = (l′1 •LState l
′
2 •LState l

′
3 •LState l

′
4 •LState l

′
5, s
′′, U, ζ ′)

(l′1, s
′′, U, ζ ′) ∈ q (l′2, s

′′, U, ζ ′) ∈ .I(f(s(n).s)) (l′3, s
′′, U, ζ ′) ∈ r

(l′4, s
′′, U, ζ ′) ∈ region({f(s(n).s)}, T, n) (l′5, s

′′, U, ζ ′) ∈ {m ∈M | ζ ≤ m.a}.

Hence, s′′(n).s = f(s(n).s) = s′(n).s. From (h, U) ∈ bm′cA\{n}, it follows that tere exist
l′c ∈ LState and sr′ : dom(s′′) ∩ (A \ {n})→ LState such that

l′c = l′1 •LState l
′
2 •LState l

′
3 •LState l

′
4 •LState l

′
5 •LState ~r∈dom(s′′)∩(A\{n})π1(sr

′(r))

h = l′c.h ∀r ∈ dom(s′′) ∩ (A \ {n}). (sr′(r), U) ∈ b(s′′, ζ ′)cr.

From (l′5, s
′′, U, ζ ′) ∈ {m ∈M | ζ ≤ m.a} it follows that ζ ≤ ζ ′, and thus

∀x ∈ ∆(SId). app(ζ ′(n))(x, ζ ′) = .(λ(l, s, U). I(x)(l, s, U, ζ ′)).

Hence, (l′2, s
′′, U) ∈ app(ζ ′(n))(f(s(n).s), ζ ′), and so (l′2, U) ∈ b(s′′, ζ ′)cn. Thus, we have

(h, U) ∈ bregion(Y, T, n) ∗ qcA, which ends the proof.

Lemma 29.

∀A ∈ P(∆(RId)). ∀X ∈ P(∆(SId)). ∀T ∈ ∆(LTS ). ∀n ∈ ∆(RId).

∀I ∈ ∆(SId)→ PropTSO . ∀p, p′ ∈ PropTSO . ∀q ∈ ∆(SId)→ PropTSO . ∀B ∈ P(∆(AId)).

∀f : ∆(SId)→ P(∆(SId)). ∀g : ∆(AId)→ ∆(Perm+).

(∀y ∈ ∆(SId). stable(q(y))) ∧ n ∈ A ∧ (∀x ∈ X. ∀y ∈ f(x). (x, y) ∈ T (B)∗) ∧
(∀x ∈ X. a satA\{n} {p ∗ (.I(x))}

{
∃y ∈ f(x). q(y) ∗~α∈B[α]ng(α) ∗ .I(y)

}
)

⇒ a satA {region(X,T, I, n) ∗ p}
{
∃y ∈ ∆(SId). region({y}, T, n) ∗~α∈B[α]ng(α) ∗ q(y)

}
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Proof. Assume r ∈ PropTSO , m ∈M, h, h′ ∈ ∆(Heap) and U,U ′ ∈ SPool such that

m ∈ region(X,T, I, n) ∗ p ∗ .r (h, U) ∈ bmcA (h′, U ′) ∈ JaK(h, U) stable
A

(r).

Thus, there exist l1, l2, l3, l4 ∈ LState, s ∈ SState and ζ ∈ AMod such that

(l1, s, U, ζ) ∈ region(X,T, n) (l2, s, U, ζ) ∈ rintr(I, n) (l3, s, U, ζ) ∈ p
(l4, s, U, ζ) ∈ .r m = (l1 • l2 • l3 • l4 • l5, s, U, ζ).

Let l = l1 • l2 • l3 • l4. Unfolding (h, U) ∈ bmcA we get an lc ∈ LState and sr :
(dom(s) ∩A)→ LState such that

h = lc.h lc = l •~r∈(dom(s)∩A)sr(r) ∀r ∈ (dom(s) ∩A). (sr(r), U) ∈ b(s, ζ)cr.

Since (l1, s, U, ζ) ∈ region(X,T, n), it follows that n ∈ dom(s), s(n).s ∈ X and s(n).p =
T . Since we also know that n ∈ A, it follows that (sr(n), U) ∈ b(s, ζ)cn, and so
(sr(n), s, U) ∈ app(ζ(n))(s(n).s, ζ). Unfolding (l2, s, U, ζ) ∈ rintr(I, n) it follows that

∀x ∈ ∆(SId). ∀ζ ′ ≥ ζ. app(ζ(n))(x, ζ ′) = .(λ(l, s, U). I(x)(l, s, U, ζ ′)).

Thus, in particular, app(ζ(n))(s(n).s, ζ) = .(λ(l, s, U). I(s(n).s)(l, s, U, ζ)), and so

.I(s(n).s)(sr(n), s, U, ζ).

The high-level plan is now to use the assumption with a slightly modified state to
account for opening of the region, and afterwards use the state obtained from the assump-
tion to build a final instrumented state. To this end, we instantiate the assumption with
a frame r′ = r ∗ region({s(n).s}, T, n) ∗ {m ∈M | m.ζ ≥ ζ} and an instrumented state
m̄ = (l •sr(n), s, U, ζ). The erasure (h, U) ∈ bm̄cA\{n} holds easily, since n /∈ A\{n} but
sr(n) is in local state. We also know that (l3, s, U, ζ) ∈ p, (sr(n), s, U, ζ) ∈ .(I(s(n).s))
and (l4, s, U, ζ)in . r, so it suffices to show that

(l1 • l2, s, U, ζ) ∈ .(region({s(n).s}, T, n) ∗ {m ∈M | m.ζ ≥ ζ}),

which holds by monotonicity of later and the definition. The frame is also stable, since
we cannot change the state of region n.

This means we get a state m̄′ such that (h′, U ′) ∈ .bm̄′cA\{n} and

m̄′ ∈ .(∃y ∈ f(x) ∗ q(y) ∗~α∈B[α]ng(α) ∗ .I(y) ∗ r′).

Thus, we can take a y ∈ ∆(SId) such that .(y ∈ f(x)), and local states l′1, l′2, l′3 and l′4,
such that

m̄′ = (l′1 • l′2 • l′3 • l′4, s′, U ′, ζ ′)
(l′1, s

′, U ′, ζ ′) ∈ .q(y) (l′2, s
′, U ′, ζ ′) ∈ .~α∈B [α]ng(α) . ((l′3, s

′, U ′, ζ ′) ∈ .I(y))

(l′4, s
′, U ′, ζ ′) ∈ .r . (s′(n).s = s(n).s) . (s′(n).p = T ) . (ζ ′ ≥ ζ).
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Now, we can take m′ = (l′1 • l′2 • l′4, s′[n 7→ (y, T )], U ′, ζ ′) as the witness. We need to show
that .((h′, U ′) ∈ bm′cA) and m′ ∈ .(∃y ∈ ∆(SId). region({y}, T, n)∗q(y)∗~α∈B[α]ng(α) ∗
r). For the latter, we take y as the witness and split the local state four ways into ε, l′1,
l′2 and l′4. The region assertion holds by definition, and the assertion about permissions
by the earlier property, since it doesn’t depend on the shared state. That leaves us with
r and q(y). Both these assertions are stable, so it suffices to show that x and y are in the
interference relation from their perspective. To show this, notice that the permissions in
B suffice to transition from x to y – and these permissions are outside both l′1 and l′4.
Thus, we can get (l′1, s

′[n 7→ (y, T )], U ′, ζ ′) ∈ .q(y) and (l′4, s
′[n 7→ (y, T )], U ′, ζ ′) ∈ .r.

This leaves us with proving that (h′, U ′) ∈ bm′cA. To this end, take l̄ and s̄r :
dom(s′) ∩ (A \ {n})→ LState – the witnesses of (h′, U ′) ∈ bm̄′cA\{n}. We know that

h′ = l̄.h l̄ = l′1 • l′2 • l′3 • l′4 •Πr∈dom(s)∩(A\{n})s̄r(r)

∀r ∈ dom(s) ∩ (A \ {n}). . ((s̄r(r), U ′) ∈ b(s′, ζ ′)cr)

Take as witnesses l′ = l̄ and sr′ = s̄r[n 7→ l′3]. Clearly sr′ has the appropriate domain,
and the first two conditions hold. For the final one, take any r ∈ dom(s) ∩ A. We have
two cases to consider: either r = n, or r ∈ dom(s) ∩ (A \ {n}). In the latter, we can use
the same argument as for r and q(y) to show that the update of shared state is an allowed
interference for the region r. In the former, we need to show that .(l′3, U ′) ∈ b(s′[n 7→
(y, T )], ζ ′)cr. Unrolling the definition, it suffices to show that .(l′3, s′[n 7→ (y, T )], U ′) ∈
app(ζ ′(r))(y, ζ ′). However, since .(ζ ′ ≥ ζ), by an earlier equation that followed from
region interpretation, it suffices to show that .(l′3, s′[n 7→ (y, T )], U ′, ζ ′) ∈ .I(y), which
follows by the same stability argument as the other assertions.

Lemma 30. For any p ∈ PropSC , (l, s, U, ζ) ∈ ppq, (l′, U ′) ∈ Rsb(l, U), (l′, s, U ′, ζ) ∈
ppq.

Proof. To show the lemma holds, it suffices to show p is closed under each of Rn, Rw
and Rf . These proofs are presented in the following paragraphs.

(Rn) Take any (l, s, U, ζ) ∈ ppq and (l′, U ′) ∈ Rn(l, U). By definition of Rn we have
that l = l′, ∀t ∈ dom(U ′) \ dom(U). U ′(t) = ε and ∀t ∈ dom(U). U ′(t) = U(t). From
definition of p−q we get a state l1 ≤ l such that (l1, s, ζ) ∈ p and

∀t ∈ dom(U). ∀(o, f) ∈ dom(l1). ∀v ∈ Val . (o, f, v) 6∈ U(t).

We take the same l1 as a witness, and so we only need to show that (o, f, v) 6∈ U ′(t) for
any t ∈ dom(U ′), (o, f) ∈ dom(l1) and v ∈ Val . If t ∈ dom(U), the property holds, since
in that case U(t) = U(t′) and we know it held for U . If t 6∈ dom(U), on the other hand,
we know U ′(t) = ε, so in particular (o, f, v) 6∈ U ′(t).

(Rw) Take any (l, s, U, ζ) ∈ ppq and (l′, U ′) ∈ Rw(l, U). By definition of Rw we know
that l = l′, dom(U) = dom(U ′) and we get t ∈ dom(U), o ∈ OId , f ∈ FName, and
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v ∈ Val such that (o, f) 6∈ dom(l), U ′(t) = U(t) · (o, f, v) and U ′(t′) = U(t′) for any
t′ 6= t. From the definition of p−q we get a local state l1 ≤ l such that (l1, s, ζ) ∈ p and

∀t ∈ dom(U). ∀(o, f) ∈ dom(l1). ∀v ∈ Val . (o, f, v) 6∈ U(t).

Again, we take l1 as the witness, which means we only need to prove (o′, f ′, v′) 6∈ U(t′)
for any (o′, f ′) ∈ dom(l1), t′ ∈ dom(U). Clearly, it suffices to check that this holds for the
newly added update, (o, f, v) in thread t, since the rest of the contents of U ′ is inherited
from U . However, we know that (o, f) 6∈ dom(l), so clearly (o, f) 6∈ dom(l1), so the
property holds.

(Rf ) Take any (l, s, U, ζ) ∈ ppq and (l′, U ′) ∈ Rw(l, U). By definition of Rw we know
that dom(U) = dom(U ′) and we get t ∈ dom(U), o ∈ OId , f ∈ FName and v ∈ Val such
that l′ = flush(l, (o, f, v)), U(t) = (o, f, v) · U ′(t) and U(t′) = U ′(t′) for any t′ 6= t. As
before, from the definition of p−q we get an l1 ≤ l such that (l1, s, ζ) ∈ p and there are
no updates to the domain of l1. From the latter property, we know that (o, f) 6∈ dom(l1),
and so l1 ≤ l′. This allows us to take l1 as the witness, and in this case both properties
hold trivially, since the updates in U ′ are a subset of those in U .

2.11 Thread-pool Evaluation

eval :∆(MSt)×∆(TPool)× P(∆(MSt)×∆(TPool))→ Ω

eval(µ, T, q)
def
=(irr(µ, T ) ∧ (µ, T ) ∈ q) ∨ (∀T ′, µ′. (µ, T )→ (µ′, T ′)⇒ .eval(µ′, T ′, q))

Lemma 31 (Safe-Eval). For any thead pool (µ, T ) ∈ ∆(PSt) and families of assertions
p : dom(T )→ PropTSO , q : dom(T )→ Val → PropTSO , if

∀t ∈ dom(T ). stable(p(t)) ∀t ∈ dom(T ). ∀v ∈ Val . stable(q(t)(v)))

∀t ∈ dom(T ). safe((t, T (t)), p(t), q(t)) µ ∈ b~t∈dom(T )p(t)c

then
eval

(
µ, T, λ(µ′, T ′). µ′ ∈ b~t∈dom(T )q(t)(T

′(t))c
)
.

Proof. By Löb induction. Since we know µ is an erasure of a state, we know there exist
h and U such that µ = (h, U) and dom(U) = dom(T ). By Lemma 1, there are two
cases: either we are in a terminal state, or there exist a possible reduction. We proceed
by inspecting these two.

Let us first consider the terminal case. By Lemma 1, we know that for any thread
t ∈ dom(T ), T (t) is a value, and U(t) = ε. Thus, irr(µ, T ) holds, and so we pick the
left branch. We are left with showing that (h, U) ∈ b~t∈dom(T )q(t)(T (t))c. However,
since we know that no thread can proceed, we also learn, from the safety assumption,
that for any thread we have p(t) v q(t)(T (t)). This shows us how to proceed: we
should successively apply the view-shifts for each consecutive thread, while treating the
separating conjunctions of the threads already shifted and these yet to be shifted as a
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frame. Formally we need to weaken our assumption to say that for any thread pools T1
and T2 such that T1 ] T2 = T if (h, U) ∈ b~t∈dom(T1)q(t)(T1(t)) ∗ ~t∈dom(T2)p(t)c, then
(h, U) ∈ b~t∈dom(T )q(t)(T (t))c, and proceed by induction on the size of T2. In the base
case T2 is empty, so T1 = T , and the lemma holds trivially. Otherwise, we know that T2 =
(t, v)]T ′2 for some T ′2, t and v. Thus, since all of p and q are stable, we can apply the view-
shift for thread t: we know that (h, U) ∈ bp(t) ∗ ~t∈dom(T1)q(t)(T1(t)) ∗ ~t∈dom(T ′

2)
p(t)c,

so we get that (h, U) ∈ bq(t)(v)∗~t∈dom(T1)q(t)(T1(t))∗~t∈dom(T ′
2)
p(t)c. Now, to use the

induction hypothesis for the smaller T ′2 we only need to take T ′1 = T1 ] (t, v). Thus, this
part of the proof is finished.

Let us now consider the case where a reduction could occur. The decomposition
lemma gives us a state (µ′, T ′) such that ((h, U), T ) → (µ′, T ′). By definition of single
step evaluation, this means that there is a thread t ∈ dom(T ), an action a ∈ Act , and a
thread pool T ′ ∈ TPool , such that (t, T (t))

a−→ T ′′, µ′ ∈ JaK(µ) and T ′ = (T − t) ] T ′′.
We will consider the case when a = flush(t) separately, since this can occur even if T (t)
is a value; all the other actions will follow from the safety of thread t.

Let us assume a = flush(t). In this case we can take the instrumented state m that
mediates the erasure and use the Lemma 19 to get a state m′ ∈ . ~t∈dom(T ) p(t) such
that µ′ ∈ .bm′c. The remaining obligation is easily discharged by induction hypothesis
and monotonicity of ..

Now, let us consider the case when a is not a flush action. In this case, we know that
T (t) can not be a value, so from the assumption of safety of t we get p′ : dom(T ′′) →
PropTSO and the following facts:

t ∈ dom(T ′′) ∀t′ ∈ dom(T ′′). . stable(p′(t′)) a sat {p(t)}
{
~t′∈dom(T ′′)p

′(t′)
}

. safe((t, T ′′(t)), p′(t), q(t)) ∀t′ ∈ dom(T ′′ − t). safe((t′, T ′′(t′)), p′(t′), λ_.>).

As in the previous case, we can now take the mediating instrumented state m and use
the atomic satisfaction, taking ~t′∈dom(T−t)p(t′) as a frame, to obtain a state m′ such
that

µ′ ∈ .bm′c m′ ∈ .~t′∈dom(T−t) p(t) ∗~t′∈dom(T ′′)p
′(t)

This, along with the previously obtained safety and stability properties allows us to use
the induction hypothesis to conclude that

.eval(µ′, T ′, λ(µ′′, T ′′). µ′′ ∈ b~t∈dom(T )q(t)(T
′′(t)) ∗~t∈dom(T ′′−t)>c.

However, since we know that p ∗> ⊆ > for any assertion p, this gives us the required
obligation that

.eval(µ′, T ′, λ(µ′′, T ′′). µ′′ ∈ b~t∈dom(T )q(t)(T
′′(t))c,

which ends the proof.
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Additional logical connectives

pp in tq def
={(l, s, U, ζ) ∈M | (flush(l, U(t)), s, U [t 7→ ε], ζ) ∈ ppq}

p Ut q def
={(l, s, U, ζ) ∈M | ∃α, β ∈ ∆(SBuffer). ∃o ∈ ∆(OId). ∃f ∈ ∆(FName). ∃v ∈ ∆(Val).

U(t) = α · (o, f, v) · β ∧ (l, s, U [t 7→ α], ζ) ∈ p ∧
(flush(l, α · (o, f, v)), s, U [t 7→ β], ζ) ∈ q}

cl
A

(p)
def
={m ∈M | ∃m′ ∈ p. m′ (≤ ∪RA)∗ m}

Semantic read and write judgments

p `w o.f 7→ v, q
def
= ∀t ∈ TId . ∀(l, s, U, ζ) ∈ p(t). t ∈ dom(U)⇒ .lookup(o.f, U(t), l) = v ∧

. (flush(l, U(t)), s, U [t 7→ ε], ζ) ∈ pq(t) ∗ o.f 7→ vq
p `mr o.f 7→ v

def
= ∀t ∈ TId . ∀m ∈ p(t). t ∈ dom(U)⇒ .lookup(o.f,m.U(t),m.l) = v

p `or o.f 7→ v
def
= ∀t, t′ ∈ TId . ∀m ∈ p(t′). t 6= t′ ∧ t ∈ dom(U)⇒

. lookup(o.f,m.U(t),m.l) = v

3 Logic

The specification logic is given by the specification entailment judgment,

Γ | Φ ` S,

where S is a specification Γ — a logical variable context, and Φ — a specification context.
The specification logic extends a standard higher-order intuitionistic logic.Similarly, both
of the assertion logics, SC and TSO, are given by the assertion logic entailment judgments,
of the form

Γ; ∆ | Φ | P `L Q,

where L ranges over {SC, TSO}, P and Q are the assertions of the appropriate logic, Γ is
the logical variable context, ∆ — the program variable context, and Φ — the specification
context. The SC logic is a standard higher order assertion logic, while the TSO logic
extends the higher-order intuitionistic separation logic with several additional proof rules
for the TSO connectives.

3.1 TSO Assertion Logic

Listed below are some of the proof rules of the TSO assertion logic. For the sake of clarity,
we do not present the introduction and elimination rules for the standard connectives of
higher-order intuitionistic separation logic here.
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Γ; ∆ | Φ ` stable(P) ∧ stable(Q)

Γ; ∆ | Φ | LP Ut QM `TSO (P Ut Q) ∨ Q
Stab-U

Γ; ∆ | Φ | P `TSO LPM Stab-I
Γ; ∆ | Φ ` stable(P)

Γ; ∆ | Φ | LPM `TSO P
Stab-S

Γ; ∆ | Φ | pPq `TSO pP in tq
W-HInterp

Γ; ∆ | P Ut Q `TSO pQ in tq
W-U

Γ; ∆ | Φ | P1 `TSO P2 Γ; ∆ | Φ | Q1 `TSO Q2

Γ; ∆ | Φ | P1 Ut Q1 `TSO P2 Ut Q2
Cons-U

Γ; ∆ | Φ ` b−stable(P)

Γ; ∆ | Φ | P ∗ (Q Ut R) `TSO Q Ut (P ∗ R)
*-U

3.2 Syntactic Sugar

We provide some syntactic sugar for more convenient reasoning within the TSO logic,
where the pre- and postconditions are parametrized with the current thread identifier.

P ≡λt ∈ TId. pP in tq
P U Q ≡λt ∈ TId. P(t) Ut Q(t)

P U Q ≡λt ∈ TId. ∃t′ ∈ TId. t 6= t′ ∗ P(t′) Ut′ Q(t′)

stable(P) ≡ r−stable(P) ∧ b−stable(P)

3.3 Read and Write Rules

These judgments determine what values can be read from or written to the local state.
The write judgment also provides the value of the field (for use of the compare-and-swap
rule), as well as information about the state that will become flushed at the time the
write action reaches the heap. The read judgment comes in two forms, dependent on
whether the assertion currently inspected seen from the perspective of the thread which
performs the read or some other thread’s.

The forms of these judgments are Γ; ∆ | P `sr x.f 7→ v and Γ; ∆ | P `w x.f 7→ v,Q
respectively, where s, ranging over the set {m, o}, is the flag. Note that Q above is an
PropSC.
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Γ; ∆ | .x.f 7→ v `mr x.f 7→ v
R-Self

Γ; ∆ | .px.f 7→ vq `or x.f 7→ v
R-Other

Γ; ∆ | Q `mr x.f 7→ v

Γ; ∆ | P U Q `mr x.f 7→ v
R-U-M

Γ; ∆ | P `or x.f 7→ v

Γ; ∆ | P U Q `or x.f 7→ v
R-U-O

Γ; ∆ | P `or x.f 7→ v

Γ; ∆ | P U Q `mr x.f 7→ v
R-U

Γ; ∆ | · | P ` Q Γ; ∆ | Q `sr x.f 7→ v

Γ; ∆ | P `sr x.f 7→ v
R-Cons

Γ; ∆ | .x.f 7→ v `w x.f 7→ v,>
W-Ax

Γ; ∆ | P `w x.f 7→ v,R

Γ; ∆ | P ∗ .Q `w x.f 7→ v,Q ∗ R
W-*

Γ; ∆ | Q `w x.f 7→ v,R

Γ; ∆ | P U Q `w x.f 7→ v,R
W-U

Γ; ∆ | · | P ` Q Γ; ∆ | Q `w x.f 7→ v,R

Γ; ∆ | P `w x.f 7→ v,R
W-Cons

3.4 Specification Logic

In the following we present the rules for reasoning within the specification logic. The
introduction and elimination rules for standard higher-order intuitionistic logic are omit-
ted, since they are completely standard.

3.4.1 Reasoning about Hoare triples

Atomic Command Rules

Γ; ∆ | P `mr x.f 7→ v

Γ; ∆ | Φ ` 〈P〉 x.f 〈r. P ∗ r = v〉C
A-Read

Γ; ∆ | P `w x.f 7→ v′,Q

Γ; ∆ | Φ ` 〈P〉 x.f := v 〈_. P U (pQ ∗ x.f 7→ vq)〉C
A-Write

Γ; ∆ | P `mr x.f 7→ v v 6= v2

Γ; ∆ | Φ ` 〈P〉 CAS(x.f, v1, v2) 〈r. r = false ∗ P 〉C
A-CAS-False

Γ; ∆ | P `w x.f 7→ v,Q

Γ; ∆ | Φ ` 〈P〉 CAS(x.f, v′, v) 〈r. r = true ∗ pQ ∗ x.f 7→ v′q〉C
A-CAS-True

Γ,∆ | Φ ` ∀y, r. stable(Q(y, r))

Γ,∆ | Φ ` n ∈ C Γ,∆ | Φ ` ∀x ∈ X. ∀y ∈ f(x). (x, y) ∈ (T (A))∗

Γ | Φ ` ∀x ∈ X. (∆).〈P ∗ .I(x)〉 e 〈r. ∃y ∈ f(x). Q(y, r) ∗~α∈A[α]ng(α) ∗ .I(y)〉C\{n}

Γ | Φ ` (∆). 〈P ∗ region(X,T, I, n)〉
e

〈r. ∃y. Q(y, r) ∗~α∈A[α]ng(α) ∗ region({y}, T, I, n)〉C

A-Region

Γ | Φ ` (∆).〈P〉 e 〈Q〉C atomic(e)

Γ | Φ ` (∆).{P} e {Q} A-Start
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Structural Rules

Γ | Φ ` P vA Q Γ | Φ ` stable(R)

Γ | Φ ` P ∗ R vA Q ∗ R
V-Frame

Γ | Φ ` (∆).〈P〉 e 〈Q〉 Γ,∆ | Φ ` stable(R)

Γ | Φ ` (∆).{P ∗ .R} e {Q ∗ R} A-Frame

Γ | Φ ` (∆).{P} e {Q} Γ,∆ | Φ ` stable(R)

Γ | Φ ` (∆).{P ∗ R} e {Q ∗ R} Frame

Γ | Φ ` P1 vA P2 Γ | Φ ` (∆).〈P2〉 e 〈Q2〉A Γ | Φ ` Q2 vA Q1

Γ | Φ ` (∆).〈P1〉 e 〈Q1〉A
A-Cons

Γ | Φ ` P1 v P2 Γ | Φ ` (∆).{P2} e {Q2} Γ | Φ ` Q2 v Q1

Γ | Φ ` (∆).{P1} e {Q1}
Cons

Other Rules for Commands

Γ, ȳ, this | Φ ` stable(P) ∧ stable(Q)

Γ | Φ ` .(C::m : (ȳ). {P} {Q}) Γ ` C : Class

Γ | Φ(∆).{P[v̄/ȳ, x/this] ∗ x : C} x.m(v̄) {Q[v̄/ȳ, x/this]} Call

Γ, this | Φ ` stable(P) ∧ stable(Q)

Γ | Φ ` .(C::m : (−). {pPq} {Q}) Γ ` C : Class

Γ | Φ ` (∆).{pP[x/this]q ∗ y : C} fork(y.m) {>} Fork

Γ, x̄ | Φ ` stable(P) ∧ stable(Q) Γ | Φ ` .(C : (x̄). {P} {Q}) Γ ` C : Class

Γ | Φ(∆).{P[v̄/x̄]} new C(v̄) {Q[v̄/x̄]} New

Γ | Φ ` (∆).{P} e1 {r. Q(r)} Γ | Φ ` (∆, x).{Q(x)} e2 {r. R(r)}
Γ | Φ ` (∆).{P} let x = e1 in e2 {r. R(r)} Bind

Γ;− ` v : Val

Γ | Φ ` {>} v {r. r = v} Val

View-Shifts

Γ | Φ ` P vA Q Γ | Φ ` Q vA R

Γ | Φ ` Q vA R
VTrans

Γ | Φ | P ` Q

Γ | Φ ` P vA Q
VImpl

Γ | Φ ` x ∈ X Γ | Φ ` ∀n ∈ C. ∀s. up(I(n)(s))
Γ | Φ ` A and B are finite Γ | Φ ` C is infinite

Γ | Φ ` ∀n ∈ C. P ∗~α∈A[α]n1 ⇒ .I(n)(x)
Γ | Φ ` ∀n ∈ C. ∀s. stable(I(n)(s)) Γ | Φ ` A ∩B = ∅

Γ | Φ ` P vC ∃n ∈ C. region(X,T, I(n), n) ∗~α∈B[α]n1
VAlloc
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Γ | Φ ` stable(P) Γ | Φ ` stable(Q)
Γ | Φ ` n ∈ A Γ | Φ ` ∀x ∈ X. f(x) ∈ Y
Γ | Φ ` ∀x ∈ X. (x, f(x)) ∈ T (α) ∨ f(x) = x

Γ | Φ ` ∀x ∈ X. P ∗ .I(x) ∗ [α]nπ vA\{n} Q ∗ .I(f(x))

Γ | Φ ` region(X,T, I, n) ∗ P ∗ [α]nπ vA region(Y, T, I, n) ∗ Q
VOpen

Derived Rules – Hoare triples for the SC Logic

Γ;− ` v : Val x ∈ ∆

Γ | Φ ` (∆).[x.f 7→ v] x.f [r. r = v ∗ x.f 7→ v]
S-Read

Γ;− ` v : Val x ∈ ∆

Γ | Φ ` (∆).[x.f 7→ _] x.f := v [r. x.f 7→ v]
S-Write

Γ, ȳ, this, r | Φ ` r−stable(P) ∧ r−stable(Q)
Γ | Φ ` .(C::m : (ȳ). [P] [r. Q]) Γ ` C : Class

Γ | Φ(∆).[P[v̄/ȳ, x/this] ∗ x : C] x.m(v̄) [r. Q[v̄/ȳ, x/this]]
S-Call

Γ, x̄, r | Φ ` stable(P) ∧ stable(Q)

Γ | Φ ` .(C : (x̄). [P] [r. Q]) Γ ` C : Class

Γ | Φ(∆).[P[v̄/x̄]] new C(v̄) [r. Q[v̄/x̄]]
S-New

Γ | Φ ` (∆).[P] e [r. Q] Γ,∆ | Φ ` r−stable(R)

Γ | Φ ` (∆).[P ∗ R] e [r. Q ∗ R]
S-Frame

Γ; ∆ | Φ | P1 `SC P2 Γ | Φ ` (∆).[P2] e [r. Q2] Γ, r; ∆ | Φ | Q2 `SC Q1

Γ | Φ ` (∆).[P1] e [r. Q1]
S-Cons

Γ; ∆ | Φ | P ` v = true Γ | Φ ` (∆).[P] e1 [r. Q]

Γ | Φ ` (∆).[P] if v then e1 else e2 [r. Q]
S-If-T

Γ; ∆ | Φ | P ` v = false Γ | Φ ` (∆).[P] e2 [r. Q]

Γ | Φ ` (∆).[P] if v then e1 else e2 [r. Q]
S-If-F

Γ | Φ ` (∆).[P] e1 [r. Q(r)] Γ | Φ ` (∆, x).[Q(x)] e2 [r. R(r)]

Γ | Φ ` (∆).[P] let x = e1 in e2 [r. R(r)]
S-Bind

Γ;− ` v : Val

Γ | Φ ` [>] v [r. r = v]
S-Val

Γ | Φ ` (∆).{P} e {Q}
Γ | Φ ` (∆).[P] e [r. Q(r)]

S-Shift

3.4.2 Later operator

In the following proof rules, the rules for distribution over quantifiers and binary connec-
tives work for both SC- and TSO-level connectives (except for U operator, which is only
defined on the TSO level), hence we omit the subscripts on the entailments.
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Γ | Φ, .S ` S

Γ | Φ ` S
SLob

Γ | Φ ` S⇒ .S
SMono

op ∈ {∧,∨, ∗,Ut}
Γ; ∆ | Φ | .(P op Q) a` (.P) op (.Q)

LBin
E ∈ {p−q, p− in tq}

Γ; ∆ | Φ | .(E(P)) a` E(.P )
LEmb

Γ; ∆ | Φ | .(P⇒ Q) ` (.P)⇒ (.Q)
LImpl

Γ; ∆ | Φ | .(P−∗ Q) ` (.P)−∗ (.Q)
LWand

Q ∈ {∀, ∃}
Γ; ∆ | Φ | .(Qx : τ. P(x)) a` Qx : τ. . P(x)

LQuant

3.4.3 Reasoning about stability

Stability consists of two components: stability under region interference (r−stable) and
stability under store-buffer interference (b−stable). The first of these is defined for both
level of assertions, the second only for PropTSO. Note how both embeddings preserve
stability under regions and grant stability under store-buffer interference, and that the
explicit stabilization does indeed provide stability.

Γ | Φ ` ∀α 6∈ A. ∀x ∈ X. T (α)(x) ⊆ X
Γ | Φ ` r−stable(region(X,T, n) ∗~α∈A[α]n1 )

Γ ` I : AId→ P(SId× SId) Γ ` n : RId
Γ | Φ ` r−stable(rintr(I, n))

c ∈ {>,⊥, emp}
Γ | Φ ` stable(c) Γ | Φ ` stable(x.f 7→ v) Γ | Φ ` stable(x : C)

Γ | Φ ` stable(LPM) Γ | Φ ` b−stable(pPq) Γ | Φ ` b−stable(pP in tq)

Γ | Φ ` r−stable(P)

Γ | Φ ` r−stable(pPq)
Γ | Φ ` r−stable(P)

Γ | Φ ` r−stable(pP in tq)
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Γ | Φ ` b−stable(P) Γ | Φ ` b−stable(Q) op∈ {∧,∨, ∗}
Γ | Φ ` b−stable(P op Q)

Γ | Φ ` ∀x : τ. b−stable(P(x))

Γ | Φ ` b−stable(∀x : τ. P(x))

Γ | Φ ` ∀x : τ. b−stable(P(x))

Γ | Φ ` b−stable(∃x : τ. P(x))

Γ | Φ ` r−stable(P) Γ | Φ ` r−stable(Q) op∈ {∧,∨, ∗}
Γ | Φ ` r−stable(P op Q)

Γ | Φ ` ∀x : τ. r−stable(P(x))

Γ | Φ ` r−stable(∀x : τ. P(x))

Γ | Φ ` ∀x : τ. r−stable(P(x))

Γ | Φ ` r−stable(∃x : τ. P(x))

3.4.4 Method verification

To verify a method or a constructor, we verify its body:

Γ; ∆, this ` P : TId→ PropTSO Γ; ∆, this ` Q : TId→ Val→ PropTSO

body(C,m) = (T m(∆) = e) Γ | Φ ` (∆, this).{P ∗ this : C} e {Q}
Γ | Φ ` C::m : (∆). {P} {Q}
ctorBody(C) = (C(∆) = e)

Γ; ∆ ` P : TId→ PropTSO Γ; ∆ ` Q : TId→ Val→ PropTSO

Γ | Φ ` (∆, this).{P ∗~f∈fields(C)pthis.f 7→ nullq ∗ this : C} e {Q}
Γ | Φ ` C : (∆). {P} {Q}

Note that constructors are syntactically required to return the value of the newly allo-
cated object.

4 Interpretation

4.1 Types

J` 1 : TypeK = 1

J` τ → σ : TypeK = J` τ : TypeK→ J` σ : TypeK
J` τ × σ : TypeK = J` τ : TypeK× J` σ : TypeK
J` τ + σ : TypeK = J` τ : TypeK + J` σ : TypeK
J` P(τ) : TypeK = P(J` τ : TypeK)

J` PropTSO : TypeK = PropTSO

J` PropSC : TypeK = PropSC

J` Spec : TypeK = Ω

J` ∆(X) : TypeK = ∆(X)
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4.2 Contexts

JΓ, x : τK = JΓK× J` τ : TypeK JεK = 1

J∆, x : ValK = J∆K× J` Val : TypeK JεK = 1

4.3 Lambda calculus

JΓ; ∆ ` x : τK(γ, δ) = πx(ϑ)

JΓ; ∆ ` x : ValK(γ, δ) = πx(δ)

JΓ; ∆ ` λx : τ. M : τ → σK(γ, δ) = λv ∈ J` τ : TypeK. JΓ, x : τ ; ∆ ` M : σK((ϑ, v), θ)

JΓ; ∆ ` M N : σK(γ, δ) = (JΓ; ∆ ` M : τ → σK(γ, δ))(JΓ; ∆ ` N : τK(γ, δ))

4.4 TSO Assertion Logic

JΓ; ∆ ` ⊥ : PropTSOK(γ, δ) = ∅
JΓ; ∆ ` > : PropTSOK(γ, δ) =M

JΓ; ∆ ` P ∧ Q : PropTSOK(γ, δ) = JΓ; ∆ ` P : PropTSOK(γ, δ) ∩ JΓ; ∆ ` Q : PropTSOK(γ, δ)
JΓ; ∆ ` P ∨ Q : PropTSOK(γ, δ) = JΓ; ∆ ` P : PropTSOK(γ, δ) ∪ JΓ; ∆ ` Q : PropTSOK(γ, δ)

JΓ; ∆ ` P⇒ Q : PropTSOK(γ, δ) = {m ∈M | ∀n ≥ m.
n ∈ JΓ; ∆ ` P : PropTSOK(γ, δ) ⇒
n ∈ JΓ; ∆ ` Q : PropTSOK(γ, δ)}

JΓ; ∆ ` ∀x : τ. P : PropTSOK(γ, δ) =
⋂

v∈J`τ :TypeK
JΓ, x : τ ; ∆ ` P : PropTSOK((γ, v), δ)

JΓ; ∆ ` ∃x : τ. P : PropTSOK(γ, δ) =
⋃

v∈J`τ :TypeK
JΓ, x : τ ; ∆ ` P : PropTSOK((γ, v), δ)

JΓ; ∆ ` pPq : PropTSOK(γ, δ) def
= let p = JΓ; ∆ ` P : PropSCK(γ, δ) in ppq

JΓ; ∆ ` pP in tq : PropTSOK(γ, δ) def
= let p = JΓ; ∆ ` P : PropSCK(γ, δ) in pp in tq

JΓ; ∆ ` P Ut Q : PropTSOK(γ, δ) def
= let p = JΓ; ∆ ` P : PropTSOK(γ, δ) in

let q = JΓ; ∆ ` Q : PropTSOK(γ, δ) in
p Ut q

JΓ; ∆ ` LP M : PropTSOK(γ, δ) def
= let p = JΓ; ∆ ` P : PropTSOK(γ, δ) in cl(p)

JΓ; ∆ ` emp : PropTSOK(γ, δ) =M
JΓ; ∆ ` P ∗ Q : PropTSOK(γ, δ) = JΓ; ∆ ` P : PropTSOK(γ, δ) ∗ JΓ; ∆ ` Q : PropTSOK(γ, δ)
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4.5 SC Assertion Logic

JΓ; ∆ ` ⊥ : PropSCK(γ, δ) = ∅
JΓ; ∆ ` > : PropSCK(γ, δ) = H

JΓ; ∆ ` P ∧ Q : PropSCK(γ, δ) = JΓ; ∆ ` P : PropSCK(γ, δ) ∩ JΓ; ∆ ` Q : PropSCK(γ, δ)
JΓ; ∆ ` P ∨ Q : PropSCK(γ, δ) = JΓ; ∆ ` P : PropSCK(γ, δ) ∪ JΓ; ∆ ` Q : PropSCK(γ, δ)

JΓ; ∆ ` P⇒ Q : PropSCK(γ, δ) = {m ∈ H | ∀n ≥ m.
n ∈ JΓ; ∆ ` P : PropSCK(γ, δ) ⇒
n ∈ JΓ; ∆ ` Q : PropSCK(γ, δ)}

JΓ; ∆ ` ∀x : τ. P : PropSCK(γ, δ) =
⋂

v∈J`τ :TypeK
JΓ, x : τ ; ∆ ` P : PropSCK((γ, v), δ)

JΓ; ∆ ` ∃x : τ. P : PropSCK(γ, δ) =
⋃

v∈J`τ :TypeK
JΓ, x : τ ; ∆ ` P : PropSCK((γ, v), δ)

JΓ; ∆ ` emp : PropSCK(γ, δ) = H
JΓ; ∆ ` P ∗ Q : PropSCK(γ, δ) = JΓ; ∆ ` P : PropSCK(γ, δ) ∗ JΓ; ∆ ` Q : PropSCK(γ, δ)

JΓ; ∆ ` x.f 7→ v : PropSCK(γ, δ) = let o = JΓ; ∆ ` x : ValK(γ, δ) in
let f = JΓ; ∆ ` f : FieldK(γ, δ) in
let v = JΓ; ∆ ` v : ValK(γ, δ) in
{m ∈ H | m.l(o, f) = v}

JΓ; ∆ ` region(M,N,R) : PropSCK(γ, δ) =

{m ∈M | ∃T : ∆(AId → P(SId × SId)).

let M = JΓ; ∆ ` M : P(SId)K(γ, δ) in
let R = JΓ; ∆ ` R : RIdK(γ, δ) in
φ(T ) = JΓ; ∆ ` T : AId→ P(SId× SId)K(γ, δ) ∧
m ∈ region(M,T,R)}

JΓ; ∆ ` rintr(I,R) : PropSCK(γ, δ) = rintr(JΓ; ∆ ` I : SId→ PropTSOK(γ, δ), JΓ; ∆ ` R : RIdK(γ, δ))
JΓ; ∆ ` [A]RP : PropSCK(γ, δ) = action(JΓ; ∆ ` A : AIdK(γ, δ),

JΓ; ∆ ` R : RIdK(γ, δ),
JΓ; ∆ ` P : PermK(γ, δ))

where φ embeds predicates from our set-theoretic metalogic in the topos of trees. For
more details, consult the iCAP technical report [2].
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4.6 Specification Logic

JΓ ` ⊥ : SpecK(γ) = ⊥
JΓ ` > : SpecK(γ) = >

JΓ ` S ∧ T : SpecK(γ) = JΓ ` S : SpecK(γ) ∧ JΓ ` T : SpecK(γ)

JΓ ` S ∨ T : SpecK(γ) = JΓ ` S : SpecK(γ) ∨ JΓ ` T : SpecK(γ)

JΓ ` S⇒ T : SpecK(γ) = JΓ ` S : SpecK(γ)⇒ JΓ ` T : SpecK(γ)

JΓ ` ∀x : τ. S : SpecK(γ) = ∀v ∈ J` τ : TypeK. JΓ, x : τ ` S : SpecK((γ, v))

JΓ ` ∃x : τ. S : SpecK(γ) = ∃v ∈ J` τ : TypeK. JΓ, x : τ ` S : SpecK((γ, v))

JΓ ` M =τ N : SpecK(γ) = JΓ ` M : τK(γ) = JΓ ` N : τK(γ)

JΓ ` (∆).{P} e {Q}K(γ)
def
= ∀t ∈ TId . ∀δ ∈ J∆K.

let p = JΓ; ∆ ` P : TId→ PropTSOK(γ, δ) in
let q = JΓ; ∆ ` Q : TId→ Val→ PropTSOK(γ, δ) in

safe((t, δ(e)), p(t), q(t))

JΓ ` (∆).〈P〉 e 〈Q〉AK(γ)
def
= ∀t ∈ TId . ∀δ ∈ J∆K. ∀a ∈ Act . ∀v ∈ Val .

let p = JΓ; ∆ ` P : TId→ PropTSOK(γ, δ) in
let q = JΓ; ∆ ` Q : TId→ Val→ PropTSOK(γ, δ) in

(t, δ(e))
a−→ {(t, v)} ⇒ a satA {p(t)} {q(t)(v)}

JΓ ` r−stable(P) : SpecK(γ) = let p = JΓ; ε ` P : PropSCK(γ, ε) in rstable(p)

JΓ ` b−stable(P) : SpecK(γ) = let p = JΓ; ε ` P : PropTSOK(γ, ε) in bstable(p)

JΓ ` P vR Q : SpecK(γ) = let p = JΓ; ε ` P : PropTSOK(γ, ε) in
let q = JΓ; ε ` Q : PropTSOK(γ, ε) in
let R = JΓ ` R : P(RId)K(γ) in
p vR q
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4.7 Judgments

JΓ; ∆ | P `w x.f 7→ v,QK(γ, δ) = let p = JΓ; ∆ ` P : TId → PropTSOK(γ, δ) in
let q = JΓ; ∆ ` Q : PropTSOK(γ, δ) in
let o = JΓ; ∆ ` x : ValK(γ, δ) in
let v = JΓ; ∆ ` v : ValK(γ, δ) in
p `w o.f 7→ v, q

JΓ; ∆ | P `mr x.f 7→ vK(γ, δ) = let p = JΓ; ∆ ` P : PropTSOK(γ, δ) in
let o = JΓ; ∆ ` x : ValK(γ, δ) in
let v = JΓ; ∆ ` v : ValK(γ, δ) in
p `mr o.f 7→ v

JΓ; ∆ | p `or x.f 7→ vK(γ, δ) = let p = JΓ; ∆ ` P : PropTSOK(γ, δ) in
let o = JΓ; ∆ ` x : ValK(γ, δ) in
let v = JΓ; ∆ ` v : ValK(γ, δ) in
p `or o.f 7→ v

4.8 Embeddings and later operators

JΓ ` valid(P) : SpecK(γ) = valid(JΓ;− ` P : PropTSOK(γ))

JΓ ` .S : SpecK(γ) = .(JΓ ` S : SpecK(γ))

JΓ; ∆ ` spec(S) : PropSCK(γ, δ) = spec(JΓ ` S : SpecK(γ))

JΓ; ∆ ` .P : PropTSOK(γ, δ) = .(JΓ; ∆ ` P : PropTSOK(γ, δ))
JΓ; ∆ ` .P : PropSCK(γ, δ) = .(JΓ; ∆ ` P : PropSCK(γ, δ))

4.9 Entailment

JΓ; ∆ | Φ | P `TSO QK =

∀γ ∈ JΓK. ∀δ ∈ J∆K. JΦK(γ)⇒ JΓ; ∆ ` P : PropTSOK(γ, δ) ⊆ JΓ; ∆ ` Q : PropTSOK(γ, δ)

JΓ; ∆ | Φ | P `SC QK =

∀γ ∈ JΓK. ∀δ ∈ J∆K. JΦK(γ)⇒ JΓ; ∆ ` P : PropSCK(γ, δ) ⊆ JΓ; ∆ ` Q : PropSCK(γ, δ)

JΓ | S1, ...,Sn ` TK = ∀γ ∈ JΓK.


 ∧

i∈{1,...,n}
JΓ ` Si : SpecK(γ)


⇒ JΓ ` T : SpecK(γ)
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5 Soundness

Lemma 32.

∀p ∈ PropSC . . ppq = p.pq

Proof (⊆). Assume .(l, s, U, ζ) ∈ ppq. Then by definition of the embedding,

.(∃l′ ∈ ∆(LState). l′ ≤ l ∧ (l′, s, U, ζ) ∈ p ∧ lfd(l′, U))

Since later commutes over existentials over constant sets and conjunctions and l′ ≤ l
and lfd simply reduces to (universally quantified) equalities on constant sets, which are
upwards-closed, the above is equivalent to:

∃l′ ∈ ∆(LState). (l′ ≤ l ∨ .⊥) ∧ (l′, s, U, ζ) ∈ .p ∧ (lfd(l′, U) ∨ .⊥))

In case .⊥ then (l, s, U, ζ) ∈ p.pq holds trivially, by taking l′ to be the empty local
state, which is trivially smaller than l. Otherwise, the conclusion follows directly from
the assumptions.

Proof (⊇). Follows easily by monotonicity of ..

Lemma 33.

∀p, q ∈ PropTSO . . (p Ut q) = (.p) Ut (.q)

Proof (⊆). Assume (l, s, U, ζ) ∈ .(p Ut q). Hence, by the definition of Ut

.(∃α, β ∈ ∆(SBuffer). ∃o ∈ ∆(OId). ∃f ∈ ∆(FName). ∃v ∈ ∆(Val).

U(t) = α · (o, f, v) · β ∧ (l, s, U [t 7→ α], ζ) ∈ p ∧
(flush(l, α · (o, f, v)), s, U [t 7→ β], ζ) ∈ q)

Since constant sets are trivially total and . commutes over ∧ this reduces to

∃α, β ∈ ∆(SBuffer). ∃o ∈ ∆(OId). ∃f ∈ ∆(FName). ∃v ∈ ∆(Val).

. (U(t) = α · (o, f, v) · β) ∧ (l, s, U [t 7→ α], ζ) ∈ .p ∧
(flush(l, α · (o, f, v)), s, U [t 7→ β], ζ) ∈ .q

Since equality on constant sets is upwards-closed, this is equivalent to

∃α, β ∈ ∆(SBuffer). ∃o ∈ ∆(OId). ∃f ∈ ∆(FName). ∃v ∈ ∆(Val).

U(t) = α · (o, f, v) · β ∧ (l, s, U [t 7→ α], ζ) ∈ .p ∧
(flush(l, α · (o, f, v)), s, U [t 7→ β], ζ) ∈ .q

Hence (l, s, U, ζ) ∈ (.p) Ut (.q).
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Proof (⊇). Assume (l, s, U, ζ) ∈ (.p) Ut (.q). Then

∃α, β ∈ ∆(SBuffer). ∃o ∈ ∆(OId). ∃f ∈ ∆(FName). ∃v ∈ ∆(Val).

U(t) = α · (o, f, v) · β ∧ (l, s, U [t 7→ α], ζ) ∈ .p ∧
(flush(l, α · (o, f, v)), s, U [t 7→ β], ζ) ∈ .q

by monotonicity of . and by commuting . over ∧ and ∃, it follows that

.( ∃α, β ∈ ∆(SBuffer). ∃o ∈ ∆(OId). ∃f ∈ ∆(FName). ∃v ∈ ∆(Val).

U(t) = α · (o, f, v) · β ∧ (l, s, U [t 7→ α], ζ) ∈ p ∧
(flush(l, α · (o, f, v)), s, U [t 7→ β], ζ) ∈ q)

Thus (l, s, U, ζ) ∈ .(p Ut q).

Lemma 34. For any A ∈ P(∆(RId)), p ∈ ∆(TId) → PropTSO , f ∈ ∆(FName),
v1, v2 ∈ ∆(Val), t ∈ ∆(TId) and o ∈ ∆(OId),

p `mr o.f 7→ v1 ⇒ read(t, o, f, v2) satA {p(t)} {p(t) ∗ v1 = v2}

Proof. Let r ∈ PropTSO , m ∈M, h ∈ ∆(Heap), and U ∈ ∆(SPool) such that

m ∈ p(t) ∗ .r (h, U) ∈ bmcA stable
A

(r).

Hence, there exists m1,m2 ∈ M such that m = m1 • m2, m1 ∈ p(t) and m2 ∈ .r. If
t 6∈ dom(U), Jread(t, o, f, v2)K(h, U) = ∅ and the conclusion holds vacuously. Assume,
then, that t ∈ dom(U). Now, from the definition of `mr it follows that

.lookup(o.f,m1.U(t),m1.l) = v1.

Since equalities on terms of constant sets are upwards-closed it follows that

lookup(o.f,m1.U(t),m1.l) = v1 ∨ .⊥

The .⊥ case follows trivially as the definition of atomic satisfaction only requires the post-
condition to hold later. In the lookup(o.f,m1.U(t),m1.l) = v1 case, o.f ∈ domh, and so
� 6∈ Jread(t, o, f, v2)K(h, U). Now we can take any (h′, U ′) ∈ Jread(t, o, f, v2)K(h, U). By
definition, it follows that h = h′, U = U ′, and v1 = v2. We pick m′ to be m and thus
have to show that

.(m ∈ p(t) ∗ v1 = v1 ∗ r) .((h, U) ∈ bmcA)

Both follow easily from monotonicity of . and the fact that ε ∈ v1 = v1.

Lemma 35. For any A ∈ P(∆(RId)), p ∈ ∆(TId)→ PropTSO , q ∈ ∆(TId)→ PropSC ,
f ∈ ∆(FName), v1, v2 ∈ ∆(Val), t ∈ ∆(TId) and o ∈ ∆(OId),

p `w o.f 7→ v2, q ⇒ write(t, o, f, v1) satA {p(t)} {p(t) Ut (pq(t) ∗ o.f 7→ v1q)}
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Proof. Let r ∈ PropTSO , m ∈M, h ∈ ∆(Heap) and U ∈ ∆(SPool) such that

m ∈ p(t) ∗ .r (h, U) ∈ bmcA stable
A

(r)

Hence, there exists m1,m2 ∈M such that m = m1 •m2, m1 ∈ p(t) and m2 ∈ .r. Let

m = (l, s, U, ζ) m1 = (l1, s, U, ζ) m2 = (l2, s, U, ζ)

Analogously to the read case, we only need to consider the case when t ∈ dom(U). From
the definition of `w it follows that

.lookup(o.f, U(t), l1) = v2 .(flush(l1, U(t)), s1, U [t 7→ ε], ζ1) ∈ pq(t) ∗ o.f 7→ v2q.

Since equalities on constant sets are upwwards-closed, it follows that

lookup(o.f, U(t), l1) = v2 ∨ .⊥

As the .⊥ case follows easily from Lemma 15, assume lookup(o.f, U(t), l1) = v2. Then
(o, f) ∈ dom(h) and thus � 6∈ Jwrite(t, o, f, v1)K(h, U). Now, we can take any (h′, U ′) ∈
Jwrite(t, o, f, v1)K(h, U). By definition of action semantics, this means that h′ = h and
U ′ = U [t 7→ U(t) · (o, f, v1)].

Takem′ = (l, s, U ′, ζ). Since (o, f) ∈ dom(l1), .((l2, s, U ′, ζ) ∈ r) and (h, U ′) ∈ bm′cA
follow by stability of r and interpretations of the shared regions. Hence, it suffices to
show that .(l1, s, U ′, ζ) ∈ p(t) Ut (pq(t) ∗ o.f 7→ v1q). To show this, we pick the final
update in U ′(t), and thus need to show

.(l1, s, U, ζ) ∈ p(t) .(flush(l1, U(t) · (o, f, v1)), s, U [t 7→ ε], ζ) ∈ pq(t) ∗ o.f 7→ v1q

The first property follows from our assumptions and monotonicity of later; the second
is more involved. Since the interpretation of PropSC distributes over separating con-
junction, we know there exist l3, l4 ∈ ∆(LState), such that .l3 • l4 = flush(l1, U(t)),
.(l3, s1, U [t 7→ ε], ζ) ∈ pq(t)q and .(l4, s1, U [t 7→ ε], ζ) ∈ po.f 7→ v2q. We can now show,
using the properties of flush, that

flush(l1, U(t) · (o, f, v1)) = flush(l3, (o, f, v1)) • flush(l4, (o, f, v1)).

Since .(o, f) ∈ dom(l4) has to hold, we can also conclude easily that

.(flush(l4, (o, f, v1)), s, U [t 7→ ε], ζ) ∈ po.f 7→ v1q.

However, since .(o, f) 6∈ dom(l3), .(l3, U [t 7→ ε]) Rsb (flush(l3, (o, f, v1)), U [t 7→ ε]), and
by Lemma 30 and monotonicity of later, pq(t)q is stable under store-buffer interference
later, which concludes the proof.

Lemma 36. For any A ∈ P(∆(RId)), p ∈ ∆(TId) → PropTSO , t ∈ ∆(TId), o ∈
∆(OId), f ∈ ∆(FName), v, vo, vn ∈ ∆(Val), x ∈ ∆(2),

p `mr o.f 7→ v ∧ v 6= vo ⇒ cas(t, o, f, vo, vn, x) satA {p(t)} {p(t) ∗ x = false}
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Proof. Let r ∈ PropTSO , m ∈M, h ∈ ∆(Heap), and U ∈ ∆(SPool) such that

m ∈ p(t) ∗ .r (h, U) ∈ bmcA stable
A

(r).

Hence, there existsm1,m2 ∈M such thatm = m1•m2, m1 ∈ p(t) andm2 ∈ .r. As with
read and write actions, if t 6∈ dom(U), the statement is vacuously true, since in that case
Jcas(t, o, f, vo, vn, x)K = ∅. Thus, we know that t ∈ dom(U), and so, by definition of `mr ,
we get .lookup(o.f, U(t),m1.l) = v. As equalities on constant sets are upwards-closed,
it follows that

lookup(o.f, U(t),m1.l) = v ∨ .⊥
As the conclusion follows trivially in the .⊥ case (by Lemma 15), assume

lookup(o.f, U(t),m1.l) = v.

This means that (o, f) ∈ dom(m1.l) ⊆ dom(h), and so � 6∈ Jcas(t, o, f, vo, vn, x)K.
Take any (h′, U ′) ∈ Jcas(t, o, f, vo, vn, x)K(h, U). Since v 6= vo, there is only one non-

vacuous case, in which we learn that h′ = h, U ′ = U and x = false. Thus, we pick
m′ = m, so (h, U) ∈ bmcA holds by assumption. To show that

.(m ∈ p(t) ∗ false = false ∗ r),

we pick the same splitting of m, which gives us m2 ∈ .r. Now we can split m1 as
m1 • (ε,m.s,m.U,m.ζ), and both branches follow easily by monotonicity of ..

Lemma 37. For any A ∈ P(∆(RId)), p ∈ ∆(TId)→ PropTSO , q ∈ ∆(TId)→ PropSC ,
t ∈ ∆(TId), o ∈ ∆(OId), f ∈ ∆(FName), vo, vn ∈ ∆(Val), x ∈ ∆(2),

p `w o.f 7→ vo, q ⇒ cas(t, o, f, vo, vn, x) satA {p(t)} {pq(t) ∗ o.f 7→ vnq ∗ x = true}

Proof. Let r ∈ PropTSO , m ∈M, h ∈ ∆(Heap) and U ∈ ∆(SPool) such that

m ∈ p(t) ∗ .r (h, U) ∈ bmcA stable
A

(r)

Hence, there exists m1,m2 ∈M such that m = m1 •m2, m1 ∈ p(t) and m2 ∈ .r. Let

m = (l, s, U, ζ) m1 = (l1, s, U, ζ) m2 = (l2, s, U, ζ)

As in the other cases, if t 6∈ dom(U), the statement holds vacuously. In the case when
t ∈ dom(U), by definition of `w we get .lookup(o.f, U(t), l1) = vo and

.(flush(l1, U(t)), s, U [t 7→ ε], ζ) ∈ pq(t) ∗ o.f 7→ voq.

Since equalities on constant sets are upwards-closed it follows that

lookup(o.f, U(t), l1) = vo ∨ .⊥
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As the conclusion follows trivially by Lemma 15 in the .⊥ case, assume lookup(o.f, U(t), l1) =
vo. Since (o, f) ∈ dom(l1) ⊆ dom(h), we can conclude that � 6∈ Jcas(t, o, f, vo, vn, x)K,
which leaves us with the second conjunct.

Take any (h′, U ′) ∈ Jcas(t, o, f, vo, vn, x)K(h, U). The only non-vacuous case is the
successful compare-and-swap action, in which case x = true, U ′ = U [t 7→ ε], and
h′ = flush(h, U(t) · (o, f, vn)). Pick m′ = (flush(l, U(t) · (o, f, vn)), s, U [t 7→ ε], ζ). Since
flushing distributes over •LState , we can easily show that

(flush(l2, U(t) · (o, f, vn)), s, U [t 7→ ε], ζ) ∈ .(r)

by using stability of the latter assertion. By using the same argument as in the case of
write, and Lemma 30, we can also show

.(flush(l1, U(t) · (o, f, vn)), s, U [t 7→ ε], ζ) ∈ pq(t) ∗ o.f 7→ vnq ∗ true = true.

What remains is showing that (h′, U ′) ∈ bm′cA. However, we can pick the state l′n =
flush(l′, U(t) · (o, f, v)) and the map srn(r) = (flush(π1(sr(r)), U(t) · (o, f, v)), U ′), where
l′ and sr are the witnesses of (h, U) ∈ bmcA. This leaves us with showing srn(r) ∈
b(s, ζ)cr for r ∈ dom s ∩ A. However, since (o, f) 6∈ dom(π1(sr(r))), we know that
sr(r) Rsb srn(r). Also, since b(s, ζ)cr is defined as application of the action model, it’s
upwards-closed under interference, and so srn(r) ∈ b(s, ζ)cr.

5.1 Read and Write Judgments

Lemma 38 (W-Ax-Sound). For any o ∈ ∆(OId), f ∈ ∆(FName), v ∈ ∆(Val)

(λt ∈ TId . . po.f 7→ v in tq) `w o.f 7→ v,>.

Proof. Take any t ∈ ∆(TId) and .(l, s, U, ζ) ∈ po.f 7→ v in tq such that t ∈ dom(U).
By definition, this means that .(flush(l, U(t)), s, U [t 7→ ε], ζ) ∈ po.f 7→ vq. This implies
both that

.(flush(l, U(t)), s, U [t 7→ ε], ζ) ∈ p> ∗ o.f 7→ vq
and, by definition of points-to predicate, that .(flush(l, U(t))).h(x, f) = v, which means
that

.lookup(x.f, U(t), l) = v,

which in turn ends the proof.

Lemma 39 (W-*-Sound). For any p ∈ ∆(TId) → PropTSO , q ∈ PropSC , r ∈ PropSC ,
o ∈ ∆(OId), f ∈ ∆(FName), v ∈ ∆(Val)

p `w o.f 7→ v, r ⇒ (λt ∈ TId . p(t) ∗ .pq in tq) `w o.f 7→ v, q ∗ r.

Proof. Take any t ∈ ∆(TId) and m ∈ p(t) ∗ .pq in tq such that t ∈ dom(m.U). By
definition, there exist states m1 and m2 such that m = m1 •m2, m1 ∈ p(t) and m2 ∈
.pq in tq. Let (l1, s, U, ζ) = m1 and (l2, s, U, ζ) = m2. From the assumption we get that
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.lookup(o.f, U(t), l1) = v and .(flush(l1, U(t)), s, U [t 7→ ε], ζ) ∈ pr ∗ o.f 7→ vq. Since
m.l = l1 •LState l2, this means that .lookup(o.f,m.U(t),m.l) = v. For the remaining
property, note that

flush(l1 •LState l2, α) = flush(l1, α) •LState flush(l2, α),

so it suffices to show that .(flush(l2, U(t)), s, U [t 7→ ε], ζ) ∈ pqq, which follows directly
from m2 ∈ .pq in tq.

Lemma 40 (W-U-Sound). For any p ∈ ∆(TId) → PropTSO , q ∈ ∆(TId) → PropTSO ,
r ∈ PropSC , o ∈ ∆(OId), f ∈ ∆(FName), v ∈ ∆(Val),

q `w o.f 7→ v, r ⇒ (λt ∈ TId . p(t) Ut q(t)) `w o.f 7→ v, r.

Proof. Take any t ∈ ∆(TId) and (l, s, U, ζ) ∈ p(t) Ut q(t) such that t ∈ dom(U).
By definition of Ut, this means that there exist α and β such that U(t) = α · β and
(flush(l, α), s, U [t 7→ β], ζ) ∈ q(t) (we fold the update from the definition into α, since it’s
not of interest in this proof). By instantiating the assumption with the latter, we get that
.lookup(o.f, β, flush(l, α)) = v and .(flush(flush(l, α), β), s, U [t 7→ ε], ζ) ∈ pr ∗ o.f 7→ vq.
By the properties of flush and lookup, this means that .lookup(o.f, α · β, l) = v and

.(flush(l, α · β), s, U [t 7→ ε], ζ) ∈ pr ∗ o.f 7→ vq,

which ends the proof.

Lemma 41 (W-Cons-Sound). For any p ∈ ∆(TId) → PropTSO , q ∈ ∆(TId) →
PropTSO , r ∈ PropSC , o ∈ ∆(OId), f ∈ ∆(FName), v ∈ ∆(Val),

q `w o.f 7→ v, r ∧ (∀t ∈ TId . p(t) ⊆ q(t))⇒ p `w o.f 7→ v, r.

Proof. Take any t ∈ ∆(TId) and m ∈ p(t), such that t ∈ dom(m.U). By the entailment
assumption, this means m ∈ q(t), so .lookup(o.f,m.U(t),m.l) = v and

.(flush(m.l,m.U(t)),m.s,m.U [t 7→ ε], ζ) ∈ pr ∗ o.f 7→ vq,

which ends the proof.

Lemma 42 (R-Self-Sound). For any o ∈ ∆(OId), f ∈ ∆(FName), v ∈ ∆(Val),

(λt. . po.f 7→ v in tq) `mr o.f 7→ v.

Proof. Take any t ∈ TId and (l, s, U, ζ) ∈ p(t) such that t ∈ dom(U). We have

.(flush(l, U(t)), s, U [t 7→ ε], ζ) ∈ po.f 7→ vq.

By definition, this means we have .(l′ ≤ flush(l, U(t))) such that .(l′, s, ζ) ∈ o.f 7→ v,
and so .o.f ∈ dom(l′). From this, using properties of flush and lookup, we can conclude
that .lookup(o.f, U(t), l) = v, which ends the proof.
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Lemma 43 (R-U-M-Sound). For any p, q ∈ ∆(TId) → PropTSO , o ∈ ∆(OId), f ∈
∆(FName), v ∈ ∆(Val),

q `mr o.f 7→ v ⇒ (λt ∈ TId . p(t) Ut q(t)) `mr o.f 7→ v.

Proof. Take any t ∈ ∆(TId) and (l, s, U, ζ) ∈ p(t) Ut q(t) such that t ∈ dom(U). By
definition of Ut we have α and β such that U(t) = α · β and

(flush(l, α), s, U [t 7→ β], ζ) ∈ q(t).

This allows us to use the assumption, from which we can conclude that

.lookup(o.f, β, flush(l, α)) = v,

and so, using the properties of lookup and flush, .lookup(o.f, α · β, l) = v, which ends
the proof.

Lemma 44 (R-U-Sound). For any p, q ∈ ∆(TId) → PropTSO , o ∈ ∆(OId), f ∈
∆(FName), v ∈ ∆(Val),

p `or o.f 7→ v ⇒ (λt ∈ TId . ∃t′ ∈ ∆(TId). t 6= t′ ∗ p(t′) Ut′ q(t′)) `mr o.f 7→ v.

Proof. Take any t ∈ ∆(TId) and m ∈ ∃t′ ∈ ∆(TId). t 6= t′ ∗ p(t′) Ut′ q(t′) such that
t ∈ dom(m.U). By definition, this gives us t′ ∈ ∆(TId) and states (l1, s, U, ζ) ∈ t 6= t′,
(l2, s, U, ζ) ∈ p(t′) Ut′ q(t′), such that m = (l1 •LState l2, s, U, ζ). By definition of Ut we
get α and β such that U(t′) = α · β and (l2, s, U [t′ 7→ α] ∈ p(t′) (this time we fold the
update into β). Now we can use the assumption, obtaining

.lookup(o.f, U [t′ 7→ α](t), l2) = v,

from which it easily follows, since t 6= t′, that .lookup(o.f, U(t), l) = v, which ends the
proof.

Lemma 45 (R-Cons-M-Sound). For any p, q ∈ ∆(TId) → PropTSO , o ∈ ∆(OId),
f ∈ ∆(FName), v ∈ ∆(Val),

q `mr o.f 7→ v ∧ (∀t. p(t) ⊆ q(t))⇒ p `mr o.f 7→ v.

Proof. Take any t ∈ ∆(TId) and m ∈ p(t) such that t ∈ dom(m.U). By the entailment
assumptionm ∈ q(t), so from the other assumption we get .lookup(o.f,m.U(t),m.l) = v,
which ends the proof.

Lemma 46 (R-Other-Sound). For any o ∈ ∆(OId), f ∈ ∆(FName), v ∈ ∆(Val),

.po.f 7→ vq `or o.f 7→ v.
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Proof. Take any t, t′ ∈ ∆(TId) and m ∈ .po.f 7→ vq such that t 6= t′ and t ∈ dom(m.U).
By definition of p−q, we know that .m.l(o, f) = v and

.(∀t ∈ dom(m.U). ∀v ∈ Val . (o, f, v) 6∈ m.U(t)).

This means that .(o, f, v) 6∈ m.U(t) for any v, and so

.(lookup(o.f,m.U(t),m.l) = m.l(o, f) = v).

Lemma 47 (R-U-O-Sound). For any p, q ∈ ∆(TId) → PropTSO , o ∈ ∆(OId), f ∈
∆(FName), v ∈ ∆(Val),

p `or o.f 7→ v ⇒ (λt ∈ TId . p(t) Ut q(t)) `or o.f 7→ v.

Proof. Take any t, t′ ∈ ∆(TId), (l, s, U, ζ) ∈ p(t′) Ut q(t′) such that t 6= t′ and t ∈
dom(U). By definition of Ut, we get α and β such that U(t′) = α · β and (l, s, U [t′ 7→
α], ζ) ∈ p(t′). Thus, we can use the assumption to conclude that .lookup(o.f, U [t′ 7→
α](t), l) = v and, since t 6= t′, .lookup(o.f, U(t), l) = v.

Lemma 48 (R-Cons-O-Sound). For any p, q ∈ ∆(TId) → PropTSO , o ∈ ∆(OId),
f ∈ ∆(FName), v ∈ ∆(Val),

q `or o.f 7→ v ∧ (∀t. p(t) ⊆ q(t))⇒ p `or o.f 7→ v.

Proof. Take any t, t′ ∈ ∆(TId) and m ∈ p(t′) such that t 6= t′ and t ∈ dom(U). By
the entailment assumption, this means m ∈ q(t′), so we can use the read-judgment
assumption to conclude that .lookup(o.f,m.U(t),m.l) = v.

Theorem 1 (Soundness). If Γ | Φ ` S then JΓ | Φ ` SK.

6 Verification of a spin-lock in the TSO logic

In this section we verify the spin-lock implementation using the TSO logic. We assume
the reader has read the accompanying paper.

6.1 Specification

∃isLock , locked : PropSC × Val→ PropSC.

∀R : PropSC. stable(R) ⇒

{R} Lock() {r. isLock(R, r)}
∧ {isLock(R, this)} Lock.acquire() {locked(R, this) ∗ pRq}
∧ {locked(R, this) ∗ R} Lock.release() {>}
∧ valid(∀x : Val. isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x))

∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))
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Formally, the isLock and locked assertions are also embedded using −, however as men-
tioned earlier, region assertions are independent of the local state and we thus elide the
embeddings to make the proofs more readable.

6.2 Predicate Definitions

isLock(R, x) = ∃n : RId. [Acq]n_ ∗ region({U, L},Tlock, I(x,R, n), n)

locked(R, x) = ∃n : RId. [Acq]n_ ∗ [Rel]n1 ∗ region({L},Tlock, I(x,R, n), n)

where

I(x,R, n)(U) = ∃t : TId. Lpx.locked 7→ trueq Ut px.locked 7→ false ∗ R ∗ [Rel]n1qM
I(x,R, n)(L) = px.locked 7→ trueq

and Tlock refers to the following transition system

LU

Rel

Acq

6.3 Proof outline

In this section we sketch proofs for each of the spin-lock methods in iCAP-TSO. Inter-
estingly, the structure of the proof outlines differ in crucial ways from the corresponding
proofs in iCAP (which assumes a strong memory model): In the case of acquire, even if
the shared lock region is in the unlocked abstract state, it might still appear to be locked
from the point of view of a client attempting to acquire the lock (if the lock was last
released by a different thread, and release has not made its way to main memory yet),
and the client will thus be unable to acquire the lock.

Constructor

class Lock {
bool locked;

Lock() =
{R ∗ pthis.locked 7→ nullq}
〈R ∗ pthis.locked 7→ nullq〉
CAS(this.locked, false, null);
〈(pR ∗ this.locked 7→ nullq)〉
〈region({U, L},Tlock, I(this,R, n), n) ∗ [Acq]n_〉
〈isLock(R, this)〉
{isLock(R, this)}

this
{r. isLock(R, r)}
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Acquire. The following is a proof sketch of the acquire method. As expected, most of the
interesting reasoning concerns the atomic compare-and-swap expression that attempts to
acquire the lock.

acquire() =
{isLock(R, this)}
{region({U, L},Tlock, I(this,R, n), n) ∗ [Acq]n_}

let y = CAS(this.locked, true, false) in
{(y = true ∗ region({L},Tlock, I(this,R, n), n) ∗ [Acq]n_ ∗ [Rel]n1 ∗ pRq) ∨
(y = false ∗ region({U, L},Tlock, I(this,R, n), n) ∗ [Acq]n_)}

if y then
{region({L},Tlock, I(this,R, n), n) ∗ [Acq]n_ ∗ [Rel]n1 ∗ pRq}
{locked(R, this) ∗ pRq}

()
else

{region({U, L},Tlock, I(this,R, n), n) ∗ [Acq]n_}
{isLock(R, this)}

acquire()
{locked(R, this) ∗ pRq}
To verify the atomic compare-and-swap we use the Atomic rule to open the shared
lock region. Since the pre-condition asserts that the lock is either locked or unlocked
(region({U, L}, ...)), we get two proof obligations, corresponding to each case:

〈[Acq]n_ ∗ .I(this,R, n)(U)〉
CAS(this.locked, true, false)
〈r. ∃y ∈ {U, L}. [Acq]n_ ∗ .I(this,R, n)(y) ∗Q(y, r, n)〉
where

Q(y, r, n) = (y = L ∗ [Rel]n1 ∗ pRq ∗ r = true) ∨ (y = U ∗ r = false)

and

〈[Acq]n_ ∗ .I(this,R, n)(L)〉
CAS(this.locked, true, false)
〈r. [Acq]n_ ∗ .I(this,R, n)(L) ∗ r = false〉
We start with the (easy) second proof obligation:

〈[Acq]n_ ∗ .pthis.locked 7→ trueq〉
〈.pthis.locked 7→ trueq〉
CAS(this.locked, true, false)
〈r. . pthis.locked 7→ trueq ∗ r = false〉
〈r. [Acq]n_ ∗ .pthis.locked 7→ trueq ∗ r = false〉
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By rule A-Cas-False it thus suffices to prove that

.pthis.locked 7→ trueq `mr this.locked 7→ true,

which follows easily by rules R-Self and R-Cons (to weaken p−q to −).

To prove the first proof obligation, we first use Stab-U to do case analysis on whether
or not the last release has made its way to main memory yet. Then we commute . all
the way into the pre-condition, before finally doing case analysis on whether (if the last
release is still pending) the last release is in our store buffer or not.

〈[Acq]n_ ∗ .(∃t : TId. Lpthis.locked 7→ trueq Ut pthis.locked 7→ false ∗ R ∗ [Rel]n1qM)〉
〈.(∃t : TId. Lpthis.locked 7→ trueq Ut pthis.locked 7→ false ∗ R ∗ [Rel]n1qM)〉
〈∃t : TId. . Lpthis.locked 7→ trueq Ut pthis.locked 7→ false ∗ R ∗ [Rel]n1qM)〉
〈.Lpthis.locked 7→ trueq Ut pthis.locked 7→ false ∗ R ∗ [Rel]n1qM)〉
〈.((pthis.locked 7→ trueq Ut Lpthis.locked 7→ false ∗ R ∗ [Rel]n1qM) ∨

Lpthis.locked 7→ false ∗ R ∗ [Rel]n1qM)〉
〈.((pthis.locked 7→ trueq Ut pthis.locked 7→ false ∗ R ∗ [Rel]n1q) ∨

pthis.locked 7→ false ∗ R ∗ [Rel]n1q)〉
〈((.pthis.locked 7→ trueq Ut .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q) ∨

.pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q)〉
〈((.pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q) ∨

(.pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q) ∨
.pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q)〉

CAS(this.locked, true, false)
〈r. ∃y ∈ {U, L}. . I(this,R, n)(y) ∗Q(y, r, n)〉
〈r. [Acq]n_ ∗ ∃y ∈ {U, L}. . I(this,R, n)(y) ∗Q(y, r, n)〉
〈r. ∃y ∈ {U, L}. [Acq]n_ ∗ .I(this,R, n)(y) ∗Q(y, r, n)〉
This leaves us with the following three proof obligations:

〈.pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q〉
CAS(this.locked, true, false)
〈r. ∃y ∈ {U, L}. . I(this,R, n)(y) ∗Q(y, r, n)〉
and

〈.pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q)〉
CAS(this.locked, true, false)
〈r. ∃y ∈ {U, L}. . I(this,R, n)(y) ∗Q(y, r, n)〉
and

〈.pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q)〉
CAS(this.locked, true, false)
〈r. ∃y ∈ {U, L}. . I(this,R, n)(y) ∗Q(y, r, n)〉
corresponding to the three cases:
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• that the last release is pending in our store buffer, or

• the last release is pending in some other thread’s store buffer, or

• the last release has already made its way to main memory.

In the first and the last case, the lock is objectively and subjectively unlocked, and we
can thus acquire the lock and transition to the locked state. However, in the second
case, the lock is objectively unlocked, but subjectively locked, and we thus remain in the
unlocked state. We thus strengthen the post-conditions of these three proof obligations
as follows:

〈.pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q〉
CAS(this.locked, true, false)
〈.pthis.locked 7→ trueq ∗ [Rel]n1 ∗ pRq ∗ r = true〉
〈r. . I(this,R, n)(L) ∗Q(L, r, n)〉
and

〈.pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q)〉
CAS(this.locked, true, false)
〈r. . pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q) ∗ r = false〉
〈r. . (∃t : TId. Lpthis.locked 7→ trueq Ut pthis.locked 7→ false ∗ R ∗ [Rel]n1qM) ∗ r = false〉
〈r. . I(this,R, n)(U) ∗Q(U, r, n)〉
and

〈.pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q)〉
CAS(this.locked, true, false)
〈r. . pthis.locked 7→ trueq ∗ [Rel]n1 ∗ pRq ∗ r = true〉
〈r. . I(this,R, n)(L) ∗Q(L, r, n)〉

By rules A-CAS-False and A-CAS-True, these three proof obligations reduce to
the following three read/write proof obligations:

. pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q
`w this.locked 7→ false, [Rel]n1 ∗ R

and

. pthis.locked 7→ trueq U .pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q `mr this.locked 7→ true

and

.pthis.locked 7→ falseq ∗ .pRq ∗ .p[Rel]n1q `w this.locked 7→ false, [Rel]n1 ∗ R

In the first and last case we can use rule W-Cons to weaken p−q to − and W-* to frame
off R and [Rel] and remove the laters in front of these. It thus suffices to prove:

.pthis.locked 7→ trueq U .pthis.locked 7→ falseq `w this.locked 7→ false,>
.pthis.locked 7→ trueq U .pthis.locked 7→ falseq `mr this.locked 7→ true

.pthis.locked 7→ falseq `w this.locked 7→ false,>
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The last proof obligation follows easily from W-Ax and W-Cons. By rules W-U and
R-U , the first two obligations reduce to:

.pthis.locked 7→ falseq `w this.locked 7→ false,>
.pthis.locked 7→ trueq `or this.locked 7→ true

These follow easily using rules W-Ax, W-Cons and R-Other, R-Cons, respectively.

Release. Below we sketch the proof outline of release:

release() =
{locked(R, this) ∗ R}
{region({L},Tlock, I(this,R, n), n) ∗ [Acq]n_ ∗ [Rel]n1 ∗ R}
{.pthis.locked 7→ trueq ∗ [Acq]n_ ∗ [Rel]n1 ∗ R}
{.pthis.locked 7→ trueq ∗ [Rel]n1 ∗ R}

this.locked := false
{(.pthis.locked 7→ trueq ∗ [Rel]n1 ∗ R) U ([Rel]n1 ∗ pRq ∗ pthis.locked 7→ falseq)}
{.(∃t : TId. Lpthis.locked 7→ trueq Ut pthis.locked 7→ false ∗ R ∗ [Rel]n1qM)}
{.(∃t : TId. Lpthis.locked 7→ trueq Ut pthis.locked 7→ false ∗ R ∗ [Rel]n1qM) ∗ [Acq]n_}
{.I(this,R, n)(U) ∗ [Acq]n_}
{region({U, L},Tlock, I(this,R, n), n) ∗ [Acq]n_}
{isLock(R, this)}
The innermost proof obligation follows by A-Write.
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