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Abstract

Currently, total languages such as Agda and Coq employ syntactic checks to
enforce productivity of programs that manipulate potentially infinite data.
With guarded recursive types we can instead rely on the type system for
ensuring productivity, thus allowing for a more modular programming style.

Guarded recursion is both a technique for ensuring productivity, and an
abstraction of the step-indexing technique used for modelling programming
languages with sophisticated features, such as recursive types, higher-order
store, and concurrency. This dissertation is about enriching type theory with
guarded recursion in the form of guarded recursive types. These types can
be utilised for programming and reasoning with coinductive types through
Atkey and McBride style clock quantifiers.

In each chapter we present a new type theory with guarded recursive types,
reflecting different challenges arising when describing guarded recursive
types.

In the first chapter we present a simple type theory with guarded recursive
and coinductive types, along with a program logic which can be used to reason
about the operational behaviour of the terms.

In the next chapter we present an extensional dependent type theory with
guarded recursive and coinductive types, in which we can encode both proofs
and programs.

The third chapter focuses on the treatment of propositional equality. Here
we present a type theory that combines guarded recursive types with cubical
type theory, a new type theory which provides a computational interpretation
of Voevodsky’s univalence axiom, and thus also of function extensionality.

The last chapter presents preliminary work on an alternative presentation
of dependent type theory with guarded recursive and coinductive types,
for which we can define a reduction relation on terms and types which we
conjecture is strongly normalising.
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Resumé

I dag benytter totale programmeringssprog, såsom Agda og Coq, sig af syntak-
tiske tjek for at sikre produktivitet af programmer der manipulerer potentielt
uendeligt data. Med beskyttede rekursive typer kan vi i stedet sikre pro-
duktivitet igennem typesystemet og dermed åbne op for en mere modulær
programmeringsstil.

Beskyttet rekursion er både en teknik til at garantere produktivitet, og
en abstraktion af step-indexing-teknikken som bruges til at modellere pro-
grammeringssprog med sofistikerede features, så som rekursive typer, højere-
ordenslager og concurrency. Denne afhandling handler om at berige typeteori
med beskyttet rekursion i form af beskyttede rekursive typer. Disse typer kan
benyttes til at programmere med, og ræsonnere om, koinduktive typer via
urkvantorer à la Atkey og McBride.

I hvert kapitel præsenteres en ny typeteori med beskyttede rekursive
typer, og reflekterer dermed forskellige udfordringer der opstår når disse
typer beskrives.

I det første kapitel præsenteres en simpel typeteori med beskyttede rekur-
sive og koinduktive typer, sammen med en programlogik der kan benyttes til
at ræsonnere om den operationelle opførsel af termer.

I det næste kapitel præsenteres en ekstensionel afhængig typeteori med
beskyttede rekursive og koinduktive typer, hvori vi kan repræsentere både
beviser og programmer.

Det tredje kapitel fokuserer på behandlingen af propositionel lighed. Her
præsenteres en typeteori der kombinerer beskyttede rekursive typer med
kubisk typeteori, en ny typeteori som giver en beregnelighedsfortolkning af
Voevodskys univalensaksiom, og derfor også af funktionel ekstensionalitet.

I det sidste kapitel præsenteres foreløbigt arbejde omhandlende en al-
ternativ præsentation af afhængig type teori med beskyttede rekursive og
koinduktive typer, hvortil vi kan definere en reduktionsrelation på termer og
typer, hvilken vi formoder er stærkt normaliserende.

iii





Acknowledgments

My three years in Aarhus have been great, and for that I have many people
to thank. First and foremost I am grateful to my supervisor Lars Birkedal for
accepting me as his student (despite my lack of computer science background)
and for his expert guidance over the years.

By working for Olivier Danvy I have learned much about teaching – his
attitude towards education, and devotion to all of his students, has been very
inspiring.

I am thankful to all of my coauthors for valuable collaboration. Thanks to
Andrea Vezzosi for hosting me at Chalmers, Gothenburg, and for the many
hours spend experimenting with implementations. Thanks to Patrick Bahr
and Rasmus Møgelberg for all the times they hosted me at the IT University,
Copenhagen.

I am grateful to Aleš Bizjak, Ranald Clouston, and to my brother Bjørn for
reading and providing valuable feedback on parts of this document.

Thanks to everyone in the Logic and Semantics group for making it a great
work environment, and to all of my friends in Aarhus for all the good times.

And last, but not least: Thank you Roos, for deciding to move your life to
Denmark with me, for putting up with me, and for letting me put up with
you.

Hans Bugge Grathwohl,
Aarhus, Friday 30th September, 2016.

v





Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An Overview of Guarded Recursive Types . . . . . . . . . . . . 2

1.2.1 Recursion, Corecursion, and Guarded Recursion . . . . 2
1.2.2 Productivity and Syntactic Checks . . . . . . . . . . . . 3
1.2.3 Guarded Recursive Types . . . . . . . . . . . . . . . . . 4
1.2.4 Denotational Semantics . . . . . . . . . . . . . . . . . . 6
1.2.5 Causality and Coinductive Types . . . . . . . . . . . . . 7
1.2.6 Dependent Types and Delayed Substitutions . . . . . . 8
1.2.7 Identity Types and Löb Induction . . . . . . . . . . . . . 9
1.2.8 Bisimulation and Guarded Recursion . . . . . . . . . . . 10
1.2.9 Path Equalities . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.10 Guarded Cubical Type Theory . . . . . . . . . . . . . . . 12
1.2.11 Implementation . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Chapter 2: Simple Types . . . . . . . . . . . . . . . . . . 14
1.3.2 Chapter 3: Dependent Types . . . . . . . . . . . . . . . . 15
1.3.3 Chapter 4: Cubical Types . . . . . . . . . . . . . . . . . . 16
1.3.4 Chapter 5: Reduction Semantics . . . . . . . . . . . . . . 16

1.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Simple Types 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 The Guarded Lambda-Calculus . . . . . . . . . . . . . . . . . . 23

2.2.1 Untyped Terms and Operational Semantics . . . . . . . 23
2.2.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



Contents

2.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Sums and the Constant Modality . . . . . . . . . . . . . 34

2.3 Denotational Semantics and Normalisation . . . . . . . . . . . 35
2.3.1 The Topos of Trees . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Denotational Semantics . . . . . . . . . . . . . . . . . . 37
2.3.3 Adequacy and Normalisation . . . . . . . . . . . . . . . 40

2.4 Logic for the Guarded Lambda Calculus . . . . . . . . . . . . . 44
2.4.1 From Internal Logic to Program Logic . . . . . . . . . . 44
2.4.2 Properties of the Logic . . . . . . . . . . . . . . . . . . . 47
2.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Behavioural Differential Equations . . . . . . . . . . . . . . . . 54
2.5.1 Definition and Examples . . . . . . . . . . . . . . . . . . 54
2.5.2 From Behavioural Differential Equations to gλ-Terms . 56
2.5.3 The Topos of Trees as a Sheaf Category . . . . . . . . . . 57
2.5.4 Expressing Behavioural Differential Equations . . . . . 59

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Dependent Types 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Guarded Dependent Type Theory . . . . . . . . . . . . . . . . . 69

3.2.1 Fixed points and guarded recursive types . . . . . . . . 72
3.2.2 Identity types . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Coinductive types . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Derivable type isomorphisms . . . . . . . . . . . . . . . 77
3.5 Example programs with coinductive types . . . . . . . . . . . . 78

3.5.1 Lifting guarded functions . . . . . . . . . . . . . . . . . 80
3.6 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 83
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.A Overview of the appendix . . . . . . . . . . . . . . . . . . . . . 83
3.B Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.C Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.C.1 zipWithκ preserves commutativity . . . . . . . . . . . . . 85
3.C.2 An example with covectors . . . . . . . . . . . . . . . . . 87
3.C.3 Lifting predicates to streams . . . . . . . . . . . . . . . . 91

3.D Example programs with coinductive types . . . . . . . . . . . . 93
3.E Type isomorphisms in detail . . . . . . . . . . . . . . . . . . . . 95

4 Cubical Types 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



Contents

4.2 Guarded Cubical Type Theory . . . . . . . . . . . . . . . . . . . 102
4.2.1 Cubical Type Theory . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Later Types . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.4 Programming and Proving with Guarded Recursive Types108

4.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.1 Model of CTT Without Glueing and the Universe . . . . 111
4.3.2 Adding Glueing and the Universe . . . . . . . . . . . . . 113
4.3.3 Adding the Later Type-Former . . . . . . . . . . . . . . 114

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.A zipWith Preserves Commutativity . . . . . . . . . . . . . . . . . 117
4.B Guarded Cubical Type Theory . . . . . . . . . . . . . . . . . . . 118
4.C Denotational semantics . . . . . . . . . . . . . . . . . . . . . . . 118

4.C.1 The language L . . . . . . . . . . . . . . . . . . . . . . . 118
4.C.2 A model of CTT . . . . . . . . . . . . . . . . . . . . . . . 125
4.C.3 A concrete model of L . . . . . . . . . . . . . . . . . . . 130
4.C.4 More models of L . . . . . . . . . . . . . . . . . . . . . . 135
4.C.5 A model of GCTT . . . . . . . . . . . . . . . . . . . . . . 140
4.C.6 Summary of the semantics of GCTT . . . . . . . . . . . . 148

5 Reduction Semantics 151
5.1 Guarded Recursive Types with Resources . . . . . . . . . . . . 151

5.1.1 Translating Delayed Substitutions . . . . . . . . . . . . . 153
5.1.2 Stream Examples . . . . . . . . . . . . . . . . . . . . . . 154

5.2 Guarded Dependent Types with Resources . . . . . . . . . . . . 154
5.2.1 Forming Guarded Recursive Types . . . . . . . . . . . . 156
5.2.2 Coinductive Types . . . . . . . . . . . . . . . . . . . . . 160
5.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 Future and Ongoing Work . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 165

ix





Chapter 1

Introduction

Type systems can be used to ensure that programs have certain nice properties.
With guarded recursive types one can ensure that programs manipulating
potentially infinite data – such as coinductive data types – are productive, i.e.,
they will always yield well-defined outputs when provided with well-defined
inputs.

Certain type systems that are sufficiently strong are called type theories,
and can be used to formalise logical and mathematical proofs and propositions
via the Curry-Howard correspondence. In this setting guarded recursive types
capture a reasoning principle called Löb induction which can be used to reason
about potentially infinite data, and has been used as an abstraction of step-
indexing to reason about models of programming languages. Productivity is
essential to ensure logical consistency of the type theory.

This PhD dissertation is about adding guarded recursive types to type
theory.

The reader is assumed to be familiar with type theory, and some familiarity
with coinductive types and categorical models will be an advantage.

1.1 Motivation

Guarded recursion is a technique for solving recursive type equations. It
does not matter whether the type variable occurs positively or negatively,
as long as it appears guarded by a modality ., which we will call ‘later’. It
can be seen as an abstract account of the step-indexing technique introduced
by Appel and McAllester [6]. In recent years solutions of guarded recursive
domain equations have been used to model programming languages with
sophisticated features such as recursive types, higher-order store, and concur-
rency [7, 13, 36]. Such models are used for software verification, a process
where some form of automation is desirable due to the inevitably long and
complicated proof obligations. For this reason there are a number of imple-
mentations of program logics in the proof assistant Coq [63], for example:

1



1. Introduction

The ModuRes framework [80] for reasoning about concurrent higher-order
imperative programs using solutions to recursive domain equations in the
category of complete bounded bisected ultrametric spaces, and more recently
an implementation of the Iris program logic [16] which uses the same category.
Common to these implementations is that the guarded recursion happens
inside models embedded in the proof assistant. Birkedal et al. [14] and Birke-
dal and Møgelberg [10] show that guarded recursion can be defined in terms
of the topos of trees, and that this model can be used to justify the existence of
a type theory with guarded recursive types. The hope is that a well-developed
type theory with guarded recursive types can be used as foundation for a
proof assistant, making it simpler to implement methods for reasoning about
programs based on guarded domain equations.

Paviotti et al. [72] and Møgelberg and Paviotti [68] have constructed mod-
els of the programming languages PCF and FPC entirely in the guarded
recursive type theory presented in Chapter 3 of this dissertation. This sup-
ports our conjecture that guarded recursive types can be a useful tool for
formalising models of programming languages.

As observed by Nakano [69] and Atkey and McBride [8], guarded recursive
types is also an attractive approach to ensuring productivity of coinductive
definitions. This will be the focus of the following overview of guarded
recursive types, as it is generally simpler to talk about, whereas formalisations
in type theory of models of programming languages typically require a larger
apparatus, e.g., inductive families.

1.2 An Overview of Guarded Recursive Types

In this section we will give an informal overview of guarded recursive types
as they are treated in this dissertation.

1.2.1 Recursion, Corecursion, and Guarded Recursion

Guarded recursive types are to guarded recursion what recursive types are to
recursion. Recursion is, informally, the concept of self-reference. We use self-
reference in programming languages when we let functions call themselves.
This recursion can be used to traverse structured data. In some settings
“recursion” is restricted to least fixed-point constructions involving inductive
data types, such as natural numbers, lists, and trees, as these forms of data are
themselves least fixed-point constructions. This opens up for a dual concept:
“corecursion” which is when functions are defined as greatest fixed-points,
involving coinductive data types. We will use recursion to mean any kind of
self-reference.

Guarded recursion1 is a specific kind of recursion, where the self-reference

1Not to be confused with guarded recursive datatype constructors [85].

2



1.2. An Overview of Guarded Recursive Types

is “protected” (or guarded) by a modality which ensures that the recursion is
“sensible”. The most prevalent metaphor, and indeed the one used throughout
this dissertation, is a temporal one: When we look at an object now then it
might be defined in terms of the object itself, but the self-reference can only
be accessed at a later time. Definitions by guarded recursion are unique fixed
points.

1.2.2 Productivity and Syntactic Checks

The canonical example of infinite structures in computer science is streams.
A stream can be thought of as a never-ending list of data. Lists are inductive
data types – which for example can be expressed by saying that lists of natural
numbers is the initial algebra for the Sets functor 1+N×(−) – whereas streams
are typically seen as coinductive data types: the final coalgebra for the functor
N× (−).

In pseudocode of a lazily evaluated language we can give a recursive
definition of streams of natural numbers:

Str = Nat × Str

Then we can define some basic stream functions:

(::) : Nat → Str → Str
n :: s = 〈n, s〉

head : Str → Nat
head = π1

tail : Str → Str
tail = π2

where 〈−,−〉, π1, and π2 are the constructor and destructors of the product
type A × B. We can use recursion to define streams. As a simple example,
consider the stream consisting of only 1’s:

ones : Str
ones = 1 :: ones

But when we write definitions in this system it is easy to write something
nonsensical, like

foo : Str
foo = tail foo

This definition is bad because the equation foo = tail foo does not have a
unique solution in Str, as opposed to ones = 1 :: ones. We also say ones is
productive, because any finite prefix of it can be computed in finite time by
unfolding the definition, whereas the definition of foo is unproductive.

3



1. Introduction

So how do we ensure that a definition is productive? One solution, utilised
by total programming languages such as Agda [70] and Coq [63], is to perform
a syntactic check of the definition ensuring that the recursive call occurs directly
underneath a constructor in the syntax tree.2 If we in this case consider (::) to
be a constructor, then this check will indeed allow ones but disallow foo. It is
indeed the case that such a check will only allow productive definitions [41].

Now consider the map function for natural number streams:

map : (Nat → Nat) → Str → Str
map f s = f (head s) :: map f (tail s)

Since the recursive call (map f) occurs directly below the constructor, this
definition will be allowed by a syntactic check. But if we use this function in
the definition of another stream like so:

nats : Str
nats = 0 :: map succ nats

where succ : Nat → Nat is the successor function, then the syntactic pro-
ductivity check would disallow it, because the recursive call nats is applied to
the function map succ instead of the constructor. By unfolding the definition
it is evident that there is a unique solution to the equation, namely the stream
0,1,2,3, . . . of natural numbers. But the productivity of nats depends on the
fact that map succ is well-behaved. By replacing this function call we can
indeed get an unproductive definition:

bad : Str
bad = 0 :: tail bad

Any stream starting with 0 will be a solution to this equation, so bad is
unproductive and therefore rightly disallowed by the syntactic check. Note
that the types of tail and map succ are identical, so the type system has no
way of distinguishing these definition. But from these examples it is clear
that there is an important difference between them. Guarded recursive types
provide a means of expressing this difference.

1.2.3 Guarded Recursive Types

With guarded recursive types productivity is ensured by the type system.
The core of guarded recursive types is the modality that guards the type
of a recursive call. It originates from Nakano’s calculus [69], but we follow
Appel et al. [7] by writing . and using the name ‘later’. We will think of .A as
the type of terms which will be of type A after one time step. One can always

2The algorithms used by these languages employ some further heuristics to allow more
definitions.
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1.2. An Overview of Guarded Recursive Types

save a term for later, therefore we will have a constructor for . called next:

Γ ` t : A

Γ ` next t : .A

When writing a definition using guarded recursion – say we want to define
a term of type A – then the type of the recursive call will be guarded by a
‘later’, i.e., .A. We express this by having a guarded fixed-point combinator in
the language

Γ ,x : .A ` t : A

Γ ` fixx.t : A

for which we have that

fixx.t = t[nextfixx.t/x].

If we revisit the stream programming examples from the previous section,
this time in pseudocode of a language with guarded recursive types, then the
type of (guarded) streams of natural numbers will be

Str = Nat × .Str

and the basic stream operations will be identical save for their types

(::) : Nat → .Str → Str
n :: s = 〈n, s〉

head : Str → Nat
head = π1

tail : Str → .Str
tail = π2

Note that the tail of a stream is only going to be a stream at the next tick of
the clock. The definition of ones will be identical to before:

ones : Str
ones = 1 :: ones.

where ones. is the guarded recursive call (which will be encoded by the
guarded fixed-point combinator). It is well-typed because the guarded recurs-
ive call has the type .Str as required by the stream constructor (::). But the
unproductive term foo

foo : Str
foo = foo.

is not well-typed, because the type of the right-hand side of the equality sign
does not match the supposed type of the left-hand side (.Str vs. Str).

5



1. Introduction

In order to define the map function on guarded streams we need some
more structure on .. If we have a term which will be a function later,
t : .(A→ B), and another term which will be a suitable input to this func-
tion later, u : .A, then we want a way to ‘schedule’ a function application. This
is done with the ‘delayed application’ operator, ~:

Γ ` t : .(A→ B) Γ ` u : .A

Γ ` t ~u : .B

As this choice of notation suggests, . is an applicative functor [64], and in
particular the following equality will be satisfied:

next t ~nextu = next(t u).

Now we can define map:

map : (Nat → Nat) → Str → Str
map f s = f (head s) :: (map f). ~ (tail s)

The guarded recursive call in this definition is map f, which has type
.(Str → Str), and since tail smust have type .Str, then map f ~ (tail s)
has type .Str, and thus the definition is well-typed. Likewise, we can define
the stream of natural numbers

nats : Str
nats = 0 :: next (map succ) ~ nats.

while there is no way to make the unproductive definition

bad : Str
bad = 0 :: tail bad.

well-typed, because the type of tailmeans that there will always be a ‘later’
too much in the type.

1.2.4 Denotational Semantics

We will here briefly discuss the intuition of a model of guarded recursive types
– a full definition of a model of a simple type theory with guarded recursion
can be found in Section 2.3. Earlier Nakano’s guarded recursive type theory
had been modelled using complete bounded ultrametric spaces [11]. However,
we will be using the topos of trees to model our guarded recursive types, as
first done by Birkedal et al. [14]. As the name suggests, this is a topos which
means that it can also be used to model dependent type theory. The topos
of trees is defined as PSh(ω), the presheaf category over ω, where ω is the
ordinal containing the natural numbers starting from 1. Thus, an object A of
this category is a family of sets An along with restriction maps rn : An+1→ An:

A1 A2 A3 A4 · · ·r1 r2 r3

6



1.2. An Overview of Guarded Recursive Types

and the morphisms f : A → B are natural transformations between such
diagrams

A1 A2 A3 A4 · · ·

B1 B2 B3 B4 · · ·

f1 f2 f3 f4

where all the squares commute. Our types will be modelled with objects of
PSh(ω), which we will think of as a sequence of approximations of the type.
The type of guarded streams of natural numbers will for example be modelled
with the object consisting of increasingly long tuples of natural numbers:

N N×N (N×N)×N · · ·π1 π1

We can think of this like so: To begin with we can only observe the first
element of the stream, then after one time-step we can see the second element,
and so on.

Like any topos, PSh(ω) has an internal higher-order logic which we can
use to reason about its objects. In Section 2.4 we describe how to use this
internal logic to reason about programs with guarded recursive types.

1.2.5 Causality and Coinductive Types

A simply typed language with ., next, ~, fix, and a way of defining guarded
recursive types allows us to express a lot of programs with potentially infinite
data. But not all productive definitions fit into this framework. Consider the
stream function every2nd, which returns a stream containing every second
element of its input stream:

every2nd : Str → Str
every2nd s = head s :: every2nd (tail (tail s))

There is no way that we can sprinkle this definition with nexts and ~’s in
order to make it a well-typed guarded recursive definition. This is because
the two uses of tail in the definition create two .’s, which we have no means
of turning into the single . that is needed. Note however that this definition
does pass the syntactic productivity check that we described earlier, and
thus it would readily be accepted as a valid coinductive stream definition in
languages such as Coq and Agda.

The every2nd function is an example of an acausal stream function. A
stream function is causal if the n first elements of the output stream relies at
most on the n first elements of the input stream, and otherwise it is acausal.
With the guarded recursive types we have described so far, all stream functions
we define must necessarily be causal. In certain contexts this is desirable,
for example if the streams are supposed to model real-world streams of data

7



1. Introduction

such as keyboard input, or stock prices. A version of these guarded recursive
types has been used by Krishnaswami and Benton [56] to model reactive
programming.

In order to program with acausal stream functions we extend the system
with a way of looking at all of a type at once. Recall that we interpret the type
of guarded streams as the following diagram:

N N×N (N×N)×N · · ·π1 π1

This diagram has a limit, Nω, in the category of sets consisting of the actual
streams, which we can embed into the topos of trees like so:

N
ω

N
ω

N
ω · · ·id id

In Chapter 2 we add a modality to the type system, written � and called
‘everything now’ (or ‘constant’), which gives us the limit of the approximation
of a type. So while Str = Nat × .Str is the type of guarded streams (or
approximations of streams), �Str is the type of coinductive streams, on which
we can also define acausal functions. There is a list of acausal example
programs using the �modality starting on page 31 of this dissertation. The
typing rules for � can be found on page 27 of this dissertation.

In Chapter 3 we use an alternative to the �modality, namely Atkey and
McBride [8] style clock quantifiers, which also provides a way of programming
(and reasoning with) coinductive types.

Another technique for ensuring productivity through types is sized types [2,
4, 45], where recursion is reduced to a well-founded induction on a ‘size
index’ annotated on the types. A discussion of the relation between guarded
recursive types and sized types can be found in Section 2.6.1.

1.2.6 Dependent Types and Delayed Substitutions

Getting guarded recursive types to work well in combination with a simple
type theory is only a step on the way to incorporating guarded recursive types
into a fully fledged dependent type theory. The first significant difference
between a simple type theory and a dependent type theory is the function
type. In a dependent type theory, the simple function type A→ B is replaced
with the dependent function type (x : A)→ B (also called a Π-type), where x
may occur free in B. This means that the typing rule for function application
now includes a substitution on the result type:

Γ ` t : (x : A)→ B Γ ` u : A

Γ ` t u : B[u/x]

This immediately raises an issue with our ‘later’ types: what does t ~u mean
now? If t has the type .((x : A)→ B) and u has type .A, then we should be

8



1.2. An Overview of Guarded Recursive Types

able to do a delayed function application. But it is unclear what to do with
the free x in B, since we do not yet have anything to substitute for it. This is
our motivation for introducing delayed substitutions. A delayed substitution
is annotated on . and next, and is of the form . [x← u] .A and next [x← u] .t.
Then we will have the equalities

. [x← nextu] .A = .A[u/x],

next [x← nextu] .t = next t[u/x].

It can be thought of as a form of let-binding:3 .(letnextx = u inA).
With delayed substitution we can provide a typing rule for ~ that works

with the dependent product type:

Γ ` t : . ((x : A)→ B) Γ ` u : .A

Γ ` t ~u : . [x← u] .B

However, it turns out that with delayed substitutions we do not even need ~
as a primitive construct in the language, as t ~u is equivalent to

next [x← t,y← u] .x y.

Delayed substitutions are treated in Chapter 3.

1.2.7 Identity Types and Löb Induction

Looking at the guarded fixed-point combinator through the Curry-Howard
correspondence it corresponds to a reasoning principle known as Löb induc-
tion: from .P ⇒ P we can conclude P . This becomes especially useful when
our language includes identity types, t =A u, and the following extensionality
principle for .:

. (t =A u) � (next t =.A nextu). (1.1)

In Section 3.3 and 3.5 there are examples where we use guarded recursion
on identity types to prove properties of programs, but here we will confine
ourselves to a small toy example: Let generate be the function which from a
base point and a generator function returns a guarded stream:

generate : Nat → (Nat → Nat) → Str
generate n f = n :: generate. ~ next (f n) ~ next f

Now use generate to define a representation of the stream of ones, while
defining an alternative directly using guarded recursion:

ones = generate 1 (λn.n)
ones’ = 1 :: ones’.

3For Haskellers it might be helpful to think of them as a kind of applicative do notation.
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Note, that by unfolding the (implicit) guarded fixed-point combinator once
we get that ones is definitionally equal to 1 :: next ones, and ones’ is
definitionally equal to 1 :: next ones’. We will use Löb induction to show
that ones and ones’ are propositionally equal. For this we will use a term eta
for constructing equalities of streams (the definition of which is not important)
and a witness of (1.1), ext:

eta : (head s1 = head s2) → (tail s1 = tail s2) → (s1 = s2)
ext : .(t=u) → (next t = next u)

Now, since tail ones unfolds to next ones, and tail ones’ unfolds to
next ones’, we can write out our proof, defined by guarded recursion:

ones-are-equal : ones = ones’
ones-are-equal = eta refl (ext ones-are-equal.)

This proof helps illustrate an important point: Guarded recursive types do
not work well in combination with intensional identity types à la Martin-Löf.
The intensional identity type is typically viewed as an inductive family [38],
generated by the constructors reflt : t = t, and therefore a closed term like
ones-are-equal which doesn’t reduce to refl is problematic. We have violated
the canonicity property of type theory, because we can use the induction prin-
ciple for identity types (also known as J) to produce a stuck closed term of any
inhabited type. Here we show how to make a closed term of type Nat which
does not reduce to a natural number: Assume that we have the following
witness of the J rule.

J : (P : (x y : A) → (x = y) → Type) →
((x : A) → P x x reflx) → (x y : A) → (p : x = y)
→ P x y p

Then we can write the following program

NaN : Nat
NaN = J (λ _ _ _. Nat) (λ _. 60) ones ones’ ones-are-equal

which will always have J as its outermost connective since it requires
ones-are-equal to be refl before it will reduce.

The guarded dependent type theory presented in Chapter 3 is extensional,
i.e., identity types are not distinguished from definitional equalities. This
means that we avoid the issues arising from using an intensional equality, but
one consequence of this choice is that type-checking is undecidable.

1.2.8 Bisimulation and Guarded Recursion

The traditional proof method for coinductive types is proof by bisimulation.
A bisimulation is a binary relation R ⊆ X × Y between coalgebras X and Y
fulfilling certain requirements – an introduction to coalgebras and bisimula-
tion can be found in Jacobs and Rutten [48]. The arguably most important
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property of bisimulations is the coinductive proof principle: If R ⊆ Z ×Z is a
bisimulation on a final coalgebra Z, then R(x,y) implies x = y.

A bisimulation on streams is a relation ∼ that fulfils

s1 ∼ s2 ⇐⇒
heads1 = heads2, and
tails2 ∼ tails2.

In Chlipala [24] there is a tutorial describing how to define ∼ in Coq using
coinduction, and how to show bisimilarity of streams. However, showing
that the coinductive proof principle holds for ∼ requires external reasoning,
i.e., reasoning in the model of Coq. This means that we cannot use s1 ∼ s2 to
obtain a proof of s1 = s2. In practice one could decide to use the bisimulation
relation as the ‘identity type for streams’. But this means that one does not
get the benefits of identity types, e.g., transports and congruence properties.

With guarded recursive types we can bridge this gap between the external
and internal reasoning. In guarded recursive type theory a coinductive type
is defined as the limit of its approximations, and when we work with a
coinductive type we always ‘unbox’ it and work with the approximations
instead. Therefore, to define a bisimulation on streams we will first define a
guarded bisimulation relation ∼g on guarded streams:

s1 ∼g s2 = (heads1 = heads2)× .


∼′← (∼g ).

s′1← tails1
s′2← tails2

 .s′1 ∼′ s′2.
Using Löb induction we can now obtain a proof

∼g –to–id : s1 ∼g s2→ s1 = s2.

By using � (or clock quantification, as we do in Chapter 3) we can then lift ∼g
to a bisimulation relation ∼ on coinductive streams, and lift ∼g –to–id to

∼–to–id : s1 ∼ s2→ s1 = s2,

and thus we have the coinductive proof principle for streams.
This, of course, is no surprising result as long as our guarded recursive

type theory is extensional, since working in an extensional type theory is, in a
sense, equivalent to working directly in the model. This provides motivation
for designing a guarded recursive type theory with a decidable definitional
equality relation.

1.2.9 Path Equalities

In recent years there has been considerable progress on the design of type
theories with alternative identity types allowing for some amount of exten-
sionality while retaining decidability of type checking. One such is cubical
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type theory [29] which bases its identity types on paths, a notion from topology
and one of the primary objects of study in homotopy theory. The goal of cu-
bical type theory is to provide a computational interpretation of Voevodsky’s
univalence axiom, and thus it can be considered part of the research on ho-
motopy type theory [84] which combines ideas of type theory and homotopy
theory.

In traditional topology a path p is a continuous function from the unit
interval [0,1] ⊆ R into a space, and p(0) and p(1) are referred to as the end-
points of p. In cubical type theory there is a special interval object I and the
following rule for constructing paths in a type A:

Γ , i : I ` t : A

Γ ` 〈i〉 t : PathA t[0/i] t[1/i]

where 0 and 1 are special elements in I. Similarly we can apply interval
elements to paths to obtain a point in A:

Γ ` t : PathAu v Γ ` r : I

Γ ` t r : A

Since the end-points of a path is encoded in its type, we do not have to inspect
the definition of a path to obtain its end-points – this is reflected in the
following reduction rules:

t0 7→ u if t has type PathAu v

t1 7→ v if t has type PathAu v.

The idea is now that PathAu v replaces the identity type u =A v. In this
setting we have a computational interpretation of functional extensionality,
witnessed by the following term:

funext : (f g : (x : A)→ B)→ ((x : A)→ PathB(f x) (g x))→ Path(x:A)→B f g

funext f g p = 〈i〉λx : A.px i.

Cubical type theory enjoys canonicity [44] and it is conjectured that it also
has decidable type-checking. There is a prototype implementation of a type
checker for cubical type theory available at https://github.com/mortberg/
cubicaltt.

1.2.10 Guarded Cubical Type Theory

Since cubical type theory provides an identity type with functional extension-
ality while retaining canonicity and – seemingly – decidable type checking, we
decided to experiment with combining cubical type theory with guarded re-
cursive types. In order to retain decidable type-checking we want a decidable
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1.2. An Overview of Guarded Recursive Types

definitional equality relation, and therefore we cannot allow the unrestricted
unfolding of fixed-point

fixx.t = t[nextfixx.t/x].

Our solution is to exchange this definitional equality with a path equality,
so any fixed-point will be the 0-end-point of a path where the 1-end-point
is the unfolding of the fixed point. This, however, can immediately lead
to loss of canonicity: fixx.0 inhabits Nat, and therefore the term ought not
be stuck. To remedy this we simply replace the usual guarded fixed-point
combinator fix : (.A→ A)→ A with dfix : (.A→ A)→ .A, the delayed guarded
fixed-point combinator which yields a fixed-point which is guarded by a ‘later’
and therefore does not affect canonicity of base types. The typing rule for dfix
is

Γ ` r : I Γ ,x : .A ` t : A

Γ ` dfixr x.t : .A

along with the definitional equality

dfix1 x.t = next t[dfix0 x.t/x].

Now the regular guarded fixed-point combinator can be defined in terms of
dfix

fixx.t , t[dfix0 x.t/x]

along with a proof of the fixed-point equation:

〈i〉 t[dfixi x.t/x] : PathA(fixx.t) (t[nextfixx.t/x]).

Analogous to how cubical type theory provides a computational interpret-
ation of functional extensionality, cubical type theory with guarded recursive
types provides a computational interpretation of the extensionality principle
for .:

laterext : .(PathA t u)→ Path.A(next t) (nextu)

laterext p = 〈i〉 next
[
p′← p

]
.p′ i.

Chapter 4 is dedicated to the guarded cubical type theory, with many ex-
amples, and a description of a presheaf model based on both the topos of
trees, and the cubical sets model of cubical type theory.

1.2.11 Implementation

The process of developing the guarded cubical type theory involved imple-
menting a prototype type-checker4 for the language. It is implemented as

4https://github.com/hansbugge/cubicaltt/tree/gcubical
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a patch on cubicaltt5 which is the type-checker implementation for cubical
type theory. All the examples of Chapter 4 are formalised in our prototype.
Though absent from the type theory in Chapter 4, our implementation also
supports clock quantification and thus coinductive types. This provides the
user with the ability of eliminating .’s in a controlled way, however experi-
ments suggest that decidability of type-checking and canonicity holds even
with these features.

In order to implement a type checker for a dependently typed language
one needs a way of ‘running’ the terms. This is due to the conversion rule:

Γ ` t : A Γ ` A ≡ B
Γ ` t : B

where A ≡ B means that A and B are convertible – e.g., in a setting with reduc-
tion semantics, this could mean that A→∗ C ∗← B for some C. The conversion
rule makes sure that definitionally equal types have the same inhabitants.
Since types depends on terms, this boils down to a problem of finding an
operational semantics for the terms. The most challenging part of implement-
ing the type-checker was indeed to define the operational behaviour of the
new terms, especially those involving delayed substitutions. Our solution
is to translate delayed substitutions into an alternative representation using
‘resource tokens’ to remove .’s from the types of certain terms occuring under
next and .. In Chapter 5 we discuss the ongoing work of formalising this
alternative approach and its reduction semantics.

1.3 Outline of the Dissertation

This dissertation consists of 3 peer-reviewed articles and one chapter with
recent preliminary work. Chapter 2 is a extended journal version of an earlier
conference paper, while Chapters 3 and 4 are based on conference papers and
both include a technical appendix.

1.3.1 Chapter 2: Simple Types

This chapter consists of a journal paper [28] which itself is a considerably
extended version of a conference paper [27].

In this paper we present gλ, a simply typed λ-calculus extended with
two modalities, I (‘later’) and � (‘everything now’), as well as a fixed-point
constructor µ for defining guarded recursive types. The I and µ originate
in Nakano’s [69] modal logic for recursion, while � is inspired by the clock
quantifiers of Atkey and McBride [8].

We develop both operational and denotational semantics, using the latter
to show normalisation of the former. We show many example programs,

5https://github.com/mortberg/cubicaltt
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illustrating the expressivity of the new constructs and the difference between
programming with guarded recursive types and programming with coinduct-
ive types. The operational semantics and the examples are implemented
in Agda. The denotational model is the presheaf topos PSh(ω) (the topos of
trees), which we prove is adequate with respect to the operational semantics,
i.e., that terms that share denotation will be contextually equivalent. The
internal language of PSh(ω) induces a program logic for gλ which (because of
adequacy) can be used to reason about the behaviour of terms.

As a demonstration of the expressivity of gλwe show that we can construct
solutions to Rutten’s behavioural differential equations [78], which describe a
class of coinductive streams.

My contributions to this chapter consist mainly of the design of the type
theory and the operational semantics, the Agda implementation of the type
theory and the operational semantics, and making examples.

1.3.2 Chapter 3: Dependent Types

This chapter consist of a conference paper [22] along with a technical appendix
which provides more detailed examples.

In this paper we present guarded dependent type theory (GDTT), an ex-
tensional dependent type theory with guarded recursive types and clock
quantification. Like in the simple type theory of the previous chapter there
is a ‘later’ modality (now symbolised with the more discreet .), however the
rules for the simply typed version do not immediately generalise to a depend-
ently typed setting. Specifically, there is a problem with the interaction with
function application: the result type of a function application depends on
the argument term – so if the argument term is delayed by a ‘later’ then the
result type cannot be defined. The solution is to enrich the modality with
delayed substitutions, as mentioned in the introduction, which allows for the
formation of such result types. Delayed substitutions, which occur both on
type and term levels, turn out to be a powerful programming construct.

Instead of the ‘everything now’ modality of gλ, GDTT has Atkey and
McBride [8] style clock quantifiers, which means that the ‘later’s are now
decorated with clock variables, and we can universally quantify over these
clocks to obtain coinductive types.

Another difference from the simply typed gλ is that GDTT does not have
a µ for defining guarded recursive types. It instead has a guarded fixed-
point combinator for terms, and with this guarded recursive types can be
defined by taking fixed points on the universe, an idea due to Birkedal and
Møgelberg [10].

We show in detail examples of programming with guarded recursive and
coinductive types, and by taking fixed points of identity types we prove
properties about programs within the language itself.
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The rules of GDTT are justified by a denotational model by Bizjak and
Møgelberg [18].

It is important to note that GDTT is an extensional type theory, i.e., it
contains the equality reflection rule. Therefore type checking is undecidable.

For this chapter I contributed to the design of the typing rules, in particular
the delayed substitutions, and to designing examples.

1.3.3 Chapter 4: Cubical Types

This chapter consists of a conference paper [15] along with a technical ap-
pendix which provides details of the model construction.

In this paper we tackle the issue of decidable type checking of dependent
type theory with guarded recursive types. Our approach is to combine cubical
type theory [29] (CTT) with guarded recursive types à la GDTT. From CTT
we get the path equality type, which replaces the extensional identity type
of GDTT, thus we have an equality type which provides a computational
interpretation of functional extensionality, which turns out to also provide a
computational interpretation of an extensionality principle for ‘later’ types.
This principle is crucial for reasoning about guarded recursive data. To control
the unfolding of guarded fixed-points we have made the fixed-point equation
into a path equality. The resulting type theory is called guarded cubical type
theory (GCTT). We conjecture that GCTT enjoys both decidable type checking
and canonicity.

There is a prototype implementation of a type checker for GCTT based on
an existing type checker for CTT which provides confidence in the syntactic
properties of the theory.

The semantics of GCTT is given via the presheaf category over the product
of the categories used to define GDTT and CTT.

Clock quantification is a feature of GDTT which is lacking in this present-
ation of GCTT. This is due to the inevitable complexity of a model with
multiple clocks and clock synchronisation, which would be put on top of the
already intricate model of the present paper. However, the prototype type
checker already supports most of the rules for clock quantification, and thus
coinductive types.

I contributed to the design of the type theory and the construction of
the model. Furthermore I implemented the type checker along with Andrea
Vezzosi, and designed and formalised the examples.

1.3.4 Chapter 5: Reduction Semantics

This chapter contains a discussion of currently ongoing and future work on
reduction semantics for a version of guarded recursive type theory without
identity types. We describe the idea of guarded recursive types with resources,
which is an alternative to using delayed substitutions that allows us to for-
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mulate a reduction relation on terms and types. Once we have a reduction
relation we can formulate properties like confluence, subject reduction, and
strong normalisation, all of which we conjecture to hold.

This chapter is based on joint work with Patrick Bahr and Rasmus E. Mø-
gelberg.

1.4 Concluding Remarks

Our motivation for investigating guarded recursive type theory were twofold.

(i) Guarded recursive types as a tool for programming and reasoning with
coinductive types.

(ii) Guarded recursive type theory as a foundation for formalising models
of programming languages.

In this section I will discuss the current status with respect to these two points.

Programming and reasoning with coinductive types. In Chapter 3 we
have described a type theory in which we have successfully encoded proofs
and programs of coinductive types. But this cannot rightly be considered
‘programming’ for at least one reason: the lack of operational semantics. In
Chapter 5 there is preliminary work on a reduction relation for a dependently
typed language without identity types, and the implementation of guarded
cubical type theory has provided experimental evidence that an operational
semantics is conceivable. Unfortunately, we have not yet found a way to
justify operationally the equality rule TmEq-∀-fresh of Figure 3.6, which
seems to be necessary for programming with dependent coinductive types
such as covectors (see Section 3.5). The problems arising from this equality
rule seem to be related to parametricity problems.

The guarded cubical type theory of Chapter 4 does not involve coinductive
types. It is our conjecture, based on experiments with the implementation,
that we can extend the type theory with clock quantification (without the
TmEq-∀-fresh rule) while retaining canonicity and decidable type-checking.
The soundness of such a type theory has not yet been shown. We conjecture
that it is possible to combine the current model of guarded cubical type
theory with the techniques for modelling the clocks of the extensional guarded
recursive type theory, however there are significant gaps to fill out. Such a
type theory would be a good witness for the usefulness of guarded recursion
for proving and programming with coinductive types in one language.

Formalising models. Paviotti et al. [72] and Møgelberg and Paviotti [68]
have recently used the type theory from Chapter 3 informally to model the
programming languages PCF and FPC. This gives us confidence that guarded
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recursive type theory can be a useful tool for making models of programming
languages which would otherwise be done using step-indexing. However,
our current implementation of guarded cubical type theory is still in its
infancy, and this hinders experimentation with formalisations of such models.
Lacking features, such as hidden arguments and automation, makes large
formalisation efforts very tedious. When modelling programming languages
in Agda one would typically utilise inductive families, which have not yet
been combined with guarded recursive types.

The landscape of theorem provers based on dependent type theory is cur-
rently changing, in part because of the developments of homotopy type theory.
Once a more mature theorem prover with a computational interpretation of
functional extensionality emerges, this would be an obvious place to begin
larger scale experiments with guarded recursive types.
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Chapter 2

Simple Types

This chapter is a version of the paper:

[28] Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birke-
dal.
The Guarded Lambda-Calculus: Programming and Reasoning with
Guarded Recursion for Coinductive Types.
Logical Methods of Computer Science (LMCS), 12(3), 2016.

which is a journal version of a conference paper:

[27] Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birke-
dal.
Programming and Reasoning with Guarded Recursion for Coinductive
Types.
In Foundations of Software Science and Computation Structures (FoSSaCS),
pages 407–421, 2015.

The only difference with the published version is that a few typos has been
fixed.

Abstract

We present the guarded lambda-calculus, an extension of the simply
typed lambda-calculus with guarded recursive and coinductive types.
The use of guarded recursive types ensures the productivity of well-
typed programs. Guarded recursive types may be transformed into
coinductive types by a type-former inspired by modal logic and Atkey-
McBride clock quantification, allowing the typing of acausal functions.
We give a call-by-name operational semantics for the calculus, and define
adequate denotational semantics in the topos of trees. The adequacy
proof entails that the evaluation of a program always terminates. We
introduce a program logic with Löb induction for reasoning about the
contextual equivalence of programs. We demonstrate the expressive-
ness of the calculus by showing the definability of solutions to Rutten’s
behavioural differential equations.
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2.1 Introduction

The problem of ensuring that functions on coinductive types are well-defined
has prompted a wide variety of work into productivity checking, and rule
formats for coalgebra. Guarded recursion [31] guarantees unique solutions
for definitions, as well as their productivity – any finite prefix of the solution
can be produced in finite time by unfolding – by requiring that recursive
calls on a coinductive data type be nested under its constructor; for example,
cons (written ::) for streams. This can sometimes be established by a simple
syntactic check, as for the stream toggle and binary stream function interleave
below:

toggle = 1 :: 0 :: toggle
interleave (x :: xs) ys = x :: interleave ys xs

Such syntactic checks, however, exclude many valid definitions in the presence
of higher order functions. For example, consider the regular paperfolding
sequence (also, more colourfully, known as the dragon curve sequence [83]),
which describes the sequence of left and right folds induced by repeatedly
folding a piece of paper in the same direction. This sequence, with left and
right folds encoded as 1 and 0, can be defined via the function interleave as
follows [39]:

paperfolds = interleave toggle paperfolds

This definition is productive, but the putative definition below, which also
applies interleave to two streams and so should apparently have the same
type, is not:

paperfolds’ = interleave paperfolds’ toggle

This equation is satisfied by any stream whose tail is the regular paperfolding
sequence, so lacks a unique solution. Unfortunately syntactic productivity
checking, such as that employed by the proof assistant Coq [63], will fail to
detect the difference between these programs, and reject both.

A more flexible approach, first suggested by Nakano [69], is to guarantee
productivity via types. A new modality, for which we follow Appel et al. [7] by
writing I and using the name ‘later’, allows us to distinguish between data we
have access to now, and data which we have only later. This Imust be used to
guard self-reference in type definitions, so for example guarded streams over
the natural numbers N are defined by the guarded recursive equation

Strg N ,N×IStrg N

asserting that stream heads are available now, but tails only later. The type of
interleave will be Strg N→ IStrg N→ Strg N, capturing the fact the (head of
the) first argument is needed immediately, but the second argument is needed
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only later. In term definitions the types of self-references will then be guarded
by I also. For example interleavepaperfolds′ toggle becomes ill-formed, as
the paperfolds′ self-reference has type IStrg N, rather than Strg N as required,
but interleavetoggle paperfolds will be well-formed.

Adding I alone to the simply typed λ-calculus enforces a discipline more
rigid than productivity. For example the obviously productive stream function

every2nd (x :: x’ :: xs) = x :: every2nd xs

cannot be typed because it violates causality [56]: elements of the result stream
depend on deeper elements of the argument stream. In some settings, such
as functional reactive programming, this is a desirable property, but for pro-
ductivity guarantees alone it is too restrictive – we need the ability to remove
I in a controlled way. This is provided by the clock quantifiers of Atkey and
McBride [8], which assert that all data is available now. This does not trivialise
the guardedness requirements because there are side-conditions restricting
how clock quantifiers may be introduced. Moreover clock quantifiers allow
us to recover first-class coinductive types from guarded recursive types, while
retaining our productivity guarantees.

Note on this point that our presentation departs from Atkey and
McBride’s [8] by regarding the ‘everything now’ operator as a unary type-
former, written � and called ‘constant’, rather than a quantifier. Observing
that the types �A→ A and �A→ ��A are always inhabited allows us to see
this type-former, via the Curry-Howard isomorphism, as an S4 modality, and
hence base this part of our calculus on the established typed calculi for intu-
itionistic S4 (IS4) of Bierman and de Paiva [9]. We will discuss the trade-offs
involved in this alternative presentation in our discussion of related work in
Section 2.6.1.

Overview of our contributions. In Section 2.2 we present the guarded λ-
calculus, more briefly referred to as the gλ-calculus, extending the simply
typed λ-calculus with guarded recursive and coinductive types. We define call-
by-name operational semantics, which will prevent the indefinite unfolding
of recursive functions, an obvious source of non-termination. In Section 2.3
we define denotational semantics in the topos of trees [14] which are adequate,
in the sense that denotationally equal terms behave identically in any context,
and as a corollary to the logical relations argument used to establish adequacy,
prove normalisation of the calculus.

We are interested not only in programming with guarded recursive and
coinductive types, but also in proving properties of these programs; in Sec-
tion 2.4 we show how the internal logic of the topos of trees induces the pro-
gram logic Lgλ for reasoning about the denotations of gλ-programs. Given
the adequacy of our semantics, this logic permits proofs about the operational
behaviour of terms. In Section 2.5 we demonstrate the expressiveness of
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the gλ-calculus by showing the definability of solutions to Rutten’s behavi-
oural differential equations [78], and show that Lgλ can be used to reason
about them, as an alternative to standard bisimulation-based arguments. In
Section 2.6 we conclude with a discussion of related and further work.

This paper is based on a previously published conference paper [27], but
has been significantly revised and extended. We have improved the present-
ation of our results and examples throughout the paper, but draw particular
attention to the following changes:

• We present in the body of this paper many proof details that previously
appeared only in an appendix to the technical report version of the
conference paper [26].

• We discuss sums, and in particular the interaction between sums and the
constant modality via the box+ term-former, which previously appeared
only in an appendix to the technical report. We further improve on that
discussion by presenting conatural numbers as a motivating example;
by giving new equational rules for box+ in Section 2.4.2; and by proving
a property of box+ in Section 2.4.3.

• We present new examples in Example 2.11 which show that converting a
program to type-check in the gλ-calculus is not always straightforward.

• We give a more intuitive introduction to the logic Lgλ in Section 2.4,
aimed at readers who are not experts in topos theory. In particular we
see how the guarded conatural numbers define the type of propositions.

• We present new equational rules in Section 2.4.2 that reveal how the
explicit substitutions of the gλ-calculus interact with real substitutions.

• We present (slightly improved) results regarding total and inhabited
types in the gλ-calculus in Section 2.4.2 which previously appeared only
in an appendix to the technical report. Relatedly, we have generalised
the proof in Example 2.42.1 to remove its requirement that the type
in question is total and inhabited, by including a new equational rule
regarding composition for applicative functors.

• We present formal results regarding behavioural differential equations
in Section 2.5 which previously appeared only in an appendix to the
technical report.

• We conduct a much expanded discussion of related and further work in
Section 2.6.
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2.2. The Guarded Lambda-Calculus

We have implemented the gλ-calculus in Agda, a process we found helpful
when fine-tuning the design of our calculus. The implementation, with
many examples, is available online.1

2.2 The Guarded Lambda-Calculus

This section presents the guarded λ-calculus, more briefly referred to as the
gλ-calculus, its call-by-name operational semantics, and its types, then gives
some examples.

2.2.1 Untyped Terms and Operational Semantics

In this subsection we will see the untyped gλ-calculus and its call-by-name
operational semantics. This calculus takes the usual λ-calculus with natural
numbers, products, coproducts, and (iso-)recursion, and makes two exten-
sions. First, the characteristic operations of applicative functors [64], here
called next and ~, are added, which will support the definition of causal
guarded recursive functions. Second, a prev (previous) term-former is added,
inverse to next, that along with box and unbox term-formers will support the
definition of acausal functions without sacrificing guarantees of productivity.

The novel term-formers of the gλ-calculus are most naturally understood
as operations on its novel types. We will therefore postpone any examples of
gλ-calculus terms until after we have seen its types.

Note that we will later add one more term-former, called box+, to allow us
to write more programs involving the interaction of binary sums and the box
term-former. We postpone discussion of this term-former until Section 2.2.4
to allow a cleaner presentation of the core system.

Definition 2.1. Untyped gλ-terms are defined by the grammar

t ::= x (variables)
| zero | succ t (natural numbers)
| 〈〉 | 〈t, t〉 | π1t | π2t (products)
| abort t | in1 t | in2 t | case tofx1.t;x2.t (sums)
| λx.t | tt (functions)
| fold t | unfold t (recursion operations)
| next t | prevσ.t | t ~ t (‘later’ operations)
| boxσ.t | unbox t (‘constant’ operations)

where σ is an explicit substitution: a list of variables and terms [x1← t1, . . . ,xn←
tn], often abbreviated as [~x← ~t ]. We write prev ι.t for prev[~x← ~x].t, where ~x is
a list of all free variables of t, and write prev t where ~x is empty. We similarly
write box ι.t and box t.

1http://users-cs.au.dk/hbugge/bin/glambda.zip
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2. Simple Types

The terms prev[~x← ~t ].t and box[~x← ~t ].t bind all variables of ~x in t, but
not in ~t. We adopt the convention that prev and box have highest precedence.

Definition 2.2. The reduction rules on closed gλ-terms are

πd〈t1, t2〉 7→ td (d ∈ {1,2})
caseind tofx1.t1;x2.t2 7→ td[t/xd] (d ∈ {1,2})

(λx.t1)t2 7→ t1[t2/x]
unfoldfold t 7→ t

prev[~x← ~t ].t 7→ prev(t[~t/~x]) (~x non-empty)
prevnext t 7→ t

next t1 ~next t2 7→ next(t1t2)
unbox(box[~x← ~t ].t) 7→ t[~t/~x]

All rules above except that concerning ~ look like standard β-reduction, re-
moving ‘roundabouts’ of introduction then elimination. A partial exception to
this observation are the prev and next rules; an apparently more conventional
β-rule for these term-formers would be

prev[~x← ~t ].(next t) 7→ t[~t/~x] (2.1)

Where ~x is non-empty this rule might require us to reduce an open term to
derive next t, for the computation to continue. But it is, as usual, easy to
construct examples of open terms that get stuck without reducing to a value,
even where they are well-typed (by the rules of the next subsection). Therefore
a closed well-typed term of form prev[~x← ~t ].u may not see u reduce to some
nextu′, and so if equation (2.1) were the only applicable rule the term as a
whole would also be stuck.

This is not necessarily a problem for us, because we are not interested in
unrestricted reduction. Such reduction is not compatible in a total calculus
with the presence of infinite structures such as streams, as we could choose to
unfold a stream indefinitely and hence normalisation would be lost. In this
paper we will instead adopt a strategy where we prohibit the reduction of
open terms; specifically we will use call-by-name evaluation. In the case above
we manage this by first applying the explicit substitution without eliminating
prev.

The rule involving ~ is not a true β-rule, as ~ is neither introduction nor
elimination, but is necessary to enable function application under a next and
hence allow, for example, manipulation of the tail of a stream. It corresponds
to the ‘homomorphism’ equality for applicative functors [64].

We next impose our call-by-name strategy on these reductions.

Definition 2.3. Values are terms of the form

succn zero | 〈〉 | 〈t, t〉 | in1 t | in2 t | λx.t | fold t | next t | boxσ.t

where succn is a list of zero or more succ operators, and t is any term.
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2.2. The Guarded Lambda-Calculus

Definition 2.4. Evaluation contexts are defined by the grammar

E ::= · | succE | π1E | π2E | caseEofx1.t1;x2.t2 | Et | unfoldE
| prevE | E ~ t | v ~E | unboxE

If we regard ~ naively as function application, it is surprising in a call-by-
name setting that its right-hand side may be reduced. However both sides
must be reduced until they have main connective next, before the reduction
rule for ~may be applied. Thus the order of reductions of gλ-terms cannot be
identified with the order of the call-by-name reductions of the corresponding
λ-calculus term with the novel connectives erased.

Definition 2.5. Call-by-name reduction has format E[t] 7→ E[u], where t 7→ u
is a reduction rule. From now the symbol 7→ will be reserved to refer to
call-by-name reduction. We use for the reflexive transitive closure of 7→.

Note that the call-by-name reduction relation 7→ is deterministic.

2.2.2 Types

We now meet the typing rules of the gλ-calculus, the most important feature of
which is the restriction of the fixed point constructor µ to guarded occurrences
of recursion variables.

Definition 2.6. Open gλ-types are defined by the grammar

A ::= α (type variables)
| N (natural numbers)
| 1 | A×A (products)
| 0 | A+A (sums)
| A→ A (functions)
| µα.A (iso-recursive types)
| IA (later)
| �A (constant)

Type formation rules are defined inductively by the rules of Figure 2.1. In
this figure ∇ is a finite set of type variables, and a variable α is guarded in a
type A if all occurrences of α are beneath an occurrence of I in the syntax tree.
We adopt the convention that unary type-formers bind closer than binary
type-formers. All types in this paper will be understood as closed unless
explicitly stated otherwise.

Note that the guardedness side-condition on the µ type-former and the
prohibition on the formation of �A for open A together create a prohibition on
applying µα to any α with � above it, for example µα.�Iα or µα.I�α. This
accords with our intuition that fixed points will exist only where a recursion
variable is ‘displaced in time’ by a I. The constant type-former � destroys
any such displacement by giving ‘everything now’.
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∇ ` α
α ∈ ∇

∇ `N ∇ ` 1

∇ ` A1 ∇ ` A2

∇ ` A1 ×A2 ∇ ` 0

∇ ` A1 ∇ ` A2

∇ ` A1 +A2

∇ ` A1 ∇ ` A2

∇ ` A1→ A2

∇,α ` A
∇ ` µα.A

αguardedinA

∇ ` A
∇ ` IA

· ` A
∇ ` �A

Figure 2.1: Type formation for the gλ-calculus

Definition 2.7. The typing judgments are given in Figure 2.2. There Γ is a
typing context, i.e. a finite set of variables x, each associated with a type A,
written x : A. In the side-conditions to the prev and box rules, types are
constant if all occurrences of I are beneath an occurrence of � in their syntax
tree.

The constant types exist ‘all at once’, due to the absence of I or presence of
�; this condition corresponds to the freeness of the clock variable in Atkey
and McBride [8] (recalling that this paper’s work corresponds to the use of
only one clock). Its use as a side-condition to �-introduction in Figure 2.2
recalls (but is more general than) the ‘essentially modal’ condition in the
natural deduction calculus of Prawitz [76] for the modal logic Intuitionistic
S4 (IS4). The term calculus for IS4 of Bierman and de Paiva [9], on which
this calculus is most closely based, uses the still more restrictive requirement
that � be the main connective. This would preclude some functions that seem
desirable, such as the isomorphism λn.box ι.n : N→ �N.

The presence of explicit substitutions attached to the prev and box can
seem heavy notationally, but in practice the burden on the programmer seems
quite small, as in all examples we will see, prev appears only in its syntactic
sugar forms

x1 : A1, . . . ,xn : An ` t : IA

Γ ,x1 : A1, . . . ,xn : An ` prev ι.t : A
A1, . . . ,An constant

· ` t : IA

Γ ` prev t : A

and similarly for box. One might therefore ask why the more general form
involving explicit substitutions is necessary. The answer is that the ‘sugared’
definitions above are not closed under substitution: we need (prev ι.t)[~u/~x] =
prev[~x← ~u].t. In general getting substitution right in the presence of side-
conditions can be rather delicate. The solution we use, namely closing the
term t to which prev (or box) is applied to protect its variables, comes directly
from Bierman and de Paiva’s calculus for IS4 [9]; see this reference for more
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Γ ,x : A ` x : A Γ ` zero : N

Γ ` t : N

Γ ` succ t : N Γ ` 〈〉 : 1

Γ ` t1 : A Γ ` t2 : B

Γ ` 〈t1, t2〉 : A×B
Γ ` t : A×B
Γ ` π1t : A

Γ ` t : A×B
Γ ` π2t : B

Γ ` t : 0

Γ ` abort t : A

Γ ` t : A

Γ ` in1 t : A+B

Γ ` t : B

Γ ` in2 t : A+B

Γ ` t : A+B Γ ,x1 : A ` t1 : C Γ ,x2 : B ` t2 : C

Γ ` case tofx1.t1;x2.t2 : C

Γ ,x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t1 : A→ B Γ ` t2 : A

Γ ` t1t2 : B

Γ ` t : A[µα.A/α]

Γ ` fold t : µα.A

Γ ` t : µα.A

Γ ` unfold t : A[µα.A/α]

Γ ` t : A

Γ ` next t : IA

x1 : A1, . . . ,xn : An ` t : IA
Γ ` t1 : A1 · · · Γ ` tn : An
Γ ` prev[x1← t1, . . . ,xn← tn].t : A

A1, . . . ,An constant

Γ ` t1 : I(A→ B) Γ ` t2 : IA

Γ ` t1 ~ t2 : IB

x1 : A1, . . . ,xn : An ` t : A
Γ ` t1 : A1 · · · Γ ` tn : An
Γ ` box[x1← t1, . . . ,xn← tn].t : �A

A1, . . . ,An constant
Γ ` t : �A

Γ ` unbox t : A

Figure 2.2: Typing rules for the gλ-calculus

in-depth discussion of the issue, and in particular how a failure to account
for this issue causes problems for the calculus of Prawitz [76]. Similar side-
conditions have also caused problems in the closely related area of calculi
with clocks – see the identification by Bizjak and Møgelberg [19] of a problem
with the type theory presented in earlier work by Møgelberg [66].

Lemma 2.8 (Subject Reduction for Closed Terms). ` t : A and t u implies
` u : A.

Note that the reduction rule

prev[~x← ~t ].t 7→ prev(t[~t/~x])
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plainly violates subject reduction for open terms: the right hand side is only
well-defined if t[~t/~x] has no free variables, because the explicit substitution
attached to prev must close all open variables.

2.2.3 Examples

We may now present example gλ-programs and their typings. We will first
give causal programs without use of the constant modality �, then show how
this modality expands the expressivity of the language, and finally show two
examples of productive functions which are a bit trickier to fit within our
language.

Example 2.9.

1. The type of guarded recursive streams over some type A, written StrgA,
is, as noted in the introduction, defined as µα.A×Iα. Other guarded
recursive types can be defined, such as infinite binary trees as µα.A×
I(α ×α), conatural numbers CoNatg as µα.1 +Iα, and colists as µα.1 +
(A × Iα). We will focus on streams in this section, and look more at
CoNatg in Section 2.2.4.

2. We define guarded versions of the standard stream functions cons (writ-
ten infix as ::), head, and tail as obvious:

:: , λx.λs. fold〈x,s〉 : A→ IStrgA→ StrgA
hdg , λs.π1 unfolds : StrgA→ A

tlg , λs.π2 unfolds : StrgA→ IStrgA

We can then use the ~ term-former to make observations deeper into
the stream:

2ndg , λs.(nexthdg)~ (tlg s) : StrgA→ IA
3rdg , λs.(next2ndg)~ (tlg s) : StrgA→ IIA · · ·

3. To define guarded recursive functions we need a fixed point combinator.
Abel and Vezzosi [3] gave a guarded version of Curry’s Y combinator
in a similar calculus; for variety we present a version of Turing’s fixed
point combinator.

Recall from the standard construction that if we had a µ type-former
with no guardedness requirements, then a combinator fix with type
(A→ A)→ A could be defined, for any type A, by the following:

RecA , µα.(α→ (A→ A)→ A)
θ , λy.λf .f ((unfoldy)yf ) : RecA→ (A→ A)→ A

fix , θ(foldθ) : (A→ A)→ A
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2.2. The Guarded Lambda-Calculus

To see that fix does indeed behave as a fixpoint, note that fixf unfolds in
one step to f ((unfoldfoldθ)(foldθ)f ). But unfoldfold eliminates2, so we
have f (fixf ).

What then is the guarded version of this combinator? Following the need
for the recursion variable to be guarded, and the original observation
of Nakano [69] that guarded fixed point combinators should have type
(IA→ A)→ A, we reconstruct the type RecA by the addition of later
modalities in the appropriate places. The terms θ and fix can then
be constructed by adding next term-formers, and replacing function
application with ~, to the original terms so that they type-check:

RecA , µα.(Iα→ (IA→ A)→ A)
θ , λy.λf .f ((nextλz.unfoldz)~ y ~nexty ~nextf ) :

IRecA→ (IA→ A)→ A
fix , θ(nextfoldθ) : (IA→ A)→ A

The addition of these novel term-formers is fairly mechanical; the only
awkward point comes when we cannot unfold y directly because it
has type IRecA rather than RecA, so we must introduce the expression
λz.unfoldz.

Now fixf reduces to

f ((nextλz.unfoldz)~ (nextfoldθ)~ (nextnextfoldθ)~nextf )

But the reduction rule for ~ allows us to take next out the front and
replace ~ by normal application:

f (next((λz.unfoldz)(foldθ)(nextfoldθ)f ))

Applying the λ-expression and eliminating unfoldfold yields f (nextfixf ).
In other words, we have defined a standard fixed point except that a next
is added to the term to record that the next application of the fixed point
combinator must take place one step in the future. We will be able to
be more formal about this property of fix in Lemma 2.40, once we have
introduced the program logic Lgλ for reasoning about gλ-programs.

Note that the inhabited type (IA→ A)→ A does not imply that all types
are inhabited, as there is not in general a function IA→ A. This differs
from the standard presentation of fixed point combinators that leads to
inconsistency.

4. Given our fixed point combinator we may now build some guarded
streams; for example, the simple program (in pseudocode)

2With respect to call-by-name evaluation this program’s next reduction will depend on
the shape of f , but it is enough for this discussion to see that unfoldfoldθ is equal to θ in the
underlying equational theory.
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zeros = 0 :: zeros

is captured by the term

zeros , fixλs.(zero ::s)

of type Strg N. Here s has type IStrg N, and so the function that the
fixed point is applied to has type IStrg N → Strg N; exactly the type
expected by fix.

Note however that the plainly unproductive stream definition

circular = circular

cannot be defined within this calculus, although it is it apparently
definable via a standard fixed point combinator as fixλs.s; in our calculus
the type of the recursion variable s must be preceded by a Imodality.

5. For a slightly more sophisticated example, consider the standard map
function on streams:

mapg , λf .fixλm.λs.(f hdg s) :: (m~ tlg s) : (A→ B)→ StrgA→ StrgB

Here the recursion variable m has type I(StrgA→ StrgB).

6. We can define two more standard stream functions – iterate, which takes
a function A→ A and a head A, and produces a stream by applying the
function repeatedly, and interleave, which interleaves two streams – in
the obvious ways:

iterate′ , λf .fixλg.λx.x :: (g ~next(f x))
: (A→ A)→ A→ StrgA

interleave′ , fixλg.λs.λt.(hdg s) :: (g ~ (next t)~ tlg s)
: StrgA→ StrgA→ StrgA

These definitions are correct but are less informative than they could be,
as they do not record the temporal aspects of these functions, namely
that (in the case of iterate) the function, and (in the case of interleave)
the second stream, are not used until the next time step. We could
alternatively use the definitions

iterate , λf .fixλg.λx.x :: (g ~ (f ~nextx))
: I(A→ A)→ A→ StrgA

interleave , fixλg.λs.λt.(hdg s) :: (g ~ t ~nexttlg s)
: StrgA→ IStrgA→ StrgA

These definitions are in fact more general:

iterate′ f x = iterate(nextf )x
interleave′ s t = interleaves (next t)
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Indeed the example of the regular paperfolding sequence from the
introduction shows that the more general and informative version can
also be more useful:

toggle , fixλs.(succzero) :: (next(zero ::s)) : Strg N
paperfolds , fixλs. interleavetoggle s : Strg N

The recursion variable s in paperfolds has type IStrg N, which means it
cannot be given as the second argument to interleave′ – only the more
general interleave will do. However the erroneous definition of the
regular paperfolding sequence that replaced interleavetoggle s with
interleave′ s toggle cannot be typed.

Another example of a function that (rightly) cannot be typed in gλ is
a filter function on streams which eliminates elements that fail some
boolean test; as all elements may fail the test, the function is not pro-
ductive.

7. µ-types define unique fixed points, carrying both initial algebra and
final coalgebra structure. For example, the type StrgA is both the initial
algebra and the final coalgebra for the functor A ×I-. This contrasts
with the usual case of streams, which are merely the final coalgebra for
the functor A× -; the initial algebra for this functor is trivial. To see the
dual structure of guarded recursive types, consider the functions3

initial , fixλg.λf .λs.f 〈hdg s,g ~nextf ~ tlg s〉
: ((A×IB)→ B)→ StrgA→ B

final , fixλg.λf .λx.(π1(f x)) :: (g ~nextf ~π2(f x))
: (B→ A×IB)→ B→ StrgA

For example, mapgh : StrgA→ StrgA can be written as initialλx.(h(π1x))::
(π2x), or as finalλs.〈h(hdg s), tlg s〉.

We now turn to examples involving the prev (previous) term-former and
constant modality �.

Example 2.10.

1. The� type-former lifts guarded recursive streams to coinductive streams,
as we will make precise in Example 2.16. We define StrA , �StrgA. We
can then define versions of cons, head, and tail operators for coinductive
streams:

cons , λx.λs.box ι.x :: next(unboxs) : A→ StrA→ StrA
hd , λs.hdg(unboxs) : StrA→ A

tl , λs.box ι.prev ι. tlg(unboxs) : StrA→ StrA
3These are usually called fold and unfold; we avoid this because of the name clash with

our term-formers.
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Note that cons is well-defined only if A is a constant type. Note also that
we must ‘unbox’ our coinductive stream to turn it into a guarded stream
before we operate on it. This explains why we retain our productivity
guarantees. Finally, note the absence of I in the types. Indeed we can
define observations deeper into the stream with no hint of later, for
example

2nd , λs.hd(tls) : StrA→ A

2. We have a general way to lift boxed functions to functions on boxed
types, via the ‘limit’ function

lim , λf .λx.box ι.(unboxf )(unboxx) : �(A→ B)→ �A→ �B

This allows us to lift our guarded stream functions from Example 2.9 to
coinductive stream functions, provided that the function in question is
defined in a constant environment. For example

map , λf . limbox ι.(mapg f ) : (A→ B)→ StrA→ StrB

is definable if A→ B is a constant type (which is to say, A and B are
constant types).

3. The more sophisticated acausal function every2nd : StrA→ StrgA is

fixλg.λs.(hds) :: (g ~next(tl(tls)))

Note that it takes a coinductive stream StrA as argument. The function
with coinductive result type is then λs.box ι.every2nds : StrA→ StrA.

4. Guarded streams do not define a monad, as the standard ‘diagonal’
join function Strg(StrgA)→ StrgA cannot be defined, as for example the
second element of the second stream in Strg(StrgA) has type IIA, while
the second element of the result stream should have type IA – the same
problem as for every2nd above. However we can define

diag , fixλf .(hd(hds)) :: (f ~next(tl(tls))) : Str(StrA)→ StrgA

The standard join function is then λs.box ι.diags : Str(StrA)→ StrA.

In the examples above the construction of typed gλ-terms from the
standard definitions of productive functions required little ingenuity; one
merely applies the new type- and term-formers in the ‘necessary places’ until
everything type-checks. This appears to be the case with the vast majority
of such functions. However, below are two counter-examples, both from
Endrullis et al. [40], where a bit more thought is required:

Example 2.11.
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1. The Thue-Morse sequence is a stream of booleans which can be defined
(in pseudo-code) as

thuemorse = 0 :: tl (h thuemorse)
h (0 :: s) = 0 :: 1 :: (h s)
h (1 :: s) = 1 :: 0 :: (h s)

The definition of thuemorse is productive only because the helper
stream function h produces two elements of its result stream after
reading one element of its input stream. To see that this is crucial, ob-
serve that if we replace h by the identity stream function, thuemorse
is no longer productive. The type of h therefore needs to be some-
thing other than Strg(1+1) → Strg(1+1). But it does not have type
IStrg(1+1)→ Strg(1+1) because it needs to read the head of its input
stream before it produces the first element of its output stream. Captur-
ing this situation – a stream function that produces nothing at step zero,
but two elements at step one – seems too fine-grained to fit well with
our calculus with I.

The simplest solution is to modify the definition above by unfolding the
definition of thuemorse once:

thuemorse = 0 :: 1 :: h (tl (h thuemorse))

This equivalent definition would remain productive if we replaced h
with the identity, and so h can be typed Strg(1+1)→ Strg(1+1) without
problem.

2. The definition below of the Fibonacci word is similar to the example
above, but shows that the situation can be even more intricate:

fibonacci = 0 :: tl (f fibonacci)
f (0 :: s) = 0 :: 1 :: (f s)
f (1 :: s) = 0 :: (f s)

Here the helper function f, if given a stream with head 0, produces
nothing at step zero, but two elements at step one, as for h above. But
given a stream with head 1, it produces only one element at step one.
Therefore the erroneous definition

fibonacci’ = 1 :: tl (f fibonacci’)

whose head is 1 rather than 0, is not productive. Productivity hence
depends on an inspection of terms, rather than merely types, in a manner
clearly beyond the scope of our current work.

Again, this can be fixed by unfolding the definition once:

fibonacci = 0 :: 1 :: f (tl (f fibonacci))
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2.2.4 Sums and the Constant Modality

Atkey and McBride’s calculus with clocks [8] includes as a primitive notion
type equalities regarding the interaction of clock quantification with other
type-formers. They note that most of these equalities are not essential, as
in many cases mutually inverse terms between the sides of the equalities
are definable. However this is not so with, among other cases, binary sums.
Binary sums present a similar problem for our calculus. We can define a term

λx.box ι.casexofx1. in1 unboxx1;x2. in2 unboxx2 : (�A+�B)→ �(A+B)

in our calculus but no term in general in the other direction. Unfortunately
such a term is essential to defining some basic operations involving coin-
ductive types involving sums. For example we define the (guarded and
coinductive) conatural numbers as

CoNatg , µα.(1 +Iα)
CoNat , �CoNatg

These correspond to natural numbers with infinity, with such programs defin-
able upon them as

cozero , fold(in1 〈〉) : CoNatg

cosucc , λn. fold(in2(nextn)) : CoNatg→ CoNatg

infinity , fixλn. fold(in2n) : CoNatg

As a guarded recursive construction, CoNatg defines a unique fixed point. In
particular its coalgebra map predg (for ‘predecessor’) is simply

predg , λn.unfoldn : CoNatg→ 1 +ICoNatg

Now the coinductive type CoNat should be a coalgebra also, so we should
be able to define a function pred : CoNat→ 1 + CoNat similarly. However
a term of type CoNat must be unboxed before it is unfolded, and the type
1 +ICoNatg that results is not constant, and so we cannot apply prev and box
to map from ICoNatg to CoNat.

Our solution is to introduce a new term-former box+ which will allow us
to define a term

λx.box+ ι.unboxx : �(A+B)→ �A+�B

Definition 2.12 (ref. Definitions 2.1, 2.2, 2.4, 2.7). We extend the grammar
of gλ-terms by

t ::= · · · | box+σ.t

where σ is an explicit substitution. We abbreviate terms with box+ as for prev
and box.
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2.3. Denotational Semantics and Normalisation

We extend the reduction rules with

box+[~x← ~t ].t 7→ box+ t[~t/~x] (~x non-empty)
box+ ind t 7→ ind box t (d ∈ {1,2})

We do not change the definition of values of Definition 2.3. We extend the
definition of evaluation contexts with

E ::= · · · | box+E

Finally, we add the new typing judgment

x1 : A1, . . . ,xn : An ` t : B1 +B2
Γ ` t1 : A1 · · · Γ ` tn : An

Γ ` box+[x1← t1, . . . ,xn← tn].t : �B1 +�B2
A1, . . . ,An constant

Returning to our example, we can define the term pred : CoNat → 1 +
CoNat as

λn.case(box+ ι.unfoldunboxn)ofx1. in1 〈〉;x2. in2 box ι.prev ι.unboxx2

2.3 Denotational Semantics and Normalisation

This section gives denotational semantics for gλ-types and terms, as objects
and arrows in the topos of trees [14], the presheaf category over the first
infinite ordinal ω , 1 ≤ 2 ≤ · · ·4 (we give a concrete definition below). The
denotational semantics are shown to be sound and, by a logical relations
argument, adequate with respect to the operational semantics. Normalisation
follows as a corollary of this argument.

2.3.1 The Topos of Trees

This section introduces the mathematical model in which our denotational
semantics will be defined.

Definition 2.13. The topos of trees S has, as objects X, families of sets X1,X2,
. . . indexed by the positive integers, equipped with families of restriction
functions rXi : Xi+1 → Xi indexed similarly. Arrows f : X → Y are families
of functions fi : Xi → Yi indexed similarly obeying the naturality condition
fi ◦ rXi = rYi ◦ fi+1:

X1

f1
��

X2
rX1oo

f2
��

X3
rX2oo

f3
��

· · ·
rX3oo

Y1 Y2
rY1

oo Y3
rY2

oo · · ·
rY3

oo

4It would be more standard to start this pre-order at 0, but we start at 1 to maintain
harmony with some equivalent presentations of the topos of trees and related categories which
have a vacuous stage 0; we shall see such a presentation in Section 2.5.3

35



2. Simple Types

Given an object X and positive integers i ≤ j we write �i for the function
Xj → Xi defined by composing the restriction functions rXk for k ∈ {i, i+1, . . . , j−
1}, or as the identity where i = j.
S is a cartesian closed category with products and coproducts defined

pointwise. Note that by naturality it holds that for any arrow f : X→ Y +Z,
positive integer n, and element x ∈ Xn, fi◦�i(x) must be an element of the same
side of the sum for all i ≤ n. The exponential AB has, as its component sets
(AB)i , the set of i-tuples (f1 : A1→ B1, . . . , fi : Ai → Bi) obeying the naturality
condition, and projections as restriction functions.

Definition 2.14.

1. The category of sets Set is a full subcategory of S via the functor ∆ :
Set→S that maps sets Z to the S-object

Z Z
idZoo Z

idZoo · · ·
idZoo

and maps functions f by (∆f )i = f similarly.

The full subcategory of constant objects consists of S-objects which are
isomorphic to objects of the form ∆Z. These are precisely the objects
whose restriction functions are bijections. In particular the terminal
object 1 of S is ∆{∗}, the initial object is ∆∅, and the natural numbers
object is ∆N;

We will abuse notation slightly and treat constant objects as if they were
actually of the form ∆Z, i.e., if X is constant and x ∈ Xi we will write x

also, for example, for the element
(
rXi

)−1
(x) ∈ Xi+1.

2. ∆ is left adjoint to the ‘global elements’ functor homS (1,–). We write �
for the endofunctor ∆ ◦ homS (1, -) : S → S . Then unbox : � →̇ idS is the
counit of the comonad associated with this adjunction. Concretely, for
any S-object X and x ∈ homS (1,X) we have unboxi(x) = xi , i.e. the i’th
component of x : 1→ X applied to the unique element ∗:

homS (1,X)

x 7→x1

��

homS (1,X)idoo

x 7→x2

��

homS (1,X)idoo

x 7→x3

��

· · ·idoo

X1 X2
rX1

oo X3
rX2

oo · · ·
rX3

oo

The global elements functor can also be understood by considering an
S-object X as a diagram in Set; then homS (1,X) is its limit, and so �X is
this limit considered as a S-object.

3. I : S → S is defined by mapping S-objects X to

{∗} X1
!oo X2

rX1oo · · ·
rX2oo
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That is, (IX)1 = {∗} and (IX)i+1 = Xi , with rIX1 defined uniquely and
rIXi+1 = rXi . The I functor acts on arrows f : X → Y by (If )1 = id{∗} and
(If )i+1 = fi . The natural transformation next : idS →̇ I has, for each
component X, next1 uniquely defined and nexti+1 = rXi :

X1

!
��

X2
rX1oo

rX1
��

X3
rX2oo

rX2
��

· · ·
rX3oo

{∗} X1!
oo X2

rX1

oo · · ·
rX2

oo

2.3.2 Denotational Semantics

We may now see how the gλ-calculus can be interpreted soundly in the topos
of trees.

Definition 2.15. We interpret types in context ∇ ` A, where ∇ contains n
free variables, as functors ~∇ ` A� : (Sop ×S)n→S , usually written ~A�. This
mixed variance definition is necessary as variables may appear negatively or
positively.

• ~∇,α ` α� is the projection of the objects or arrows corresponding to
positive occurrences of α, e.g. ~α� ( ~W ,X,Y ) = Y ;

• ~N�, ~1�, and ~0� are the constant functors ∆N, ∆{∗}, and ∆∅ respect-
ively;

• ~A1 ×A2� ( ~W ) = ~A1� ( ~W )× ~A2� ( ~W ). The definition of the functor on
S-arrows is likewise pointwise;

• ~A1 +A2� ( ~W ) = ~A1� ( ~W ) + ~A2� ( ~W ) similarly;

• ~µα.A� ( ~W ) = Fix(F), where F : (Sop × S) → S is the functor given by
F(X,Y ) = ~A� ( ~W ,X,Y ) and Fix(F) is the unique (up to isomorphism)
X such that F(X,X) � X. The existence of such X relies on F being a
suitably locally contractive functor, which follows by Birkedal et al. [14,
Section 4.5] and the fact that � is only ever applied to closed types. This
restriction on � is necessary because the functor � is not strong.

• ~A1→ A2� ( ~W ) = ~A2� ( ~W )~A2�( ~W ′) where ~W ′ is ~W with odd and even ele-
ments switched to reflect change in polarity, i.e. (X1,Y1, . . .)′ = (Y1,X1, . . .);

• ~IA� ,~�A� are defined by composition with the functorsI,� (Def. 2.14).

Example 2.16.
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1. ~Strg N� is the S-object

N N×N
pr1oo (N×N)×N

pr1oo · · ·
pr1oo

where the pr1 are first projection functions. This is intuitively the object
of approximations of streams – first the head, then the first two elements,
and so forth. Conversely, ~StrN� = ∆(Nω), so it is the constant object of
streams, as usually defined in Set. This can also be understood as the
limit of the approximations given by ~Strg N�.

More generally, any polynomial functor F on Set can be assigned a gλ-
type AF with a free type variable α that occurs guarded. The denotation
of �µα.AF will then be the constant object of the carrier of the final
coalgebra for F [66, Theorem 2]. Therefore � is the modality that takes
us from guarded recursive constructions to coinductive constructions.

2. ~CoNatg� is the S-object

2 3
rΩ1oo 4

rΩ2oo · · ·
rΩ3oo

where each set n is {0,1, . . . ,n − 1} and rΩn (k) = min(n,k). In fact this is
the subobject classifier of S , usually written Ω.

~CoNat� is the constant object ∆(N+ {∞}).

Lemma 2.17. The interpretation of a recursive type is isomorphic to the interpret-
ation of its unfolding: ~µα.A� ( ~W ) � ~A[µα.A/α]� ( ~W ).

Lemma 2.18. Constant types denote constant objects in S .

Proof. By induction on type formation, with IA case omitted, �A a base case,
and µα.A considered only where α is not free in A.

Note that the converse does not apply; for example ~I1� is a constant
object.

Definition 2.19. We interpret typing contexts Γ = x1 : A1, . . . ,xn : An in the
usual way as S-objects ~Γ � , ~A1� × · · · × ~An�, and hence interpret typed
terms-in-context Γ ` t : A as S-arrows ~Γ ` t : A� : ~Γ �→ ~A� (usually written
~t�) as follows.

~x� is the projection ~Γ � × ~A�→ ~A�. ~zero� and ~succ t� are as obvi-
ous. Term-formers for products and function spaces are interpreted via the
cartesian closed structure of S , and for sums via its coproducts. Exponentials
are not merely pointwise, so we give the definitions explicitly:

• ~λx.t�i (γ)j maps a 7→ ~Γ ,x : A ` t : B�j (�j(γ), a);

• ~t1t2�i (γ) = (~t1�i (γ)i) ◦ ~t2�i (γ);
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2.3. Denotational Semantics and Normalisation

~fold t� and ~unfold t� are defined via composition with the isomorphisms
of Lemma 2.17. ~next t� and ~unbox t� are defined by composition with the
natural transformations introduced in Definition 2.14. The final cases are

• ~t1 ~ t2�1 is defined uniquely at the trivial first stage of the denotation
of a later type; ~t1 ~ t2�i+1 (γ) , (~t1�i+1 (γ)i) ◦ ~t2�i+1 (γ).

• ~prev[x1← t1, . . .].t�i (γ) , ~t�i+1 (~t1�i (γ), . . .), where ~t1�i (γ) ∈ ~A1�i is
also in ~A1�i+1 by Lemma 2.18;

• ~box[x1← t1, . . .].t�i (γ)j = ~t�j (~t1�i (γ), . . .), again using Lemma 2.18;

• Let ~t�j (~t1�i (γ), . . . ,~tn�i (γ)) (which is well-defined by Lemma 2.18)
be [aj ,d] as j ranges, recalling that d ∈ {1,2} is the same for all i by
naturality. Define a to be the arrow 1→ ~Ad� that has j’th element aj .

Then
�

box+[~x← ~t ].t
�
i
(γ) , [a,d].

Lemma 2.20. Take typed terms in context x1 : A1, . . . ,xm : Am ` t : A and Γ ` tk :
Ak for all 1 ≤ k ≤m. Then

�
t[~t/~x]

�
i
(γ) = ~t�i (~t1�i (γ), . . . ,~tm�i (γ)).

Proof. By induction on the typing of t. We present the cases particular to our
calculus.

next t: case i = 1 is trivial.�
next t[~t/~x]

�
i+1

(γ) = r~A�i ◦
�
t[~t/~x]

�
i+1

(γ) by definition

= r~A�i ◦ ~t�i+1 (~t1�i+1 (γ), . . .) by induction

= ~next t�i+1 (~t1�i+1 (γ), . . .).

�
(prev[~y← ~u].t)[~t/~x]

�
i
(γ) =

�
prev[~y← ~u[~t/~x]].t

�
i
(γ)

= ~t�i+1 (
�
u1[~t/~x]

�
i
(γ), . . .) by definition

= ~t�i+1 (~u1�i (~t1�i (γ), . . .), . . .) by induction

=
�

prev[~y← ~u].t
�
i (~t1�i (γ), . . .).

u1 ~u2: case i = 1 is trivial.�
(u1 ~u2)[~t/~x]

�
i+1

(γ) = (
�
u1[~t/~x]

�
i+1

(γ)i) ◦
�
u2[~t/~x]

�
i+1

(γ)

= (~u1�i+1 (~t1�i+1 (γ), . . .)i) ◦ ~u2�i+1 (~t1�i+1 (γ), . . .)

= ~u1 ~u2�i+1 (~t1�i+1 (γ), . . .).

�
box[~y← ~u[~t/~x]].t

�
i
(γ)j = ~t�j (

�
u1[~t/~x]

�
i
(γ), . . .)

= ~t�j (~u1�i (~t1�i (γ), . . .), . . .) by induction

=
�

box[~y← ~u].t
�
i (~t1�i (γ), . . .)j .
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�
unbox t[~t/~x]

�
i
(γ) =

�
t[~t/~x]

�
i
(γ)i

= ~t�i (~t1�i (γ), . . .)i
= ~unbox t�i (~t1�i (γ), . . .).

box+[~y ← ~u].t: By induction we have
�
uk[~t/~x]

�
i
(γ) = ~uk�i (~t1�i (γ), . . .).

Hence ~t�j (
�
u1[~t/~x]

�
i
(γ), . . .) = ~t�j (~u1�i (~t1�i (γ), . . .), . . .) as required.

Theorem 2.21 (Soundness). If t u then ~t� = ~u�.

Proof. We verify the reduction rules of Definition 2.2; extending this to any
evaluation context, and to , is easy. The product reduction case is standard,
and function case requires Lemma 2.20. unfoldfold is the application of
mutually inverse arrows.�

prev[~x← ~t ].t
�
i

= ~t�i+1 (~t1�i , . . .). Each tk in the explicit substitution
is closed, so is denoted by an arrow from 1 to a constant S-object, so by
naturality ~tk�i = ~tk�i+1. ~t�i+1 (~t1�i+1 , . . .) =

�
t[~t/~x]

�
i+1

by Lemma 2.20,

which is
�

prev t[~t/~x]
�
i
.

~prevnext t�i = ~next t�i+1 = ~t�i .
With ~-reduction, index 1 is trivial. ~next t1 ~next t2�i+1 = (~next t1�i+1)i◦

~next t2�i+1 = (r~A→B�i ◦ ~t1�i+1)i ◦ r
~A�
i ◦ ~t2�i+1 = (~t1�i ◦ r1

i )i ◦ ~t2�i ◦ r1
i by

naturality, which is (~t1�i)i ◦ ~t2�i = ~t1t2�i = ~t1t2�i ◦ r1
i = r

~B�
i ◦ ~t1t2�i+1 =

~next(t1t2)�i+1.�
unbox(box[~x← ~t ].t)

�
i

= (
�

box[~x← ~t ].t
�
i
)i = ~t�i (~t1�i , . . .) =

�
t[~t/~x]

�
i
.

box+-reduction: Because each ~Ak� is a constant object (Lemma 2.18),
~tk�i = ~tk�j for all i, j. Hence

�
box+[~x← ~t ].t

�
i

is defined via components

~t�j (~t1�j , . . .) and
�

box+ t[~t/~x]
�

is defined via components
�
t[~t/~x]

�
j
. These

are equal by Lemma 2.20. ~box+ ind t�i is the d’th injection into the function
with j’th component ~t�j , and likewise for ~ind box t�i .

2.3.3 Adequacy and Normalisation

We now define a logical relation between our denotational semantics and
terms, from which both normalisation and adequacy will follow. Doing this
inductively proves rather delicate, because induction on size will not support
reasoning about our values, as fold refers to a larger type in its premise.
This motivates a notion of unguarded size under which A[µα.A/α] is ‘smaller’
than µα.A. But under this metric IA is smaller than A, so next now poses a
problem. But the meaning of IA at index i + 1 is determined by A at index
i, and so, as in Birkedal et al. [11], our relation will also induct on index.
This in turn creates problems with box, whose meaning refers to all indexes
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simultaneously, motivating a notion of box depth, allowing us finally to attain
well-defined induction.

Definition 2.22. The unguarded size us of an open type follows the obvious
definition for type size, except that us(IA) = 0.

The box depth bd of an open type is

• bd(A) = 0 for A ∈ {α,0,1,N};

• bd(A×B) = min(bd(A),bd(B)), and similarly for A+B,A→ B;

• bd(µα.A) = bd(A), and similarly for bd(IA);

• bd(�A) = bd(A) + 1.

Lemma 2.23.

1. α guarded in A implies us(A[B/α]) ≤ us(A).

2. bd(B) ≤ bd(A) implies bd(A[B/α]) ≤ bd(A)

Proof. By induction on the construction of the type A.
(i) follows with only interesting case the variable case – A cannot be α

because of the requirement that α be guarded in A.
(ii) follows with interesting cases: variable case enforces bd(B) = 0; binary

type-formers ×,→ have for example bd(A1) ≥ bd(A1 ×A2), so bd(A1) ≥ bd(B)
and the induction follows; �A by construction has no free variables.

Definition 2.24. The family of relations RAi , indexed by closed types A and
positive integers i, relates elements of the semantics a ∈ ~A�i and closed typed
terms t : A and is defined as

• nRN
i t iff t succn zero;

• ∗R1
i t iff t 〈〉;

• (a1, a2)RA1×A2
i t iff t 〈t1, t2〉 and a1R

A1
i t1 and a2R

A2
i t2;

• [a,d]RA1+A2
i t iff t ind u for d ∈ {1,2}, and aRAdi u.

• f RA→Bi t iff t λx.s and for all j ≤ i, aRAj u implies fj(a)R
B
j s[u/x];

• aR
µα.A
i t iff t foldu and hi(a)R

A[µα.A/α]
i u, where h is the “unfold” iso-

morphism for the recursive type (ref. Lemma 2.17);

• aRIAi t iff t nextu and, where i > 1, aRAi−1u.

• aR�Ai t iff t boxu and for all j, ajR
A
j u;
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Note that R0
i is (necessarily) everywhere empty.

The above is well-defined by induction on the lexicographic ordering on
box depth, then index, then unguarded size. First, the � case strictly decreases
box depth, and no other case increases it (ref. Lemma 2.23.2 for µ-types).
Second, the I case strictly decreases index, and no other case increases it
(disregarding �). Finally, all other cases strictly decrease unguarded size, as
seen via Lemma 2.23.1 for µ-types.

Lemma 2.25. If t u and aRAi u then aRAi t.

Proof. All cases follow similarly; consider A1 ×A2. (a1, a2)RA1×A2
i u implies

u  〈t1, t2〉, where this value obeys some property. But then t  〈t1, t2〉
similarly.

Lemma 2.26. aRAi+1t implies r~A�i (a)RAi t.

Proof. Cases N,1,0 are trivial. Cases × and + follow by induction because
restrictions are defined pointwise. Case µ follows by induction and the natur-

ality of the isomorphism h. Case �A follows because r~�A�i (a) = a.
For A→ B take j ≤ i and a′RAj u. By the downwards closure in the defini-

tion of RA→Bi+1 we have fj(a′)R
B
j s[u/x]. But fj = (r~A→B�i (f ))j .

With IA, case i = 1 is trivial, so take i = j + 1. aRIAj+2t means t nextu

and aRAj+1u, so by induction r~A�j (a)RAj u, so r~IA�j+1 (a)RAj u as required.

Lemma 2.27. If aRAi t and A is constant, then aRAj t for all j.

Proof. Easy induction on types, ignoring IA and treating �A as a base case.

We may now turn to the proof of the Fundamental Lemma.

Lemma 2.28 (Fundamental Lemma). Take Γ = (x1 : A1, . . . ,xm : Am), Γ ` t : A,
and closed typed terms tk : Ak for 1 ≤ k ≤ m. Then for all i, if akR

Ak
i tk for all k,

then
~Γ ` t : A�i (~a)R

A
i t[~t/~x].

Proof. By induction on the typing Γ ` t : A. 〈〉,zero cases are trivial, and
〈u1,u2〉, ind t, fold t cases follow by easy induction.

succ t: If t[~t/~x] reduces to succl zero for some l then succ t[~t/~x] reduces to
succl+1 zero, as we may reduce under the succ.

πdt for d ∈ {1,2}: If ~t�i (~a)R
A1×A2
i t[~t/~x] then t[~t/~x] 〈u1,u2〉 and ud is

related to the d’th projection of ~t�i (~a). But then πdt[~t/~x] πd〈u1,u2〉 7→ ud ,
so Lemma 2.25 completes the case.

abort: The induction hypothesis states that ~t�k (~a)R0
kt[~t/~x ], but this is not

possible, so the statement holds vacuously.
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case tofy1.u1;y2.u2: If ~t�i (~a)R
A1+A2
i t[~t/~x] then t[~t/~x ] ind u for some

d ∈ {1,2}, with ~t�i (~a) = [a,d] and aRAdi u. Then ~ud�i (~a,a)R
A
k ud[~t/~x,u/yd].

Now we have that

(case tofy1.u1;y2.u2)[~t/~x] caseind uofy1.(u1[~t/~x]);y2.(u2[~t/~x]),

which in turn reduces to ud[~t/~x,u/yi], and Lemma 2.25 completes.
λx.t: Taking j ≤ i and aRAj u, we must show that ~λx.t�i (~a)j(a)RBj t[~t/~x][u/x].

The left hand side is ~t�j (�j(~a), a). For each k, ak�jR
Ak
j tk by Lemma 2.26, and

induction completes the case.
u1u2: By induction u1[~t/~x] λx.s and ~u1�k (~a)k(~u2�k (~a))RBi s[u2[~t/~x]/x].

Now we have (u1u2) (λx.s)(u2[~t/~x]) 7→ s[u2[~t/~x]/x], and Lemma 2.25 com-
pletes.

unfold t: we reduce under unfold, then reduce unfoldfold, then use
Lemma 2.25.

next t: Trivial for index 1. For i = j+1, if each akR
Ak
j+1tk then by Lemma 2.26

r
~Ak�
j (ak)R

Ak
j tk. Then by induction ~t�j ◦ r

~Γ �
j (~a)RAj t[~t/~x], whose left side is by

naturality r~A�j ◦ ~t�j+1 (~a) = ~next t�j+1 (~a).

prev[~y← ~u].t: ~uk�i (~a)R
Ak
i uk[~t/~x] by induction, so ~uk�i (~a)R

Ak
i+1uk[~t/~x] by

Lemma 2.27. Then ~t�i+1 (~u1�i (~a), . . .)R
IA
i+1t[u1[~t/~x]/y1, . . .] by induction, so

we have t[u1[~t/~x]/y1, . . .] nexts with ~t�i+1 (~u1�k (~a), . . .)RAi s. The left hand
side is

�
prev[~y← ~u].t

�
i (~a), while prev[~y← ~u[~t/~x]].t 7→ prev t[u1[~t/~x]/y1, . . .] 

prevnexts 7→ s, so Lemma 2.25 completes.
u1 ~ u2: Index 1 is trivial so set i = j + 1. ~u2�j+1 (~a)RIAj+1u2[~t/~x] im-

plies u2[~t/~x]  nexts2 with ~u2�j+1 (~a)RAj s2. Similarly u1  nexts1 and

s1 λx.s with (~u1�j+1 (~a)j )◦~u2�j+1 (~a)RBj s[s2/x]. The left hand side is exactly
~u1 ~u2�j+1 (~a). Now u1 ~ u2 nexts1 ~ u2 nexts1 ~ nexts2 7→ next(s1s2),
and s1s2 (λx.s)s2 7→ s[s2/x], completing the proof.

box[~y ← ~u].t: To show
�

box[~y← ~u].t
�
i (~a)R

�A
i box[~y ← ~u].t)[~t/~x], we ob-

serve that the right hand side reduces in one step to box t[u1[~t/~x]/y1, . . .]. The
j’th element of the left hand side is ~t�j (~u1�k (~a), . . .). We need to show this is

related by RAj to t[u1[~t/~x]/y1, . . .]; this follows by Lemma 2.27 and induction.

unbox t: By induction t[~t/~x] boxu, so unbox t[~t/~x] unboxboxu 7→ u.
By induction ~t�i (~a)iR

A
i u, so ~unbox t�i (~a)R

A
i u, and Lemma 2.25 completes.

box+[~y← ~u].t: ~uk�i (~a)R
Ak
i uk[~t/~x] by induction, so ~uk�i (~a)R

Ak
j uk[~t/~x] for

any j by Lemma 2.27. By induction ~t�j (~u1�k (~a), . . .)RB1+B2
j t[u1[~t/~x ]/y1, . . .]. If

~t�j (~u1�k (~a), . . .) is some [bj ,d] we have t[u1[~t/~x]/y1, . . .] ind s with bjR
Bd
j s.

Now (box+[~y← ~u].t)[~t/~x ] 7→ box+ t[u1[~t/~x ]/y1, . . .] box+ ind s, which finally
reduces to ind boxs, which yields the result.

43



2. Simple Types

Theorem 2.29 (Adequacy and Normalisation).

1. For all closed terms ` t : A it holds that ~t�i R
A
i t;

2. ~` t : N�i = n implies t succn zero;

3. All closed typed terms evaluate to a value.

Proof. (1) specialises Lemma 2.28 to closed types. (2) and (3) hold by (1) and
inspection of Definition 2.24.

Definition 2.30. Typed contexts with typed holes are defined as obvious. Two
terms Γ ` t : A,Γ ` u : A are contextually equivalent, written t 'ctx u, if for all
well-typed closing contexts C of type N, the terms C[t] and C[u] reduce to the
same value.

Corollary 2.31. ~t� = ~u� implies t 'ctx u.

Proof. ~C[t]� = ~C[u]� by compositionality of the denotational semantics.
Then by Theorem 2.29.2 they reduce to the same value.

2.4 Logic for the Guarded Lambda Calculus

In this section we will discuss the internal logic of the topos of trees, show that
it yields a program logic Lgλ which supports reasoning about the contextual
equivalence of gλ-programs, remark on some properties of this program logic,
and give some example proofs.

2.4.1 From Internal Logic to Program Logic

S is a presheaf category, and so a topos, and so its internal logic provides a
model of higher-order logic with equality [61]. The internal logic of S has
been explored elsewhere [14, 25, 58], but to motivate the results of this section
we make some observations here.

As discussed in Example 2.16.2, the subobject classifier Ω is exactly the
denotation of the guarded conatural numbers CoNatg, as defined in the gλ-
calculus in Section 2.2.4. The propositional connectives can then be defined
via gλ-functions on the guarded conaturals: false ⊥ is cozero, as defined in
Section 2.2.4; true > is infinity; conjunction ∧ is a minimum function readily
definable on pairs of guarded conaturals; ¬ is

λn.case(unfoldn)ofx1.infinity; x2.cozero : CoNatg→ CoNatg

and so on. The connectives ∀x : A, ∃x : A, and =A cannot be expressed as
gλ-functions for an arbitrary gλ-type A, but are definable as (parametrised)
operations on Ω in the usual way [61, Section IV.9].
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2.4. Logic for the Guarded Lambda Calculus

Along with the standard connectives we can define a modality ., whose
action on the subobject classifier corresponds precisely to the function cosucc
on guarded conaturals defined in Section 2.2.4. We call this modality ‘later’,
overloading our name for our type-former I, and the functor on S with the
same name and symbol introduced in Definition 2.14.3. This overloading
is justified by a tight relationship between these concepts which we will
investigate below. For now, note that cosucc can be defined as a composition
of functions lift◦next, where lift5 is a function IΩ→Ω definable in the gλ
calculus as

λn. fold(in2n) : ICoNatg→ CoNatg

Further, infinity is fixlift. We will make use of this lift function later in this
section.

Returning to the propositional connectives, double negation ¬¬ corres-
ponds to the gλ-function

λn.case(unfoldn)ofx1.cozero; x2.infinity : CoNatg→ CoNatg

Now consider the poset Sub(X) of subobjects of X, which are pointwise sub-
sets whose restriction maps are determined by the restriction maps of X; or
equivalently, characteristic arrows X→Ω. The function ¬¬ :Ω→Ω extends
to a monotone function Sub(X)→ Sub(X) by composition with characteristic
arrows as obvious. This function preserves joins, and so by the adjoint functor
theorem for posets has a right adjoint Sub(X)→ Sub(X), which we write �
and call ‘always’ [20]. The notational similarity with the type-former and
functor � is, as with . and I, deliberate and will be explored further. First,
we can offer a more concrete definition of �:

Definition 2.32. • Take a S-object X, positive integer m, and element
x ∈ Xm, and recall that for any n ≥ m the function �m : Xn → Xm is
defined by composing restriction functions. Then the height of x in X,
written heightX(x), is the largest integer n ≥ m such that there exists
y ∈ Xn with �m(y) = x, or∞ if there is no such largest n.

• Given a subobject Y of X, the characteristic arrow of the subobject �Y
of X is defined as

(χ�Y )n(x) =

(χY )n(x) heightY (x) = heightX(x)

0 otherwise.

The condition regarding the height of elements allows the modality � to
reflect the global, rather than pointwise, structure of a subobject. For example,
considering the object I0, which is a singleton at its first stage and empty set
at all later stages, as a subobject of the terminal object 1, the subobject �(I0)
is 0.

5called succ by Birkedal et al. [14]; we avoid this because of the clash with the name for a
term-former.
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Example 2.33. A proposition ϕ with no free variables corresponds in the
internal logic of S to an arrow 1→Ω, which as we have seen in turn corres-
ponds to a guarded conatural number. The proposition �ϕ also corresponds a
guarded conatural number, so we can see the action of � on closed propositions
as arising from a function N+ {∞}→N+ {∞} defined by

�(n) =

∞ n =∞
0 otherwise.

(2.2)

This is a perfectly good function in Set, but it does not correspond to an
S-arrow Ω→ Ω, because it is hopelessly unproductive – we need to make
infinitely many observations of the input before we decide anything about the
output. Similarly, we cannot define a function of the type CoNatg→ CoNatg

in the gλ-calculus with this behaviour.
The case where we have a subobject Y of a constant object X is similar

to the case of subobjects of 1 – the characteristic function of �Y maps each
element x of X to a conatural number, which is then composed with the �
function (2.2).

Note further than � does not commute with substitution; in particular,
given a substitution σ , �(ϕσ ) does not necessarily imply (�ϕ)σ . However
these formulae are equivalent if σ is a substitution between constant contexts.
In practice we will use � only in constant context.

We may now proceed to the definition of the program logic Lgλ:

Definition 2.34. Lgλ is the typed higher order logic with equality defined
by the internal logic of S , whose types and function symbols are the types
and term-formers of the gλ-calculus, interpreted in S as in Section 2.3.2, and
further extended by the modalities .,�.

We write Γ | Ξ ` ϕ where the proposition ϕ with term variables drawn
from the context Γ is entailed by the set of propositions Ξ. Note that we
use the symbol Ω for the type of propositions, although this is precisely the
denotation of the guarded conatural numbers.

This logic may be used to prove contextual equivalence of programs:

Theorem 2.35. Let t1 and t2 be two gλ terms of type A in context Γ . If the sequent
Γ | ∅ ` t1 =A t2 is provable, then t1 and t2 are contextually equivalent.

Proof. Recall that equality in the internal logic of a topos is just equality
of morphisms. Hence t1 and t2 denote same morphism from ~Γ � to ~A�.
Adequacy (Corollary 2.31) then implies that t1 and t2 are contextually equi-
valent.
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2.4. Logic for the Guarded Lambda Calculus

2.4.2 Properties of the Logic

The definition of the logic Lgλ from the previous section establishes its syntax,
and semantics in the topos of trees, without giving much sense of how proofs
might be constructed. Clouston and Goré [25] have provided a sound and
complete sequent calculus, and hence decision procedure, for the fragment
of the internal logic of S with propositional connectives and ., but the full
logic Lgλ is considerably more expressive than this; for example it is not
decidable [67]. In this section we will establish some reasoning principles
for Lgλ, which will assist us in the next section in constructing proofs about
gλ-programs.

We start by noting that the usual βη-laws and commuting conversions
for the λ-calculus with products, sums, and iso-recursive types hold. These
may be extended with new equations for the new gλ-constructs, sound in the
model S , as listed in Figure 2.3.

Many of the rules of Figure 2.3 are unsurprising, adding η-rules to the
β-rules of Definition 2.2, noting only that in the case of I we use the rule of
equation (2.1), because we are here allowing the consideration of open terms.
The reduction rule for ~ is joined by the ‘composition’ equality for applicative
functors [64]. In addition to the β-rule for box+ of Definition 2.12, which
govern how this connective commutes with the constructors in1, in2 and box,
we also add a rule showing how it interacts with the eliminators case and
unbox. The next rule resembles a traditional commuting conversion for case
with box+, but specialised to hold where the sum C +D on which the case
split occurs has constant type.

There are finally three rules showing how substitutions can be moved
in and out of the explicit substitutions attached to the term-formers prev,
box, and box+, provided everything is suitably constant. Because of these
operators’ binding structure, substituted terms can get ‘stuck’ inside explicit
substitutions and so cannot interact with the terms the operators are applied
to. This is essential for soundness in general, but not where everything is
suitably constant, in which case these rules become essential to further sim-
plifying terms. As an example, the rather complicated commuting conversion
for Intuitionistic S4 defined by Bierman and de Paiva [9]

box[~x← ~t, ~y← ~u].(t[box ι.u/x]) ≈ box[~x← ~t,x← (box[~y← ~u].u)].t

comes as a corollary.
We now pick out a distinguished class of S-objects and gλ-types that enjoy

extra properties that are useful in some Lgλ proofs.

Definition 2.36. An S-object is total and inhabited if all its restriction func-
tions are surjective, and all its sets are non-empty.

A gλ-type is total and inhabited if its denotation in S is total and inhabited.

In fact we can express this property directly in the internal logic:
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~x : ~A ` t : A Γ ` ~t : ~A

Γ ` prev[x1← t1, . . . ,xn← tn].(next t) = t
[
~t/~x

]
~x : ~A ` t : IA Γ ` ~t : ~A

Γ ` next(prev[x1← t1, . . . ,xn← tn].t) = t
[
~t/~x

] Γ ` t1 : A→ B Γ ` t2 : A

Γ ` next t1 ~next t2 = next(t1 t2)

Γ ` f : I(B→ C) Γ ` g : I(A→ B) Γ ` t : IA

Γ ` f ~ (g ~ t) = (nextcomp)~ f ~ g ~ t

~x : ~A ` t : A Γ ` ~t : ~A

Γ ` unbox(box[~x← ~t].t) = t
[
~t/~x

] ~x : ~A ` t : �A Γ ` ~t : ~A

Γ ` box[~x← ~t].unbox t = t
[
~t/~x

]
~x : ~A ` t : A Γ ` ~t : ~A

Γ ` box+[~x← ~t]. in1 t = in1 box[~x← ~t].t

~x : ~A ` t : B Γ ` ~t : ~A

Γ ` box+[~x← ~t]. in2 t = in2 box[~x← ~t].t

~x : ~A ` t : A+B Γ ` ~t : ~A Γ , z1 : A ` u1 : C Γ , z2 : B ` u2 : C

Γ ` case(box+[~x← ~t].t)ofy1.u1[unboxy1/z1];y2.u2[unboxy2/z2]
= case(t[~t/~x])ofz1.u1;z2.u2

~x : ~A ` t : C +D Γ ` ~t : ~A ~x : ~A,y1 : C ` u1 : A+B ~x : ~A,y2 :D ` u2 : A+B

Γ ` box+[~x← ~t].case tofy1.u1;y2.u2
= case(t[~t/~x])ofy1.box+[~x,y1← ~t,y1].u1;y2.box+[~x,y2← ~t,y2].u2

~x : ~A ` t : IA ~y : ~B ` ~t : ~A Γ ` ~u : ~B

Γ ` prev[~y← ~u].(t[~t/~x]) = prev[~x← (~t[~u/~x])].t

~x : ~A ` t : A ~y : ~B ` ~t : ~A Γ ` ~u : ~B

Γ ` box[~y← ~u].(t[~t/~x]) = box[~x← (~t[~u/~x])].t

~x : ~A ` t : A+B ~y : ~B ` ~t : ~A Γ ` ~u : ~B

Γ ` box+[~y← ~u].(t[~t/~x]) = box+[~x← (~t[~u/~x])].t

Figure 2.3: Equations between gλ-terms in Lgλ. Types in ~A, ~B,C,D are as-
sumed constant. comp is the composition λx.λy.λz.x(yz) : (B→ C)→ (A→
B)→ (A→ C).
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2.4. Logic for the Guarded Lambda Calculus

Lemma 2.37. A type A is total and inhabited iff the formula

TI(A) , ∀a′ : IA,∃a : A,a′ =IA nexta

is valid.

Proof. The formula TI(A) expresses the internal surjectivity of the S-arrow
next : ~A�→ I~A�. In any presheaf topos, this holds of an arrow precisely
when its components are all surjective. It hence suffices to show that any
S-object X is total and inhabited iff all the functions of next : X → IX are
surjective: X1 is non-empty iff ! : X1 → (IX)1 = {∗} is surjective, all other
arrows of next are the restriction functions themselves, and if X1 is non-empty
and all restriction functions are surjective, then all Xi are non-empty.

In fact almost all gλ-types are total and inhabited, as the next lemma and
its corollary show:

Lemma 2.38. Let F : (Sop ×S)n+1→S be a locally contractive [14, Definition
II.10] functor that maps tuples of total and inhabited objects to total and inhabited
objects, i.e. F restricts to the full subcategory tiS of total and inhabited S-objects.

Then its fixed point Fix(F) : (Sop ×S)n→S is also total and inhabited.

Proof. tiS is equivalent to the category of bisected complete non-empty ul-
trametric spacesM [14, Section 5]. M is known to be an M-category in the
sense of Birkedal et al. [12] and it is easy to see that locally contractive func-
tors in S are locally contractive in the M-category sense. Because fixed points
exist in M-categories, the fixed point of F exists in tiS .

Corollary 2.39. All gλ-types that do not have the empty type 0 in their syntax
tree are total and inhabited.

Proof. The µ-case is covered by Lemma 2.38, because open types whose free
variables are guarded denote locally contractive functors; the � case holds
because total and inhabited objects X admit at least one global element 1→ X;
all other cases are routine.

Further sound reasoning principles in Lgλ, some making use of the
concept of total and inhabited type, are listed in Figure 2.4, and in the lemmas
below, whose proofs are all routine. Note that the rule eq

.
next establishes a

close link between I and ., as Lemma 2.41 does for � and �.

Lemma 2.40. For any typeA and term f : IA→ Awe have fixf =A f (next(fixf ))
and, if u is any other term such that f (nextu) =A u, then u =A fixf .

Finally, in the next section we will come to the problem of proving x =�A
y from unboxx =A unboxy. This does not hold in general, but using the
semantics of Lgλ we can prove the proposition below.

Lemma 2.41. The formula �(unboxx =A unboxy)⇒ x =�A y is valid.
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Γ | Ξ, (.ϕ⇒ ϕ) ` ϕ
Löb

Γ ,x : X | ∃y : Y ,.ϕ(x,y) ` . (∃y : Y ,ϕ(x,y))
∃.

Γ ,x : X | .(∀y : Y ,ϕ(x,y)) ` ∀y : Y ,.ϕ(x,y)
∀.

Γ | Ξ,ϕ ` .ϕ

? ∈ {∧,∨,⇒}
Γ | .(ϕ ? ψ) a` .ϕ ? .ψ

Γ | ¬¬ϕ ` ψ
Γ | ϕ ` �ψ

Γ | ϕ ` �ψ
Γ | ¬¬ϕ ` ψ

Γ | ϕ ` ψ
Γ | �ϕ ` �ψ

Γ | �ϕ ` ϕ Γ | �ϕ ` ��ϕ

∀x,y : X..(x =X y)⇔ nextx =IX nexty
eq

.
next

Figure 2.4: Valid rules for . and �. The converse entailment in ∀. and ∃.
rules holds if Y is total and inhabited. In all rules involving � the context Γ is
assumed constant.

2.4.3 Examples

In this section we see examples of Lgλ proofs regarding gλ-programs.

Example 2.42.

1. For any f : A→ B and g : B→ C we have

(mapg f ) ◦ (mapg g) =StrgA→StrgC mapg(f ◦ g). (2.3)

Equality of functions is extensional, so it suffices to show that these are
equal on any stream of type StrgA, for which we use the variable s. The
proof proceeds by unfolding the definitions on each side, observing that
the heads are equal, then proving equality of the tails by Löb induction;
i.e. our induction hypothesis will be (2.3) with . in front:

.((mapg f ) ◦ (mapg g) = mapg(f ◦ g)). (2.4)

Now unfolding the left hand side of (2.3) applied to s, using the defini-
tion of mapg from Example 2.9.5, along with β-rules and Lemma 2.40,
we get

f (g(hdg s)) :: (next(mapg f )~ ((next(mapg g))~ tlg s))

By applying the composition rule for ~ this simplifies to

f (g(hdg s)) :: ((nextcomp)~ (next(mapg f ))~ (next(mapg g))~ tlg s)
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2.4. Logic for the Guarded Lambda Calculus

Applying the reduction rule for ~ we simplify this further to

f (g(hdg s)) :: (next((mapg f ) ◦ (mapg g))~ tlg s) (2.5)

Unfolding the right of (2.3) similarly, we get

f (g(hdg s)) :: (next(mapg(f ◦ g))~ tlg s) (2.6)

These streams have the same head; we proceed on the tail using our
induction hypothesis (2.4). By eq

.
next we immediately have

next((mapg f ) ◦ (mapg g)) = nextmapg(f ◦ g)

replacing equals by equals then makes (2.5) equal to (2.6); Löb completes
the proof.

2. We now show how Lgλ can prove a second-order property. Given a
predicate P on a type A, that is, P : A→Ω, we can lift this to a predicate
PStrg on StrgA expressing that P holds for all elements of the stream by
the definition

PStrg , fixλr.λs.P (hdg s)∧ lift (r ~ (tlg s)) : Strg
N→Ω

We can now prove for a total and inhabited type A that

∀P ,Q : (A→ CoNatg),∀f : A→ A, (∀x : A,P (x)⇒Q(f (x)))

⇒∀s : StrA,PStrg(s)⇒QStrg(mapg f s).

Recall that mapg satisfies mapg f s = f (hdg s) :: (next(mapg f ) ~ (tlg s)).
We will prove the property by Löb induction, and so assume

.(∀s : StrN, PStrg(s)⇒QStrg(mapg f s)) (2.7)

Let s be a stream satisfying PStrg . If we unfold PStrg(s) we get P (hdg s) and
lift(nextPStrg~(tlg s)). We need to proveQ(hdg(mapg f s)) and lift(nextQStrg~
(tlg(mapg f s))). The first is easy since Q(hdg(mapg f s)) = Q(f (hdg s)).
For the second we have tlg(mapg f s) = next(mapg f )~(tlg s). As A is total
and inhabited, StrgA is also by Corollary 2.39. Hence there is a stream s′

such that nexts′ = tlg s. This gives tlg(mapg f s) = next(mapg f s′) and so
our desired result reduces to lift(next(QStrg(mapg f s′))) and lift(nextPStrg~
(tlg s)) is equivalent to lift(next(PStrg(s′))). But lift◦next = . and so the
induction hypothesis (2.7) and Löb finish the proof.

We now turn to examples that involve the constant type-former �.

Example 2.43.
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1. Recall the functions iterate′ : (A→ A)→ A→ StrgA of Example 2.9.6
and every2nd : StrA→ StrgA of Example 2.10.3. Then for every x : A
and f : A→ A,

every2nd(box ι. iterate′ f x) =StrgA iterate′ f 2 x

where f 2 is λx.f (f x).

First we prove the intermediate result

tl(box ι. iterate′ f x) =StrA box ι. iterate′ f (f x) (2.8)

which follows by:

tl (box ι. iterate′ f x) = box [s← box ι. iterate′ f x].prev ι. tlg unboxs

= box ι.prev[s← box ι. iterate′ f x]. tlg unboxs

= box ι.prev ι. tlg unboxbox ι. iterate′ f x

= box ι.prev ι. tlg iterate′ f x

= box ι.prev ι.(next iterate′ f )~ (next(f x))

= box ι.prev ι.next(iterate′ f (f x))

= box ι. iterate′ f (f x)

The first step follows by the definition of tl and the β-rule for func-
tions. The next two steps require the ability to move substitutions
through a box and prev; see the last three equations of Figure 2.3. The
remaining steps follow from unfolding definitions, various β-rules, and
Lemma 2.40.

Now for Löb induction assume

.
(
every2nd(box ι. iterate′ f x) =StrgA iterate′ f 2 x

)
, (2.9)

then we can derive

every2nd (box ι. iterate′ f x)

= x :: (nextevery2nd)~ (nexttl tlbox ι. iterate′ f x)

= x :: nextevery2ndtl tlbox ι. iterate′ f x

= x :: nextevery2ndbox ι. iterate′ f (f 2 x) (2.8)

= x :: next iterate′ f 2 (f 2 x) (2.9) and eq
.
next

= iterate′ f 2 x

One might wonder why we use iterate′ here instead of the more general
iterate; the answer is that we cannot form the subterm box ι. iterate f x
if f is a variable of type I(A→ A), because this is not a constant type.
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2. Given a term in constant context f : A→ B we define

L(f ) , limbox ι.f : �A→ �B

recalling lim from Example 2.10.2. For any such f and x : �A we can
then prove unbox(L(f )x) =B f (unboxx). This allows us to prove, for
example,

L(f ◦ g) = L(f ) ◦L(g) (2.10)

as follows: unbox(L(f ◦ g)(x)) = f ◦ g(unboxx) = unbox(L(f ) ◦ L(g)(x)).
This is true without any assumptions, and so �(unbox(L(f ◦ g)(x)) =
unbox(L(f ) ◦L(g)(x))), so by Lemma 2.41 and functional extensionality,
(2.10) follows.

For functions of arity k we define Lk using L, and analogous properties
hold, e.g. we have unbox(L2(f )xy) = f (unboxx)(unboxy), which allows
us to lift equalities proved for functions on guarded types to functions
on constant types; see Section 2.5 for an example.

3. In Section 2.2.4 we claimed there is an isomorphism between the types
�A+�B and �(A+B), witnessed by the terms

λx.box ι.casexofx1. in1 unboxx1;x2. in2 unboxx2

: (�A+�B)→ �(A+B)

λx.box+ ι.unboxx

: �(A+B)→ �A+�B.

We are now in a position to prove that these terms are mutually inverse.
In the below we use the rules regarding the permutation of substitutions
through box+, the interaction of box+ with case, and η-rules for sums
and �:

(λx.box ι.casexofx1. in1 unboxx1;x2. in2 unboxx2)(box+ ι.unboxx)
= box[x← box+ ι.unboxx].casexofx1. in1 unboxx1;x2. in2 unboxx2
= box ι.case(box+ ι.unboxx)ofx1. in1 unboxx1;x2. in2 unboxx2
= box ι.case(unboxx)ofx1. in1 x1;x2. in2 x2
= box ι.unboxx
= x

The other direction requires the permutation of a substitution through
box+, the β-rule for �, the commuting conversion of box+ through case,
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the reduction rule for box+, and η-rules for � and sums:

(λx.box+ ι.unboxx)(box ι.casexofx1. in1 unboxx1;x2. in2 unboxx2)
= box+[x← box ι.casexofx1. in1 unboxx1;x2. in2 unboxx2].unboxx
= box+ ι.unboxbox ι.casexofx1. in1 unboxx1;x2. in2 unboxx2
= box+ ι.casexofx1. in1 unboxx1;x2. in2 unboxx2
= casexofx1.box+ ι. in1 unboxx1;x2.box+ ι. in2 unboxx2
= casexofx1. in1 box ι.unboxx1;x2. in2 box ι.unboxx2
= casexofx1. in1 x1;x2. in2 x2
= x

As a final remark of this section, we note that our main direction of further
work beyond this paper has been to extend the gλ-calculus with dependent
types [21], as we will discuss further in Section 2.6.2. In this setting proofs
take place inside the calculus, as with proof assistants such as Coq [63] and
Agda [70]. The ‘pen-and-paper’ proofs of this section are therefore interesting
partly because they reveal some of the constructions that are essential to
proving properties of guarded recursive programs; these are the constructions
that must be supported by the dependent type theory.

2.5 Behavioural Differential Equations

In this section we demonstrate the expressivity of the approach of this paper
by showing how to construct coinductive streams as solutions to behavioural
differential equations [78] in the gλ-calculus. This hence allows us to reason
about such functions in Lgλ, instead of via bisimulation arguments.

2.5.1 Definition and Examples

We now define, and give examples of, behavioural differential equations.
These examples will allow us to sketch informally how they can be expressed
within the gλ-calculus, and how the program logic Lgλ can be used to reason
about them.

Definition 2.44. Let Σ be a first-order signature over a base sort A. A behavi-
oural differential equation for a k-ary stream function is a pair of terms hf and
tf (standing for head and tail), where hf is a term containing function symbols
from Σ, and variables as follows:

x1, . . . ,xk : A ` hf : A

Intuitively, the variables xi denote the heads of the argument stream. tf is
a term with function symbols from Σ along with a new constant f of sort
(StrA)k→ StrA, and variables as follows:

x1, . . . ,xk , y1, . . . , yk , z1, . . . , zk : StrA ` tf : StrA
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Intuitively, the variables xi denote the streams whose head is the head of the
argument stream and whose tails are all zeros, the variables yi denote the
argument streams, the variables zi denote the tails of the argument streams,
and the new constant f is recursive self-reference.

Further, given a set of stream functions defined by behavioural differential
equations, the term tf can use functions from that set as constants (behavi-
oural differential equations are therefore modular in the sense of Milius et
al. [65]).

Note that we have slightly weakened the original notion of behavioural
differential equation by omitting the possibility of mutually recursive defin-
itions, as used for example to define the stream of Fibonacci numbers [78,
Section 5]. This omission will ease the notational burden involved in the
formal results of the next section, but mutually recursive definitions can be
accommodated within the gλ-calculus setting by, for example, considering a
pair of mutually recursive stream functions as a function producing a pair of
streams.

Example 2.45.

1. Assuming we have constant zero of type N, the constant stream zeros
of Example 2.9.4 is defined as a behavioural differential equation by

hzeros = zero tzeros = zeros

2. As an example of the modularity of this setting, given some n : N we can
define the stream [n] using the zeros stream defined above, by

h[n] = n t[n] = zeros

3. Assuming we have addition + : N×N→ N written infix, then stream
addition, also written + and infix, is the binary function defined by

h+ = x1 + x2 t+ = z1 + z2

4. Assuming we have multiplication × : N×N → N, written infix, then
stream product, also written × and infix, is the binary function defined
by

h× = x1 × x2 t× = (z1 × y2) + (x1 × z2)

It is straightforward to translate the definitions above into constructions
on guarded streams in the gλ-calculus. For example, stream addition is
defined by the function on guarded streams plusg : Strg N→ Strg N→ Strg N
below:

plusg , fixλp.λs1.λs2.(hdg s1 + hdg s2) :: (p~ (tlg s1)~ (tlg s2))
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We can lift this to a function on streams plus : StrN → StrN → StrN by
plus , L2(plusg), recalling L2 from Example 2.43.2. Now by Lemma 2.40 we
have

plusg = λs1.λs2.(hdg s1 + hdg s2) :: ((nextplusg)~ (tlg s1)~ (tlg s2)). (2.11)

We can then prove in the logic Lgλ that the definition of plus satisfies the
specification given by the behavioural differential equation of Example 2.45.3.
Given s1, s2 : StrN, we have

hd(pluss1s2) = hdg unbox(pluss1 s2)
= hdg unbox(L2(plusg)s1 s2)
= hdg(plusg(unboxs1)(unboxs2)) (Example 2.43.2)
= (hdg unboxs1) + (hdg unboxs2) (2.11)
= (hds1) + (hds2)

For the tl case, that tl(pluss1 s2) = plus(tls1)(tls2), we proceed similarly, but
also using that tlg(unboxσ ) = next(unbox(tlσ )) which follows from the defini-
tion of tl, the β-rule for �, and the η-rule for I.

We can hence use Lgλ to prove further properties of streams defined
via behavioural differential equations, for example that stream addition is
commutative. Such proofs proceed by conducting the proof on the guarded
stream produced by applying unbox, then by introducing the �modality so
long as the context is suitably constant, and then by invoking Lemma 2.40.

2.5.2 From Behavioural Differential Equations to gλ-Terms

In the previous section we saw an example of a translation from a behavioural
differential equation to a gλ-term. In this section we present the general
translation. Starting with a k-ary behavioural differential equation (hf , tf ) we
will define a gλ-term6

Φ
g
f : I

(
(StrgA)k→ StrgA

)
→

(
(StrgA)k→ StrgA

)
by induction on the structure of hf and tf . We may apply a fixed-point
combinator to this to get a function on guarded streams, which we write as
f g.

We first extend gλ with function symbols in the signature Σ of (hf , tf ).
Using these it is straightforward to define a gλ term hg

f of type

x1 : A,x2 : A, · · · ,xk : A ` hg
f : A,

corresponding to hf in the obvious way.

6We use the uncurried form to simplify the semantics.
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From tf we define the term tgf of type

~x,~y : StrgA,~z : IStrgA,f : I
(
(StrgA)k→ StrgA

)
` tgf : IStrgA

by induction on the structure of tf as follows.
The base cases are simple:

• If tf = xi for some i we put tgf = nextxi , and similarly for yi ;

• If tf = zi we put tgf = zi .

If tf = f (a1, . . . , ak) we put

tgf = curryg(f )~ tga1 ~ · · ·~ t
g
ak

where curryg(f ) is the currying of the function f , which is easily definable as
a gλ term.

Finally if tf = e(a1, . . . , al) for some previously defined l-ary e then we put

tgf = curryg(nexteg)~ tga1 ~ · · ·~ t
g
al

We can then combine the terms hg
f and tgf to define the desired term Φ

g
f as

λf ,~y.(hg
f [hdg yi/xi]) :: (tgf [(hdg yi :: nextzeros)/xi , tl

g yi/zi])

Analogously from a behavioural differential equation we define a gλ term
Φf of type

Φf :
(
(StrA)k→ StrA

)
→

(
(StrA)k→ StrA

)
,

where for the function symbols we take the lifted (as in Example 2.43.2)
function symbols used in the definition of Φg

f .

We will now show that the lifting of the unique fixed point of Φg
f is a

fixed point of Φf , and hence satisfies the behavioural differential equation
for f . We prove this using denotational semantics, relying on its adequacy
(Corollary 2.31).

2.5.3 The Topos of Trees as a Sheaf Category

In order to reach the formal results regarding behavioural differential equa-
tions of the next section, it will be convenient to provide an alternative defini-
tion for the topos of trees as a category of sheaves, rather than presheaves.

The preorder ω = 1 ≤ 2 ≤ · · · is a topological space given the Alexandrov
topology where the open sets are the downwards closed sets. These downwards
closed sets are simply 0 ⊆ 1 ⊆ 2 ⊆ · · · ⊆ ω, where 0 is the empty set, n is the
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downwards closure of n for any positive integer n, andω is the entire set. Then
the sheaves X over this topological space, Sh(ω), are presheaves over these
open sets obeying certain properties [61]. In this case these properties ensure
that X(0) must always be a singleton set and X(ω) is entirely determined (up
to isomorphism) by the sets X1,X2, · · · as their limit. This definition is hence
plainly equivalent to the definition of S from Section 2.3.1.

However this presentation is more convenient for our purposes here, in
which we will need to go back and forth between the categories S and Set,
because the global sections functor7 Γ in the sequence of adjoints

Π1 a ∆ a Γ

where

Π1 : S → Set

Π1(X) = X(1)

∆ : Set→S

∆(a)(α) =

1 if α = 0

a otherwise

Γ : S → Set

Γ (X) = X(ω)

is just evaluation at ω, i.e. the limit is already present, which simplifies
notation. Another advantage is that I : S → S is given as

(IX)(ν + 1) = X(ν)

(IX)(α) = X(α)

where α is a limit ordinal (either 0 or ω) which means that IX(ω) = X(ω)
and as a consequence, nextω = idX(ω) and Γ (IX) = Γ (X) for any X ∈ S and so
�(IX) = �X for any X, so we do not have to deal with mediating isomorph-
isms.

We finally turn to a useful lemma which we will use in the next section.

Lemma 2.46. Let X,Y be objects of S . Let F : I
(
Y X

)
→ Y X be a morphism in S

and F : Y (ω)X(ω)→ Y (ω)X(ω) be a function in Set. Suppose that the diagram

Γ
(
I
(
Y X

))
Γ (Y X)

Y (ω)X(ω) Y (ω)X(ω)

Γ (F)

lim lim

F

7The standard notation Γ for this functor should not be confused with our notation for
typing contexts.

58



2.5. Behavioural Differential Equations

commutes, where lim
(
{gν}ων=0

)
= gω. By Banach’s fixed point theorem F has a

unique fixed point, say u : 1→ Y X .
Then lim(Γ (u)(∗)) = lim(Γ (next ◦ u)(∗)) = Γ (next ◦ u)(∗)ω = uω(∗)ω is a fixed

point of F.

Proof.

F (lim(Γ (u)(∗))) = lim(Γ (F)(Γ (next ◦u)(∗)))
= lim(Γ (F ◦next ◦u)(∗)) = lim(Γ (u)(∗)).

Note that lim is not an isomorphism, as there are in general many more
functions from X(ω) to Y (ω) than those that arise from natural transforma-
tions. The ones that arise from natural transformations are the non-expansive
ones.

2.5.4 Expressing Behavioural Differential Equations

We first define two interpretations of behavioural differential equations (Defin-
ition 2.44); first in the topos of trees, and then in Set. The interpretation in S
is just the denotation of the term Φ

g
f from Section 2.5.2, whereas the inclusion

of the interpretation in Set into the topos of trees, using the constant presheaf
functor ∆, is the denotation of the term Φf from Section 2.5.2.

Definition 2.47. Fixing a set |A| which will interpret our base sort, define
~A�S = ∆|A| and ~StrA�S = µX.∆|A| ×IX; that is, the denotation of Strg(∆|A|)
from Example 2.16.1. To each function symbol g ∈ Σ of type τ1, . . . , τn→ τn+1
we assign a morphism

~g�S : ~τ1�S × ~τ2�S × · · · × ~τn�S → ~τn+1�S .

We then interpret hf as a morphism of type ~A�kS → ~A�S by induction:

~xi�S = πi
~g(t1, t2, . . . , tn)�S = ~g�S ◦

〈
~t1�S ,~t2�S , · · · ,~tn�S

〉
.

tf will be interpreted similarly, but we also have the new function symbol f
to consider. The interpretation of tf is therefore a S-arrow of type

�
tf
�
S

: ~StrA�kS × ~StrA�kS × (I (~StrA�S ))k ×I
(
~StrA�

~StrA�kS
S

)
→ I(~StrA�S )
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and is defined as:

~xi�S = next ◦πxi
~yi�S = next ◦πyi
~zi�S = πzi

~g(t1, t2, . . . , tn)�S = I(~g�S ) ◦ can ◦
〈
~t1�S ,~t2�S , · · · ,~tn�S

〉
if g , f

~f (t1, t2, . . . , tk)�S = eval ◦
〈
J ◦πf ,can ◦

〈
~t1�S ,~t2�S , · · · ,~tk�S

〉〉
where can is the canonical isomorphism witnessing that I preserves products;
eval is the evaluation map, and J is the map I(X → Y )→ IX → IY which
gives I its applicative functor structure ~.

We can then define the S-arrow

F : I
(
~StrA�

~StrA�kS
S

)
→ ~StrA�

~StrA�kS
S

as the exponential transpose of

F′ = fold ◦
〈�
hf
�
◦ ~hd ◦π1,

�
tf
�
S
◦

〈 ~ι ◦hd, id~StrA�kS
, ~tail

〉
× id
I

(
~StrA�

~StrA�kS
S

)

〉

where hd and tl are head and tail functions, extended in the obvious way
to tuples, and fold : ~A�S ×I~StrA�S → ~StrA�S is the evident ‘cons’ arrow.
The function ι maps an element in A to the guarded stream with head a and
tail the stream of zeroes.

Definition 2.48. We now use the topos of trees definition above to define the
denotation of hf and tf in Set. We set ~A�Set = |A| and ~StrA�Set = ~StrA�S (ω).

For each function symbol in Σ we define ~g�Set = Γ ~g�S =
(
~g�S

)
ω

.

We then define
�
hf
�

Set
as a function

~A�kSet→ ~A�Set

exactly as we defined
�
hf
�
S

:

~xi�Set = πi
~g(t1, t2, . . . , tn)�Set = ~g�Set ◦

〈
~t1�Set ,~t2�Set , · · · ,~tn�Set

〉
.

The denotation of tf is somewhat different, as we do not have the functor
I. We define�

tf
�

Set
: ~A�kSet × ~StrA�kSet × ~StrA�kSet × ~StrA�

~StrA�kSet
Set → ~StrA�Set
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as follows:

~xi�Set = πxi
~yi�Set = πyi
~zi�Set = πzi

~g(t1, t2, . . . , tn)�Set = ~g�Set ◦
〈
~t1�Set ,~t2�Set , · · · ,~tn�Set

〉
if g , f

~f (t1, t2, . . . , tk)�Set = eval ◦
〈
πf ,

〈
~t1�Set ,~t2�Set , · · · ,~tk�Set

〉〉
.

We then define

F : ~StrA�
~StrA�kSet
Set → ~StrA�

~StrA�kSet
Set

as

F(ϕ) (~σ ) = Γ (fold)
(�
hf
�

Set
◦ ~hd(~σ ),

�
tf
�

Set

(
ι
(
~hd(~σ )

)
, ~σ , ~tl(~σ ),ϕ

))
Lemma 2.49. For the above defined F and F we have

lim◦Γ (F) = F ◦ lim .

Proof. Take ϕ ∈ Γ
(
I
(
~StrA�

~StrA�kS
S

))
= Γ

(
~StrA�

~StrA�kS
S

)
. We have

lim(Γ (F)(ϕ)) = lim (Fω(ϕ)) = Fω(ϕ)ω

and

F(lim(ϕ)) = F (ϕω)

These are both elements of ~StrA�
~StrA�kSet
Set , and so are functions in Set, so to

show they are equal we can use elements. Take ~σ ∈ ~StrA�kSet. We are then
required to show

F (ϕω) (~σ ) = Fω(ϕ)ω(~σ )

Recall that F is the exponential transpose of F′, so Fω(ϕ)ω(~σ ) = F′ω(ϕ, ~σ ). Now
recall that composition in S is just composition of functions at each stage, that
products in S are defined pointwise, and that nextω is the identity function.
Moreover, the S-arrow hd gets mapped by Γ to hd in Set and the same holds
for tl. For the latter it is important that Γ (I(X)) = Γ (X) for any X.

We thus get

F′ω(ϕ, ~σ ) = foldω
(
(
�
hf
�
S

)ω (hd(~σ )) ,
(�
tf
�
S

)
ω

(ϕ,ι (hd(~σ )) , ~σ ,tl(~σ ))
)
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and also

F (ϕω) (~σ ) = foldω
(�
hf
�

Set
(hd (~σ )) ,

(�
tf
�

Set

)
(ϕω, ι (hd(~σ )) , ~σ ,tl(~σ ))

)
It is now easy to see that these two are equal, by induction on the structure
of hf and tf . The variable cases are trivial, but crucially use the fact that
nextω is the identity. The cases for function symbols in Σ are trivial by the
definition of their denotations in Set. The case for f goes through similarly
since application at ω only uses ϕ at ω.

Theorem 2.50. Let Σ be a signature and suppose we have an interpretation in S .
Let (hf , tf ) be a behavioural differential equation defining a k-ary function f using
function symbols in Σ. The right-hand sides of hf and tf define a gλ-term Φ

g
f of

type

Φ
g
f : I

(
Strg Nk→ Strg N

)
→

(
Strg Nk→ Strg N

)
and a term Φf of type

Φf : I
(
StrNk→ StrN

)
→

(
StrNk→ StrN

)
(here we must ‘lift’ the interpretations of the function symbols in Σ from guarded
recursive streams to coinductive streams; this can be done by analogy with the L
functions of Example 2.43.2.)

Let f g = fixΦg
f be the fixed point of Φg

f . Then f = Lk(boxf g) is a fixed point
of Φf which in turn implies that it satisfies equations hf and tf .

Proof. The morphism F in Lemma 2.46 is the interpretation of the term Φ
g
f

from Section 2.5.2. The inclusion of the morphism F in Lemma 2.46 is the
denotation of the term Φf . Further, the inclusion (with ∆) of the fixed point
constructed in Lemma 2.46 is the denotation of f .

Proposition 2.49 concludes the proof that ~f � is indeed a fixed point of�
Φf

�
. Hence by adequacy of the denotational semantics we have that f is a

fixed point of Φf .
This concludes our proof that for each behavioural differential equation

that defines a function on streams, we can use the gλ-calculus to define its
solution.

2.6 Concluding Remarks

We have seen how the guarded lambda-calculus, or gλ-calculus, allows us to
program with guarded recursive and coinductive data structures while retain-
ing normalisation and productivity, and how the topos of trees provides ad-
equate semantics and an internal logic Lgλ for reasoning about gλ-programs.
We have demonstrated our approach’s expressivity by showing that it can
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express behavioural differential equations, a well-known format for the defin-
ition of stream functions. We conclude by surveying some related work and
discussing some future directions.

2.6.1 Related Work

Other Calculi with Later. Since Nakano’s original paper [69] there have
been a number of calculi presented that utilise the later modality. Many of
these calculi are causal [3, 54–57, 75, 79], in that they cannot express acausal
but productive functions, and are therefore less expressive in this respect than
the guarded λ-calculus. Note that this restriction is a feature, rather than a
defect, for some applications such as functional reactive programming [56],
where programs should indeed be prevented from reacting to an event before
it has occurred. We could similarly program in the fragment of the gλ-calculus
without � to retain this guarantee. We further note that the gλ-calculus is
intended to extend the simply typed λ-calculus in as modest a way as possible
while gaining the expressivity we desire, and so we have avoided exotic
features such as Nakano’s subtyping and first-class type equalities (which
make type inference a non-trivial open problem [77, Section 9]), or the use of
natural numbers to stratify typing judgments [56], or reduction [3].

Atkey and McBride’s clock quantifiers [8] showed how to express acausal
functions in a calculus with later. This was extended to dependent types
by Møgelberg [66], with improvements made subsequently by Bizjak and
Møgelberg [19]. However the conference version of this paper [27] is the first
to present operational semantics for such a calculus.

Clock quantifiers differ in two main ways from this paper’s use of the
modality �. First, multiple clocks are useful for expressing nested coin-
ductive types that intuitively vary on multiple independent time streams,
such as infinite-breadth infinite-depth trees. We conjecture that we could
accommodate this by extending our calculus with multiple versions of our
type- and term-formers: µκ,Iκ,�κ,nextκ and so forth, labelled by clocks κ.
Guardedness and constantness side-conditions on type- and term-formation
would then check only the clock under consideration. Semantics could be
given via presheaves over ωn, where n is the number of clocks. One slightly
awkward note is that we appear to need a new term-former to construct the
isomorphism �κIκ

′
A→ Iκ′�κA, given as a first-class type equality by Atkey

and McBride [8] (the other direction of this isomorphism, and the permutation
of �κ with �κ

′
, are readily definable as terms).

Second, and more importantly, clock quantifiers remove the need for term-
formers such as box to carry explicit substitutions. There is no free lunch
however, as we must instead handle side-conditions asserting that given clock
variables are free in the clock context; while such ‘freshness’ conditions are
common in formal calculi they are a notorious source of error when reasoning
about syntax. Further, if explicit substitutions are to be completely avoided
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the prev constructor needs to be reworked, for example by replacing it with
a force term-former [8], and so we no longer have a conventional destructor
for I, so βη-equalities become more complex. Reiterating our remarks of
Section 2.2.1 we note that, with respect to programming with the gλ-calculus,
the burden presented by the explicit substitutions seems quite small, as all
example programs involve identity substitutions only. Therefore our use of
the �modality seems the simpler choice, especially as it allows us to adapt
previously published work on term calculus for the modal logic Intuitionistic
S4 [9]. However in our work on extending guarded type theory to dependent
types [21] the explicit substitutions become more burdensome, resulting in
our adoption of clock quantifiers for that work.

Dual Contexts. Our development draws extensively on the term calculus for
Intuitionistic S4 of Bierman and de Paiva [9]. Subsequent work by Davies and
Pfenning [35] modified Bierman and de Paiva’s calculus, removing the explicit
substitutions attached to the box term-former. As ever there is no free lunch,
as instead a ‘dual context’ is used – the variable context has two compartments,
one of which is reserved for constant types. The calculus is then closed under
substitution via a modification of the definition of substitution to depend
on which context the variable is drawn from. Because, as stated above, we
found the burden of explicit substitutions not so great, we preferred to use
the Bierman-de Paiva calculus as our basis rather than deal with this more
complicated notion of substitution; however from our point of view these
differences are relatively marginal and largely a matter of taste.

Ultrametric Spaces. As noted in the proof of Lemma 2.38, the categoryM
of bisected complete non-empty ultrametric spaces is a complete subcategory
of the topos of trees, corresponding to the total and inhabited S-objects [14,
Section 5]. This categoryM was shown to provide semantics for Nakano’s
calculus by Birkedal et al. [11], as well as for a related calculus with later by
Krishnaswami and Benton [56]. These works do not feature the �modality,
but its definition is easy - it maps any space to the space with the same
underlying set, but the discrete metric. Why, then, do we instead use the
topos of trees? First, M is not a topos, and therefore our work reasoning
with the internal logic would not be possible. Second,M contains only non-
empty spaces and so cannot model the 0 type. If the empty space is added
then I becomes undefinable: either I0 has underlying set ∅, in which case
there exists a map I0→ 0 and so the fixpoint function (I0→ 0)→ 0 cannot
exist without creating an inhabitant of 0, or the underlying set is not empty,
in which case there is no map �I0→ �0, and so we cannot eliminate I in
constant contexts.
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Sized Types. The best developed type-based method for ensuring productiv-
ity are sized types, introduced by Hughes et al. in 1996 [45]. They have now
been implemented in the proof assistant Agda, following work by Abel [1].
There is as yet no equivalent development employing the later modality, so
direct comparison on realistic examples with respect to criteria such as ease
of use are probably premature. However we can make some preliminary
observations. First, defining denotational semantics in a topos was essen-
tial to the development of the program logic Lgλ; to our knowledge there
is no semantics of sized types yet developed that would support a similar
development. Second, the later modality has applications that appear quite
unrelated to sized types, in particular for modelling and reasoning about
programming languages, starting with Appel et al. [7] and including, for
example, the program logic iCAP [82]. These applications require recursive
types with negative occurrences of the recursion variable, and so lie outside
the scope of sized types. The implementation of guarded recursive types
directly in a proof assistant should support such applications. Here the most
relevant comparison will be with the Coq formalisations of semantics for later
(in these cases, ultrametric semantics) [52, 80] as a basis for program logics.
The Coq formalisation of the topos of trees via ‘forcing’ of Jaber et al. [46] may
also be useable for such reasoning. Our hope is that implementing guarded
recursive types as primitive might reduce the overhead involved in working
indirectly on encoded semantics.

Similar Type- and Term-Formers We finally mention two further construc-
tions that bear some resemblance to those of this paper. First, the ∞ type-
former, and ‘delay’ ], and ‘force’ [ type-formers, for coinduction in Agda [34,
Section 2.2], look somewhat like I, next, and prev respectively, but are not
intended to replace syntactic guardedness checking and so the resemblance
is largely superficial. Second, the ‘next’ and ‘globally’ modalities of (dis-
crete time) Linear Temporal Logic, recently employed as type-formers for
functional reactive programming by Jeltsch [50] and Jeffrey [49], look some-
what like I and �, but we as yet see no obvious formal links between these
approaches.

2.6.2 Further Work

Dependent Types. As discussed earlier, a major goal of this research is to
extend the simply-typed gλ-calculus to a calculus with dependent types.
This could provide a basis for interactive theorem proving with the later
modality, integrating the sorts of proofs we performed in Section 2.4 into
the calculus itself. In Bizjak et al. [21] we have developed an extensional
guarded dependent type theory, which is proved sound in a model based on
the topos of trees. This extension is not entirely straightforward, most notably
requiring novel constructions to generalise applicative functor structure to
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2. Simple Types

dependent types. The next challenge is to develop a type theory with decidable
type checking, which would provide a basis for implementation. We have
developed a type theory with later [15] based on cubical type theory [29], which
has a notion of path equality which seems to interact better with the new
constructs of guarded type theory than the ordinary Martin-Löf identity type.
We conjecture that our new type theory has decidable type checking, but this
property is still open even for cubical type theory without guarded recursion.

Inference of gλ Type- and Term-Formers. The examples in this paper make
clear that programming in the gλ-calculus is usually a matter of ‘decorating’
conventional programs with our novel type- and term-formers such as I
and next. This decoration process is often straightforward, but we are not
insensitive to the burden on the programmer of demanding large amounts of
novel notation be applied to their program before it will type-check. It would
therefore be helpful to investigate algorithmic support for automatically
performing this decoration process.

Full Abstraction. Corollary 2.31 established the soundness of our denota-
tional semantics with respect to contextual equivalence. Its converse, full
abstraction, is left open. A proof of full abstraction, or a counter-example,
would help us to understand how good a model the topos of trees provides for
the gλ-calculus, with respect to whether it differentiates terms that are opera-
tionally equivalent. Conversely, if full abstraction were found to fail we could
ask whether a language extension is possible which brings the gλ-calculus
closer to its intended semantics.
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Chapter 3

Dependent Types

This chapter consists of the paper:

[22] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers
Møgelberg, and Lars Birkedal.
Guarded dependent type theory with coinductive types.
In Foundations of Software Science and Computation Structures (FoSSaCS),
pages 20–35, 2016.

along with a technical appendix.

Abstract

We present guarded dependent type theory, GDTT, an extensional
dependent type theory with a ‘later’ modality and clock quantifiers
for programming and proving with guarded recursive and coinductive
types. The later modality is used to ensure the productivity of recursive
definitions in a modular, type based, way. Clock quantifiers are used
for controlled elimination of the later modality and for encoding coin-
ductive types using guarded recursive types. Key to the development of
GDTT are novel type and term formers involving what we call ‘delayed
substitutions’. These generalise the applicative functor rules for the later
modality considered in earlier work, and are crucial for programming
and proving with dependent types. We show soundness of the type
theory with respect to a denotational model.

3.1 Introduction

Dependent type theory is useful both for programming, and for proving
properties of elements of types. Modern implementations of dependent type
theories such as Coq [63], Nuprl [30], Agda [70], and Idris [23], have been
used successfully in many projects. However, they offer limited support for
programming and proving with coinductive types.
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3. Dependent Types

One of the key challenges is to ensure that functions on coinductive types
are well-defined; that is, productive with unique solutions. Syntactic guarded
recursion [31], as used for example in Coq [41], ensures productivity by
requiring that recursive calls be nested directly under a constructor, but it
is well known that such syntactic checks exclude many valid definitions,
particularly in the presence of higher-order functions.

To address this challenge, a type-based approach to guarded recursion,
more flexible than syntactic checks, was first suggested by Nakano [69]. A
new modality, written . and called ‘later’ [7], allows us to distinguish between
data we have access to now, and data which we will get later. This modality
must be used to guard self-reference in type definitions, so for example
guarded streams of natural numbers are described by the guarded recursive
equation

Str
g
N
'N× .Str

g
N

asserting that stream heads are available now, but tails only later.
Types defined via guarded recursion with . are not standard coinduct-

ive types, as their denotation is defined via models based on the topos of
trees [14]. More pragmatically, the bare addition of . disallows productive but
acausal [56] functions such as the ‘every other’ function that returns every
second element of a stream. Atkey and McBride proposed clock quantifiers [8]
for such functions; these have been extended to dependent types [19, 66], and
Møgelberg [66, Thm. 2] has shown that they allow the definition of types
whose denotation is precisely that of standard coinductive types interpreted in
set-based semantics. As such, they allow us to program with real coinductive
types, while retaining productivity guarantees.

In this paper we introduce the extensional guarded dependent type theory
GDTT, which provides a framework where guarded recursion can be used
not just for programming with coinductive types but also for coinductive
reasoning.

As types depend on terms, one of the key challenges in designing GDTT is
coping with elements that are only available later, i.e., elements of types of
the form .A. We do this by generalising the applicative functor structure of .
to the dependent setting. Recall the rules for applicative functors [64]:

Γ ` t : A

Γ ` next t : .A

Γ ` f : .(A→ B) Γ ` t : .A

Γ ` f ~ t : .B (3.1)

The first rule allows us to make later use of data that we have now. The second
allows, for example, functions to be applied recursively to the tails of streams.

Suppose now that f has type .(Πx : A.B), and t has type .A. What should
the type of f ~ t be? Intuitively, t will eventually reduce to some value nextu,
and so the resulting type should be .(B[u/x]), but if t is an open term we may
not be able to perform this reduction. This problem occurs in coinductive
reasoning: if, e.g., A is Str

g
N

, and B a property of streams, in our applications
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3.2. Guarded Dependent Type Theory

f will be a (guarded) coinduction assumption that we will want to apply to
the tail of a stream, which has type .Str

g
N

.
We hence must introduce a new notion, of delayed substitution, similar to

let-binding, allowing us to give f ~ t the type

. [x � t] .B

binding x in B. Definitional equality rules then allow us to simplify this type
when t has form nextu, i.e., . [x � nextu] .B ≡ .(B[u/x]). This construction
generalises to bind a list of variables. Delayed substitution is essential to
many examples, as shown in Sec. 3.3, and surprisingly the applicative functor
term-former ~, so central to the standard presentation of applicative functors,
turns out to be definable via delayed substitutions, as shown in Sec. 3.2.

Contributions. The contributions of this paper are:

• We introduce the extensional guarded dependent type theory GDTT,
and show that it gives a framework for programming and proving with
guarded recursive and coinductive types. The key novel feature is the
generalisation of the ‘later’ type-former and ‘next’ term-former via
delayed substitutions;

• We prove the soundness of GDTT via a model similar to that used in
earlier work on guarded recursive types and clock quantifiers [19, 66].

We focus on the design and soundness of the type theory and restrict attention
to an extensional type theory. We postpone a treatment of an intensional
version of the theory to future work (see Secs. 3.7 and 3.8).

In addition to the examples included in this paper, we are pleased to note
that a preliminary version of GDTT has already proved crucial for formalizing
a logical relations adequacy proof of a semantics for PCF using guarded
recursive types by Paviotti et. al. [72].

3.2 Guarded Dependent Type Theory

GDTT is a type theory with base types unit 1, booleans B, and natural numbers
N, along with Π-types, Σ-types, identity types, and universes. For space
reasons we omit all definitions that are standard to such a type theory; see e.g.
Jacobs [47]. Our universes are à la Tarski, so we distinguish between types
and terms, and have terms that represent types; they are called codes of types
and they can be recognised by their circumflex, e.g., N̂ is the code of the type
N. We have a map El sending codes of types to their corresponding type. We
follow standard practice and often omit El in examples, except where it is
important to avoid confusion.
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3. Dependent Types

We fix a countable set of clock variables CV = {κ1,κ2, · · · } and a single clock
constant κ0, which will be necessary to define, for example, the function
hd in Sec. 3.5. A clock is either a clock variable or the clock constant; they
are intuitively temporal dimensions on which types may depend. A clock
context ∆,∆′ , · · · is a finite set of clock variables. We use the judgement `∆ κ
to express that either κ is a clock variable in the set ∆ or κ is the clock
constant κ0. All judgements, summarised in Fig. 3.1, are parametrised by
clock contexts. Codes of types inhabit universes U∆ parametrised by clock
contexts similarly. The universe U∆ is only well-formed in clock contexts ∆′

where ∆ ⊆ ∆′. Intuitively, U∆ contains codes of types that can vary only along
dimensions in ∆. We have universe inclusions from U∆ to U∆′ whenever ∆ ⊆ ∆′;
in the examples we will not write these explicitly. Note that we do not have
Û∆ : U∆′ , i.e., these universes do not form a hierarchy. We could additionally
have an orthogonal hierarchy of universes, i.e. for each clock context ∆ a
hierarchy of universes U1

∆
: U2

∆
: · · · .

All judgements are closed under clock weakening and clock substitution.
The former means that if, e.g., Γ `∆ t : A is derivable then, for any clock
variable κ < ∆, the judgement Γ `∆,κ t : A is also derivable. The latter means
that if, e.g., Γ `∆,κ t : A is derivable and `∆ κ′ then the judgement Γ [κ′/κ] `∆
t[κ′/κ] : A[κ′/κ] is also derivable, where clock substitution [κ′/κ] is defined as
obvious.

The rules for guarded recursion can be found in Figs. 3.2 and 3.3; rules
for coinductive types are postponed until Sec. 3.4. Recall the ‘later’ type
former ., which expresses that something will be available at a later time.
In GDTT we have

κ
. for each clock κ, so we can delay a type along different

dimensions. As discussed in the introduction, we generalise the applicative
functor structure of each

κ
. via delayed substitutions, which allow a substitution

to be delayed until its substituent is available. We showed in the introduc-
tion how a type with a single delayed substitution

κ
. [x � t] .A should work.

However if we have a term f with more than one argument, for example of
type

κ
. (Π(x : A).Π(y : B).C), and wish to type an application f κO t κOu (where

κO is the applicative functor operation ~ for clock κ) we may have neither t
nor u available now, and so we need sequences of delayed substitutions to

`∆ κ valid clock

Γ `∆ well-formed context

Γ `∆ A type well-formed type

Γ `∆ t : A typing judgment

Γ `∆ A ≡ B type equality

Γ `∆ t ≡ u : A term equality

`∆ ξ : Γ
κ
_ Γ ′ delayed substitution

Figure 3.1: Judgements in GDTT.
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3.2. Guarded Dependent Type Theory

define the type
κ
. [x � t,y � u] .C. Our concrete examples of Sec. 3.3 will show

that this issue arises in practice. We therefore define sequences of delayed
substitutions ξ. The new raw types, terms, and delayed substitutions of GDTT
are given by the grammar

A,B ::= · · · | κ.ξ.A t,u ::= · · · | nextκ ξ.t | .̂κt ξ ::= · | ξ [x � t] .

Note that we just write
κ
.A where its delayed substitution is the empty ·, and

that
κ
.ξ.A binds the variables substituted for by ξ in A, and similarly for next.

The three rules DS-Emp, DS-Cons, and Tf-. are used to construct the
type

κ
.ξ.A. These rules formulate how to generalise these types to arbitrarily

long delayed substitutions. Once the type formation rule is established, the
introduction rule Ty-Next is the natural one.

With delayed substitutions we can define κO as

f κO t , nextκ
[
g � f
x � t

]
.g x.

Using the rules in Fig. 3.2 we can derive the following typing judgement for
κO

Γ `∆ f :
κ
.ξ.Π(x : A).B Γ `∆ t :

κ
.ξ.A

Γ `∆ f κO t :
κ
.ξ[x � t].B

Ty-~

When a term has the form nextκ ξ [x � nextκ ξ.u] .t, then we have enough
information to perform the substitution in both the term and its type. The
rule TmEq-Force applies the substitution by equating the term with the result
of an actual substitution, nextκ ξ.t[u/x]. The rule TyEq-Force does the same
for its type. Using TmEq-Force we can derive the basic term equality

(nextκ ξ.f ) κO (nextκ ξ.t) ≡ nextκ ξ.(f t).

typical of applicative functors [64].
It will often be the case that a delayed substitution is unnecessary, because

the variable to be substituted for does not occur free in the type/term. This
is what TyEq-.-Weak and TmEq-Next-Weak express, and with these we can
justify the simpler typing rule

Γ `∆ f :
κ
.ξ.(A→ B) Γ `∆ t :

κ
.ξ.A

Γ `∆ f κO t :
κ
.ξ.B

In other words, delayed substitutions on the type are not necessary when we
apply a non-dependent function.

Further, we have the applicative functor identity law

(nextκ ξ.λx.x) κO t ≡ t.
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3. Dependent Types

Universes

∆′ ⊆ ∆ Γ `∆
Γ `∆ U∆′ type

Univ

Γ `∆ A : U∆′
Γ `∆ El(A) type

El

Delayed substitutions:

Γ `∆ `∆ κ

`∆ · : Γ
κ
_ ·

DS-Emp

`∆ ξ : Γ
κ
_ Γ ′ Γ `∆ t :

κ
.ξ.A

`∆ ξ [x � t] : Γ
κ
_ Γ ′ ,x : A

DS-Cons

Typing rules:

Γ ,Γ ′ `∆ A type `∆ ξ : Γ
κ
_ Γ ′

Γ `∆
κ
.ξ.A type

Tf-.
`∆′ κ Γ `∆ A :

κ
.U∆′

Γ `∆ .̂κA : U∆′
Ty-̂.

Γ ,Γ ′ `∆ t : A `∆ ξ : Γ
κ
_ Γ ′

Γ `∆ nextκ ξ.t :
κ
.ξ.A

Ty-Next
`∆ κ Γ ,x :

κ
.A `∆ t : A

Γ `∆ fixκ x.t : A
Ty-Fix

Figure 3.2: Overview of the new typing rules involving . and delayed substi-
tutions.

This follows from the rule TmEq-Next-Var, which allows us to simplify a term
nextκ ξ [y � t] .y to t.

Sometimes it is necessary to switch the order in the delayed substitution.
Two substitutions can switch places, as long as they do not depend on each
other; this is what TyEq-.-Exch and TmEq-Next-Exch express.

Rule TmEq-Next-Comm is not used in the examples of this paper, but it
implies the rule nextκ ξ [x � t] .nextκ x ≡ nextκ t, which is needed in Paviotti’s
PhD work.

3.2.1 Fixed points and guarded recursive types

In GDTT we have for each clock κ valid in the current clock context a fixed-
point combinator fixκ. This differs from a traditional fixed-point combinator
in that the type of the recursion variable is not the same as the result type;
instead its type is guarded with

κ
.. When we define a term using the fixed-point,

we say that it is defined by guarded recursion. When the term is intuitively a
proof, we say we are proving by Löb induction [7].

Guarded recursive types are defined as fixed-points of suitably guarded
functions on universes. This is the approach of Birkedal and Møgelberg [10],
but the generality of the rules of GDTT allows us to define more interesting
dependent guarded recursive types, for example the predicates of Sec. 3.3.
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3.2. Guarded Dependent Type Theory

Definitional type equalities:

κ
.ξ [x � t] .A ≡ κ.ξ.A (TyEq-.-Weak)

κ
.ξ [x � t,y � u]ξ ′ .A ≡ κ.ξ [y � u,x � t]ξ ′ .A (TyEq-.-Exch)
κ
.ξ [x � nextκ ξ.t] .A ≡ κ.ξ.A[t/x] (TyEq-Force)

El(̂.κ (nextκ ξ.t)) ≡ κ.ξ.El(t) (TyEq-El-.)

Idκ
.ξ.A

(nextκ ξ.t,nextκ ξ.s) ≡ κ.ξ.IdA (t, s) (TyEq-.)

Definitional term equalities:

nextκ ξ [x � t] .u ≡ nextκ ξ.u (TmEq-Next-Weak)

nextκ ξ [x � t] .x ≡ t (TmEq-Next-Var)

nextκ ξ [x � t,y � u]ξ ′ .v ≡ nextκ ξ [y � u,x � t]ξ ′ .v (TmEq-Next-Exch)

nextκ ξ.nextκ ξ ′ .u ≡ nextκ ξ ′ .nextκ ξ.u (TmEq-Next-Comm)

nextκ ξ [x � nextκ ξ.t] .u ≡ nextκ ξ.u[t/x] (TmEq-Force)

fixκ x.t ≡ t[nextκ (fixκ x.t) /x] (TmEq-Fix)

Figure 3.3: New type and term equalities in GDTT. Rules TyEq-.-Weak and
TmEq-Next-Weak require that A and u are well-formed in a context without x.
Rules TyEq-.-Exch and TmEq-Next-Exch assume that exchanging x and y is
allowed, i.e., that the type of x does not depend on y and vice versa. Likewise,
rule TmEq-Next-Comm assumes that exchanging the codomains of ξ and ξ ′ is
allowed and that none of the variables in the codomains of ξ and ξ ′ appear in
the type of u.

We first illustrate the technique by defining the (non-dependent) type
of guarded streams. Recall from the introduction that we want the type of
guarded streams, for clock κ, to satisfy the equation StrκA ≡ A×

κ
.StrκA.

The type A will be equal to El(B) for some code B in some universe U∆
where the clock variable κ is not in ∆. We then define the code SκA of StrκA in
the universe U∆,κ to be SκA , fixκX.B ×̂ .̂κX, where ×̂ is the code of the (simple)

product type. Via the rules of GDTT we can show StrκA ' A×
κ
.StrκA as desired.

The head and tail operations, hdκ : StrκA → A and tlκ : StrκA →
κ
.StrκA are

simply the first and the second projections. Conversely, we construct streams
by pairing. We use the suggestive consκ notation which we define as

consκ : A→ κ
.StrκA→ StrκA consκ , λ (a : A)

(
as :

κ
.StrκA

)
.〈a,as〉

Defining guarded streams is also done via guarded recursion, for example the
stream consisting only of ones is defined as ones , fixκ x.consκ 1x.
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3. Dependent Types

The rule TyEq-El-. is essential for defining guarded recursive types as
fixed-points on universes, and it can also be used for defining more advanced
guarded recursive dependent types such as covectors; see Sec. 3.3.

3.2.2 Identity types

GDTT has standard extensional identity types IdA (t,u) (see, e.g., Jacobs [47])
but with two additional type equivalences necessary for working with guarded
dependent types. We write rA t for the reflexivity proof IdA (t, t). The first type
equivalence is the rule TyEq-.. This rule, which is validated by the model of
Sec. 3.6, may be thought of by analogy to type equivalences often considered
in homotopy type theory [84], such as

IdA×B (〈s1, s2〉 ,〈t1, t2〉) ≡ IdA (s1, t1)× IdB (s2, t2). (3.2)

There are two important differences. The first is that (3.2) is (using univalence)
a propositional type equality, whereas TyEq-. specifices a definitional type
equality. This is natural in an extensional type theory. The second difference
is that there are terms going in both directions in (3.2), whereas we would
have a term of type Idκ

.ξ.A
(nextκ ξ.t,nextκ ξ.u)→ κ

.ξ.IdA (t,u) without the rule
TyEq-..

The second novel type equality rule, which involves clock quantification,
will be presented in Sec. 3.4.

3.3 Examples

In this section we present some example terms typable in GDTT. Our ex-
amples will use a term, which we call pη, of typeΠ(s, t : A×B).IdA (π1t,π1s)→
IdB (π2t,π2s)→ IdA×B (t, s). This term is definable in any type theory with a
strong (dependent) elimination rule for dependent sums. The second prop-
erty we will use is that StrκA ≡ A×

κ
.StrκA. Because hdκ and tlκ are simply first

and second projections, pη also has type Π
(
xs,ys : StrκA

)
.IdA (hdκ xs,hdκ ys)→

Idκ
.StrκA

(tlκ xs, tlκ ys)→ IdStrκA
(xs,ys).

zipWithκ preserves commutativity. In GDTT we define the zipWithκ func-
tion which has the type (A→ B→ C)→ StrκA→ StrκB→ StrκC by

zipWithκ f , fixκϕ.λxs,ys.consκ (f (hdκ xs) (hdκ ys)) (ϕ κO tlκ xs κO tlκ ys) .

We show that commutativity of f implies commutativity of zipWithκ f , i.e.,
that

Π(f : A→ A→ B). (Π(x,y : A).IdB (f xy,f y x))→

Π
(
xs,ys : StrκA

)
.IdStrκB (zipWithκ f xsys,zipWithκ f ysxs)
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is inhabited. The term that inhabits this type is

λf .λc.fixκϕ.λxs,ys.pη (c (hdκ xs) (hdκ ys)) (ϕ κO tlκ xs κO tlκ ys) .

Here, ϕ has type
κ
.(Π

(
xs,ys : StrκA

)
.IdStrκB (zipWithκ f xsys,zipWithκ f ysxs)) so

to type the term above, we crucially need delayed substitutions.

An example with covectors. The next example is more sophisticated, as it
involves programming and proving with a data type that, unlike streams,
is dependently typed. Indeed the generalised later, carrying a delayed sub-
stitution, is necessary to type even elementary programs. Covectors are the
potentially infinite version of vectors (lists with length). To define guarded
covectors we first need guarded co-natural numbers. The definition in GDTT
is CoNκ , El

(
fixκX.(̂1 +̂ .̂κX)

)
; this type satisfies CoNκ ≡ 1 +

κ
.CoNκ. Using

CoNκ we can define the type family of covectors CoVecκAn , El( ̂CoVecκAn),
where

̂CoVecκA ,fixκ
(
ϕ :

κ
.(CoNκ→U∆,κ)

)
.λ(n : CoNκ).casenof

inlu⇒ 1̂

inrm⇒ A ×̂ .̂κ(ϕ κOm).

We will not distinguish between CoVecκA and ̂CoVecκA. As an example of
covectors, we define ones of type Π(n : CoNκ).CoVecκ

N
n which produces a

covector of any length consisting only of ones:

ones , fixκϕ.λ(n : CoNκ).casenof {inlu⇒ inl〈〉; inrm⇒ 〈1,ϕ κOm〉} .

Although this is one of the simplest covector programs one can imagine, it
does not type-check without the generalised later with delayed substitutions.

The map function on covectors is defined as

map : (A→ B)→Π(n : CoNκ).CoVecκAn→ CoVecκBn

mapf , fixκϕ.λ(n : CoNκ).casenof

inlu⇒ λ(x : 1).x

inrm⇒ λ
(
p : A× κ. [n�m] .(CoVecκAn)

)
.〈f (π1p) ,ϕ κOm κO (π2p)〉 .

It preserves composition: the following type is inhabited

Π(f : A→ B)(g : B→ C)(n : CoNκ)(xs : CoVecκAn).

IdCoVecκC n
(mapg n (mapf nxs),map (g ◦ f )nxs)

by the term

λ(f : A→ B)(g : B→ C).fixκϕ.λ(n : CoNκ).casenof

inlu⇒ λ(xs : 1).r1 xs

inrm⇒ λ(xs : CoVecκA(inrm)).pη (rC g(f (π1xs))) (ϕ κOm κOπ2xs) .
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3.4 Coinductive types

As discussed in the introduction, guarded recursive types on their own disal-
low productive but acausal function definitions. To capture such functions we
need to be able to remove

κ
.. However such eliminations must be controlled to

avoid trivialising
κ
.. If we had an unrestricted elimination term elim :

κ
.A→ A

every type would be inhabited via fixκ, making the type theory inconsistent.
However, we may eliminate

κ
. provided that the term does not depend on

the clock κ, i.e., the term is typeable in a context where κ does not appear.
Intuitively, such contexts have no temporal properties along the κ dimension,
so we may progress the computation without violating guardedness. Fig. 3.4
extends the system of Fig. 3.2 to allow the removal of clocks in such a setting,
by introducing clock quantifiers ∀κ [8, 19, 66]. This is a binding construct with
associated term constructor Λκ, which also binds κ. The elimination term is
clock application. Application of the term t of type ∀κ.A to a clock κ is written
as t[κ]. One may think of ∀κ.A as analogous to the type ∀α.A in polymorphic
lambda calculus; indeed the basic rules are precisely the same, but we have an
additional construct prevκ.t, called ‘previous’, to allow removal of the later
modality

κ
..

Typing this new construct prevκ.t is somewhat complicated, as it requires
‘advancing’ a delayed substitution, which turns it into a context morphism (an
actual substitution); see Fig. 3.5 for the definition. The judgement ρ :∆ Γ → Γ ′

expresses that ρ is a context morphism from context Γ `∆ to the context Γ ′ `∆.
We use the notation ρ[t/x] for extending the context morphism by mapping
the variable x to the term t. We illustrate this with two concrete examples.

First, we can indeed remove later under a clock quantifier:

force : ∀κ.κ.A→∀κ.A force , λx.prevκ.x[κ] .

The type is correct because advancing the empty delayed substitution in
κ
. turns it into the identity substitution ι, and Aι ≡ A. The β and η rules
ensure that force is the inverse to the canonical term λx.Λκ.nextκ x[κ] of type
∀κ.A→∀κ.κ.A.

Second, we may see an example with a non-empty delayed substitution
in the term prevκ.nextκλn.succn κOnextκ0 of type ∀κ.N. Recall that κO is
syntactic sugar and so more precisely the term is

prevκ.nextκ
[
f � nextκλn.succn
x � nextκ0

]
.f x. (3.3)

Advancing the delayed substitution turns it into the substitution mapping
the variable f to the term (prevκ.nextκλn.succn)[κ] and the variable x to the
term (prevκ.nextκ0)[κ]. Using the β rule for prev, then the β rule for ∀κ, this
simplifies to the substitution mapping f to λn.succn and x to 0. With this we
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Γ `∆ Γ `∆,κ A type

Γ `∆ ∀κ.A type
Tf-∀

∆′ ⊆ ∆ Γ `∆ t : ∀κ.U∆′ ,κ
Γ `∆ ∀̂ t : U∆′

Ty-∀-code

Γ `∆ Γ `∆,κ t : A

Γ `∆ Λκ.t : ∀κ.A
Ty-Λ

`∆ κ′ Γ `∆ t : ∀κ.A
Γ `∆ t

[
κ′

]
: A[κ′/κ]

Ty-app

Γ `∆ Γ `∆,κ t :
κ
.ξ.A

Γ `∆ prevκ.t : ∀κ.(A(advκ
∆

(ξ)))
Ty-prev

Figure 3.4: Overview of the new typing rules for coinductive types.

have that the term (3.3) is equal to Λκ. ((λn.succn) 0) which is in turn equal
to Λκ.1.

An important property of the term prevκ.t is that κ is bound in t; hence
prevκ.t has type ∀κ.A instead of just A. This ensures that substitution of
terms in types and terms is well-behaved and we do not need the explicit
substitutions used, for example, by Clouston et al. [27] where the unary type-
former � was used in place of clocks. This binding structure ensures, for
instance, that the introduction rule Ty-Λ closed under substitution in Γ .

The rule TmEq-∀-fresh states that if t has type ∀κ.A and the clock κ does
not appear in the type A, then it does not matter to which clock t is applied,
as the resulting term will be the same. In the polymorphic lambda calculus,
the corresponding rule for universal quantification over types would be a
consequence of relational parametricity.

We further have the construct ∀̂ and the rule Ty-∀-code which witness
that the universes are closed under ∀κ.

To summarise, the new raw types and terms, extending those of Sec. 3.2,
are

A,B ::= · · · | ∀κ.A t,u ::= · · · | Λκ.t | t[κ] | ∀̂ t | prevκ.t

Finally, we have the equality rule TyEq-∀-Id analogous to the rule TyEq-..
Note that, as in Sec. 3.2.2, there is a canonical term of type Id∀κ.A (t, s) →
∀κ.IdA (t[κ] , s[κ]) but, without this rule, no term in the reverse direction.

3.4.1 Derivable type isomorphisms

The encoding of coinductive types using guarded recursive types crucially
uses a family of type isomorphisms commuting ∀κ over other type formers [8,
66]. By a type isomorphism A � B we mean two well-typed terms f and g
of types f : A → B and g : B → A such that f (g x) ≡ x and g(f x) ≡ x. The
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`∆,κ · : Γ
κ
_ · Γ `∆

advκ
∆

(·) , ι :∆,κ Γ → Γ

`∆,κ ξ[x � t] : Γ
κ
_ Γ ′ ,x : A Γ `∆

advκ
∆

(ξ[x � t]) , advκ
∆

(ξ)[(prevκ.t)[κ] /x] :∆,κ Γ → Γ ,Γ ′ ,x : A

Figure 3.5: Advancing a delayed substitution.

first type isomorphism is ∀κ.A � A whenever κ is not free in A. The terms
g = λx.Λκ.x of type A→∀κ.A and f = λx.x[κ0] of type A→∀κ.A witness the
isomorphism. Note that we used the clock constant κ0 in an essential way.
The equality f (g x) ≡ x follows using only the β rule for clock application. The
equality g(f x) ≡ x follows using by the rule TmEq-∀-fresh.

The following type isomorphisms follow by using β and η laws for the
constructs involved.

- If κ < A then ∀κ.Π(x : A).B �Π(x : A).∀κ.B.

- ∀κ.Σ (x : A)B � Σ (y : ∀κ.A) (∀κ.B [y[κ]
/
x]).

- ∀κ.A � ∀κ.κ.A.

There is an important additional type isomorphism witnessing that ∀κ
commutes with binary sums; however unlike the isomorphisms above we
require equality reflection to show that the two functions are inverse to
each other up to definitional equality. There is a canonical term of type
∀κ.A+∀κ.B→∀κ.(A+B) using just ordinary elimination of coproducts. Using
the fact that we encode binary coproducts using Σ-types and universes we
can define a term com+ of type ∀κ.(A+B)→∀κ.A+∀κ.B which is a inverse to
the canonical term. In particular com+ satisfies the following two equalities
which will be used below.

com+ (Λκ. inl t) ≡ inlΛκ.t com+ (Λκ. inr t) ≡ inrΛκ.t. (3.4)

3.5 Example programs with coinductive types

Let A be a type with code Â in clock context ∆ and κ a fresh clock variable.
Let StrA = ∀κ.StrκA. We can define head, tail and cons functions

hd : StrA→ A

tl : StrA→ StrA
cons : A→ StrA→ StrA

hd , λxs.hdκ0 (xs[κ0])

tl , λxs.prevκ. tlκ (xs[κ])

cons , λx.λxs.Λκ.consκ x (nextκ (xs[κ])) .
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Definitional type equalities:

Γ `∆ ∆′ ⊆ ∆ Γ `∆,κ t : U∆′ ,κ
Γ `∆ El(̂∀Λκ.t) ≡ ∀κ.El(t)

TyEq-∀-el

Γ `∆ Γ `∆,κ A type Γ `∆ t : ∀κ.A Γ `∆ s : ∀κ.A
Γ `∆ ∀κ.IdA (t[κ] , s[κ]) ≡ Id∀κ.A (t, s)

TyEq-∀-Id

Definitional term equalities:

Γ `∆ `∆ κ′ Γ `∆,κ t : A

Γ `∆ (Λκ.t)
[
κ′

]
≡ t[κ′/κ] : A[κ′/κ]

TmEq-∀-β

κ < ∆ Γ `∆ t : ∀κ.A
Γ `∆ Λκ.t[κ] ≡ t : ∀κ.A

TmEq-∀-η

κ < ∆ Γ `∆ A type Γ `∆ t : ∀κ.A `∆ κ′ `∆ κ′′

Γ `∆ t
[
κ′

]
≡ t

[
κ′′

]
: A

TmEq-∀-fresh

Γ `∆ `∆,κ ξ : Γ
κ
_ Γ ′ Γ ,Γ ′ `∆,κ t : A

Γ `∆ prevκ.nextκ ξ.t ≡Λκ.t(advκ
∆

(ξ)) : ∀κ.(A(advκ
∆

(ξ)))
TmEq-prev-β

Γ `∆ Γ `∆,κ t :
κ
.A

Γ `∆,κ nextκ ((prevκ.t)[κ]) ≡ t :
κ
.A

TmEq-prev-η

Figure 3.6: Type and term equalities involving clock quantification.

With these we can define the acausal ‘every other’ function eoκ that re-
moves every second element of the input stream. It is acausal because the
second element of the output stream is the third element of the input. There-
fore to type the function we need to have the input stream always available,
so clock quantification must be used. The function eoκ of type StrA→ StrκA is
defined as

eoκ , fixκϕ.λ (xs : StrA) .consκ(hdxs) (ϕ κOnextκ ((tl(tlxs)))) .

The result is a guarded stream, but we can easily strengthen it and define eo
of type StrA→ StrA as eo , λxs.Λκ.eoκ xs.

We can also work with covectors (not just guarded covectors as in Sec. 3.3).
This is a dependent coinductive type indexed by conatural numbers which
is the type CoN = ∀κ.CoNκ. It is easy to define 0 and succ as 0 , Λκ. inl〈〉
and succ , λn.Λκ. inr (nextκ (n[κ])). Next, we can define a transport function
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3. Dependent Types

comCoN of type comCoN : CoN→ 1 + CoN satisfying

comCoN0 ≡ inl〈〉 comCoN(succn) ≡ inrn. (3.5)

This function is used to define the type family of covectors as CoVecA n ,
∀κ.CoVecκA n where CoVecκA : CoN→U∆,κ is the term

fixκϕ.λ (n : CoN) .casecomCoNnof
{
inl_⇒ 1̂; inrn⇒ A×̂̂.κ (ϕ κO (nextκ n))

}
.

Using term equalities (3.4) and (3.5) we can derive the type isomorphisms

CoVecA 0 ≡ ∀κ.1 � 1

CoVecA (succn) ≡ ∀κ.
(
A× κ.

(
CoVecκA n

))
� A×CoVecA n

(3.6)

which are the expected properties of the type of covectors.
A simple function we can define is the tail function

tl : CoVecA(succn)→ CoVecA tl , λv.prevκ.π2 (v[κ]) .

Note that (3.6) is needed to type tl. The map function of type

map : (A→ B)→Π(n : CoN).CoVecAn→ CoVecBn

is defined as mapf , λn.λxs.Λκ.mapκ f n (xs[κ]) where mapκ is

mapκ : (A→ B)→Π(n : CoN).CoVecκAn→ CoVecκBn

mapκ = λf .fixκϕ.λn.casecomCoNnof

inl_⇒ λv.v

inrn⇒ λv.
〈
f (π1v),ϕ κO (nextκ n) κOπ2(v)

〉
.

3.5.1 Lifting guarded functions

In this section we show how in general we may lift a function on guarded
recursive types, such as addition of guarded streams, to a function on coin-
ductive streams. Moreover, we show how to lift proofs of properties, such as
the commutativity of addition, from guarded recursive types to coinductive
types.

Let Γ be a context in clock context ∆ and κ a fresh clock. Suppose A and
B are types such that Γ `∆,κ A type and Γ ,x : A `∆,κ B type. Finally let f be
a function of type Γ `∆,κ f : Π(x : A).B. We define L(f ) satisfying the typing
judgement Γ `∆ L(f ) :Π(y : ∀κ.A).∀κ. (B [y[κ] /x]) as L(f ) , λy.Λκ.f (y[κ]).

Now assume that f ′ is another term of typeΠ(x : A).B (in the same context)
and that we have proved Γ `∆,κ p :Π(x : A).IdB (f x,f ′ x). As above we can give
the term L(p) the type Π(y : ∀κ.A).∀κ.IdB[y[κ]/x] (f (y[κ]), f ′(y[κ])). which by
using the type equality TyEq-∀-Id and the η rule for ∀ is equal to the type
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Π(y : ∀κ.A).Id∀κ.B[y[κ]/x] (L(f )y,L(f ′)y). So we have derived a property of lifted
functions L(f ) and L(f ′) from the properties of the guarded versions f and
f ′. This is a standard pattern. Using Löb induction we prove a property of
a function whose result is a “guarded” type and derive the property for the
lifted function.

For example we can lift the zipWith function from guarded streams to
coinductive streams and prove that it preserves commutativity, using the
result on guarded streams of Sec. 3.3.

3.6 Soundness

GDTT can be shown to be sound with respect to a denotational model interpret-
ing the type theory. The model is a refinement of Bizjak and Møgelberg’s [19]
but for reasons of space we leave the description of a full model of GDTT for
future work. Instead, to provide some intuition for the semantics of delayed
substitutions, we just describe how to interpret the rule

x : A ` B type ` t : .A

` . [x � t] .B type
(3.7)

in the case where we only have one clock available.
The subsystem of GDTT with only one clock can be modelled in the cat-

egory S , known as the topos of trees [14], the presheaf category over the
first infinite ordinal ω. The objects X of S are families of sets X1,X2, . . . in-
dexed by the positive integers, together with families of restriction functions
rXi : Xi+1→ Xi indexed similarly. There is a functor I : S → S which maps an
object X to the object

1 X1 X2 X3 · · ·! rX1 rX2

where ! is the unique map into the terminal object.
In this model, a closed type A is interpreted as an object of S and the

type x : A ` B type is interpreted as an indexed family of sets Bi(a), for a
in Ai together with maps rBi (a) : Bi+1(a) → Bi(r

A
i (a)). The term t in (3.7) is

interpreted as a morphism t : 1→ .A so ti(∗) is an element of Ai (here we write
∗ for the element of 1).

The type ` . [x � t] .B type is then interpreted as the object X, defined by

X1 = 1 Xi+1 = Bi(ti+1(∗)).

Notice that the delayed substitution is interpreted by substitution (reindexing)
in the model; the change of the index in the model (Bi is reindexed along
ti+1(∗)) corresponds to the delayed substitution in the type theory. Further no-
tice that if B does not depend on x, then the interpretation of ` . [x � t] .B type
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3. Dependent Types

reduces to the interpretation .B, which is defined to be I applied to the
interpretation of B.

The above can be generalised to work for general contexts and sequences of
delayed substitutions, and one can then validate that the definitional equality
rules do indeed hold in this model.

3.7 Related Work

Birkedal et al. [14] introduced dependent type theory with the .modality, with
semantics in the topos of trees. The guardedness requirement was expressed
using the syntactic check that every occurrence of a type variable lies beneath a
.. This requirement was subsequently refined by Birkedal and Møgelberg [10],
who showed that guarded recursive types could be constructed via fixed-
points of functions on universes. However, the rules considered in these
papers do not allow one to apply terms of type .(Π(x : A).B), as the applicative
functor construction ~ was defined only for simple function spaces. They
are therefore less expressive for both programming (consider the covector
ones, and function map, of Sec. 3.3) and proving, noting the extensive use of
delayed substitutions in our example proofs. They further do not consider
coinductive types, and so are restricted to causal functions.

The extension to coinductive types, and hence acausal functions, is due
to Atkey and McBride [8], who introduced clock quantifiers into a simply
typed setting with guarded recursion. Møgelberg [66] extended this work to
dependent types and Bizjak and Møgelberg [19] refined the model further to
allow clock synchronisation.

Clouston et al. [27] introduced the logic Lgλ to prove properties of terms
of the (simply typed) guarded λ-calculus, gλ. This allowed proofs about
coinductive types, but not in the integrated fashion supported by dependent
type theories. Moreover it relied on types being “total”, a property that in a
dependently typed setting would entail a strong elimination rule for ., which
would lead to inconsistency.

Sized types [45] have been combined with copatterns [2] as an alternat-
ive type-based approach for modular programming with coinductive types.
This work is more mature than ours with respect to implementation and the
demonstration of syntactic properties such as normalisation, and so further de-
velopment of GDTT is essential to enable proper comparison. One advantage
of GDTT is that the later modality is useful for examples beyond coinduction,
and beyond the utility of sized types, such as the guarded recursive domain
equations used to model program logics [82].
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3.8 Conclusion and Future Work

We have described the dependent type theory GDTT. The examples we have
detailed show that GDTT provides a setting for programming and proving
with guarded recursive and coinductive types.

In future work we plan to investigate an intensional version of the type
theory and construct a prototype implementation to allow us to experiment
with larger examples. Preliminary work has suggested that the path type of
cubical type theory [29] interacts better with the new constructs of GDTT than
the ordinary Martin-Löf identity type.

Finally, we are investigating whether the generalisation of applicative func-
tors [64] to apply over dependent function spaces, via delayed substitutions,
might also apply to examples quite unconnected to the later modality.

Acknowledgements. This research was supported in part by the ModuRes
Sapere Aude Advanced Grant and DFF-Research Project 1 Grant no. 4002-
00442, both from The Danish Council for Independent Research for the
Natural Sciences (FNU). Aleš Bizjak was supported in part by a Microsoft
Research PhD grant.

3.A Overview of the appendix

Sec. 3.B contains type and term equalities of Fig. 3.3 in full detail. Sec. 3.C
starting on page 85 contains detailed explanations of examples from Sec. 3.3
explaining how the rules of GDTT are used. Sec. 3.D starting on page 93
contains detailed explanations of examples with coinductive types. Sec. 3.E
starting on page 95 contains a detailed derivation of the type isomorphism
∀κ.A+B � ∀κ.A+∀κ.B used in Sec. 3.4.
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3.B Typing rules

Definitional type equalities:

Γ ,Γ ′ `∆ A type `∆ ξ[x � t] : Γ
κ
_ Γ ′ ,x : B

Γ `∆
κ
.ξ [x � t] .A ≡ κ.ξ.A

TyEq-.-Weak

Γ ,Γ ′ ,x : B,y : C,Γ ′′ `∆ A type

`∆ ξ [x � t,y � u]ξ ′ : Γ
κ
_ Γ ′ ,x : B,y : C,Γ ′′ x not free in C

Γ `∆
κ
.ξ [x � t,y � u]ξ ′ .A ≡ κ.ξ [y � u,x � t]ξ ′ .A

TyEq-.-Exch

Γ `∆
κ
.ξ [x � nextκ ξ.t] .A type

Γ `∆
κ
.ξ [x � nextκ ξ.t] .A ≡ κ.ξ.A[t/x]

TyEq-Force

∆′ ⊆ ∆ `∆′ κ Γ ,Γ ′ `∆ A : U∆′ `∆ ξ : Γ
κ
_ Γ ′

Γ `∆ El(̂.κ (nextκ ξ.A)) ≡ κ.ξ.El(t)
TyEq-El-.

`∆ ξ : Γ
κ
_ Γ ′ Γ ,Γ ′ `∆ t : A Γ ,Γ ′ `∆ s : A

Γ `∆ Idκ
.ξ.A

(nextκ ξ.t,nextκ ξ.s) ≡ κ.ξ.IdA (t, s)
TyEq-.

Definitional term equalities:

Γ ,Γ ′ `∆ u : A `∆ ξ [x � t] : Γ
κ
_ Γ ′ ,x : B

Γ `∆ nextκ ξ [x � t] .u ≡ nextκ ξ.u :
κ
.ξ.A

TmEq-Next-Weak

Γ `∆ t :
κ
.ξ.A

Γ `∆ nextκ ξ [x � t] .x ≡ t :
κ
.ξ.A

TmEq-Next-Var

Γ ,Γ ′ ,x : B,y : C,Γ ′′ `∆ t : A

`∆ ξ [x � t,y � u]ξ ′ : Γ
κ
_ Γ ′ ,x : B,y : C,Γ ′′ x not free in C

Γ `∆ nextκ ξ [x � t,y � u]ξ ′ .v ≡ nextκ ξ [y � u,x � t]ξ ′ .v :
κ
.ξ [y � u,x � t]ξ ′ .A

TmEq-Next-Exch

Γ `∆ nextκ ξ [x � nextκ ξ.t] .u :
κ
.ξ [x � nextκ ξ.t] .A

Γ `∆ nextκ ξ [x � nextκ ξ.t] .u ≡ nextκ ξ.u[t/x] :
κ
.ξ.A[t/x]

TmEq-Force

Γ `∆ fixκ x.t : A

Γ `∆ fixκ x.t ≡ t[nextκ (fixκ x.t) /x] : A
TmEq-Fix
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3.C Examples

In this section we provide detailed explanations of typing derivations of
examples described in Sec. 3.3.

3.C.1 zipWithκ preserves commutativity

The first proof is the simplest. We will define the standard zipWithκ (zipWith)
function on streams and show that if a binary function f is commutative, then
so is zipWithκ f .

The zipWithκ : (A→ B→ C)→ StrκA→ StrκB→ StrκC is defined by guarded
recursion as

zipWithκ f , fixκϕ.λ(xs,ys : StrκA).

consκ (f (hdκ xs) (hdκ ys)) (ϕ κO tlκ xs κO tlκ ys)

Note that none of the new generalised . rules of GDTT are needed to type this
function; this is a function on simple types.

Where we need dependent types is, of course, to state and prove properties.
To prove our example, that commutativity of f implies commutativity of
zipWithκ f , means we must show that the type

Π(f : A→ A→ B). (Π(x,y : A).IdB (f xy,f y x))→

Π
(
xs,ys : StrκA

)
.IdStrκB (zipWithκ f xsys,zipWithκ f ysxs).

is inhabited. We will explain how to construct such a term, and why it is
typeable in GDTT. Although this construction might appear complicated at
first, the actual proof term that we construct will be as simple as possible.

Let f : A→ A→ B be a function and say we have a term

c :Π(x,y : A).IdB (f xy,f y x)

witnessing commutativity of f . We now wish to construct a term of type

Π
(
xs,ys : StrκA

)
.IdStrκC

(zipWithκ f xsys,zipWithκ f ysxs)

We do this by guarded recursion. To this end we assume

ϕ :
κ
.
(
Π

(
xs,ys : StrκA

)
.IdStrκB (zipWithκ f xsys,zipWithκ f ysxs)

)
and take xs,ys : StrκA. Using c (the proof that f is commutative) we first have
c (hdκ xs) (hdκ ys) of type

IdB (f (hdκ xs) (hdκ ys), f (hdκ ys) (hdκ xs))
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and because we have by definition of zipWithκ

hdκ (zipWithκ f xsys) ≡ f (hdκ xs) (hdκ ys)

hdκ (zipWithκ f ysxs) ≡ f (hdκ ys) (hdκ xs)

we see that c (hdκ xs) (hdκ ys) has type

IdB (hdκ (zipWithκ f xsys),hdκ (zipWithκ f ysxs)).

To show that the tails are equal we use the induction hypothesis ϕ. The terms
tlκ xs and tlκ ys are of type

κ
.StrκA, so we first have ϕ κO tlκ xs of type

κ
. [xs � tlκ xs] .

(
Π

(
ys : StrκA

)
.IdStrκC

(
zipWithκ f xsys,
zipWithκ f ysxs

))
Note the appearance of the generalised ., carrying a delayed substitution.
Because the variable xs does not appear in

κ
.StrκA we may apply the weakening

rule TmEq-Next-Weak to derive

tlκ ys :
κ
. [xs � tlκ xs] .StrκA

Hence we may use the derived applicative rule to have ϕ κO tlκ xs κO tlκ ys of
type

κ
.

[
xs � tlκ xs
ys � tlκ ys

]
.IdStrκC

(zipWithκ f xsys,zipWithκ f ysxs)

and which is definitionally equal to the type

Idκ
.StrκC


nextκ

[
xs � tlκ xs
ys � tlκ ys

]
.zipWithκ f xsys,

nextκ
[
xs � tlκ xs
ys � tlκ ys

]
.zipWithκ f ysxs

.
We also compute

tlκ (zipWithκ f xsys) ≡ nextκ(zipWithκ f ) κO tlκ xs κO tlκ ys

≡ nextκ
[
xs � tlκ xs
ys � tlκ ys

]
.(zipWithκ f xsys)

and

tlκ (zipWithκ f ysxs) ≡ nextκ
[
ys � tlκ ys
zs � tlκ xs

]
.(zipWithκ f ysxs).

Using the exchange rule TmEq-Next-Exch we have the equality

nextκ
[
ys � tlκ ys
xs � tlκ xs

]
.(zipWithκ f xsys) ≡ nextκ

[
xs � tlκ xs
ys � tlκ ys

]
.(zipWithκ f xsys).
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Putting it all together we have shown that the term ϕ κO tlκ xs κO tlκ ys has type

Idκ
.StrκB

(tlκ (zipWithκ f xsys), tlκ (zipWithκ f ysxs))

which means that the term

fixκϕ.λ
(
xs,ys : StrκA

)
.pη (c (hdκ xs) (hdκ ys)) (ϕ κO tlκ xs κO tlκ ys)

has type Π
(
xs,ys : StrκA

)
.IdStrκB (zipWithκ f xsys,zipWithκ f ysxs).

Notice that the resulting proof term could not be simpler than it is. In
particular, we do not have to write delayed substitutions in terms, but only in
the intermediate types.

3.C.2 An example with covectors

The next example is more sophisticated, as it will involve programming and
proving with a data type that, unlike streams, is dependently typed. In partic-
ular, we will see that the generalised later, carrying a delayed substitution, is
necessary to type even the most elementary programs.

Covectors are to colists (potentially infinite lists) as vectors are to lists. To
define guarded covectors we first need guarded co-natural numbers. This is
the type satisfying

CoNκ ≡ 1 +
κ
.CoNκ .

where binary sums are encoded in the type theory in a standard way. The
definition in GDTT is CoNκ , El

(
fixκϕ.(̂1 +̂ .̂κϕ)

)
.

Using CoNκ we define the type of covectors of type A, written CoVecκA, as
a CoNκ-indexed type satisfying

CoVecκA(inl〈〉) ≡ 1

CoVecκA(inr(nextκm)) ≡ A× κ.(CoVecκAm)

In GDTT we first define ̂CoVecκA

̂CoVecκA , fixκϕ.λ(n : CoNκ).casenof

inlu⇒ 1̂

inrm⇒ A ×̂ .̂κ(ϕ κOm).

and then CoVecκAn , El( ̂CoVecκAn). In the examples we will not distinguish

between CoVecκA and ̂CoVecκA. In the above ϕ has type
κ
.(CoNκ→U∆,κ) and

inside the branches, u has type 1 andm has type
κ
.CoNκ, which is evident from

the definition of CoNκ. As an example of covectors, we define ones of type

87



3. Dependent Types

Π(n : CoNκ).CoVecκ
N
n which produces a covector of any length consisting

only of ones:

ones ,fixκϕ.λ(n : CoNκ).casenof

inlu⇒ inl〈〉
inrm⇒ 〈1,ϕ κOm〉 .

When checking the type of this program, we need the generalised later. The
type of the recursive call is

κ
.(Π(n : CoNκ).CoVecκ

N
n), the type of m is

κ
.CoNκ,

and therefore the type of the subterm ϕ κOm must be

κ
. [n�m] .Π(n : CoNκ).CoVecκ

N
n.x

We now aim to define the function map on covectors and show that it
preserves composition. Given two types A and B the map function has type

map : (A→ B)→Π(n : CoNκ).CoVecκAn→ CoVecκBn.

and is defined by guarded recursion as

mapf ,fixκϕ.λ(n : CoNκ).

casenof

inlu⇒ λ(x : 1).x

inrm⇒ λ
(
p : A× κ. [n�m] .(CoVecκAn)

)
.

〈f (π1p) ,ϕ κOm κO (π2p)〉

Let us see why the definition has the correct type. First, the types of subterms
are

ϕ :
κ
.(Π(n : CoNκ).CoVecκAn→ CoVecκBn)

u : 1

m :
κ
.CoNκ

Let C = CoVecκAn→ CoVecκBn, and write C(t) for C[t/n]. By the definition
of CoVecκA and CoVecκB we have C(inlu) ≡ 1→ 1, and so λ(x : 1).x has type
C(inlu).

By the definition of CoVecκA we have

CoVecκA(inrm) ≡ A× El
(̂
.κ(nextκ(CoVecκA) κOm)

)
≡ A× κ. [n�m] .

(
CoVecκAn

)
and analogously for CoVecκB(inrm). Hence the type C(inrm) is convertible to(

A× κ. [n�m] .
(
CoVecκAn

))
→

(
B× κ. [n�m] .

(
CoVecκBn

))
.
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Further, using the derived applicative rule we have

ϕ κOm :
κ
. [n�m] .C(n)

and because π2p in the second branch has type

κ
. [n�m] .(CoVecκAn)

we may use the (simple) applicative rule again to get

ϕ κOm κO (π2p) :
κ
. [n�m] .(CoVecκBn)

which allows us to type

λ
(
p : A× κ. [n�m] .(CoVecκAn)

)
.〈f (π1p) ,ϕ κOm κOπ2(p)〉

with type C(inrm). Notice that we have made essential use of the more
general applicative rule to apply ϕ κOm to π2p. Using the strong (dependent)
elimination rule for binary sums we can type the whole case construct with
type C(n), which is what we need to give map the desired type.

Now we will show that map so defined satisfies a basic property, namely
that it preserves composition in the sense that the type (in the context where
we have types A, B and C)

Π(f : A→ B)(g : B→ C)(n : CoNκ)(xs : CoVecκAn).

IdCoVecκC n
(mapg n(mapf nxs),map(g ◦ f )nxs)

(3.8)

is inhabited. The proof is, of course, by Löb induction.
First we record some definitional equalities which follow directly by un-

folding the definitions

mapf (inlu)x ≡ x
mapf (inrm)xs ≡

〈
f (π1xs) ,nextκ(mapf ) κOm κOπ2(xs)

〉
≡ 〈f (π1xs),nextκ

[
n�m
ys � π2xs

]
.(mapf nys)〉

and so iterating these two equalities we get

mapg (inlu) (mapf (inlu)x) ≡ x
mapg (inrm) (mapf (inrm)xs) ≡ 〈g(f (π1xs)), s〉

where s is the term

nextκ


n�m

zs � nextκ
[
n�m
ys � π2xs

]
.(mapf nys)

 .(mapg nzs)
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which is convertible, by the rule TmEq-Force, to the term

nextκ
[
n�m
ys � π2xs

]
.(mapg n (mapf nys)).

Similarly we have

map(g ◦ f ) (inlu)x ≡ x

and map(g ◦ f ) (inrm)xs convertible to〈
g(f (π1xs)),nextκ

[
n�m
ys � π2xs

]
.(map(g ◦ f )nys)

〉
.

Now let us get back to proving property (3.8). Take f : A→ B, g : B→ C and
assume

ϕ :
κ
.Π(n : CoNκ)(xs : CoVecκAn).IdCoVecκC n

(mapg n(mapf nxs),map(g ◦ f )nxs)

We take n : CoNκ and write

P (n) =Π(xs : CoVecκAn).IdCoVecκC n
(mapg n(mapf nxs),map(g ◦ f )nxs).

Then similarly as in the definition of map and the definitional equalities for
map above we compute

P (inlu) ≡Π(xs : 1).Id1 (xs,xs)

and so we have λ(xs : 1).r1 xs of type P (inlu).
The other branch (when n = inrm) is of course a bit more complicated. As

before we have

CoVecκA(inrm) ≡ A× κ. [n�m] .CoVecκAn (3.9)

So take xs of type CoVecκA(inrm). We need to construct a term of type

IdCoVecκC n
(mapg n(mapf nxs),map(g ◦ f )nxs).

First we have rC g(f (π1xs)) of type IdC (g(f (π1xs)), g(f (π1xs))). Then because
m is of type

κ
.CoNκ we can use the induction hypothesis ϕ to get ϕ κOm of

type

κ
. [n�m] .Π(xs : CoVecκAn).IdCoVecκC n

(mapg n(mapf nxs),map(g ◦ f )nxs).

Using (3.9) we have π2xs of type
κ
. [n�m] .CoVecκAn and so we can use the

applicative rule again to give ϕ κOm κOπ2xs the type

κ
.

[
n�m
xs � π2xs

]
.IdCoVecκC n

(
mapg n(mapf nxs),
map(g ◦ f )nxs

)
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which by the rule TyEq-. is the same as

IdD


nextκ

[
n�m
xs � π2xs

]
. (mapg n(mapf nxs)) ,

nextκ
[
n�m
xs � π2xs

]
. (map(g ◦ f )nxs)


where D is the type

κ
. [n�m] .CoVecκC n. Thus we can give to the term

λ(xs : CoVecκA(inrm)).pη (rC g(f (π1xs))) (ϕ κOm κOπ2xs)

the type P (inrm). Using the dependent elimination rule for binary sums we
get the final proof of property (3.8) as the term

λ(f : A→ B)(g : B→ C).fixκϕ.λ(n : CoNκ).

casenof

inlu⇒ λ(xs : 1).r1 xs

inrm⇒ λ(xs : CoVecκA(inrm)).pη (rC g(f (π1xs))) (ϕ κOm κOπ2xs)

which is as simple as could be expected.

3.C.3 Lifting predicates to streams

Let P : A→U∆ be a predicate on type A and κ a clock variable not in ∆. We
can define a lifting of this predicate to a predicate P κ on streams of elements
of type A. The idea is that P κxs will hold precisely when P holds for all
elements of the stream. However we do not have access to all the element
of the stream at the same time. As such we will have P κxs if P holds for the
first element of the stream xs now, and P holds for the second element of the
stream xs one time step later, and so on. The precise definition uses guarded
recursion:

P κ : StrκA→U∆,κ
P κ , fixκϕ.λ

(
xs : StrκA

)
.P (hdκ xs) ×̂ .̂κ (ϕ κO tlκ xs) .

In the above term the subterm ϕ has type
κ
.
(
StrκA→U∆,κ

)
and so because tlκ xs

has type
κ
.StrκA we may formϕ κOtlκ xs of type

κ
.U∆,κ and so finally .̂κ(ϕ κOtlκ xs)

has type U∆,κ as needed.
To see that this makes sense, we have for a stream xs : StrκA

El (P κ xs) ≡ El (P (hdκ xs))× El (̂.κ (nextκ P κ κO tlκ xs)) .

Using delayed substitution rules we have

nextκ P κ κO tlκ xs ≡ nextκ [xs � tlκ xs] . (P κ xs)
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which gives rise to the type equality

El(̂.κnextκ P κ κO tlκ xs) ≡ El (̂.κnextκ [xs � tlκ xs] . (P κ xs)) .

Finally, the type equality rule TyEq-El-. gives us

El (̂.κnextκ [xs � tlκ xs] . (P κ xs)) ≡ κ
. [xs � tlκ xs] .El(P κ xs).

All of these together then give us the type equality

El (P κ xs) ≡ El(P (hdκ xs))× κ. [xs � tlκ xs] .El(P κ xs).

And so if xs = consκ x (nextκ ys) we can further simplify, using rule TyEq-

Force, to get

κ
. [xs � nextκ ys] .El(P κ xs) ≡ κ. (El(P κ xs)[ys/xs]) ≡ κ.El(P κ ys)

which then gives El(P κxs) ≡ El (P x)× κ.El (P κ ys) which is in accordance with
the motivation given above.

Because P κ is defined by guarded recursion, we prove its properties by
Löb induction. In particular, we may prove that if P holds on A then P κ holds
on StrκA, i.e., that the type

(Π(x : A).El (P x))→
(
Π

(
xs : StrκA

)
.El (P κ xs)

)
is inhabited (in a context where we have a type A and a predicate P ). Take
p :Π(x : A).El (P x), and since we are proving by Löb induction we assume the
induction hypothesis later

ϕ :
κ
.
(
Π

(
xs : StrκA

)
.El (P κ xs)

)
.

Let xs : StrκA be a stream. By definition of P κ we have the type equality

El(P κxs) ≡ El (P hdκ xs)× κ. [xs � tlκ xs] .El (P κ xs)

Applying p to hdκ xs gives us the first component

p(hdκ xs) : El (P (hdκ xs))

and applying the induction hypothesis ϕ we have

ϕ κO tlκ xs :
κ
. [xs � tlκ xs] .El(P κ xs)

Thus combining this with the previous term we have the proof of the lifting
property as the term

λ (p :Π(x : A).El (P x)) .

fixκϕ.λ
(
xs : StrκA

)〈
p (hdκ xs) ,ϕ κO tlκ xs

〉
.
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3.D Example programs with coinductive types

Let A be some small type in clock context ∆ and κ, a fresh clock variable. Let
StrA = ∀κ.StrκA. We can define head, tail and cons functions

hd : StrA→ A

hd , λxs.hdκ0 (xs[κ0])

tl : StrA→ StrA
tl , λxs.prevκ. tlκ (xs[κ])

cons : A→ StrA→ StrA
cons , λx.λxs.Λκ.consκ x (nextκ (xs[κ])) .

With these we can define the acausal ‘every other’ function eoκ that re-
moves every second element of the input stream. This is acausal because the
second element of the output stream is the third element of the input. There-
fore to type the function we need to have the input stream always available,
necessitating the use clock quantification. The function eoκ is

eoκ : StrA→ StrκA
eoκ , fixκϕ.λ (xs : StrA) .

consκ(hdxs) (ϕ κOnextκ ((tl(tlxs)))) .

i.e., we return the head immediately and then recursively call the function
on the stream with the first two elements removed. Note that the result
is a guarded stream, but we can easily strengthen it and define eo of type
StrA→ StrA as eo , λxs.Λκ.eoκ xs.

A more interesting type is the type of covectors, which is a refinement of
the guarded type of covectors defined in Sec. 3.3. First we define the type of
co-natural numbers CoN as

CoN = ∀κ.CoNκ .

It is easy to define 0 and succ as

0 : CoN

0 ,Λκ. inl〈〉
succ : CoN→ CoN

succ , λn.Λκ. inr (nextκ (n[κ]))
.

Next, we will use type isomorphisms to define a transport function comCoN

of type comCoN : CoN→ 1 + CoN as

comCoN , λn.casecom+nof

inlu⇒ inlu[κ0]

inrn⇒ inrprevκ.n[κ]
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This function satisfies term equalities

comCoN0 ≡ inl〈〉 comCoN(succn) ≡ inrn. (3.10)

Using this we can define type of covectors CoVecA as

CoVecA n , ∀κ.CoVecκA n

where CoVecκA : CoN→U∆,κ is the term

fixκϕ.λ (n : CoN) .casecomCoNnof

inl_⇒ 1̂

inrn⇒ A×̂̂.κ (ϕ κO (nextκ n)) .

Notice the use of comCoN to transport n of type CoN to a term of type 1+CoN
which we can case analyse. To see that this type satisfies the correct type
equalities we need some auxiliary term equalities which follow from the way
we have defined the terms.

Using term equalities (3.4) and (3.5) we can derive the (almost) expected
type equalities

CoVecA 0 ≡ ∀κ.1

CoVecA (succn) ≡ ∀κ.
(
A× κ. (CoVecκ n)

) (3.11)

and using the type isomorphisms we can extend these type equalities to type
isomorphisms

CoVecA 0 � 1

CoVecA (succn) � A×CoVecA n

which are the expected type properties of the covector type.
A simple function we can define is the tail function

tl : CoVecA(succn)→ CoVecA
tl , λv.prevκ.π2 (v[κ]) .

Note that we have used (3.11) to ensure that tl is type correct.
Next, we define the map function on covectors.

map : (A→ B)→Π(n : CoN).CoVecAn→ CoVecBn

mapf = λn.λxs.Λκ.mapκ f n (xs[κ])

where mapκ is the function of type

mapκ : (A→ B)→Π(n : CoN).CoVecκAn→ CoVecκBn
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defined as

λf .fixκϕ.λn.casecomCoNnof

inl_⇒ λv.v

inrn⇒ λv.
〈
f (π1v),ϕ κO (nextκ n) κOπ2(v)

〉
.

Let us see that this has the correct type. Let DA(x) (and analogously DB(x)) be
the type

DA(x) ,

casexof

inl_⇒ 1̂

inrn⇒ A×̂̂.κ
((

nextκCoVecκA
)
κO (nextκ n)

)
.

where x is of type 1 + CoN. Using this abbreviation we can write the type of
mapκ as

(A→ B)→Π(n : CoN).DA(comCoNn)→DB(comCoNn).

Using this it is straightforward to show, using the dependent elimination rule
for sums, as we did in Sec. 3.3, that mapκ has the correct type. Indeed we
have DA(inlz) ≡ 1 and DA(inrn) ≡ A× κ. (CoVecAn).

3.E Type isomorphisms in detail

• If κ < A then ∀κ.A � A. The terms are λx.x [κ0] and λx.Λκ.x. The rule
TmEq-∀-fresh is crucially needed to show that they constitute a type
isomorphism.

• If κ < A then ∀κ.Π(x : A).B �Π(x : A).∀κ.B. The terms are

λz.λx.Λκ.z[κ] x

of type ∀κ.Π(x : A).B→Π(x : A).∀κ.B and

λz.Λκ.λx.(zx)[κ]

of type Π(x : A).∀κ.B→∀κ.Π(x : A).B.

• ∀κ.Σ (x : A)B � Σ (y : ∀κ.A) (∀κ.B [y[κ]
/
x]). The terms are

λz.〈Λκ.π1 (z[κ]) ,Λκ.π2 (z[κ])〉

of type

∀κ.Σ (x : A)B→ Σ (y : ∀κ.A) (∀κ.B [y[κ]
/
x])

and

λz.Λκ.〈(π1 z)[κ] , (π2 z)[κ]〉

of the converse type.
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• ∀κ.A � ∀κ.κ.A. The terms are

λz.Λκ.nextκ(z[κ])

of type ∀κ.A→∀κ.κ.A and

λz.prevκ. (z[κ])

of the converse type. The β and η rules for prevκ. ensure that this pair
of functions constitutes an isomorphism.

Using these isomorphisms we can construct an additional type isomorph-
ism witnessing that ∀κ commutes with binary sums. Recall that we encode
binary coproducts using Σ-types and universes in the standard way. Given
two codes Â and B̂ in some universe U∆ we define

Â+̂B̂ : U∆
Â+̂B̂ , Σ (b : B) ifb then Âelse B̂

and we write A+B for El
(
Â+̂B̂

)
. Suppose that ∆′ ⊆ ∆ and κ is a clock variable

not in ∆. Suppose that Γ `∆ and that we have two codes Â, B̂ satisfying

Γ `∆,κ Â : U∆′ ,κ Γ `∆,κ B̂ : U∆′ ,κ

We start with an auxiliary function comif. Let b be some term of type B.
We then define

comif
b : ∀κ.El

(
ifb then Âelse B̂

)
→ El

(
ifb then ∀̂Λκ.Âelse ∀̂Λκ.B̂

)
comif

b , ifb thenλx.xelseλx.x

which is typeable due to the strong elimination rule for B.
We now define the function com+

com+ : ∀κ.(A+B)→∀κ.A+∀κ.B

com+ , λz.
〈
π1 (z[κ0]) ,comif

π1(z[κ0]) (Λκ.π2 (z[κ]))
〉
.

We need to check that the types are well-formed and the function well-typed.
The side condition Γ `∆ ensures that the types are well-formed. To see that
the function com+ is well-typed we consider the types of subterms.

- The term z has type ∀κ.(A+B).

- The term π1 (z[κ0]) has type B.
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- The term Λκ.π2 (z[κ]) has type

∀κ.El
(
ifπ1 (z[κ]) then Âelse B̂

)
- From TmEq-∀-fresh we get π1(z[κ0]) ≡ π1(z[κ]). Indeed, the term

Λκ.π1(z[κ])

has type B, which does not contain κ, and the required equality follows
from TmEq-∀-fresh and the β rule for clock quantification.

- Thus the term Λκ.π2 (z[κ]) has type

∀κ.El
(
ifπ1 (z[κ0]) then Âelse B̂

)
- And so the term

comif
π1(z[κ0])Λκ.π2 (z[κ])

has type

El
(
ifπ1 (z[κ0]) then ∀̂Λκ.Âelse ∀̂Λκ.B̂

)
which is exactly the type needed to typecheck the whole term.

For the term com+ we can derive the following definitional term equalities.

com+ (Λκ. inl t) ≡ inlΛκ.t

com+ (Λκ. inr t) ≡ inrΛκ.t
(3.12)

There is also a canonical term of type

∀κ.A+∀κ.B→∀κ.(A+B)

defined as

λz.Λκ.casezof

inla⇒ inl (a[κ])

inlb⇒ inl (b[κ]).

This term is inverse to com+, although we require equality reflection to show
that the two functions are inverses to each other. Without equality reflec-
tion we can only prove they are inverses up to propositional equality. The
isomorphisms defined previously do not require equality reflection.
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Chapter 4

Cubical Types

This chapter consists of the paper:

[15] Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl,
Bas Spitters, and Andrea Vezzosi.
Guarded Cubical Type Theory: Path Equality for Guarded Recursion
In Computer Science Logic (CSL), 2016.

along with a technical appendix.

Abstract

This paper improves the treatment of equality in guarded dependent
type theory (GDTT), by combining it with cubical type theory (CTT).
GDTT is an extensional type theory with guarded recursive types, which
are useful for building models of program logics, and for programming
and reasoning with coinductive types. We wish to implement GDTT
with decidable type checking, while still supporting non-trivial equality
proofs that reason about the extensions of guarded recursive construc-
tions. CTT is a variation of Martin-Löf type theory in which the identity
type is replaced by abstract paths between terms. CTT provides a com-
putational interpretation of functional extensionality, is conjectured to
have decidable type checking, and has an implemented type checker.
Our new type theory, called guarded cubical type theory, provides a
computational interpretation of extensionality for guarded recursive
types. This further expands the foundations of CTT as a basis for formal-
isation in mathematics and computer science. We present examples to
demonstrate the expressivity of our type theory, all of which have been
checked using a prototype type-checker implementation, and present
semantics in a presheaf category.

4.1 Introduction

Guarded recursion is a technique for defining and reasoning about infinite
objects. Its applications include the definition of productive operations on
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data structures more commonly defined via coinduction, such as streams,
and the construction of models of program logics for modern programming
languages with features such as higher-order store and concurrency [13]. This
is done via the type-former ., called ‘later’, which distinguishes data which is
available immediately from data only available after some computation, such
as the unfolding of a fixed-point. For example, guarded recursive streams are
defined by the equation

StrA = A× .StrA

rather than the more standard StrA = A × StrA, to specify that the head is
available now but the tail only later. The type for fixed-point combinators
is then (.A→ A)→ A, rather than the logically inconsistent (A→ A)→ A,
disallowing unproductive definitions such as taking the fixed-point of the
identity function.

Guarded recursive types were developed in a simply-typed setting by
Clouston et al. [27], following earlier work [3, 8, 69], alongside a logic for
reasoning about such programs. For large examples such as models of pro-
gram logics, we would like to be able to formalise such reasoning. A major
approach to formalisation is via dependent types, used for example in the
proof assistants Coq [63] and Agda [70]. Bizjak et al. [22], following earlier
work [14, 66], introduced guarded dependent type theory (GDTT), integrating
the . type-former into a dependently typed calculus, and supporting the
definition of guarded recursive types as fixed-points of functions on universes,
and guarded recursive operations on these types.

We wish to formalise non-trivial theorems about equality between guarded
recursive constructions, but such arguments often cannot be accommodated
within intensional Martin-Löf type theory. For example, we may need to be
able to reason about the extensions of streams in order to prove the equality
of different stream functions. Hence GDTT includes an equality reflection
rule, which is well known to make type checking undecidable. This prob-
lem is close to well-known problems with functional extensionality [42, Sec.
3.1.3], and indeed this analogy can be developed. Just as functional exten-
sionality involves mapping terms of type (x : A)→ IdB (f x) (gx) to proofs of
Id (A→ B)f g, extensionality for guarded recursion requires an extensionality
principle for later types, namely the ability to map terms of type . IdAtu to
proofs of Id (.A) (next t) (nextu), where next is the constructor for .. These
types are isomorphic in the intended model, the presheaf category ω̂ known
as the topos of trees, and so in GDTT their equality was asserted as an axiom.
But in a calculus without equality reflection we cannot merely assert such
axioms without losing canonicity.

Cubical type theory (CTT) [29] is a new type theory with a computational
interpretation of functional extensionality but without equality reflection,
and hence is a candidate for extension with guarded recursion, so that we
may formalise our arguments without incurring the disadvantages of fully
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extensional identity types. CTT was developed primarily to provide a compu-
tational interpretation of the univalence axiom of Homotopy Type Theory [84].
The most important novelty of CTT is the replacement of inductively defined
identity types by paths, which can be seen as maps from an abstract interval I,
and are introduced and eliminated much like functions. CTT can be extended
with identity types which model all rules of standard Martin-Löf type the-
ory [29, Sec. 9.1], but these are equivalent to path types, and in our paper it
suffices to work with path types only. CTT has sound denotational semantics
in (fibrations in) cubical sets, a presheaf category that is used to model homo-
topy types. Many basic syntactic properties of CTT, such as the decidability
of type checking, and canonicity for base types, are yet to be proved, but a
type checker has been implemented1 that confers some confidence in such
properties.

In Sec. 4.2 of this paper we propose guarded cubical type theory (GCTT),
a combination of the two type theories2 which supports non-trivial proofs
about guarded recursive types via path equality, while retaining the potential
for good syntactic properties such as decidable type-checking and canonicity.
In particular, just as a term can be defined in CTT to witness functional
extensionality, a term can be defined in GCTT to witness extensionality for
later types. Further, we use elements of the interval of CTT to annotate fixed-
points, and hence control their unfoldings. This ensures that fixed-points
are path equal, but not judgementally equal, to their unfoldings, and hence
prevents infinite unfoldings, an obvious source of non-termination in any
calculus with infinite constructions. The resulting calculus is shown via
examples to be useful for reasoning about guarded recursive operations; we
also view it as potentially significant from the point of view of CTT, extending
its expressivity as a basis for formalisation.

In Sec. 4.3 we give sound semantics to this type theory via the presheaf
category over the product of the categories used to define semantics for GDTT
and CTT. This requires considerable work to ensure that the constructions
of the two type theories remain sound in the new category, particularly the
glueing and universe of CTT. The key technical challenge is to ensure that
the . type-former supports the compositions that all types must carry in the
semantics of CTT.

We have implemented a prototype type-checker for this extended type
theory3, which provides confidence in the type theory’s syntactic properties.
All examples in this paper, and many others, have been formalised in this
type checker.

For reasons of space many details and proofs are omitted from this paper,

1https://github.com/mortberg/cubicaltt
2with the exception of the clock quantification of GDTT, which we leave to future work.
3http://github.com/hansbugge/cubicaltt/tree/gcubical
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but are included in a technical appendix4.

4.2 Guarded Cubical Type Theory

This section introduces guarded cubical type theory (GCTT), and presents
examples of how it can be used to prove properties of guarded recursive
constructions.

4.2.1 Cubical Type Theory

We first give a brief overview of cubical type theory5 (CTT) [29]. We start
with a standard dependent type theory with Π, Σ, natural numbers, and a
Russell-style universe:

Γ ,∆ ::= () | Γ ,x : A Contexts

t,u,A,B ::= x | λx : A.t | t u | (x : A)→ B Π-types
| (t,u) | t.1 | t.2 | (x : A)×B Σ-types
| 0 | s t | natrec t u | N Natural numbers
| U Universe

We adhere to the usual conventions of considering terms and types up to
α-equality, and writing A→ B, respectively A×B, for non-dependent Π and
Σ-types. We use the symbol ‘=’ for judgemental equality.

The central novelty of CTT is its treatment of equality. Instead of the
inductively defined identity types of intensional Martin-Löf type theory [62],
CTT has paths. The paths between two terms t,u of type A form a sort of
function space, intuitively that of continuous maps from some interval I to
A, with endpoints t and u. Rather than defining the interval I concretely as
the unit interval [0,1] ⊆ R, it is defined as the free De Morgan algebra on a
discrete infinite set of names {i, j,k, . . . }. A De Morgan algebra is a bounded
distributive lattice with an involution 1− · satisfying the De Morgan laws

1− (i ∧ j) = (1− i)∨ (1− j), 1− (i ∨ j) = (1− i)∧ (1− j).

The interval [0,1] ⊆R, with min, max and 1− ·, is an example of a De Morgan
algebra.

The syntax for elements of I is:

r, s ::= 0 | 1 | i | 1− r | r ∧ s | r ∨ s.

0 and 1 represent the endpoints of the interval. We extend the definition of
contexts to allow introduction of a new name:

Γ ,∆ ::= · · · | Γ , i : I.
4http://cs.au.dk/~birke/papers/gdtt-cubical-technical-appendix.pdf
5http://www.cse.chalmers.se/~coquand/selfcontained.pdf is a self-contained

presentation of CTT.
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Γ ` A Γ ` t : A Γ ` u : A

Γ ` PathA t u

Γ ` A Γ , i : I ` t : A

Γ ` 〈i〉 t : PathA t[0/i] t[1/i]

Γ ` t : PathA u s Γ ` r : I

Γ ` t r : A

Figure 4.1: Typing rules for path types.

The judgement Γ ` r : I means that r draws its names from Γ . Despite this nota-
tion, I is not a first-class type. Path types and their elements are defined by the
rules in Fig. 4.1. Path abstraction, 〈i〉 t, and path application, t r, are analogous
to λ-abstraction and function application, and support the familiar β-equality
(〈i〉 t)r = t[r/i] and η-equality 〈i〉 t i = t. There are two additional judgemental
equalities for paths, regarding their endpoints: given p : PathA t u we have
p0 = t and p1 = u.

Paths provide a notion of identity which is more extensional than that of
intensional Martin-Löf identity types, as exemplified by the proof term for
functional extensionality:

funext f g , λp.〈i〉λx.px i : ((x : A)→ PathB (f x) (g x))→ Path (A→ B) f g.

The rules above suffice to ensure that path equality is reflexive, symmetric,
and a congruence, but we also need it to be transitive and, where the under-
lying type is the universe, to support a notion of transport. This is done via
(Kan) composition operations.

To define these we need the face lattice, F, defined as the free distributive
lattice on the symbols (i = 0) and (i = 1) for all names i, quotiented by the
relation (i = 0)∧ (i = 1) = 0F. The syntax for elements of F is:

ϕ,ψ ::= 0F | 1F | (i = 0) | (i = 1) | ϕ ∧ψ | ϕ ∨ψ.

As with the interval, F is not a first-class type, but the judgement Γ ` ϕ : F
asserts that ϕ draws its names from Γ . We also have the judgement Γ ` ϕ = ψ :
F which asserts the equality of ϕ and ψ in the face lattice. Contexts can be
restricted by elements of F:

Γ ,∆ ::= · · · | Γ ,ϕ.

Such a restriction affects equality judgements so that, for example, Γ ,ϕ ` ψ1 =
ψ2 : F is equivalent to Γ ` ϕ ∧ψ1 = ϕ ∧ψ2 : F

We write Γ ` t : A[ϕ 7→ u] as an abbreviation for the two judgements
Γ ` t : A and Γ ,ϕ ` t = u : A, noting the restriction with ϕ in the equality
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judgement. Now the composition operator is defined by the typing and
equality rule

Γ ` ϕ : F Γ , i : I ` A Γ ,ϕ, i : I ` u : A Γ ` a0 : A[0/i][ϕ 7→ u[0/i]]

Γ ` compi A [ϕ 7→ u] a0 : A[1/i][ϕ 7→ u[1/i]]
.

A simple use of composition is to implement the transport operation for Path
types

transpi A a , compi A [0F 7→ []] a : A[1/i],

where a has type A[0/i]. The notation [] stands for an empty system. In general
a system is a list of pairs of faces and terms, and it defines an element of a
type by giving the individual components at each face. We extend the syntax
as follows:

t,u,A,B ::= · · · | [ϕ1 t1, . . . ,ϕn tn].

Below we see two of the rules for systems; they ensure that the components of
a system agree where the faces overlap, and that all the cases possible in the
current context are covered:

Γ ` A Γ ` ϕ1 ∨ . . .∨ϕn = 1F : F
Γ ,ϕi ` ti : A Γ ,ϕi ∧ϕj ` ti = tj : A i, j = 1 . . .n

Γ ` [ϕ1 t1, . . . ,ϕn tn] : A

Γ ` [ϕ1 t1, . . . ,ϕn tn] : A Γ ` ϕi = 1F : F

Γ ` [ϕ1 t1, . . . ,ϕn tn] = ti : A

We will shorten [ϕ1 ∨ . . .∨ϕn 7→ [ϕ1 t1, . . . ,ϕn tn]] to [ϕ1 7→ t1, . . . ,ϕn 7→ tn].
A non-trivial example of the use of systems is the proof that Path is

transitive; given p : PathA a b and q : PathA b c we can define

transitivity pq , 〈i〉compj A [(i = 0) 7→ a, (i = 1) 7→ q j] (p i) : PathA a c.

This builds a path between the appropriate endpoints because we have the
equalities compj A [1F 7→ a] (p0) = a and compj A [1F 7→ q j] (p1) = q1 = c.

For reasons of space we have omitted the descriptions of some features of
CTT, such as glueing, and the further judgemental equalities for terms of the
form compi A [ϕ 7→ u] a0 that depend on the structure of A.

4.2.2 Later Types

In Fig. 4.3 we present the ‘later’ types of guarded dependent type theory
(GDTT) [22], with judgemental equalities in Figs. 4.4 and 4.5. Note that we do
not add any new equation for the interaction of compositions with .; such an
equation would be necessary if we were to add the eliminator prev for ., but
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Γ `
` · : Γ _ ·

` ξ : Γ _ Γ ′ Γ ` t : .ξ.A

` ξ [x← t] : Γ _ Γ ′ ,x : A

Figure 4.2: Formation rules for delayed substitutions.

Γ ,Γ ′ ` A ` ξ : Γ _ Γ ′

Γ ` .ξ.A
Γ ,Γ ′ ` A : U ` ξ : Γ _ Γ ′

Γ ` .ξ.A : U

Γ ,Γ ′ ` t : A ` ξ : Γ _ Γ ′

Γ ` nextξ. t : .ξ.A

Figure 4.3: Typing rules for later types.

this extension (which involves clock quantifiers) is left to further work. We
delay the presentation of the fixed-point operation until the next section.

The typing rules use the delayed substitutions of GDTT, as defined in Fig. 4.2.
Delayed substitutions resemble Haskell-style do-notation, or a delayed form
of let-binding. If we have a term t : .A, we cannot access its contents ‘now’,
but if we are defining a type or term that itself has some part that is available
‘later’, then this part should be able to use the contents of t. Therefore delayed
substitutions allow terms of type .A to be unwrapped by . and next. As
observed by Bizjak et al. [22] these constructions generalise the applicative
functor [64] structure of ‘later’ types, by the definitions pure t , next t, and
f ~ t , next [f ′← f , t′← t] . f ′ t′, as well as a generalisation of the ~ operation
from simple functions to Π-types. We here make the new observation that
delayed substitutions can express the function .̂ : .U → U, introduced by
Birkedal and Møgelberg [10] to express guarded recursive types as fixed-
points on universes, as λu..[u′ ← u].u′; see for example the definition of
streams in Sec. 4.2.4.

Example 4.1. In GDTT it is essential that we can convert terms of type
.ξ. IdA t u into terms of type Id.ξ.A (nextξ. t) (nextξ.u), as it is essential for Löb
induction, the technique of proof by guarded recursion where we assume .p,
deduce p, and hence may conclude p with no assumptions. This is achieved
in GDTT by postulating as an axiom the following judgemental equality:

Id.ξ.A (nextξ. t) (nextξ.u) = .ξ. IdA t u (4.1)

A term from left-to-right of (4.1) can be defined using the J-eliminator for
identity types, but the more useful direction is right-to-left, as proofs of
equality by Löb induction involve assuming that we later have a path, then
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` ξ [x← t] : Γ _ Γ ′ ,x : B Γ ,Γ ′ ` A
Γ ` .ξ [x← t] .A = .ξ.A

` ξ [x← t,y← u]ξ ′ : Γ _ Γ ′ ,x : B,y : C,Γ ′′

Γ ,Γ ′ ` C Γ ,Γ ′ ,x : B,y : C,Γ ′′ ` A
Γ ` .ξ [x← t,y← u]ξ ′ .A = .ξ [y← u,x← t]ξ ′ .A

` ξ : Γ _ Γ ′ Γ ,Γ ′ ,x : B ` A Γ ,Γ ′ ` t : B

Γ ` .ξ [x← nextξ. t] .A = .ξ.A[t/x]

Figure 4.4: Type equality rules for later types (congruence and equivalence
rules are omitted).

` ξ [x← t] : Γ _ Γ ′ ,x : B Γ ,Γ ′ ` u : A

Γ ` nextξ [x← t] .u = nextξ.u : .ξ.A

` ξ [x← t,y← u]ξ ′ : Γ _ Γ ′ ,x : B,y : C,Γ ′′

Γ ,Γ ′ ` C Γ ,Γ ′ ,x : B,y : C,Γ ′′ ` v : A

Γ ` nextξ [x← t,y← u]ξ ′ .v = nextξ [y← u,x← t]ξ ′ .v : .ξ [x← t,y← u]ξ ′ .A

` ξ : Γ _ Γ ′ Γ ,Γ ′ ,x : B ` u : A Γ ,Γ ′ ` t : B

Γ ` nextξ [x← nextξ. t] .u = nextξ.u[t/x] : .ξ.A[t/x]

Γ ` t : .ξ.A

Γ ` nextξ [x← t] .x = t : .ξ.A

Figure 4.5: Term equality rules for later types. We omit congruence and
equivalence rules, and the rules for terms of type U, which reflect the type
equality rules of Fig. 4.4.
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Γ ` r : I Γ ,x : .A ` t : A

Γ ` dfixr x.t : .A

Γ ,x : .A ` t : A

Γ ` dfix1 x.t = next t[dfix0 x.t/x] : .A
.

Figure 4.6: Typing and equality rules for the delayed fixed-point

converting this into a path on later types. In fact in GCTT we can define a
term with the desired type:

λp.〈i〉nextξ[p′← p].p′ i : (.ξ.PathAtu)→ Path (.ξ.A) (nextξ. t) (nextξ.u).
(4.2)

Note the similarity of this term and type with that of funext, for functional
extensionality, presented on page 103. Indeed we claim that (4.2) provides a
computational interpretation of extensionality for later types.

4.2.3 Fixed Points

In this section we complete the presentation of GCTT by addressing fixed
points. In GDTT there are fixed-point constructions fixx.t with the judge-
mental equality fixx.t = t[nextfixx.t/x]. In GCTT we want decidable type
checking, including decidable judgemental equality, and so we cannot ad-
mit such an unrestricted unfolding rule. Our solution it that fixed points
should not be judgementally equal to their unfoldings, but merely path equal.
We achieve this by decorating the fixed-point combinator with an interval
element which specifies the position on this path. The 0-endpoint of the
path is the stuck fixed-point term, while the 1-endpoint is the same term
unfolded once. However this threatens canonicity for base types: if we allow
stuck fixed-points in our calculus, we could have stuck closed terms fixi x.t
inhabiting N. To avoid this, we introduce the delayed fixed-point combinator
dfix, which produces a term ‘later’ instead of a term ‘now’. Its typing rule, and
notion of equality, is given in Fig. 4.6. We will write fixr x.t for t[dfixr x.t/x],
fixx.t for fix0 x.t, and dfixx.t for dfix0 x.t.

Lemma 4.2 (Canonical unfold lemma). For any term Γ ,x : .A ` t : A there is a
path between fixx.t and t[nextfixx.t/x], given by the term 〈i〉fixi x.t.

Transitivity of paths (via compositions) ensures that fixx.t is path equal to
any number of fixed-point unfoldings of itself.

A term a of typeA is said to be a guarded fixed point of a function f : .A→ A
if there is a path from a to f (nexta).

Proposition 4.3 (Unique guarded fixed points). Any guarded fixed-point a of a
term f : .A→ A is path equal to fixx.f x.
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Proof. Given p : PathA a (f (nexta)), we proceed by Löb induction, i.e., by
assuming ih : .(PathA a (fixx.f x)). We can define a path

s , 〈i〉f (next [q← ih] .q i) : PathA (f (nexta)) (f (nextfixx.f x)),

which is well-typed because the type of the variable q ensures that q0 is
judgementally equal to a, resp. q1 and fixx.f x. Note that we here implicitly
use the extensionality principle for later (4.2). We compose s with p, and then
with the inverse of the canonical unfold lemma of Lem. 4.2, to obtain our
path from a to fixx.f x. We can write out our full proof term, where p−1 is the
inverse path of p, as

fixih .〈i〉compj A [(i = 0) 7→ p−1, (i = 1) 7→ f (dfix1−j x.f x)] (f (next [q← ih] .q i)).

4.2.4 Programming and Proving with Guarded Recursive Types

In this section we show some simple examples of programming with guarded
recursion, and prove properties of our programs using Löb induction.

Streams. The type of guarded recursive streams in GCTT, as with GDTT,
are defined as fixed points on the universe:

StrA , fixx.A× .[y← x].y

Note the use of a delayed substitution to transform a term of type .U to one
of type U, as discussed at the start of Sec. 4.2.2. Desugaring to restate this in
terms of dfix, we have

StrA = A× .[y← dfix0 x.A× .[y← x].y].y

The head function hd : StrA → A is the first projection. The tail function,
however, cannot be the second projection, since this yields a term of type

.
[
y← dfix0 x.A× . [y← x] .y

]
.y (4.3)

rather than the desired .StrA. However we are not far off; .StrA is judgement-
ally equal to .

[
y← dfix1 x.A× . [y← x] .y

]
.y, which is the same term as (4.3),

apart from endpoint 1 replacing 0. The canonical unfold lemma (Lem. 4.2)
tells us that we can build a path in U from StrA to A × .StrA; call this path
〈i〉StriA. Then we can transport between these types:

unfold s , transpi StriA s fold s , transpi Str1−i
A s

Note that the compositions of these two operations are path equal to identity
functions, but not judgementally equal. We can now obtain the desired tail
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function tl : StrA → .StrA by composing the second projection with unfold,
so tl s , (unfold s).2. Similarly we can define the stream constructor cons
(written infix as ::) by using fold:

cons , λa,s. fold (a,s) : A→ .StrA→ StrA .

We now turn to higher order functions on streams. We define zipWith :
(A→ B→ C)→ StrA→ StrB→ StrC , the stream function which maps a binary
function on two input streams to produce an output stream, as

zipWith f , fixz.λs1, s2.f (hd s1) (hd s2) :: next


z′← z
t1← tl s1
t2← tl s2

 . z′ t1 t2.
Of course zipWith is definable even with simple types and ., but in GCTT we
can go further and prove properties about the function:

Proposition 4.4 (zipWith preserves commutativity). If f : A→ A→ B is com-
mutative, then zipWith f : StrA→ StrA→ StrB is commutative.

Proof. Let c : (a1 : A)→ (a2 : A)→ PathB (f a1 a2) (f a2 a1) witness commut-
ativity of f . We proceed by Löb induction, i.e., by assuming

ih : . ((s1 : StrA)→ (s2 : StrA)→ PathB (zipWith f s1 s2) (zipWith f s2 s1)) .

Let i : I be a fresh name, and s1, s2 : StrA. Our aim is to construct a stream
v which is zipWith f s1 s2 when substituting 0 for i, and zipWith f s2 s1 when
substituting 1 for i. An initial attempt at this proof is the term

v , c (hd s1) (hd s2) i :: next


q← ih
t1← tl s1
t2← tl s2

 .q t1 t2 i : StrB,

which is equal to

f (hd s1) (hd s2) :: next

[
t1← tl s1
t2← tl s2

]
. zipWith f t1 t2

when substituting 0 for i, which is zipWith f s1 s2, but unfolded once. Simil-
arly, v[1/i] is zipWith f s2 s1 unfolded once. Let 〈j〉zipWithj be the canonical
unfold lemma associated with zipWith (see Lem. 4.2). We can now finish
the proof by composing v with (the inverse of) the canonical unfold lemma.
Diagrammatically, with i along the horizontal axis and j along the vertical:

zipWith f s1 s2 zipWith f s2 s1

f (hd s1) (hd s2) ::

next

[
t1← tl s1
t2← tl s2

]
. zipWith f t1 t2

f (hd s2) (hd s1) ::

next

[
t2← tl s2
t1← tl s1

]
. zipWith f t2 t1

zipWith1−j f s1 s2

v

zipWith1−j f s2 s1
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The complete proof term, in the language of the type checker, can be found in
Appendix 4.A.

Guarded recursive types with negative variance. A key feature of guarded
recursive types are that they support negative occurrences of recursion vari-
ables. This is important for applications to models of program logics [13].
Here we consider a simple example of a negative variance recursive type,
namely RecA , fixx.(.[x′← x].x′)→ A, which is path equal to .RecA→ A. As
a simple demonstration of the expressiveness we gain from negative guarded
recursive types, we define a guarded variant of Curry’s Y combinator:

∆ , λx.f (next[x′← x]. ((unfoldx′)x)) : .RecA→ A
Y , λf .∆(nextfold∆) : (.A→ A)→ A,

where fold and unfold are the transports along the path between RecA and
.RecA → A. As with zipWith, Y can be defined with simple types and . [3];
what is new to GCTT is that we can also prove properties about it:

Proposition 4.5 (Y is a guarded fixed-point combinator). Yf is path equal to
f (next(Yf )), for any f : .A→ A. Therefore, by Prop. 4.3, Y is path equal to fix.

Proof. Yf simplifies to f (next(unfold (fold∆) (nextfold∆))), and unfold (fold∆)
is path equal to ∆. A congruence over this path yields our path between Yf
and f (next(Yf )).

4.3 Semantics

In this section we sketch the semantics of GCTT. The semantics is based on
the category ̂C ×ω of presheaves on the category C ×ω, where C is the category
of cubes [29] and ω is the poset of natural numbers. The category of cubes is
the opposite of the Kleisli category of the free De Morgan algebra monad on
finite sets. More concretely, given a countably infinite set of names i, j,k, . . .,
C has as objects finite sets of names I , J . A morphism I → J ∈ C is a function
J →DM (I), where DM (I) is the free De Morgan algebra with generators I .

Following the approach of Cohen et al. [29], contexts of GCTT will be
interpreted as objects of ̂C ×ω. Types in context Γ will be interpreted as pairs
(A,cA) of a presheaf A on the category of elements of Γ and a composition
structure cA. We call such a pair a fibrant type.

To aid in defining what a composition structure is, and in showing that
composition structure is preserved by all the necessary type constructions,
we will make use of the internal language of ̂C ×ω in the form of dependent
predicate logic; see for example Phoa [73, App. I].

A type of GCTT in context Γ will then be interpreted as a pair of a type
Γ ` A in the internal language of ̂C ×ω, and a composition structure cA, where
cA is a term in the internal language of a specific type Φ(Γ ;A), which we
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define below after introducing the necessary constructs. Terms of GCTT
will be interpreted as terms of the internal language. We use categories with
families [37] as our notion of a model. Due to space limits we omit the precise
definition of the category with families here, and refer to the online technical
appendix.

The semantics is split into several parts, which provide semantics at
different levels of generality.

1. We first show that every presheaf topos with a non-trivial internal De
Morgan algebra I satisfying the disjunction property can be used to give
semantics to the subset of the cubical type theory CTT without glueing
and the universe. We further show that, for any category D, the category
of presheaves on C ×D has an interval I, which is the inclusion of the
interval in presheaves over the category of cubes C.

2. We then extend the semantics to include glueing and universes. We
show that the topos of presheaves C ×D for any category D with an
initial object can be used to give semantics to the entire cubical type
theory.

3. Finally, we show that the category of presheaves on C×ω gives semantics
to delayed substitutions and fixed points. Using these and some addi-
tional properties of the delayed substitutions we show in the internal
language of ̂C ×ω that .ξ.A has composition whenever A has composi-
tion.

Combining all three, we give semantics to GCTT in ̂C ×ω.

4.3.1 Model of CTT Without Glueing and the Universe

Let E be a topos with a natural numbers object, and let I be a De Morgan
algebra internal to E which satisfies the finitary disjunction property, i.e.,

(i ∨ j) = 1 =⇒ (i = 1)∨ (j = 1), and ¬(0 = 1).

Faces. Using the interval I we define the type F as the image of the
function · = 1 : I→Ω, where Ω is the subobject classifier. More precisely, F is
the subset type

F , {p :Ω | ∃(i : I),p = (i = 1)}

We will implicitly use the inclusion F→Ω. The following lemma states in
particular that the inclusion is compatible with all the lattice operations, so
omitting it is justified. The disjunction property is crucial for validity of this
lemma.

Lemma 4.6.
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4. Cubical Types

• F is a lattice for operations inherited from Ω.

• The corestriction · = 1 : I→F is a lattice homomorphism. It is not injective
in general.

Given Γ ` ϕ : F, we write [ϕ] , IdF(ϕ,>). Given Γ ` A and Γ ` ϕ : F a
partial element of type A of extent ϕ is a term t of type Γ ` t : Π(p : [ϕ]).A. If
we are in a context with p : [ϕ], then we will treat such a partial element t
as a term of type A, leaving implicit the application to the proof p, i.e., we
will treat t as t p. We will often write Γ , [ϕ] instead of Γ ,p : [ϕ] when we do
not mention the proof term p explicitly in the rest of the judgement. This is
justified since inhabitants of [ϕ] are unique up to judgemental equality (recall
that dependent predicate logic is a logic over an extensional dependent type
theory). Given Γ ,p : [ϕ] ` B we write Bϕ for the dependent function space
Π(p : [ϕ]).B and again leave the proof p implicit.

For a term Γ ,p : [ϕ] ` u : A we define A[ϕ 7→ u] , Σ(a : A). (IdA(a,u))ϕ.

Compositions. Faces allow us to define the type of compositions Φ(Γ ;A).
Homotopically, compositions allow us to put a lid on a box [29]. Given Γ ` A
we define the corresponding type of compositions as

Φ(Γ ;A) ,Π(γ : I→ Γ )(ϕ : F)
(
u :Π(i : I). (A(γ(i)))ϕ

)
.

A(γ(0))[ϕ 7→ u(0)]→ A(γ(1))[ϕ 7→ u(1)].

Here we treat the context Γ as a closed type. This is justified because there is a
canonical bijection between contexts and closed types of the internal language.
The notation A(γ(i)) means substitution along the (uncurried) γ .

Due to lack of space we do not show how the standard constructs of the
type theory are interpreted. We only sketch how the following composition
term is interpreted in terms of the composition in the model.

Γ ` ϕ : F Γ , i : I ` A Γ ,ϕ, i : I ` u : A Γ ` a0 : A[0/i][ϕ 7→ u[0/i]]

Γ ` compi A [ϕ 7→ u] a0 : A[1/i][ϕ 7→ u[1/i]]
.

By assumption we have cA of type Φ(Γ , i : I;A) and u and a0 are interpreted as
terms in the internal language of the corresponding types. The interpretation
of composition is the term

γ : Γ ` cA (λ(i : I).(γ, i))ϕ (λ(i : I)(p : [ϕ]).u)a0 : A(γ(1))[ϕ 7→ u(1)]

where we have omitted writing the proof u(0) = a0 on [ϕ].

Concrete models. The category of cubical sets has an internal interval
type satisfying the disjunction property [29]. It is the functor mapping I ∈ C
to DM (I). Since the theory of a De Morgan algebra with 0 , 1 and the
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4.3. Semantics

disjunction property is geometric [60, Section X.3] we have that for any topos
F and geometric morphism ϕ : F → Ĉ, ϕ∗(I) ∈ F is a De Morgan algebra
with the disjunction property6. In particular, given any category D there is
a projection functor π : C ×D→ C which induces the (essential) geometric
morphism π∗ a π∗ : ̂C ×D→ Ĉ, where π∗ is precomposition with π, and π∗
takes limits along D.

Summary. With the semantic structures developed thus far we can give
semantics to the subset of CTT without glueing and the universe.

4.3.2 Adding Glueing and the Universe

The glueing construction [29, Sec. 6] is used to prove both fibrancy and,
subsequently, univalence of the universe of fibrant types. Concretely, given

Γ ` ϕ : I Γ , [ϕ] ` T Γ ` A Γ ` w : (T → A)ϕ

we define the type Glue [ϕ 7→ (T ,w)] A in two steps. First we define the type7

Glue′Γ (ϕ,T ,A,w) ,
∑
a:A

∑
t:T ϕ

∏
p:[ϕ]

wp(tp) = a.

For this type we have the following property Γ , [ϕ] ` T � Glue′
Γ
(ϕ,T ,A,w).

However, we need an equality, not an isomorphism, to obtain the correct
typing rules. The technical appendix provides a general strictification lemma
which allows us to define the type Glue.

To show that the type Glue [ϕ 7→ (T ,w)] A is fibrant we need to addition-
ally assume that the map ϕ 7→ λ_.ϕ : F→ (I→F) has an internal right adjoint
∀. Such a right adjoint exists in all toposes ̂C ×D, for any small category D

with an initial object.

Universe of fibrant types. Given a (Grothendieck) universe U in the
meta-theory, the Hofmann-Streicher universe [43] Uω in ̂C ×ω maps (I,n) to
the set of functors valued in U on the category of elements of y(I,n), where y
is the Yoneda embedding. As in Cohen et al. [29] we define the universe of
fibrant types Uωf by setting Uωf (I,n) to be the set of fibrant types in context
y(I,n). The universe Uωf satisfies the rules

Γ ` a : U ` c : Φ(Γ ;El(a))

Γ ` La,cM : Uf

Γ ` a : Uf
Γ ` El(a)

Γ ` a : Uf
` Comp(a) : Φ(Γ ;El(a))

Using the glueing operation, one shows that the universe of fibrant types is
itself fibrant and, moreover, that it is univalent.

6A statement very close to this can be used as a characterisation of Ĉ: this topos classifies
the geometric theory of flat De Morgan algebras [81].

7This type is already present in Kapulkin at al. [53, Thm 3.4.1].
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4. Cubical Types

4.3.3 Adding the Later Type-Former

We now fix the site to be C×ω. From the previous sections we know that ̂C ×ω
gives semantics to CTT. The new constructs of GDTT are the . type-former
and its delayed substitutions, and guarded fixed points. Continuing to work
in the internal language, we first show that the internal language of ̂C ×ω can
be extended with these constructions, allowing interpretation of the subset of
the type theory GDTT without clock quantification [22]. Due to lack of space
we omit the details of this part, but do remark that . is defined as

(.(X))(I,n)

{?} if n = 0

X(I,m) if n =m+ 1

The essence of this definition is that . depends only on the “ω component”
and ignores the “C component”. Verification that all the rules of GDTT are
satisfied is therefore very similar to the verification that the topos ω̂ is a model
of the same subset of GDTT.

The only additional property we need now is that . preserves compositions,
in the sense that if we have a delayed substitution ` ξ : Γ _ Γ ′ and a type
Γ ,Γ ′ ` A together with a closed term cA of typeΦ(Γ ,Γ ′;A) then we can construct
c′.ξ.A of type Φ(Γ ;.ξ.A).

The following lemma uses the notion of a type Γ ` A being constant with
respect to ω. This notion is a natural generalisation to types-in-context of the
property that a presheaf is in the image of the functor π∗. We refer to the
online technical appendix for the precise definition. Here we only remark
that the interval type I is constant with respect to ω, as is the type Γ ` [ϕ] for
any term Γ ` ϕ : F.

Lemma 4.7. Assume Γ ` A, Γ ,Γ ′ ,x : A ` B and ` ξ : Γ _ Γ ′, and further that A is
constant with respect to ω. Then the following two types are isomorphic

Γ ` .ξ.Π(x : A).B �Π(x : A)..ξ.B (4.4)

and the canonical morphism λf .λx.next [ξ,f ′← f ] . f ′ x from left to right is an
isomorphism.

Corollary 4.8. If Γ ` ϕ : F then we have an isomorphism of types

Γ ` .ξ.Π(p : [ϕ]).B �Π(x : [ϕ])..ξ.B. (4.5)

Lemma 4.9 (.ξ-types preserve compositions). If .ξ.A is a well-formed type
in context Γ and we have a composition term cA : Φ(Γ ,Γ ′;A), then there is a
composition term c : Φ(Γ ;.ξ.A).

Proof. We show the special case with an empty delayed substitution. For the
more general proof we refer to the technical appendix. Assume we have a
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4.4. Conclusion

composition cA : Φ(Γ ;A). Our goal is to find a term c : Φ(Γ ;.A), so we first
introduce some variables:

γ : I→ Γ ϕ : F u :Π(i : I). ((.A)(γ i))ϕ a0 : (.A)(γ 0)[ϕ 7→ u0].

Using the isomorphisms from Cor. 4.8 and Lem. 4.7 we obtain a term ũ :
.(Π(i : I).(A(γ i))ϕ) isomorphic to u. We can now – almost – write the term

next

[
u′← ũ
a′0← a0

]
.cAγ ϕu

′ a′0 : .(A(γ 1)), (∗)

what is missing is to check that a′0 = u′ 0 on the extent ϕ, so that we can legally
apply cA; this is equivalent to saying that the type

.
[
u′← ũ,a′0← a0

]
. IdA(γ 0)(a

′
0,u
′ 0)ϕ

is inhabited. We transform this type as follows:

.

[
u′← ũ
a′0← a0

]
. Id(a′0,u

′ 0)ϕ �
(
.

[
u′← ũ
a′0← a0

]
. Id(a′0,u

′ 0)
)ϕ

(Cor. 4.8)

=
(
Id(next

[
u′← ũ
a′0← a0

]
. a′0,next

[
u′← ũ
a′0← a0

]
.u′ 0)

)ϕ
= (Id(a0,u0))ϕ ,

where the last equality uses that ũ is defined using the inverse of

λf λx.next
[
f ′← f

]
. f ′ x

(Lem. 4.7). By assumption it is the case that (Id(a0,u0))ϕ is inhabited, and
therefore (∗) is well-defined. It remains only to check that (∗) is equal to u 1 on
the extent ϕ, but this follows from the equalities of cA and by the definition
of ũ (Lem. 4.7). Assuming ϕ, we have

next

[
u′← ũ
a′0← a0

]
.cAγ ϕu

′ a′0 = next

[
u′← ũ
a′0← a0

]
.u′ 1 = u1.

Summary. In this section we have highlighted the key ingredients that
go into a sound interpretation of GCTT in ̂C ×ω. For the precise statement of
the interpretation of all the constructs, and the soundness theorem, we refer
to the online technical appendix.

4.4 Conclusion

In this paper we have made the following contributions:
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4. Cubical Types

• We introduce guarded cubical type theory (GCTT), which combines
features of cubical type theory (CTT) and guarded dependent type theory
(GDTT). The path equality of CTT is shown to support reasoning about
extensional properties of guarded recursive operations, and we use the
interval of CTT to constrain the unfolding of fixed-points.

• We show that CTT can be modelled in any presheaf topos with an
internal non-trivial De Morgan algebra with the disjunction property, an
operator ∀, and a universe of fibrant types. Most of these constructions
are done via the internal logic. We then show that a class of presheaf
models of the form ̂C ×D, for any category D with an initial object,
satisfy the above axioms and hence gives rise to a model of CTT.

• We give semantics to GCTT in the topos of presheaves over C ×ω.

Further work. We wish to establish key syntactic properties of GCTT,
namely decidable type-checking and canonicity for base types. Our prototype
implementation establishes some confidence in these properties.

We wish to further extend GCTT with clock quantification [8], such as is
present in GDTT. Clock quantification allows for the controlled elimination of
the later type-former, and hence the encoding of first-class coinductive types
via guarded recursive types. The generality of our approach to semantics in
this paper should allow us to build a model by combining cubical sets with
the presheaf model of GDTT with multiple clocks [18]. The main challenges
lie in ensuring decidable type checking (GDTT relies on certain rules involving
clock quantifiers which seem difficult to implement), and solving the coherence
problem for clock substitution.

Finally, some higher inductive types, like the truncation, can be added to
CTT. We would like to understand how these interact with ..

Related work. Another type theory with a computational interpretation
of functional extensionality, but without equality reflection, is observational
type theory (OTT) [5]. We found CTT’s prototype implementation, its presheaf
semantics, and its interval as a tool for controlling unfoldings, most conveni-
ent for developing our combination with GDTT, but extending OTT similarly
would provide an interesting comparison.

Spitters [81] used the interval of the internal logic of cubical sets to model
identity types. Coquand [32] defined the composition operation internally to
obtain a model of type theory. We have extended both these ideas to a full
model of CTT. Recent independent work by Orton and Pitts [71] axiomatises a
model for CTT without a universe, again building on Coquand [32]. With the
exception of the absence of the universe, their development is more general
than ours. Our semantic developments are sufficiently general to support the
sound addition of guarded recursive types to CTT.
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4.A zipWith Preserves Commutativity

We provide a formalisation of Sec. 4.2.4 which can be verified by our type
checker8.

module zipWith_preserves_comm where

Id (A : U) (a0 a1 : A) : U = IdP ( 〈i 〉 A) a0 a1
data nat = Z | S (n : nat)

-- Streams of natural numbers
StrF (S : . U) : U = (n : nat) * . [S’ ← S] S’

Str : U = fix (StrF Str)

-- The canonical unfold lemma for Str
StrUnfoldPath : Id U Str (StrF (next Str))
= 〈i 〉 StrF (dfix U StrF [(i=1)])

unfoldStr (s : Str) : (n : nat) * . Str
= transport StrUnfoldPath s

foldStr (s : (n : nat) * . Str) : Str
= transport ( 〈i 〉 StrUnfoldPath @ -i) s

cons (n : nat) (s : . Str) : Str = foldStr (n, s)
head (s : Str) : nat = s.1
tail (s : Str) : . Str = (unfoldStr s).2

-- Defining zipWith
zipWithF (f : nat → nat → nat) (rec : . (Str → Str → Str))
: Str → Str → Str
= (λ (s1 s2 : Str) →

(cons (f (head s1) (head s2))
(next [zipWith’ ← rec, s1’ ← tail s1 , s2’ ← tail s2]

zipWith’ s1’ s2’)))

zipWith (f : nat → nat → nat) : Str → Str → Str
= fix (zipWithF f zipWith)

zipWithUnfoldPath (f : nat → nat → nat)
: Id (Str → Str → Str)

(zipWith f)

8This file, among other examples, is available in the gctt-examples folder in the type-
checker repository.
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(zipWithF f (next (zipWith f)))
= 〈i 〉 zipWithF f (dfix (Str → Str → Str) (zipWithF f) [(i=1)])

-- Commutativity property
comm (f : nat → nat → nat) : U = (m n : nat) → Id nat (f m n) (f n m)

-- zipWith preserves commutativity.
zipWith_preserves_comm (f : nat → nat → nat) (c : comm f)
: (s1 s2 : Str) → Id Str (zipWith f s1 s2) (zipWith f s2 s1)
= fix
(λ (s1 s2 : Str) →
〈i 〉 comp ( 〈_ 〉 Str)

(cons (c (head s1) (head s2) @ i)
(next [q ← zipWith_preserves_comm

,t1 ← tail s1
,t2 ← tail s2]
q t1 t2 @ i))

[(i=0) → 〈j 〉 zipWithUnfoldPath f @ -j s1 s2
,(i=1) → 〈j 〉 zipWithUnfoldPath f @ -j s2 s1])

4.B Guarded Cubical Type Theory

We define guarded cubical type theory (GCTT) to be an extension of cubical type
theory (CTT)9 [29] with the following syntax:

t,u,A,B ::= · · · | nextξ. t | .ξ.A | dfixr x.t

ξ ::= · | ξ [x← t]

along with the typing rules of Figure 4.7 and Figure 4.8.

4.C Denotational semantics

In this section we provide the necessary semantic constructions that can be
used to interpret the type theory GCTT.

4.C.1 The language L

Instead of formulating our model directly using regular mathematics, we will
specify a type-theoretic language L, tailor-made for the purpose of our model.
It is based on the internal logic of the presheaf topos of cubical sets, SetC.
L is an extension of W. Phoa’s [73, Appendix I] dependent predicate logic; see

also [51, D4.3,4.4]. Figure 4.9 contains an overview of the types of judgements.
Note that a proposition is a term of type Ω. Formally the logical inference
judgements will be of the form Γ ` ϕ = true :Ω, but in practice we will stick

9An overview of the rules of CTT can be found at http://www.cse.chalmers.se/
~coquand/selfcontained.pdf.
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4.C. Denotational semantics

Delayed substitutions, ` ξ : Γ _ Γ ′

Γ `
` · : Γ _ ·

` ξ : Γ _ Γ ′ Γ ` t : .ξ.A

` ξ [x← t] : Γ _ Γ ′ ,x : A

Well-formed types, Γ ` A

Γ ,Γ ′ ` A ` ξ : Γ _ Γ ′

Γ ` .ξ.A

Well-typed terms, Γ ` t : A

Γ ,Γ ′ ` A : U ` ξ : Γ _ Γ ′

Γ ` .ξ.A : U

Γ ,Γ ′ ` t : A ` ξ : Γ _ Γ ′

Γ ` nextξ. t : .ξ.A

Γ ` r : I Γ ,x : .A ` t : A

Γ ` dfixr x.t : .A

Figure 4.7: Overview of new rules in GCTT (part 1).

to a more informal notation, e.g., writing Γ ,ϕ for a context where ϕ holds,
instead of Γ ,p : Eq(ϕ, true). In addition to the equality proposition Eq(t,u) :Ω,
we also have an extensional identity type IdA(t,u) with equality reflection:

Γ ` A Γ ` t,u : A

Γ ` IdA(t,y)

Γ ` t = u : A

Γ ` refl : IdA(t,u)

Γ ` p : IdA(t,u)

Γ ` t = u : A

Id (the type) and Eq (the proposition) are equally expressive, but for present-
ation purposes it is practical to have both: Using Id we can easily express
the type of partial elements without reference to Ω, e.g., an element of B only
defined when t = u: Γ ` b : IdA(t,u)→ B. Such terms, however, are unwieldy
to work with since you need to carry around an explicit equality proof (which
will be equal to refl anyway). Therefore we will implicitly convert back and
forth between the type theoretic and the logical representation, which for our
previous example means that in a context where t = u we will write b : B.

We also assume that L contains a universe U of small types, along with
the “elements-of” functor El.

Assumption 1: The interval type

In L we have a type I with

0,1 : I ∧,∨ : I→ I→ I 1− · : I→ I
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Type equality, Γ ` A = B (Congruence and equivalence rules are omitted)

` ξ [x← t] : Γ _ Γ ′ ,x : B Γ ,Γ ′ ` A
Γ ` .ξ [x← t] .A = .ξ.A

` ξ [x← t,y← u]ξ ′ : Γ _ Γ ′ ,x : B,y : C,Γ ′′

Γ ,Γ ′ ` C Γ ,Γ ′ ,x : B,y : C,Γ ′′ ` A
Γ ` .ξ [x← t,y← u]ξ ′ .A = .ξ [y← u,x← t]ξ ′ .A

` ξ : Γ _ Γ ′ Γ ,Γ ′ ,x : B ` A Γ ,Γ ′ ` t : B

Γ ` .ξ [x← nextξ. t] .A = .ξ.A[t/x]

Term equality, Γ ` t = u : A (Congruence and equivalence rules are omitted)

` ξ [x← t] : Γ _ Γ ′ ,x : B Γ ,Γ ′ ` A : U

Γ ` .ξ [x← t] .A = .ξ.A : U

` ξ [x← t,y← u]ξ ′ : Γ _ Γ ′ ,x : B,y : C,Γ ′′

Γ ,Γ ′ ` C : U Γ ,Γ ′ ,x : B,y : C,Γ ′′ ` A : U

Γ ` .ξ [x← t,y← u]ξ ′ .A = .ξ [y← u,x← t]ξ ′ .A : U

` ξ : Γ _ Γ ′ Γ ,Γ ′ ,x : B ` A : U Γ ,Γ ′ ` t : B

Γ ` .ξ [x← nextξ. t] .A = .ξ.A[t/x] : U

` ξ [x← t] : Γ _ Γ ′ ,x : B Γ ,Γ ′ ` u : A

Γ ` nextξ [x← t] .u = nextξ.u : .ξ.A

` ξ [x← t,y← u]ξ ′ : Γ _ Γ ′ ,x : B,y : C,Γ ′′

Γ ,Γ ′ ` C Γ ,Γ ′ ,x : B,y : C,Γ ′′ ` v : A

Γ ` nextξ [x← t,y← u]ξ ′ .v = nextξ [y← u,x← t]ξ ′ .v : .ξ [x← t,y← u]ξ ′ .A

` ξ : Γ _ Γ ′ Γ ,Γ ′ ,x : B ` u : A Γ ,Γ ′ ` t : B

Γ ` nextξ [x← nextξ. t] .u = nextξ.u[t/x] : .ξ.A[t/x]

Γ ` t : .ξ.A

Γ ` nextξ [x← t] .x = t : .ξ.A

Γ ,x : .A ` t : A

Γ ` dfix1 x.t = next t[dfix0 x.t/x] : .A

Figure 4.8: Overview of new rules in GCTT (part 2).
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4.C. Denotational semantics

Γ ` well-formed context

Γ ` A well-formed type

Γ ` t : A typing judgement

Γ ` A = B type equality

Γ ` t = u : A term equality

Figure 4.9: Judgements of L

which is a De Morgan algebra, i.e., (I,0,1,∧,∨) is a bounded distributive lattice,
and 1− · is an involution which satisfies De Morgan’s laws:

1− (i ∧ j) = (1− i)∨ (1− j),
1− (i ∨ j) = (1− i)∧ (1− j).

In addition to the De Morgan algebra laws we assume the following two
axioms

0 , 1

i ∨ j = 1 =⇒ i = 1∨ j = 1

the latter of which we refer to as the disjunction property.

Definable concepts

We can now define some useful abbreviations in L.

Faces. Using the interval we define the type F as the image of the function
· = 1 : I→ Ω, where Ω is the subobject classifier. More precisely, F is the
subset type

F , {p :Ω | ∃(i : I),p = (i = 1)}

We will implicitly use the inclusionF→Ω. The following lemma in particular
states that the inclusion is compatible with all the lattice operations, hence
omitting it is justified.

Lemma 4.10.

• F is a lattice for operations inherited from Ω.

• The corestriction · = 1 : I→F is a lattice homomorphism. It is not injective.

• F inherits the disjunction property from I.
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• The operation ϕ = 1 7→ ϕ = 0 does not make F into a DM-algebra:
For all i, (i = 1)∧ ((1− i) = 1) =Ω ⊥. However, if ((1− i) = 1)∨ (i = 1) =Ω >,
then i = 0 or i = 1.

Given a proposition Γ ` ϕ : F we define the type

[ϕ] , IdF(ϕ,>).

Remark 4.11. Note that we have the following logical equivalence

Γ | · ` (∃!p : [ϕ],>) ⇐⇒ ϕ.

Given Γ ` A and Γ ` ϕ : F we say that a term t is a partial element of A of
extent ϕ, if Γ ` t : Π(p : [ϕ]).A. If we are in a context with p : [ϕ], then we
will treat such a partial element t as a term of type A, leaving implicit the
application to the proof p, i.e., we will treat t as t p. We will often write Γ , [ϕ]
instead of Γ ,p : [ϕ] when we do not mention the proof term p explicitly. Given
Γ ,p : [ϕ] ` B we write Bϕ for the dependent function space Π(p : [ϕ]).B and
leave the proof p implicit.

If we have a term Γ ,p : [ϕ] ` u : A (a partial element), then we can define

A[ϕ 7→ u] , Σ(a : A). (IdA(a,u))ϕ .

Systems. Given Γ ` A, assume we have the following:

Γ ` ϕ1, . . . ,ϕn : F

Γ ` ϕ1 ∨ · · · ∨ϕn =>
Γ , [ϕ1] ` t1 : A

...

Γ , [ϕn] ` tn : A

Γ ,
[
ϕi ∧ϕj

]
` ti = tj : A, for all i, j.

In other words: We have n partial elements of A which agree with each other.
We can use the axiom of definite description to define a term

[ϕ1t1, . . . ,ϕntn] , the xA such that χ(x)

where
χ(x) , (ϕ1 ∧ (x = t1))∨ · · · ∨ (ϕn ∧ (x = tn)).

We call this term a system. The condition for using definite description is a
proof (in the logic) of unique existence of such a term. This follows almost
directly from the assumptions and Remark 4.11.

Using systems, we generalise an earlier definition: We define

A[ϕ1 7→ t1, . . . ,ϕn 7→ tn] , A[ϕ1 ∨ · · · ∨ϕn 7→ [ϕ1t1, . . . ,ϕntn]],

where the type on the right hand side is using the earlier definition. Note that
A[ϕ 7→ t] is unambiguous, as we have Γ , [ϕ] ` [ϕt] = t : A.
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Compositions. Given Γ ` A, we can define the type of compositions:

Φ(Γ ;A) ,Π(γ : I→ Γ )

(ϕ : F)

(u :Π(i : I). [ϕ]→ A(γ(i))).

A(γ(0))[ϕ 7→ u(0)]→ A(γ(1))[ϕ 7→ u(1)].

We say that a type Γ ` A is fibrant if there is a term ` c : Φ(Γ ;A) (A has
compositions).

Fillings. Given Γ ` A, we can define the type of (Kan) fillings:

Ψ (Γ ,A) ,Π(γ : I→ Γ )

(ϕ : F)

(u :Π(i : I). [ϕ]→ A(γ(i)))

(a0 : A(γ(0))[ϕ 7→ u(0)])

(i : I).

A(γ(i))[ϕ 7→ u(i), (1− i) 7→ π1a0].

If we have a filling operation f : Ψ (Γ ,A) then we can get a path lifting operation

` :Π(γ : I→ Γ )

(a0 : A(γ(0)))

(i : I).

A(γ(i))[(1− i) 7→ a0],

by taking the simple case of f where ϕ is ⊥, and u therefore is uniquely
determined (since it is a partial function defined where ⊥ holds).

Fillings are special cases of compositions.

Lemma 4.12 (Fillings from compositions). If we have a fibrant type Γ ` A with
cA : Φ(Γ ;A), then we have a filling operation ` f : Ψ (Γ ,A).

Proof. We introduce the variables of the proper types:

γ : I→ Γ ,

φ : F,

u :Π(i : I).[ϕ]→ A(γ(i)),

a0 : A(γ(0))[ϕ 7→ u(0)],

i : I.

We need to find a term of type

A(γ(i))[ϕ 7→ u(i), (i = 0) 7→ π1ao].
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4. Cubical Types

We check that the following system is well-defined (in a context with ϕ ∨ (i =
0)):

[ϕu(i ∧ j), (i = 0)π1a0].

• If ϕ, then u(i ∧ j) : A(γ(i ∧ j)).

• If i = 0, then π1a0 : A(γ(0)) = A(γ(i ∧ j)).

• If ϕ and i = 0, then π1a0 = u(0) = u(i ∧ j).

Note also that this means that

A(γ(0))[ϕ 7→ u(0)] = A(γ(0))[ϕ 7→ u(0), (i = 0) 7→ π1a0],

and therefore we can write the following term:

cA (λj.γ(i ∧ j)) (ϕ ∨ (i = 0)) (λj.[ϕu(i ∧ j), (i = 0)π1a0]) a0

which has the type

A(γ(i))[ϕ 7→ u(i), (i = 0) 7→ π1ao],

as was needed.

Path types. Given Γ ` A and terms Γ ` t,u : A, we can define the Path type

PathA t u ,Π(i : I).A[(1− i) 7→ t, i 7→ u].

Assumption 2: Glueing

There is a type for glueing with the following type formation and typing rules

Γ ` A Γ , [ϕ] ` T Γ , [ϕ] ` f : T → A

Γ `Glue [ϕ 7→ (T ,f )] A

Γ ` b : Glue [ϕ 7→ (T ,f )] A

Γ ` unglueb : A[ϕ 7→ f b]

Γ , [ϕ] ` f : T → A Γ , [ϕ] ` t : T Γ ` a : A[ϕ 7→ f t]

Γ ` glue [ϕ 7→ t] a : Glue [ϕ 7→ (T ,f )] A

Additionally we have the following equations for glueing:

glue [1 7→ t] a = t,

glue [ϕ 7→ b] (unglueb) = b,

unglue(glue [ϕ 7→ t] a) = a.
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Assumption 3: Fibrant universe

There is a fibrant universe Uf which contains all of the codes in U for which
there is an associated composition operator:

Γ ` a : U ` c : Φ(Γ ;El(a))

Γ ` La,cM : Uf

Γ ` a : Uf
Γ ` El(a)

Γ ` a : Uf
` Comp(a) : Φ(Γ ;El(a))

Assumption 4: ∀

Finally we assume that the map ϕ 7→ λ_.ϕ : F→ (I→F) has an internal right
adjoint ∀. By this we mean the following correspondence for any ϕ : F and
any f : I→F.

(ϕ⇒∀(i : I), f (i)) ⇐⇒ (ϕ⇒∀(f )) .

4.C.2 A model of CTT

We define a category with families [37] by specifying the type and term functors.
The idea is to reuse the types and terms of the language L, but we only take
the fibrant types, i.e., the ones with associated composition operators.

Ty(Γ ) ,
{

([A], [cA])
∣∣∣∣∣ Γ ` A` cA : Φ(Γ ;A)

}
Tm(Γ , ([A], [cA])) , {[t] | Γ ` t : A} .

where we use [A] and [t] respectively for the equivalence classes of A and t
modulo judgemental equality of L. In the following we will omit the mention
of equivalence classes and work with representatives. This is justified since
all the operations in L respect judgemental equality.

Note, that the context Γ need not be fibrant. Context extension and
projections can just be taken directly from the internal language: Γ .A , ΣΓA,
p , π1,q , π2.

When we interpret CTT we need to find both a type and a composition
operator in L for each type in CTT.

Interpreting dependent function types

Assume that ~Γ ` A′� = (A,cA) and ~Γ ,x : A′ ` B′� = (B,cB). We define

~Γ ` (x : A′)→ B′� , (Π(x : A).B,c)

where c : Φ(Γ ;Π(x : A).B) comes from the following lemma:
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4. Cubical Types

Lemma 4.13. Π-types preserve compositions. I.e., if we have composition terms
cA : Φ(Γ ;A) and cB : Φ(Γ .A;B), then we can form a new composition cΠ(x:A).B :
Φ(Γ ,Π(x : A).B).

Proof. Recall that Π-types commutes with substitution:

(Π(x : A).B)(γ) =Π(x : A(γ)).B(γ),

where B(γ) is a type in the context with A. We introduce the variables:

γ : I→ Γ ,

ϕ : F,

u :Π(i : I).[ϕ]→Π(a : A(γ(i))).B(γ(i)),

c0 : (Π(a : A(γ(0))).B(γ(0)))[ϕ 7→ u(0)].

We need to find an element in

Π(a : A(γ(1))).B(γ(1)),

along with a proof that it is u(1) when ϕ = 1.
Let a1 : A(γ(1)) be given. We define a(i) : A(γ(i))[i 7→ a1] by using path

lifting on a1, i.e.,
a(i) , ` (λi.γ(1− i)) a1 (1− i).

Then
b1 , cB (λi.

〈
γ(i), a(i)

〉
) ϕ (λi.u(i)(a(i)))

will have the type B(γ(1))[ϕ 7→ u(1)a1]. So λa1.π1b1 has the type we are
looking for. Now assume ϕ =>; then λa1.b1 = λa1.u(i)a1 = u(i), which is what
we needed.

The above proof is analogous to the equality judgement for compositions
at Π-types in CTT [29].

Interpreting dependent sum types

Dependent sum types (x : A)×B are interpreted by Σ-types from L, along with
the composition operation that comes from the following lemma:

Lemma 4.14. Σ-types preserve compositions. I.e., if we have composition terms
cA : Φ(Γ ;A) and cB : Φ(Γ .A;B), then we can form a new composition cΣ(x:A).B :
Φ(Γ ,Σ(x : A).B).

This proof is analogous to the equality judgement for compositions at
Σ-types in CTT [29].
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Interpreting base types

If a type A is independent of I, then we say it is discrete. Externally, this
means that it is a constant presheaf, i.e., A = ∆(A′) for some A′ ∈ Set, where
∆ : Set→ SetC is the constant presheaf functor. Internally, it means that the
following type is inhabited

Π(i, j : I)(a : I→ A).a(i) = a(j).

Externally we have an isomorphism (∆(A))I � ∆(A), so if a type is discrete in
the external sense, then it will also be discrete in the internal sense.

Lemma 4.15. For any cubical set A and any I ∈ C and i < I the function βiI :
AI(I)→ A(I, i) defined as

βiI (f ) = fι(i),

where ι : I → I, i is the inclusion, is an isomorphism. Moreover the family β is
natural in I and i in the following sense. For any J ∈ C and j < J and any g : I → J
we have

A(g + (i 7→ j)) ◦ βiI = βjJ ◦A
I(g).

Corollary 4.16. If the obvious morphism A→ AI is an isomorphism, then A is
isomorphic to an object of the form ∆(a) for some a ∈ Set.

Proof. The obvious morphism is of course the constant map a 7→ λ_.a. Using
Lemma 4.15 we thus have that for each I and i < I , A(ι) : A(I)→ A(I, i) is an
isomorphism, where, again, ι is the inclusion. From this we have that for all I ,
the inclusion A(ιI ) : A(∅)→ A(I) is an isomorphism.

Define a = A(∅) and α : ∆(a)→ A as

αI = A(ιI ).

We then have for any f : I → J the following

A(f ) ◦αI = A(f ◦ ιI ) = A(ιJ ).

The latter because f ◦ ιI and ιJ are both maps from the empty set, hence they
are equal.

By the previous lemma each αI is an isomorphism and by the preceding
calculation α is a natural transformation. Hence α is a natural isomorphism.

Lemma 4.17. If A is isomorphic to ∆(a) for some a ∈ Set then the obvious morph-
ism A→ AI is an isomorphism.
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Proof. The inverse to the isomorphism β in Lemma 4.15 is the morphism αiI

αiI (a)f (j) = A([f , (i 7→ j)])(a).

By assumption A(ι) for any inclusion ι : I → I, i is an isomorphism. It is easy
to compute that the canonical morphism A→ AI arises as the composition of
A(ι) and αiI .

Proposition 4.18. Let A be a cubical set. The formula

i : I, j : I, f : (I→ A) | · ` f (i) = f (j)

holds in the internal language if and only if A is isomorphic to ∆(a) for some
a ∈ Set.

Proof. Suppose the formula holds. Then it is easy to see that the constant
map from A to AI is an isomorphism (the inverse is given, for instance, by
evaluation at 0). Corollary 4.16 implies the result.

Conversely assume A � ∆(a) for some a ∈ Set. Then by Lemma 4.17 the
canonical map const : A → AI is an isomorphism. Hence it is internally
surjective. Thus for any f : I→ A there is an a in A, such that consta = f .
From this we immediately have f (i) = f (j) for any i and j in I.

Lemma 4.19. Every discrete type ` A is fibrant, i.e., it has a composition operator
cA : Φ(·;A).

Proof. Since A is discrete, we have that u(0) = u(1) for any u :Π(i : I).[ϕ]→ A.
Therefore A[ϕ 7→ u(0)] = A[ϕ 7→ u(1)], so we can choose the constant function
λγ,ϕ,u,a.a to be cA, since this will be of type Φ(·,A).

If we have a composition operator cA : Φ(·;A) then we can always construct
a weakened version c′A : Φ(Γ ;A) for any Γ , since A does not depend on Γ .

Therefore we can interpret the natural number type:

~Γ ` N� , (N,c
N

),

where c
N

is the composition that we get from Lemma 4.19.

Interpreting systems

We interpret the systems of CTT by using the systems of L, and by us-
ing the fact that systems preserve compositions: If we have a system Γ `
[ϕ1A1, . . . ,ϕnAn], then we can define a new composition using a system con-
sisting of the compositions of all the components:

c , λγ,ψ,u,a0.[ϕ1(γ i)(cA1
γ1ψua0), . . . ,ϕn(γ i)(cAn γnψua0)]

: Φ(Γ ; [ϕ1A1, . . . ,ϕnAn]),

where γm : I→ Γ , [ϕm] is the context map γ extended with the witness of [ϕm].
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Interpreting path types

We interpret the path types:

~Γ ` PathA t s� , (PathA′ ~t� ~s�,c),

where ~A� = (A′ ,cA) and c : Φ(Γ ;PathA′ ~t� ~s�) comes from Lemma 4.20.

Lemma 4.20. Path-types preserve composition, i.e., if Γ ` A is fibrant, then for
any Γ ` t, s : A, we will have a composition operator c : Φ(Γ ;PathA t s).

Proof. First note that if we have Γ ` PathA t s : and ` γ : Γ , then

(PathA t s)(γ) = PathA(γ) t(γ) s(γ) =Π(i : I).A(γ)
[
i = 07→ t(γ)
i = 17→ s(γ)

]
.

Now let

γ : I→ Γ

ϕ : I

u :Π(j : I).[ϕ]→ PathA(γj) t(γj) s(γj)

p0 : (PathA(γ0) t(γ0) s(γ0))[ϕ 7→ u0]

be given. Our goal is to find a term p1 such that

p1 : (PathA(γ1) t(γ1) s(γ1))[ϕ 7→ u1].

We will do this by finding a term q : Π(i : I).A(γ1)[ϕ 7→ u1i], for which we
verify that q0 = t(γ1) and q1 = s(γ1), in other words,

q :Π(i : I).A(γ1)[ϕ 7→ u1i, (1− i) 7→ t(γ1), i 7→ s(γ1)]

as this will be equivalent to having such a p1.
Let i : I. By leaving some equality proofs implicit we can define the system

r(j) , [ϕuji, (1− i)t(γj), is(γj)] :Π(j : I).[ϕ ∨ (1− i)∨ i]→ A(γj),

which is well-defined because uj0 = t(γj) and uj1 = s(γj). We also have that
p0i : A(γ0)[ϕ 7→ u0i], and since p00 = t(γ0) and p01 = s(γ0), we can say that

p0i : A(γ0)[ϕ 7→ u0i, (1− i) 7→ t(γ0), i 7→ s(γ0)]

so we can use the fibrancy of A to define the term

q(i) , cAγ (ϕ ∨ (1− i)∨ i) r (p0i)
: Π(i : I).A(γ1)[ϕ 7→ u1i, (1− i) 7→ t(γ1), i 7→ s(γ1)],

which is what we wanted.
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Interpreting glue types

We interpret Glue from CTT using Glue from L along with a composition
operator, which we have by the following lemma:

Lemma 4.21. Glueing is fibrant, i.e., if we have

Γ ` A
Γ ` ϕ : I

Γ , [ϕ] ` T
Γ ` w : [ϕ]→ T → A

Γ ` p : isEquivw

then there is a term c : Φ(Γ ;Glue [ϕ 7→ (T ,w)] A).

The construction of c in the proof of the above lemma is analogous to
the construction of the composition operation for glueing in CTT [29], but
formulated in L. A crucial part of the construction is the face δ , ∀(ϕ ◦ γ),
where γ : I→ Γ , which satisfies that [δ] implies [ϕ(γ i)] for all i : I.

Interpreting the universe

The universe of CTT is interpreted using the universe of fibrant types Uf . To
define the composition for the universe we follow the construction of Cohen
et al. [29] in the language L.

4.C.3 A concrete model of L

Given a countable set of names let Fin be the full subcategory of Set on finite
subsets of names. Let C be the opposite of the Kleisli category of the free De
Morgan algebra monad on Fin. The category of cubical sets is the presheaf
category Ĉ.

It is well-known how to model dependent predicate logic in any presheaf
topos, so we omit the verification of this part. We do however note how the
judgements are interpreted since this will be used later on in calculations.

• A context Γ ` is interpreted as a presheaf.

• The judgement Γ ` A gives a pair of a presheaf Γ on C and a presheaf A
on the category of elements of Γ .

• The judgement Γ ` t : A in addition gives a global element of the presheaf
A. Thus for each I ∈ C and γ ∈ Γ (I) we have tI,γ ∈ A(I,γ).

Moreover, there is a canonical bijective correspondence between presheaves
Γ on C and interpretations of types · ` Γ . This justifies treating contexts as
types in L when it is convenient to do so.
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Assumption 1 is satisfied

Take I to be the functor mapping I 7→ hom[C]I1, where 1 is the (globally)
chosen singleton set. Since the theory of De Morgan algebras is geometric
and for each I we have a De Morgan algebra together with the fact that the
morphisms are De Morgan algebra morphisms, we have that I is an internal
De Morgan algebra, as needed.

Moreover the disjunction property axiom is also geometric, and since
it is clearly satisfied by each free De Morgan algebra DM (I), it also holds
internally.

Finally, it is easy to check that we have 0 = 1 ⇒ ⊥ using Kripke-Joyal
semantics.

Assumption 2 is satisfied

We will define glueing almost internally, apart from a “strictness” fix, for
which we use the following lemma, which we will also use later on in Sec-
tion 4.C.5

A strictification lemma

Lemma 4.22. Let C be a small category and > a global element10 of an object K
in Ĉ. Denote by [ϕ] the identity type ϕ =>.

Let Γ ` ϕ : K. Suppose Γ ` T , Γ , [ϕ] ` A and Γ , [ϕ] ` T � A as witnessed by the
terms α,β satisfying

Γ , [ϕ],x : A ` α : T

Γ , [ϕ],x : T ` β : A

plus the equations stating that they are inverses.
Then there exists a type Γ ` T (A,T ,ϕ) such that

1. Γ , [ϕ] ` T (A,T ,ϕ) = A

2. Γ ` T � T (A,T ,ϕ) by an isomorphism α′ ,β′ extending α and β. This means
that the following two judgements hold.

Γ , [ϕ],x : A ` α = α′ : T

Γ , [ϕ],x : T ` β = β′ : A.

The judgements are well-formed because in context Γ , [ϕ] the types T (A,T ,ϕ)
and A are equal by the first item of this lemma.

3. Let ρ : ∆ → Γ be a context morphism. Consider its extension ∆, [ϕρ] →
Γ , [ϕ]. Then T (A,T ,ϕ)ρ = T (Aρ,T ρ,ϕρ).

10For a constructive meta-theory we add that, for each c, equality with >c is decidable.
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Proof. We write T ′ for T (A,T ,ϕ) and define it as follows.

T ′(c,γ) =

A(c, (γ,?)) if ϕc,γ =>c
T (c,γ) otherwise

Here ? is the unique proof of [ϕ]. The restrictions are important. Given
f : (c,Γ (f )(γ))→ (d,γ) define T ′(f ) by cases

T ′(f )(x) =


A(f )(x) if ϕd(γ) =>d(?)

βc,Γ (f )(γ),?,T (f )(x) if ϕc,Γ (f )(γ) =>c
T (f )(x) otherwise

We need to check that this definition is functorial. The fact that T ′(id) = id is
trivial. Given f : (d,Γ (f )(γ))→ (c,γ) and g : (e,Γ (f ◦ g)(γ))→ (d,Γ (f )(γ)) we
have

T ′(f ◦ g)(x) =


A(f ◦ g)(x) if ϕc,γ =>c
βe,Γ (f ◦g)(γ),?,T (f ◦g)(x) if ϕe,Γ (f ◦g)(γ) =>e
T (f ◦ g)(x) otherwise

In the first and third cases this is easily seen to be the same as T ′(g)(T ′(f )(x)),
since if ϕe,Γ (f ◦g)(γ) ,>e then also ϕd,Γ (f )(γ) ,>d by naturality of ϕ and the fact
that > is a global element and the terminal object is a constant presheaf.

So assume the remaining option is the case, that is, ϕe,Γ (f ◦g)(γ) = >e but
ϕc,γ ,>c.

We split into two further cases.

• Case ϕd,Γ (f )(γ) =>d . Then T ′(f )(x) = βd,Γ (f )(γ),?,T (f )(x) and so

T ′(g)(T ′(f )(x)) = T ′(g)
(
βd,(Γ (f )(γ),?,T (f )(x))

)
By naturality of β the right-hand side is the same as

βe,Γ (f ◦g)(γ),?,T (f ◦g)(x)

which is what is needed.

• Case ϕd,Γ (f )(γ) ,>d . In this case we have

T ′(f )(x) = T (f )(x)

and

T ′(g)(T ′(f )(x)) = βe,Γ (f ◦g)(γ),?,T (g)(T (f )(x))

which is again, as needed by functoriality of T .
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Now, directly from the definition we have the equality Γ , [ϕ] ` T ′ = A.
It is similarly easy to check the last required property, the naturality of

the construction.

T (A,T ,ϕ)ρ = T (Aρ,T ρ,ϕρ).

Finally, we extend the isomorphisms α and β to α′ and β′.
Define β′ satisfying Γ ,x : T ` β′ : T ′ as

β′c,γ,x =

βc,γ,?,x if ϕc(γ) =>c(?)

x otherwise

And α′ analogously. One needs to check that this is a natural transformation,
i.e., a global element. Finally, β′ is the inverse to α′ by construction.

Given the following types and terms

Γ ` ϕ : F

Γ , [ϕ] ` T
Γ ` A

Γ , [ϕ] ` w : T → A

we define a new type Γ `Glue [ϕ 7→ (T ,w)] A in two steps.
First we define the type Glue′

Γ
(ϕ,T ,A,w) in context Γ as

Glue′Γ (ϕ,T ,A,w) =
∑
a:A

∑
t:T ϕ

∏
p:[ϕ]

w(tp) = a

For this type we have the following property (we write G′ for Glue′(· · · ))

Γ , [ϕ] ` T � G′

with the isomorphism consisting of the second projection from right to left
and from left to right we use w to construct the pair.

Finally, we define Glue [ϕ 7→ (T ,w)] A using Lemma 4.22 applied to the
type Glue′. Let

β : Glue [ϕ 7→ (T ,w)] A→ Glue′(ϕ,T ,A,w)

be the extension of pairing and

α : Glue′(ϕ,T ,A,w)→Glue [ϕ 7→ (T ,w)] A

the extension of the projection as per Lemma 4.22.
Define unglue : Glue [ϕ 7→ (T ,w)] A→ A be the composition of β and the

first projection G′ → A. Now if ϕ = > then β is just pairing and in this
case we also have Glue [ϕ 7→ (T ,w)] A = T . So by definition of G′ we have
unglue(t) = wt, validating one of the equalities.

Given Γ , [ϕ] ` t : T and Γ ` a : A satisfying a = wt on [ϕ] define Γ `
glue [ϕ 7→ t] a : Glue [ϕ 7→ (T ,w)] A to be pairing followed by α. If ϕ = >
we have, because α is just the projection in this case, that glue [1 7→ t] a = t.
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Assumption 3 is satisfied

This part is subsumed by the construction in Section 4.C.4.

Assumption 4 is satisfied

Theorem 4.23. Ĉ models an operation ∀ : FI→ F which is right-adjoint to the
constant map of posets F→F

I.

Proof. We will first give a concrete description of I and F. We know that
I(n) =DM(n). We use Birkhoff duality [17] between finite distributive lattices
and finite posets. This duality is given by a functor J = HomfDL (−,2) from
finite distributive lattices to the opposite of the category of finite posets. This
functor sends a distributive lattice to its join-irreducible elements. It’s inverse
is the functor Homposet (−,2) which sends a poset to its the distributive lattice
of lower sets. This restricts to a duality between free distributive lattices and
powers of 2. Every free De Morgan algebra on n generators is a free distributive
lattice on 2n generators. We obtain a duality with the category of even powers
of 2 and maps preserving the De Morgan involution [33]. Moreover, this
duality is poset enriched: If ψ ≤ ϕ :DM(n)→DM(m), then the corresponding
maps on even powers of 2, which are defined by pre-composition, are in the
same order relation.

The dual of the inclusion map is the projection p : 22(n+1)→ 2
2n. This has

a right adjoint: concatenation with 11: pα ≤ β iff α ≤ β · 11. Concatenation
with 11 is natural:

2
2n

2
2m

2
2(n+1)

2
2(m+1)

11

f

11

(f ,id)

By duality we obtain a natural right adjoint to the poset-inclusion of DM-
algebras. Finally, we recall that in Ĉ we have II(n) = I(n+1) and hence we have
an internal map ∀ : II→ I which is right-adjoint to the constant map I→ I

I.
In [29] the face lattice is defined as the quotient of I by the congruence

x∧ 1− x = 0, for all x. In cubical sets these two definitions coincide. Let us
temporarily write Fq for the image of I in Ω. Since F satisfies [i]∧ [1− i] =⊥,
because 0 , 1. So, we have a surjective lattice map: Fq → F. We will show
that it is also injective. Let ϕ,ψ be (generalised) elements of I. Suppose
that [ψ] = [ϕ], i.e. ψ = 1 iff ϕ = 1. Then the sieves of functions in C which
evaluate ψ,ϕ to 1 are the same. So, we may assume that ψ,ϕ have the same
free variables. By considering the disjunctive normal forms of ϕ,ψ we see
they should have the same conjuncts upto the equality x∧−x = 0. Injectivity
follows. Hence, Fq = F.
The quotient presentation has the advantage of having decidable equality
(externally) in the model, and hence this is used in the implementation. It is
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also geometric since the construction of a distributive lattice by generators
(from I) and relations can be done by considering a quotient of F F (I), where
F denote the (Kuratowski) finite power set. Both quotients and F which are
geometric. This will be useful later.

As just explained F is the quotient of I by the relation x∧ 1 − x = 0, for
all x. This is a geometric formula and hence holds at each stage n. As duality
turns the quotients into inclusions, we have the inclusion {01,10,11}n ⊂ 22n

as the set of join irreducible elements; as 00 presents x ∧ −x which is now
identified with ⊥ and hence no longer join-irreducible. This presentation
allows us to define ∀ : FI→F. Since FI(n) = F(n+ 1), so the right adjoint is
again given by concatenation by 11. We just replace 22 by {01,10,11} in the
diagram above.

4.C.4 More models of L

Lemma 4.24. Let C,D be small categories and let π : D×C→D be the projection
functor. Then the geometric morphism π∗ a π∗ is open. If C is inhabited then it is
also surjective.

Proof. By Theorem C.3.1.7 of [51] it suffices to show that π∗ is sub-logical. We
use Lemma C.3.1.2 of loc. cit. to show this (we use the notation introduced in
that lemma).

Let b : π(I,n)→ J be a morphism in D. Let U ′ = (J,n), a = (b, idn) : (I,n)→
(J,n), r = idJ : πU ′ → J and i = idJ : J → πU ′. Then we have r ◦ i = idJ and
i ◦ b = πa as required by Lemma C.3.1.2.

If C is inhabited the projection π is surjective on objects, so the corres-
ponding geometric morphism is surjective; see [51, A4.2.7b]

The previous lemma may be read as D̂×C is a conservative extension of
D̂, provided C is inhabited.

Lemma 4.25. If C has an initial object 0, then π∗ is full, faithful, and cartesian
closed.

Proof. The functor π has a left adjoint, which is the functor

ι : D→D×C
ι(I) = (I,0)

Trivially we have π ◦ ι = id
D

. Thus we have that ι∗ is left adjoint to π∗ and
because π ◦ ι = id

D
we also have ι∗ ◦ π∗ = id and moreover the counit of

the adjunction is the identity. Hence the functor π∗ is full and faithful [59,
Theorem IV.3.1] and by [51, Corollary A.1.5.9], since ι∗ preserves all limits,
we have that π∗ cartesian closed.

Let ΩC be the subobject classifier of ̂C ×C and ΩC the subobject classifier
of Ĉ.
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Lemma 4.26. There is a monomorphism υ : π∗
(
ΩC

)
→ΩC which fits into the

pullback

π∗(1) 1

π∗
(
ΩC

)
ΩC

y
�

π∗(true) true

υ

Proof. Since π∗ preserves monos π∗(true) is a mono, hence define υ to be its
characteristic map. Concretely it maps

υI,c(S) = {(f ,g) | f ∈ S}

so it is clearly a mono.

Corollary 4.27. If X = π∗(Y ) then the equality predicate χδ : X×X→ΩC factors
uniquely through υ and the inclusion of the equality predicate of Y .

Proof. The equality predicate is by definition the characteristic map of the
diagonal δ : X → X × X. Let δ′ : Y → Y × Y be the diagonal. Because π∗

preserves finite limits the following square is a pullback.

X π∗(1) 1

X ×X π∗
(
ΩC

)
ΩC

y
δ=π∗(δ′) π∗(true)

�

y
true

π∗(χδ′ ) υ

and by uniqueness of characteristic maps we have υ◦π∗ (χδ′ ) = χδ. Uniqueness
of the factorisation follows from the fact that υ is a mono.

Let C be a category with an initial object. We now show that ̂C ×C models
L.

Assumption 1 is satisfied

Let IC = π∗(I). Since π∗ preserves products we can lift all the De Morgan
algebra operations of I to operations on I

C. The theory of a De Morgan
algebra with a disjunction property and 0 , 1 is geometric [60, Section X.3].
Thus the geometric morphism π∗ a π∗ preserves validity of all the axioms,
which means that IC is an internal De Morgan algebra with 0 , 1 and the
disjunction property.
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Faces

Lemma 4.28. Let FC ∈ ̂C ×C and F ∈ Ĉ be defined as in Section 4.C.1 from I
C

and I. Then FC � π∗(F).

Proof. Let e : IC→ΩC be the composition χδ ◦ 〈id,1〉 where δ is the diagonal
I
C→ I

C × IC. By definition F
C is the image of e. By Corollary 4.27 and the

way we have defined I
C and all the operations on it we have that e = υ ◦π∗(e′)

where e′ : I→ΩC is defined analogously to e above.
By definition F is the image of e′. Because inverse images of geometric

morphisms preserve image factorisations π∗(F) is the image of π∗(e′). Finally,
because υ is a mono the image of υ ◦π∗(e′) is canonically isomorphic to the
image of π∗(e′), which is what the lemma claims.

Assumption 2 is satisfied

This proceeds exactly as in Section 4.C.3.

Assumption 3 is satisfied

Lemma 4.29. Let C and D be small categories and assume D has products. Let
k1 : D→ D̂ and k2 : C ×D→ Ĉ×D be the Yoneda embeddings. Let π∗ : D̂→
Ĉ×D be the constant presheaf functor.

For any d,e ∈D and any c ∈C there is an isomorphism

k2(c,d)×π∗(k1e) � k2(c,d × e)

in Ĉ×D which is natural in c, d and e.

Proof. For any (c′ ,d′) ∈C×D

(k2(c,d)×π∗(k1e))(c
′ ,d′) = hom[C×D](c′ ,d′)(c,d)×hom[D]d′e

� hom[D]d′d ×hom[C]c′c ×hom[D]d′e

and because the hom functor preserves products we have

� hom[D]d′d × e ×hom[C]c′c

� hom[C×D](c′ ,d′)(c,d × e)
= k2(c,d × e)(c′ ,d′)

as required.

The following lemma is useful for describing the composition externally,
which is needed do define the fibrant universe.
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Lemma 4.30. Let C be a small category. Let IC ∈ ̂
C×C be the inclusion π∗(I) of

I ∈ Ĉ. Let X ∈ ̂C ×C. Then for any c ∈C, any I ∈ C and any i < I we have

XI
C

(I, c) � X((I, i), c)

naturally in c, I and i.

Remark 4.31. Note that disjoint union is the coproduct in the Kleisli category
of the free De Morgan algebra monad. Hence disjoint union is the product in
C.

Proof. Using the Yoneda lemma and the defining property of exponents we
have

XI
C

(I, c) � hom[̂C ×C]y(I, c)XI
C

� hom[̂C ×C]y(I, c)×π∗(I)X

which by Lemma 4.29, together with the fact that I is isomorphic to y{i}, is
isomorphic to

� hom[̂C ×C]y(I ∪ {i}, c)X
� X(I ∪ {i}, c).

Concretely, the isomorphism αcI,i maps ξ ∈ XI
C

(I, c) to ξ(ιI,i ,idc ,)(i), where
ιI,i : I → I, i (in Cop) is the inclusion. Its inverse βcI,i maps x ∈ X(I ∪{i}, c) to the
family of functions ξ(f ,g) : I(J)→ X(J,d) indexed by morphisms (f ,g) : (J,d)→
(I, c) (in (C ×C)). This family is defined as

ξ(f ,g)(ϕ) = X([g, i 7→ ϕ], g)(x)

where [g, i 7→ ϕ] is the map I, i→ J (in Cop) which maps i to ϕ and otherwise
acts as g. This map is well-defined because disjoint union is the coproduct in
Cop.

We can now define the universe UC

f . First, the Hofmann-Streicher universe

UC in ̂C ×C maps (I, c) to the set of functors valued in U on the category of
elements of y(I, c). It acts on morphisms (I, c)→ (J,d) by composition (in the
same way as substitution in types is modelled).

The elements map

Γ ` a : UC

Γ ` El(a)

is interpreted as

El(a)((I, c),γ) = a(I,c),γ (?)
(
idI,c

)
,
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4.C. Denotational semantics

recalling that terms are interpreted as global elements, and ? is the unique
inhabitant of the chosen singleton set.

We define UC

f analogously to the way it is defined in Section 4.C.3, that is

UC

f (I, c) = Ty(y(I, c)).

We first look at the following rule.

Γ ` a : UC ` c : Φ(Γ ;El(a))

Γ ` La,cM : UC

f

Let us write b = La,cM. We need to give for each I ∈ C, c ∈ C and γ ∈ Γ (I, c) a
pair (b0,b1) where

y(I, c) ` b0 : UC

· ` b1 : Φ(y(I, c);El(b0))

Now b0 is easy. It is simply a(I,c),γ . Composition is also conceptually simple,
but somewhat difficult to write down precisely. Elements γ ∈ Γ (I, c) are in
bijective correspondence (by Yoneda and exponential transpose) to terms γ

· ` γ : y(I, c)→ Γ .

Thus we define

b1 = λρ.c (γ ◦ ρ) .

One checks that this is well-defined and natural by a tedious computation,
which we omit here.

We now look at the converse rule in L

Γ ` a : Uf
Γ ` El(a)

Γ ` a : Uf
` Comp(a) : Φ(Γ ;El(a))

.

To interpret this rule with UC

f , we interpret for any a and c, El(La,cM) by El(a),
where the latter is El map of the Hofmann-Streicher universe.

We need to define Comp(a) which we abbreviate to c. We need to give
for each I ∈ C and c ∈ C an element cI,c ∈ Φ(Γ ;El(a))(I, c), and this family
needs to be natural in I and c. Given γ ∈ (Γ I

C

)(I, c) and a fresh i < I we get by
Lemma 4.30 an element γ ′ ∈ Γ ((I, i), c). Let γ ′ : y((I, i), c)→ Γ be the morphism
corresponding to γ ′ by the Yoneda lemma. Thus we get from a the term c′I,i,c,γ

· ` c′I,i,c,γ : Φ(y((I, i), c);El(a)γ ′)

and hence by weakening a term

y(I, c) ` c′I,i,c,γ : Φ(y((I, i), c);El(a)γ ′)
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By Lemma 4.29 and the way IC is defined we have a canonical isomorphism
y((I, i), c) � y(I, c) × IC. We now apply c′I,i,c,γ to the path δ = λ(i : IC).(ρ, i) to
get the element

ρ : y(I, c) ` c′I,i,c,γδ

:
Π(ϕ : F)(u :Π(i : I).

[ϕ]→ B(δ(i))).B(δ(0))[ϕ 7→ u(0)]→ B(δ(1))[ϕ 7→ u(1)],

where B = El(a)γ ′.
From this element we can define cI,c by using the Yoneda lemma again to

get the element c′I,i,c,γ of type

Π(ϕ : F)(u :Π(i : I). [ϕ]→ B(δ(i))).B(δ(0))[ϕ 7→ u(0)]→ B(δ(1))[ϕ 7→ u(1)],

which is a type in context y(I, c), at (I, c), idI,c. To recap, the composition c will
map γ ∈ (Γ I

C

)(I, c) to the element c′I,i,c,γ .

Lemma 4.32. For any a and c of correct types we have

Comp(La,cM) = c

El(La,cM) = El(a)

LEl(a),Comp(a)M = a

Assumption 4 is satisfied

Using Lemmas 4.25 and 4.28 we can define ∀ in ̂C ×ω as the inclusion of the
∀ from Ĉ. Lemma 4.24 can then be used to show that the new ∀ is the right
adjoint to the map ϕ 7→ λ_.ϕ.

4.C.5 A model of GCTT

The construction of the model of GCTT uses the internal language, in the
form of dependent predicate logic with additional types, terms, and equalities
corresponding to objects, arrows and properties of the particular category, of
the presheaf topos ̂C ×ω. Thus the internal language we use is an extension of
the language L used above.

We define our model of GCTT as an extension of the model of CTT from
section 4.C.2. Therefore we only need to show how to interpret the new rules
of GCTT, i.e., the ones that have to do with guarded recursive types.

The functor .

We first define . on Ĉ×ω and then extend it to types in context and delayed
substitutions.
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Given X ∈ Ĉ×ω we define

.X(I,n) =

1 if n = 0

X(I,m) if n =m+ 1

with restrictions inherited from X as in if (f ,n ≤m) : (I,n)→ (J,m) then

.X(f ,n ≤m) : X(J,m)→ X(I,n)

.X(f ,n ≤m) =

! if n = 1

X(f ,k ≤m− 1) if n = k + 1

where n ≤m is the unique morphism n→m (and similarly k ≤m−1), and ! as
the unique morphism into 1, the chosen singleton set.

There is a natural transformation

next : id
Ĉ×ω→ .

(nextX)I,0 = !

(nextX)I,n+1 = X (idI , (n ≤ n+ 1)) .

Lemma 4.33. The functor . is continuous.

Proof. Limits in presheaf toposes are computed pointwise. Limit of any
diagram of terminal objects is the terminal object.

Lemma 4.34. For any X and any morphism α : .X → X there exists a unique
global element β : 1→ X such that

α ◦next◦β = β.

Hence the triple (Ĉ×ω,.,next) is a model of guarded recursive terms [14,
Definition 6.1].

Proof. Any global element β satisfying the fixed-point equation must satisfy
the following two equations

βI,0(?) = αI,0(?)

βI,n+1(?) = αI,n+1
(
βI,n(?)

)
.

Hence define β recursively on n. It is then easy to see by induction on n that β
is a global element and that it satisfies the fixed-point equation.

Using [14, Theorem 6.3] . extends to all slices of Ĉ×ω and contractive
morphisms on slices have unique fixed-points.

Remark 4.35. The construction in [14] ignores coherence issues, and there are
no delayed substitutions, so we will define . for types in contexts again, but
the theorem cited gives us assurance that . and fixed points exist in all slices.
Moreover inspection of the construction in the cited paper shows that we are
defining the correct notion, up to equivalent presentation of slices.
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Delayed substitutions Semantically a delayed substitution

` ξ : Γ _ Γ ′

will be interpreted as a morphism ~ξ� : ~Γ �→ .~Γ ,Γ ′� making the following
diagram commute

.~Γ ,Γ ′�

~Γ � .~Γ � .

.π

next

~ξ�

Here π : ~Γ ,Γ ′�→ ~Γ � is the composition of projections of the form�
Γ ,Γ ′′ ,x : A

�
→
�
Γ ,Γ ′′

�
.

In particular, if Γ ′ is the empty context then π = id~Γ � and so ~·� = next,
where · is the empty delayed substitution.

Thus given a delayed substitution ` ξ : Γ _ Γ ′ and a type

Γ ,Γ ′ ` A

define

Γ ` .ξ.A

to be

(.ξ.A) (I,n,γ) =

1 if n = 0

A
(
I,m,~ξ�I,n (γ)

)
if n =m+ 1

Note that this is exactly like substitution Aξ, except in the case where n = 0.
In turn, we interpret the rules

Γ `
` · : Γ _ ·

` ξ : Γ _ Γ ′ Γ ` t : .ξ.A

` ξ [x← t] : Γ _ Γ ′ ,x : A

as follows. First, the empty delayed substitution is interpreted as next, as we
already remarked above. Given ` ξ : Γ _ Γ ′ and Γ ` t : .ξ.A define

�
` ξ [x← t] : Γ _ Γ ′ ,x : A

�
I,n (γ) =

? if n = 0(
ξI,n(γ), tI,n,γ (?)

)
otherwise
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The following two rules are easy to verify with the definitions we have
provided.

` ξ [x← t] : Γ _ Γ ′ ,x : B Γ ,Γ ′ ` A
Γ ` .ξ [x← t] .A = .ξ.A

` ξ [x← t,y← u]ξ ′ : Γ _ Γ ′ ,x : B,y : C,Γ ′′

Γ ,Γ ′ ` C Γ ,Γ ′ ,x : B,y : C,Γ ′′ ` A
Γ ` .ξ [x← t,y← u]ξ ′ .A = .ξ [y← u,x← t]ξ ′ .A

The first rule follows immediately by observing that the interpretation of A in
the extended context Γ ,Γ ′ ,x : B ignores the last component. The second rule
follows because we exchange the same components in the interpretation of A
as well as in the interpretation of the delayed substitution.

For the rest we need to define how next is interpreted.

Next

Γ ,Γ ′ ` t : A ` ξ : Γ _ Γ ′

Γ ` nextξ. t : .ξ.A

Given a term t and a delayed substitution ξ we define

~nextξ. t�I,n,γ (?) =

? if n = 0

tI,m,~ξ�I,n(γ)(?) if n =m+ 1

With this it is easy to see by computation that the rule

` ξ : Γ _ Γ ′ Γ ,Γ ′ ,x : B ` A Γ ,Γ ′ ` t : B

Γ ` .ξ [x← nextξ. t] .A = .ξ.A[t/x]

is sound.

. and Π As we mentioned above a delayed substitution ξ is a morphism
Γ → .(Γ ,Γ ′). Hence we can treat it as a term of type .(Γ ,Γ ′) in context Γ .
Further given a morphism γ : Iω→ Γ we can form the morphism

ξ ◦γ : Iω→ .(Γ ,Γ ′).

Finally by using Proposition 4.40 we can transport ξ ◦ γ : Iω → .(Γ ,Γ ′) to a
term

ξ ◦γ : .(Iω→ Γ ,Γ ′)

in the empty context.
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Lemma 4.36. Given γ and ξ as above then for any type Γ ,Γ ′ ` A we have the
equality of types

i : Iω ` .
[
γ ′← γ ◦ ξ

]
.A (γ ′(i)) = .ξγ(i).A (γ(i)) .

Here ξγ(i) is the delayed substitution `: Iω_ Γ ,Γ ′ obtained by substitution in
terms of ξ.

Proof. Proof by computation. Requires the unfolding of the definition of the
isomorphism in Proposition 4.40.

Dependent products and “constant” types To define composition for the .
type we will need type isomorphism commuting . and dependent products in
certain cases. We start with a definition.

Definition 4.37. A type Γ ` A is constant with respect to ω if for all I ∈ C,n ∈
ω,γ ∈ Γ (I,n) and for all m ≤ n the restriction

A(I,n,γ)→ A (I,m,Γ (idI ,m ≤ n)(γ))

is the identity function (in particular, the two sets are equal).

Below we will use the shorter notation γ�m for Γ (idI ,≤ n)(γ).
Note that this is a direct generalisation of “being constant” (being in the

image of π∗) for presheaves (i.e., closed types). We have the following easy,
but important, lemma.

Lemma 4.38. Being constant with respect to ω is closed under substitution. If
Γ ` A is constant and ρ : Γ ′→ Γ is a context morphism then Γ ′ ` Aρ is constant.

Lemma 4.39. Let X be a presheaf in the essential image of π∗. The identity type
x : X,y : X ` IdX(x,y) is constant with respect to ω.

Proof. Recall that we have for γ,γ ′ ∈ X(I,n).

(IdX(x,y))(I,n,γ,γ ′) =

1 if γ = γ ′

∅ otherwise

Thus for any m ≤ n

(IdX(x,y))(I,m,γ�m ,γ
′
�m

) =

1 if γ�m = γ ′�m
∅ otherwise

But since ·�m is an isomorphism we have γ�m = γ ′�m if and only ifm =m′, which
concludes the proof. Since all the sets are singletons or empty the relevant
restriction is then trivially the identity function.
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Using the assumptions stated above we have the following proposition.

Proposition 4.40. Assume

Γ ` A
Γ ,Γ ′ ,x : A ` B
` ξ : Γ _ Γ ′

and further that A is constant with respect to ω.
The canonical morphism from left to right in

Γ ` .ξ.Π(x : A).B �Π(x : A)..ξ.B (4.6)

is an isomorphism. The canonical morphism is derived from the term

λf .λx.next
[
ξ,f ′← f

]
. f ′ x.

Proof. We need to establish an isomorphism of two presheaves on the category
of elements of Γ . Since we already have one of the directions we will first
define the other direction explicitly. We define F : Π(x : A)..ξ.B→ .ξ.Π(x :
A).B. Let I ∈ C, n ∈ω and γ ∈ Γ (I,n). Take α ∈ (Π(x : A)..ξ.B) (I,n,γ). If n = 0
then we have only one choice.

FI,0,γ (α) = ?

So assume that n =m+ 1. Then we need to provide an element of

FI,n,γ (α) ∈ (Π(x : A).B)
(
I,m,ξI,n(γ)

)
.

Which means that for each f : J → I and each k ≤ m we need to give a
dependent function

βf ,k : (a ∈ A
(
J,k, (Γ ,Γ ′)(f ,k ≤m)

(
ξI,n(γ)

))
)→ B

(
J,k, (Γ ,Γ ′)(f ,k ≤m)

(
ξI,n(γ)

)
, a

)
Because Γ ` A we have

A
(
J,k, (Γ ,Γ ′)(f ,k ≤m)

(
ξI,n(γ)

))
= A

(
J,k,πJ,k

(
(Γ ,Γ ′)(f ,k ≤m)

(
ξI,n(γ)

)))
where π : Γ ,Γ ′→ Γ is the composition of projections. By naturality we have

πJ,k
(
(Γ ,Γ ′)(f ,k ≤m)

(
ξI,n(γ)

))
= Γ (f ,k ≤m)

(
πI,m

(
ξI,n(γ)

))
.

Now πI,m = .(π)I,n and so we have (because ξ is a delayed substitution)

πI,m
(
ξI,n(γ)

)
= next(γ)I,n = Γ (idI ,m ≤ n)(γ).

Hence we have

A
(
J,k, (Γ ,Γ ′)(f ,k ≤m)

(
ξI,n(γ)

))
= A (J,k,Γ (f ,k ≤ n)(γ)) .
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And because A is constant we further have

A (J,k,Γ (f ,k ≤ n)(γ)) = A(J,k + 1,Γ (f ,k + 1 ≤ n)(γ))

(by assumption k ≤m and n =m+ 1.
Now αf ,k+1 is a dependent function

(a ∈ A(J,k + 1,Γ (f ,k + 1 ≤ n)(γ)))→ (.ξ.B)(J,k + 1,Γ (f ,k + 1 ≤ n)(γ), a)

And we have

.ξ.B) (J,k + 1,Γ (f ,k + 1 ≤ n)(γ), a) = B
(
J,k,ξJ,k+1(Γ (f ,k + 1 ≤ n)(γ)), a

)
(because the relevant restriction of A is the identity). Now

ξJ,k+1(Γ (f ,k + 1 ≤ n)) = (.(Γ ,Γ ′))(f ,k + 1 ≤ n)(ξI,n(γ))

= (Γ ,Γ ′)(f ,k ≤m)(ξI,n(γ)).

Thus, we can define

βf ,k = αf ,k+1.

The fact that β is a natural family follows from the fact that α is a natural
family. Naturality of F follows easily by the fact that restrictions for Π types
are defined by “precomposition”.

The fact that it is the inverse to the canonical morphism follows by a
tedious computation.

Corollary 4.41. If Γ ` ϕ : F then we have an isomorphism of types

Γ ` .ξ.Π(p : [ϕ]).B �Π(x : [ϕ])..ξ.B. (4.7)

Proof. Using Proposition 4.40 it suffices to show that Γ ` [ϕ] is constant with
respect to ω. Using Lemmas 4.38 and 4.39 it further suffices to show that the
presheaf F is in the essential image of π∗, which is exactly what Lemma 4.28
states.

Interpreting later types

Lemma 4.42. Formation of .ξ-types preserves compositions. More precisely, if
.ξ.A is a well-formed type in context Γ and we have a composition term cA :
Φ(Γ ,Γ ′;A), then there is a composition term c : Φ(Γ ;.ξ.A).

Note that the types in Γ ′ need not be fibrant.
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Proof. We introduce the following variables:

γ : I→ Γ

ϕ : F

u :Π(i : I). ((.ξ.A)(γ i))ϕ

a0 : (.ξ.A)(γ 0)[ϕ 7→ u0].

Using Lemma 4.36 we can rewrite the types of u and a0:

u :Π(i : I).
(
.
[
γ ′← ξ ◦γ

]
.A(γ ′ i)

)ϕ
a0 : .

[
γ ′← ξ ◦γ

]
.A(γ ′ 0).

Furthermore, we have the following type isomorphisms:

Π(i : I).
(
.
[
γ ′← ξ ◦γ

]
.A(γ ′ i)

)ϕ
�Π(i : I)..

[
γ ′← ξ ◦γ

]
. (A(γ ′ i))ϕ

(Corr. 4.41)

� .
[
γ ′← ξ ◦γ

]
.Π(i : I). (A(γ ′ i))ϕ ,

(Prop. 4.40)

which means that we have a term

ũ : .
[
γ ′← ξ ◦γ

]
.Π(i : I). (A(γ ′ i))ϕ .

We can now – almost – form the term

next

 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 .cAγ ′ϕu′ a′0 : .
[
γ ′← ξ ◦γ

]
.A(γ ′ 1). (∗)

In order for the composition sub-term to be well-typed, we need that a′0 = u0
under the assumption ϕ. This is equivalent to saying that the type

.

 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 .(Id(a′0,u
′ 0))ϕ

is inhabited. We transform the type as follows:

.

 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 .(Id(a′0,u
′ 0))ϕ

�

.
 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 . Id(a′0,u
′ 0)


ϕ

(Corr. 4.41)

=

Id(next

 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 . a′0,next

 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 .u′ 0)


ϕ

= (Id(a0,u0))ϕ ,
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where the last equality uses that ũ is defined using the inverse of

λf λx.nextξ
[
f ′← f

]
. f ′ x

(Prop. 4.40). By assumption it is the case that (Id(a0,u0))ϕ is inhabited, and
therefore (∗) is well-defined. This concludes the existence part proof, as

.
[
γ ′← ξ ◦γ

]
.A(γ ′ 1) = (.ξ.A)(γ 1),

by Lemma 4.36.
We now have to show that the (∗) is equal to u1 under the assumption of

ϕ. Assuming ϕ, we get by the properties of cA that

next

 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 .cAγ ′ϕu′ a′0 = next

 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 .u′ 1,
and by the definition of ũ (Prop. 4.40) we have that

next

 γ
′← ξ ◦γ
u′← ũ
a′0← a0

 .u′ 1 = u1

as desired.

4.C.6 Summary of the semantics of GCTT

The interpretation of the syntax of GCTT follows the usual pattern for inter-
preting dependent type theory, see, e.g., the handbook chapter [74]: we define
a partial function on raw types and terms and then show that it is defined and
independent of the derivation on all derivable judgements.

In all we define the interpretations of the following judgements with the
help of the internal language of ̂C ×ω.

• ~Γ `�

• ~Γ ` A�

• ~Γ ` t : A�

• ~Γ ` A = B�

• ~Γ ` t = s : A�

• ~` ξ : Γ _ Γ ′�

• ~ρ : Γ → Γ ′�
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4.C. Denotational semantics

where the last one is a context morphism.
In particular soundness of the interpretation states that if

~Γ ` A = B�

then the types ~Γ ` A� and ~Γ ` B� are interpreted as the same object. We have
an analogous result for the judgement

~Γ ` t = s : A� .

and the interpretation of terms ~Γ ` t : A� and ~Γ ` s : A�.
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Chapter 5

Reduction Semantics

This chapter consists of preliminary work on a dependent type theory with
guarded recursive types and a reduction relation on terms and types. It is
part of an ongoing collaboration with Patrick Bahr and Rasmus Møgelberg, in
which we aim to show decidability of type checking of a guarded dependent
type theory via a strong normalisation proof.

The design of the calculus presented in this paper has roots in both Bahr’s
and Møgelberg’s reduction semantics for a simple type theory with guarded
recursion (unpublished), and in the Haskell implementation of a type checker
for the guarded cubical type theory of Chapter 4. It is from the implement-
ation work that we get the idea of replacing the delayed substitutions with
resources.

In the following presentation we do not include identity types. The inten-
tion is to first make a strong-normalisation argument independently of the
underlying type theory (e.g. cubical type theory, observational type theory),
and then hopefully at a later stage extend it to include identity types.

5.1 Guarded Recursive Types with Resources

The delayed substitutions introduced in Chapter 3 have demonstrated good
expressivity. However, it is difficult to design a reduction relation which gives
rise to the same equational theory as described in Chapter 3 and Chapter 4. It
is, for example, not obvious how to find a common reduct for the two terms

λx : .A,y : .B.nextκ
[
x′← x
y′← y

]
.t xy, λx : .A,y : .B.nextκ

[
y′← y
x′← x

]
.t xy,

which would be equal by the exchange rule.
To solve this problem we will look at an alternative to delayed substi-

tutions. We will take a more resource-oriented approach, inspired by the
resource interpretation of substructural logics – in particular our approach
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5. Reduction Semantics

seems to have a close connection with affine logic. Affine logic is a substruc-
tural logic where contraction is disallowed; in our setting this corresponds to
disallowing terms of type . .A→ .A.

The rough idea is to see the ‘later’ type former as a form of lollipop con-
nective, forming a resource aware function type κ( A from a type of clock
resources κ. Instead of writing κ( A we will suggestively write

κ
.A. For the

sake of presentation we will in the beginning assume that we have exactly one
such clock κ available, so it will be sufficient to talk of .A. Later on we will
expand with clock quantification.

To illustrate the idea we will first describe the typing rules for .A in a
simply typed setting with only one clock, using dual contexts (later we will
see why this is not quite enough to achieve the properties we want). Since .A
is a form of function type, it needs a ‘lambda’. We will denote this with next,
and it will bind a resource token, r. The intuition is that once we go under a .,
we are shifting our viewpoint to ‘tomorrow’ – therefore we are provided with
a token we can use to ‘advance the clock’ one day (if I know that “tomorrow is
my birthday” then, from the viewpoint of tomorrow, I can say “today is my
birthday”). The typing rule for next will have the form:

Γ | Ξ, r : κ ` t : A

Γ | Ξ ` nextr.t : .A

where Γ is the usual variable context, and Ξ is the resource context. We will
have no way of combining the resource tokens, so we can express application
as a unary rule:

Γ | Ξ ` t : .A

Γ | Ξ, r : κ ` tr : A
.

Notice that the resource token r disappears from the context once it is used.
This reflects that we can only advance the clock once each time you shift your
viewpoint (if I know that “the day after tomorrow is my birthday” then, from
the viewpoint of tomorrow, I can say “tomorrow is my birthday”, but not
“today is my birthday”). The application rule for regular function types will
allow duplication of the resource context:

Γ | Ξ ` t : A→ B Γ | Ξ ` u : A

Γ | Ξ ` t u : B

In this way we can can use a resource token as many times as we want in the
‘breadth’ of the term, but only once in ‘depth’: We get one resource token r
every time we ‘go under a later’, which in turn can be used to ‘strip off a later’.
Once we have used the token, we cannot use it again in a subterm. As an
example of the kind of resource duplication which is allowed, consider the
term encoding delayed application ~:

λx,y.nextr.xr yr : .(A→ B)→ .A→ .B.
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5.1. Guarded Recursive Types with Resources

An example of a term which isn’t allowed is λx :
κ
.
κ
.A.nextr : κ.tr r .

Just as for the regular function type, we have β and η-rules for
κ
.A:

(nextr : κ.t)r
′
→ t[r ′/r] (β.)

nextr : κ.tr → t (η.)

5.1.1 Translating Delayed Substitutions

We can translate terms using delayed substitutions into terms in the resource
calculus. Let GTT1 be a simple type theory with guarded recursive types
and delayed substitutions on next’s, and GTT2 be a similar type theory with
guarded recursive types with resources as described above. For now we
will ignore the details about the unique fixed-points forming the guarded
recursive types. Define a translation T from terms of GTT1 to terms of GTT2
by induction on the terms. We describe only the non-trivial case of next:

T (next [x1← t1, . . . ,xn← tn] .u) = nextr.T (u)[T (t1)r /x1, . . . ,T (tn)r /xn].

Recall from previous chapters the defining equations of delayed substitu-
tions:

nextξ [x← t] .u = nextξ.u, if x < FV(u) (Weakening)

nextξ [x← t,y← u]ξ ′ .v = nextξ [y← u,x← t]ξ ′ .v (Exchange)

nextξ [x← nextξ.t] .u = nextξ.u[t/x] (Force)

nextξ [x← t] .x = t (Eta)

If we instead define equality of terms t = u in GTT1 as equality of their
translations T (t) = T (u), where the latter equality is induced by the rewrite
rules of GTT2, then we can verify that the above equalities still hold:

• Weakening: If x does not occur free in u, then

T (nextξ[x← t].u) = T (nextξ.u),

because the substitution [T (t)/x] will have no effect.

• Exchange: The following substitutions are the same: σ [T (t)/x,T (u)/y]τ
and σ [T (u)/y,T (t)/x]τ , so therefore

T (nextξ [x← t,y← u]ξ ′ .v) = T (nextξ [y← u,x← t]ξ ′ .v).

• Force: Let ξ = [y1← t1, . . . , yn← tn], and σ = [T (t1)r /y1, . . . ,T (tn)r /yn].
Then (T (nextξ.t))r = (nextr.T (t)σ )r →β. T (t)σ , so

T (nextξ [x← nextξ.t] .u) = nextr.T (u)σ [(T (nextξ.t))r /x]
=β. nextr.T (u)σ [T (t)σ/x]
= T (nextξ.u[t/x])
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5. Reduction Semantics

where the last equality follows from a simple induction proof.

• Eta: This follows from the η.-rule:

T (nextξ [x← t] .x) = nextr.T (t)r

=η. T (t).

This suggests that we can use guarded recursive types with resources to
provide a computational interpretation of delayed substitutions.

5.1.2 Stream Examples

We will show examples of stream programming to illustrate how to use this
calculus in practice.

We assume that we have a constructor cons : Nat → .Str → Str, and
destructors head : Str → Nat and tail : Str → .Str. Now introduce the ab-
breviation n ::r s for consn (nextr.s). We can now revisit some programming
examples from earlier chapters. Consider the following definitions of map and
the stream nats:

map : (Nat → Nat) → Str → Str
map f s = f (head s) ::r map

r f (tail s)r

nats : Str
nats = 0 ::r map succ nats

r

Notice how these programs closely resemble their ‘unguarded’ cousins in
a Haskell-like language. An example with multiple resource tokens is the
following implementation of the stream of Fibonacci numbers:

zipWith : (Nat → Nat → Nat) → Str → Str → Str
zipWith f s1 s2 = f (head s1 s2) ::r

zipWithr f (tail s1)
r (tail s2)

r

fib : Str
fib = 0 ::r1 1 ::r2 zipWith (+) fib

r1 (tail fibr1)r2

5.2 Guarded Dependent Types with Resources

In this section we define in detail a guarded dependent type theory with
resources.

Conceptually, the step to dependent types is simple: instead of having the
simple affine function type κ( A, we will have a dependent function type
(r : κ)( A, which we denote .r : κ.A.
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5.2. Guarded Dependent Types with Resources

The syntax of the terms and types will be:

s, t,u,A,B ::= Πx : A.B | Σx : A.B | . r : κ.A | ∀κ.A | 1 | Bool | Nat | U∆ | El (A)
| Π̂x : A.B | Σ̂x : A.B | .̂r : κ.A | ∀̂κ.A | 1̂ | ˆBool | ˆNat
| x | λx.t | t u | 〈t,u〉 | π1t | π2t
| nextr : κ.t | tr | Λκ.t | t[κ]
| dfixκt | unfoldrt | foldrt
| 〈〉 | true | false | ifs t u | 0 | suc t | rec t u v

Here κ ranges over the set CV of clock variables, whereas r ranges over the
set RV∪{∗κ |κ ∈ CV } of resource variables and resource constants – except for
resource binders (terms of the form nextr : κ.t, .r : κ.A, and .̂r : κ.A) where r
ranges over the set RV of label variables only.

Our typing judgements will carry four contexts, and have the following
shape: Γ `Ξ

∆
t :I A. Here Γ is the regular typing context, ∆ is the clock context,

Ξ is the resource context, and I is a resource index. The resource index
keeps track of which resource tokens have at most been used, and is used to
enforce the ‘affineness’ of .. A resource context is a sequence of typings of
the form r : κ, where r is a resource and κ is a clock. A typing context Γ is
a set of typings of the form x :I A – where x is a variable, A is a type and I
is a resource index – such that there is at most one typing for every variable.
A clock context ∆ is a set of clock variables. For composing contexts and
resource indices we use commas for denoting the disjoint union. In particular
that means, if we write I , r, then r < I – and similarly for clock, typing and
resource contexts.

The domain dom (Ξ) of a resource context Ξ is the set of its resources, i.e.
dom (Ξ) = {r |r : κ ∈ Ξ }. We write I `Ξ to indicate that I is a valid resource
index in the resource context Ξ, which means that I ⊆ dom (Ξ). We write Ξ `∆
to indicate that Ξ is a well-formed resource context in ∆, which means that
whenever r : κ ∈ Ξ then also κ ∈ ∆.

We write
κ
.A and nextκ t as a shorthand for .r : κ.A and nextr : κ.t, respect-

ively, where r does not occur freely in A and t, respectively.
The reduction relation is defined in Figure 5.1, and the judgements are

defined in Figures 5.2 and 5.3.
Many of the typing rules are standard, so we will not discuss them. One

notable difference from the presentation of the rules in the introduction of
this chapter is the resource indices I which are tied to every type variable.
This is used in the variable rule:

(x :J A) ∈ Γ J ⊆ I Γ `Ξ∆ I `Ξ

Γ `Ξ∆ x :I A

The side conditions enforce that we cannot apply any resource from I to a
term which has x in it. This is to disallow terms such as:

nextr : κ.fixκλx.xr
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where fixκ = λf .f (dfixκf ), which otherwise seems to inhabit
κ
.A for any type A.

If we reduce this term we get a term which violates the rule that you cannot
apply the same resource token multiple times in series:

nextr : κ.fixκλx.xr → nextr : κ.(dfixκλx.xr )r .

The reason that nextr : κ.fixκλx.xr is ill typed is that the lambda rule needs the
x in the context and xr to have the same resource index, which is impossible
in this case, because we necessarily must add r to the latter resource index.

In the following sections we discuss how to form guarded recursive types,
and how to work with coinduction via the special resource token ∗κ.

5.2.1 Forming Guarded Recursive Types

Like in the dependent type theories of Chapter 3 and Chapter 4 we do not have
separate type formers for guarded recursive types, instead we form such types
using the guarded fixed point combinator on the universe. In the extensional
type theory of Chapter 3 we effectively have guarded equi-recursive types. In
the type theory of Chapter 4 a guarded recursive type is only path equal to
its unfolding, and therefore we must here rely on transports for folding and
unfolding.

The aim of the present work is to provide reduction semantics to a guarded
recursive type theory without identity types, in the hope that it can later be
combined with identity types à la cubical types, or observational type theory.
Thus we cannot rely on the properties of extensional equality, or on the
compositions of cubical types, and therefore we explicitly add folds and
unfolds.

The fixed points which we want to fold and unfold, are necessarily defined
in terms of the dfixκ combinator. Arguably, the simplest type construction
using dfixκ is the following: Let F be given such that Γ `Ξ

∆
F :I

κ
.U∆′ →U∆′ and

assume that r ∈ Ξ. Then we can form the two types:

Γ `Ξ∆ El (F(dfixκF)) :I ,r type,

Γ `Ξ∆ El ((dfixκF)r ) :I ,r type,

which ought to be isomorphic. Therefore we will have the constructions
unfoldrt and foldrt witnessing this isomorphism:

Γ `Ξ∆ t :I El ((dfixκ F)r ) Ξ ` r : κ r ∈ I ∪ {∗κ}
Γ `Ξ∆ unfoldr t :I El (F (dfixκ F))

Γ `Ξ∆ t :I El (F (dfixκ F)) Ξ ` r : κ r ∈ I ∪ {∗κ}
Γ `Ξ∆ foldr t :I El ((dfixκ F)r )
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5.2. Guarded Dependent Types with Resources

(λx.t)s→ t[s/x]

(Λκ.t)[κ′]→ t[κ′/κ]

(nextr ′ : κ.t)r → t
[
r/r ′

]
r ∈ RV∪{∗κ} (β.)

nextr : κ.tr → t if r : κ < fr(t) (η.)

(dfixκ t)∗κ → t (dfixκ t)

foldrunfoldrt→ t (fold-unfold)

fold∗κt→ t (fold)

unfold∗κt→ t (unfold)

πi 〈t1, t2〉 → ti
if true t1 t2→ t1

if false t1 t2→ t2
rec0 t s→ t

rec (suc t1) t2 t3→ t3 t1 (rec t1 t2 t3)

(Λκ.t[κ])→ t if κ < fc(t) (clock-eta)

El
(
Π̂x : s. t

)
→Πx : El (s) .El (t)

El
(
Σ̂x : s. t

)
→ Σx : El (s) .El (t)

El
(

ˆNat
)
→ Nat

El
(
1̂
)
→ 1

El
(

ˆBool
)
→ Bool

El
(
∀̂κ.t

)
→∀κ.El (t)

El (.̂r : κ.t)→ .r : κ.El (t)

Note that the side condition r : κ < fr(t) in (β.) and (η.) is always met for
well-typed terms.

Figure 5.1: Reduction relation.
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Contexts:

Ξ `∆
· `Ξ∆

Γ `Ξ∆ Γ `Ξ∆ A :I type I `Ξ

Γ ,x :I A `Ξ∆

Universes:

∆′ ⊆ ∆ Γ `Ξ∆
Γ `Ξ∆ U∆′ :I type

Γ `Ξ∆ A :I U∆′
Γ `Ξ∆ El (A) :I type

Type formations:

Γ ,x :I A `Ξ∆ B :I type

Γ `Ξ∆ Πx : A.B :I type

Γ `Ξ∆,κ A :I type Γ `Ξ∆
Γ `Ξ∆ ∀κ.A :I type

Γ `Ξ,r:κ
∆

A :I ,r type κ ∈ ∆ Γ `Ξ∆
Γ `Ξ∆ .r : κ.A :I type

Γ ,x :I A `Ξ∆ B :I type

Γ `Ξ∆ Σx : A.B :I type

Γ `Ξ∆
Γ `Ξ∆ 1 :I type

Γ `Ξ∆
Γ `Ξ∆ Bool :I type

Γ `Ξ∆
Γ `Ξ∆ Nat :I type

Codes:

Γ ,x :I El (A) `Ξ∆ B :I U∆′
Γ `Ξ∆ Π̂x : A.B :I U∆′

Γ `Ξ∆,κ A :I U∆′ ,κ
Γ `Ξ∆ ∀̂κ.A :I U∆′

Γ `Ξ,r:κ
∆

A :I ,r U∆′ κ ∈ ∆′ Γ `Ξ∆
Γ `Ξ∆ .̂r : κ.A :I U∆′

Γ ,x :I El (A) `Ξ∆ B :I U∆′
Γ `Ξ∆ Σ̂x : A.B :I U∆′

∆′ ⊆ ∆ Γ `Ξ∆
Γ `Ξ∆ 1̂ :I U∆′

∆′ ⊆ ∆ Γ `Ξ∆
Γ `Ξ∆ ˆBool :I U∆′

∆′ ⊆ ∆ Γ `Ξ∆
Γ `Ξ∆ ˆNat :I U∆′

Figure 5.2: Context and type formation rules.
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Γ `Ξ∆ t :I A A↔∗ B Γ `Ξ∆ B :I type

Γ `Ξ∆ t :I B

(x :J A) ∈ Γ J ⊆ I Γ `Ξ∆ I `Ξ

Γ `Ξ∆ x :I A

Γ ,x :I A `Ξ∆ t :I B

Γ `Ξ∆ λx.t :I Πx : A.B

Γ `Ξ∆ t :I Πx : A.B Γ `Ξ∆ s :I A

Γ `Ξ∆ t s :I B[s/x]

Γ `Ξ∆,κ t :I A Γ `Ξ∆
Γ `Ξ∆ Λκ.t :I ∀κ.A

Γ `Ξ∆ t :I ∀κ.A κ′ ∈ ∆
Γ `Ξ∆ t[κ

′] :I A[κ′/κ]

Γ `Ξ,r:κ
∆

t :I ,r A κ ∈ ∆ Γ `Ξ∆
Γ `Ξ∆ nextr : κ.t :I .r : κ.A

Γ `Ξ∆ t :I .r
′ : κ.A r : κ ∈ Ξ

Γ `Ξ∆ t
r :I ,r A

[
r/r ′

] Γ `Ξ∆,κ′ t :I .r : κ′ .A Γ `Ξ∆ κ ∈ ∆

Γ `Ξ∆ (t[κ/κ′])∗κ :I A
[
κ/κ′ ,∗κ/r

]
Γ `Ξ∆

Γ `Ξ∆ 〈〉 :I 1

Γ `Ξ∆ t :I A Γ ,x :I A `Ξ∆ s :I B

Γ `Ξ∆ 〈t, s〉 :I Σx : A.B

Γ `Ξ∆ t :I Σx : A.B

Γ `Ξ∆ π1 t :I A

Γ `Ξ∆ t :I Σx : A.B

Γ `Ξ∆ π2 t :I B[π1 t/x]

Γ `Ξ∆
Γ `Ξ∆ true :I Bool

Γ `Ξ∆
Γ `Ξ∆ false :I Bool

Γ `Ξ∆ t :I Bool Γ `Ξ∆ u :I A Γ `Ξ∆ v :I A

Γ `Ξ∆ if t u v :I A

Γ `Ξ∆
Γ `Ξ∆ 0 :I Nat

Γ `Ξ∆ t :I Nat

Γ `Ξ∆ suc t :I Nat

Γ `Ξ∆ t :I Nat Γ `Ξ∆ u :I A Γ `Ξ∆ v :I Nat→ A→ A

Γ `Ξ∆ rec t u v :I A

Γ `Ξ∆ t :I
κ
.A→ A

Γ `Ξ∆ dfixκ t :I .
κA

Γ `Ξ∆ t :I El ((dfixκ F)r ) Ξ ` r : κ r ∈ I ∪ {∗κ}
Γ `Ξ∆ unfoldr t :I El (F (dfixκ F))

Γ `Ξ∆ t :I El (F (dfixκ F)) Ξ ` r : κ r ∈ I ∪ {∗κ}
Γ `Ξ∆ foldr t :I El ((dfixκ F)r )

Figure 5.3: Typing rules.
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5. Reduction Semantics

The special resource ∗κ will be discussed in the following section. In order to
prevent diverging reductions we will not include a β-reduction

unfoldrfoldrt 6→ t,

but we will include η-reduction

foldrunfoldrt→ t.

This does not affect canonicity for base types, because the free r in foldr and
unfoldr ensures that these constructions will only appear under a next.

5.2.2 Coinductive Types

Coinductive types are defined using clock quantification, as in Chapter 3.
However, instead of using the prevκ.t construction from the same chapter
to remove .’s where permitted, we will use special resource constants ∗κ. The
application rule for ∗κ

Γ `Ξ∆,κ′ t :I .r : κ′ .A Γ `Ξ∆ κ ∈ ∆

Γ `Ξ∆ (t[κ/κ′])∗κ :I A
[
κ/κ′ ,∗κ/r

]
is different from the standard resource application rule, because we need to
make sure that the context of the term which we apply ∗κ to is constant with
respect to κ.

The purpose of applying ∗κ to a term is to advance it. This means that fixed
points will be unfolded once:

(dfixκ t)∗κ → t (dfixκ t),

and since the type of a term is advanced too, we can erase some folds and
unfolds:

fold∗κt→ t

unfold∗κt→ t.

Note that we do not require the use of a separate ‘adv’ operation on types as
in Chapter 3 – instead we have the substitution [∗κ/r].

5.2.3 Examples

In the following examples we will not distinguish between types and codes,
thus leaving out the El’s. We will write fixκx.t as an abbreviation of

(λx.t)(dfixκλx.t).
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Guarded streams. First we will define the type of guarded streams of nat-
ural numbers:

Strκ , fixκS.Nat× . r : κ.Sr .

As usual, the head function is easily defined:

headκ , π1 : Strκ→ Nat .

To define the tail function it is not sufficient to use the second projection,
because our guarded recursive types are not equi-recursive:

λs.π2s : Strκ→ .r : κ.(dfixκλS.Nat× . r : κ.Sr )r .

We need to make use of unfoldr :

tailκ , λs.nextr : κ.unfoldr(π2s)
r : Strκ→ κ

.Strκ.

Conversely we need to use foldr for defining the stream constructor consκ:

consκ , λn,s.
〈
n,nextr : κ.foldrs

r〉 : Nat→ κ
.Strκ→ Strκ.

Let us see how these terms behave. Let n and s be variables.

headκ(consκ ns)→∗ π1
〈
n,nextr : κ.foldrs

r〉
→ n

6→

tailκ(consκ ns)→∗ nextr : κ.unfoldr(π2(consκ ns))r

→∗ nextr : κ.unfoldr(nextr ′ : κ.foldr ′s
r ′ )r

→∗ nextr : κ.unfoldrfoldrs
r

6→

Here 6→means that no more reductions are possible. We will write n ::r s as
an abbreviation of consκ n (nextr : κ.s). It is then immediate that the normal
form of tailκ(n ::r s) will be

nextr : κ.unfoldrfoldrs.

We can now define the familiar map function:

mapκ : (Nat→ Nat)→ Strκ→ Strκ

mapκ , λf .fixκm.λs.f (headκ s) ::r m
r (tailκ s)r ,

and use it to define the guarded stream of natural numbers:

natsκ , fixκs.0 ::r mapκ suc sr : Strκ.
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5. Reduction Semantics

Coinductive streams. We will define the coinductive type of streams by
quantifying over the free clock of Strκ:

Str , ∀κ.Strκ.

Whenever we have a clock κ0 available (we can safely assume that this clock
constant is always available) we can get the head of a stream:

head : Str→ Nat

head , λs.headκ0 s[κ0].

By using the special ∗-resource, we can define the tail function for coinductive
streams:

tail : Str→ Str

tail , λs.Λκ.(tailκ s[κ])∗κ .

Let s be some term of type Strκ with a free resource token r. Then

tail(Λκ.n ::r s)→∗ Λκ.(tailκ(n ::r s))
∗κ

→∗ Λκ.(nextr : κ.unfoldrfoldrs)
∗κ

→∗ Λκ.s[∗κ/r].

We will use this reduction later.
The following function returns the n’th element of a stream, and is an

example of a function which cannot be defined on guarded streams:

nth : Nat→ Str→ Nat

nth , λn.rec n head (λm,f , s.f (tail s)).

We can now also construct acausal stream functions such as the one that filters
away all the odd elements of a stream:

every2ndκ : Str→ Strκ

every2ndκ , fixκe.λs.headκ s[κ] ::r e
r (tail(tail s))

every2nd : Str→ Str

every2nd , λs.Λκ.every2ndκ s.

It is now possible to calculate what the second even natural number is. Since
we can define the coinductive stream of natural numbers as Λκ.natsκ, the
stream of even natural numbers will be every2nd(Λκ.natsκ). The reduction
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will go as follows:

nth 1(every2nd(Λκ.natsκ))

→∗ head(tail(every2nd(Λκ.natsκ)))

→∗ head(tail(every2nd(Λκ.0 ::r mapκ suc (nats
κ
.)r )))

→∗ head(tail(0 ::r (every2nd
κ
.)r(tail(Λκ.mapκ suc natsκ))))

→∗ head(Λκ.every2ndκ(tail(Λκ.mapκ suc natsκ)))

→∗ head(Λκ.every2ndκ(tail(Λκ.suc0 ::r ((map suc )
κ
.)r (tailκ natsκ)r )))

→∗ head(Λκ.every2ndκ(Λκ.mapκ suc (tailκ natsκ)∗κ ))

→∗ head(Λκ.every2ndκ(Λκ.mapκ suc (mapκ suc natsκ)))

→∗ head(Λκ.every2ndκ(Λκ.mapκ suc (suc0 ::r ((map suc )
κ
.)r (tailκ natsκ)r )))

→∗ head(Λκ.every2ndκ(Λκ.sucsuc 0 ::r (· · · )))
→∗ head(Λκ.sucsuc0 ::r (· · · ))
→∗ sucsuc0

where F
κ
. = dfixκf , if Fκ = fixκx.f x, and (· · · ) is a term which is irrelevant for

this particular reduction.

5.3 Future and Ongoing Work

We have seen examples providing evidence that guarded dependent type
theory with resources is weakly normalising. We conjecture that it enjoys
even stronger properties, namely:

• It is strongly normalising: t will have no infinite reduction sequence,
provided that it is well-typed.

• It satisfies canonicity (for base types): if `
∆
t : Nat, then t→∗ sucn0 for

some n ∈N.

A proof of strong normalisation would lead to a proof of decidability of type
checking. Proving these properties is currently ongoing work. We believe
that it would be helpful to have a denotational model of the type theory.
This model will necessarily be quite intricate, since it needs to allow clock
synchronisation and provide an interpretation of resource tokens.

Additionally, we conjecture that the following syntactical properties hold:

• Subject reduction: if Γ `Ξ
∆
t :I A and t→ u, then Γ `Ξ

∆
u :I A.

• Confluence: if u1
∗← t→∗ u2, then u1→∗ t′ ∗← u2 for some t′.
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5. Reduction Semantics

The proof of subject reduction seems to be a simple induction proof, and by
showing that the diamond property of a parallel reduction relation holds, we
believe that we can prove confluence.

There is one equality of the extensional type theory of Chapter 3 which is
not verified by the type theory of this chapter: TmEq-∀-fresh (see page 79)
which asserts that the terms t[κ] and t[κ′] are equal, provided that t has type
∀κ.Awhere κ does not occur free in A. Since our reduction relation is untyped
there is no way that it can equate these terms. Unfortunately this rule seems
to be necessary when working with dependent coinductive types, such as
covectors, because it is used to get a type isomorphism ∀κ.A � A when κ is
not free in A.

If the above syntactic properties are confirmed, I believe that the time
would be ripe to experiment with implementing guarded recursive types in
Agda.
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