# W-Types and M-Types in Equilogical Spaces

Andrej Bauer

Lars Birkedal

May 17, 1999

#### Abstract

We show that **Equ** has all W-types and all M-types. From this we conclude that induction and coinduction principles for polynomial functors are valid in the logic of equilogical spaces.

#### 1 W-Types and M-types

Let C be a a finitely complete, locally cartesian closed category. For a morphism  $f: B \to A$  define the "polynomial functor"  $P_f: \mathbf{C} \to \mathbf{C}$  by

$$P_f(X) = \sum_{a \in A} X^{f^{-1}(a)}$$

where  $\sum$  is a dependent sum and  $f^{-1}(a)$  is the fiber in B over a. More precisely,  $P_f(X)$  is the total space of the exponential

$$(X \times A \xrightarrow{\pi_2} A)^{(f:B \to A)}$$

in the slice category  $\mathbf{C}/A$ . For a morphism  $[g]: X \to Y$ ,  $P_f[g] = [id_{|A|} \times g^{id_{|B|}}]$ . The W-type W(f), if it exists, is an initial algebra for the functor  $P_f$ . The M-type M(f), if it exists, is a final coalgebra for the functor  $P_f$ .

## 2 W-Types in PEqu

A morphism in **PEqu** is an equivalence class  $[f]: B \to A$ , but we often write f instead of [f] where no confusion can arise. Wherever it makes sense, f should be interpreted as a continuous map  $|B| \to |A|$ , and otherwise it should be interpreted as the morphism represented by f.

Let  $[f]: B \to A$  be a morphism in **PEqu**. For an object  $X = (|X|, \approx_X)$  in **PEqu**,  $P_f(X)$  is concretely defined as  $P_f(X) = (|A| \times |X|^{|B|}, \approx_{P_f(X)})$ , where

$$(a,u) \approx_{P_f(X)} (a',u')$$

if and only if

 $a \approx_A a'$  and  $\forall b, b' \in |B| \cdot (b \approx_B b' \land f(b) \approx_A a \Longrightarrow u(b) \approx_X u'(b'))$ .

For a morphism  $[g]: X \to Y$ ,  $P_f[g] = [id_{|A|} \times g^{id_{|B|}}]$ . The rest of this section consists of a proof that  $P_f$  has an initial algebra W = W(f).

(1) The underlying lattice |W|: The initial  $P_f$ -algebra W, if it exists, is isomorphic to  $P_f(W)$ . Thus, it makes sense to choose the underlying lattice |W| so that  $|W| \cong |A| \times |W|^{|B|}$ . We know that such a lattice exists because domain equations can be solved in the category of algebraic lattices. In particular, we choose the lattice

$$|W| = \prod_{k=0}^{\infty} |A|^{|B|^k},$$

with an isomorphism  $\langle \Box, \Box \rangle \colon |A| \times |W|^{|B|} \to |W|$ , defined component-wise by:

$$\pi_0 \langle a, u \rangle = a$$
  
$$\pi_{i+1} \langle a, u \rangle = \lambda(b, \vec{b}) \in |B|^{i+1} \cdot \left( \left( \pi_i(u(b)) \right) (\vec{b}) \right).$$

(2) The partial equivalence relation  $\approx_W$ : Let  $\mathbf{PER}(|W|)$  be the complete lattice of partial equivalence relations on |W|, ordered by inclusion  $\subseteq$ . Define an operator  $\Phi: \mathbf{PER}(|W|) \to \mathbf{PER}(|W|)$  by

$$\begin{split} \langle a,u\rangle\;\Phi(\approx)\;\langle a',u'\rangle \\ &\text{if and only if} \\ a\approx_A a' \text{ and } \forall\, b,b'\in |B|\;.\, (b\approx_B b'\wedge f(b)\approx_A a\Longrightarrow u(b)\approx u'(b'))\;. \end{split}$$

The operator  $\Phi$  is a monotone operator on a complete lattice. Let  $\approx_W$  be the least fixed point of  $\Phi$ .

The operator  $\Phi$  is defined on partial equivalence relations on |M|. Nevertheless, it can be applied to an arbitrary binary relation R on |M|. If R is a relation on |M|, let  $\sigma(R)$  be its symmetric closure, and let  $\tau(R)$  be its transitive closure. It is not hard to check that  $\Phi$  satisfies

$$\sigma(\Phi(R)) \subseteq \Phi(\sigma(R))$$
  
 $\tau(\Phi(R)) \subseteq \Phi(\tau(R))$ ,

and thus also

$$\tau(\sigma(\Phi(R))) \subset \Phi(\tau(\sigma(R)))$$
.

(3) W is a  $P_f$ -algebra: To show that  $[\langle \Box, \Box \rangle] : P_f(W) \to W$  is a  $P_f$ -algebra all that has to be checked is that  $\langle \Box, \Box \rangle$  preserves the partial equivalence relation. Suppose  $(a, u) \approx_{P_f(W)} (a', u')$ . This means that

$$a \approx_A a'$$
 and  $\forall b, b' \in |B|$ .  $(b \approx_B b' \land f(b) \approx_A a \Longrightarrow u(b) \approx_W u'(b'))$ 

which is equivalent to  $\langle a, u \rangle \Phi(\approx_W) \langle a', u' \rangle$ , and since  $\approx_W$  is a fixed point of  $\Phi$ , this is just  $\langle a, u \rangle \approx_W \langle a', u' \rangle$ .

- (4) Uniqueness of homomorphisms: Let  $[v]: P_f(V) \to V$  be a  $P_f$ -algebra, and suppose  $[s], [t]: W \to V$  are  $P_f$ -homomorphisms from W to V. Let  $\sim$  be the partial equivalence relation on |W|, such that  $\langle a, u \rangle \sim \langle a', u' \rangle$  if, and only if, all of the following hold:
  - $(a, s \circ u) \approx_{P_f(V)} (a', s \circ u'),$
  - $(a, t \circ u) \approx_{P_t(V)} (a', t \circ u'),$
  - $(a, s \circ u) \approx_{P_f(V)} (a', t \circ u'),$
  - $(a', s \circ u') \approx_{P_f(V)} (a, t \circ u)$ .

If  $\langle a, u \rangle \sim \langle a', u' \rangle$ , then it follows from the first and the second conditions, that

$$s\langle a, u \rangle \approx_V v(a, s \circ u) \approx_V v(a', s \circ u') \approx_V s\langle a', u' \rangle$$
  
 $t\langle a, u \rangle \approx_V v(a, t \circ u) \approx_V v(a', t \circ u') \approx_V t\langle a', u' \rangle$ ,

which means that t and s preserve  $\sim$ . Similarly, using the third condition, it follows from  $\langle a, u \rangle \sim \langle a', u' \rangle$  that

$$s\langle a, u \rangle \approx_V v(a, s \circ u) \approx_V v(a', t \circ u') \approx_V t\langle a, u \rangle.$$

To show that [t] = [s], we demonstrate that  $\approx_W \subseteq \sim$  by proving that  $\sim$  is a prefixed point of  $\Phi$ . Suppose  $\langle a, u \rangle \Phi(\sim) \langle a', u' \rangle$ . Then  $a \approx_A a'$ , and for all  $b, b' \in |B|$  such that  $b \approx_B b'$  and  $f(b) \approx_A a$  it is the case that  $u(b) \sim u'(b')$ . Because s and t preserve  $\sim$  and they coincide on it up to equivalence in V it follows that:

- $s(u(b)) \approx_V s(u'(b'))$ ,
- $t(u(b)) \approx_V t(u'(b'))$ ,
- $s(u(b)) \approx_V t(u'(b'))$ ,
- $s(u'(b')) \approx_V t(u(b))$ .

It is now clear that  $\langle a, u \rangle \sim \langle a', u' \rangle$ .

(5) Existence of homomorphisms: Let  $[v]: P_f(V) \to V$  be a  $P_f$ -algebra. We show that there exists a  $P_f$ -homomorphism  $[w]: W \to V$ . Let  $\Psi: |V|^{|W|} \to |V|^{|W|}$  be the operator defined by

$$(\Psi g)\langle a, u \rangle = v(a, g \circ u).$$

Let  $w \in |W| \to |V|$  be the least fixed point of  $\Psi$ , so that

$$w\langle a, u \rangle = v(a, w \circ u).$$

We need to show that [w] is a  $P_f$ -homomorphism. Let  $\sim$  be a partial equivalence relation on |W| defined by

$$\langle a, u \rangle \sim \langle a', u' \rangle \iff (a, w \circ u) \approx_{P_{\mathfrak{x}}(V)} (a', w \circ u').$$

First, observe that w preserves  $\sim$ : if  $\langle a, u \rangle \sim \langle a', u' \rangle$ , then  $(a, w \circ u) \approx_{P_f(V)} (a', w \circ u')$ , hence

$$w\langle a, u \rangle = v(a, w \circ u) \approx_V v(a', w \circ u') = w\langle a', u' \rangle.$$

To see that w preserves  $\approx_W$ , we show that  $\approx_W \subseteq \sim$ . This is the case because  $\sim$  is a prefixed point of the operator  $\Phi$ . Indeed, suppose  $\langle a, u \rangle \Phi(\sim) \langle a', u' \rangle$ . Then  $a \approx_A a'$ , and for every  $b, b' \in |B|$  such that  $b \approx_B b'$  and  $f(b) \approx_A a$  we have  $u(b) \sim u'(b')$ . Since w preserves  $\sim$ , it follows that  $w(u(b)) \approx_V w(u'(b'))$ , therefore  $(a, w \circ u) \approx_{P_t(V)} (a', w \circ u')$ , which is just  $\langle a, u \rangle \sim \langle a', u' \rangle$ .

### 3 M-Types in PEqu

In this section we prove that every polynomial functor  $P_f$  in **PEqu** has a final coalgebra M = M(f).

- (1) The underlying lattice |M|: Let |M| be the algebraic lattice |W| defined in Section 2. We consistently switch the notation from W's to M's to indicate the duality between W-types and M-types.
- (2) The partial equivalence relation  $\approx_M$ : Recall that in Section 2 we defined a monotone operator  $\Phi$  on the complete lattice  $\mathbf{PER}(|M|)$  and considered its least fixed point. Now let  $\approx_M$  be the *greatest* fixed point of the operator  $\Phi$ , and let  $M = (|M|, \approx_M)$ .
- (3) M is a  $P_f$ -coalgebra: To show that  $[\langle \Box, \Box \rangle^{-1}] : M \to P_f(M)$  is a  $P_f$ -coalgebra all that needs to be checked is that  $\langle \Box, \Box \rangle^{-1}$  preserves  $\approx_M$ . The proof is analogous to the case of W-types and  $\approx_W$ , since  $\approx_M$  is a fixed point of  $\Phi$ .
- (4) Uniqueness of homomorphisms: Let  $[n]: N \to P_f(N)$  be a  $P_f$ -coalgebra and suppose that  $[s], [t]: N \to M$  are  $P_f$ -coalgebra morphisms. We show that [s] = [t]. Let  $\sim_0$  be the relation on |M| defined by

$$\begin{split} \langle a,u\rangle \sim_0 \langle a',u'\rangle \\ &\text{if and only if} \\ \exists\, x,x'\in |N|\,.\, (x\approx_N x'\wedge\langle a,u\rangle\approx_M s(x)\wedge\langle a',u'\rangle\approx_M t(x))\;, \end{split}$$

and let  $\sim$  be the least partial equivalence relation that contains  $\sim_0$ . In other words,  $\sim$  is the transitive closure of the symmetric closure of  $\sim_0$ .

We show that  $\sim$  is a postfixed point of  $\Phi$ , i.e., that  $\sim \subseteq \Phi(\sim)$ , from which it follows that  $\sim \subseteq \approx_M$  because  $\approx_M$  is the greatest postfixed point of  $\Phi$ . Then [s] = [t] holds because  $\sim$  is defined so that  $x \approx_N x'$  implies  $s(x) \sim t(x')$ .

By the remarks at the end of the second paragraph in Section 2, in order to show that  $\sim \subseteq \Phi(\sim)$ , we only need to check that  $\sim_0 \subseteq \Phi(\sim_0)$ . Suppose that for some  $x, x' \in |N|$  it is the case that  $x \approx_N x'$ ,  $\langle a, u \rangle \approx_M s(x)$  and  $\langle a', u' \rangle \approx_M t(x)$ . Taking into account that [s] and [t] are  $P_t$ -coalgebra morphisms, we see that

$$\langle a, u \rangle \approx_M s(x) \approx_M \langle n_1(x), s \circ n_2(x) \rangle$$
  
 $\langle a', u' \rangle \approx_M t(x') \approx_M \langle n_1(x'), t \circ n_2(x') \rangle,$ 

where  $n=(n_1,n_2)\colon |N|\to |A|\times |N|^{|B|}$ . Since  $\approx_M$  is a fixed point of  $\Phi$ , it follows that

$$a \approx_A n_1(x) \approx_A n_1(x') \approx_A a'. \tag{1}$$

Also, if  $b, b' \in |B|$ ,  $b \approx_B b'$ , and  $f(b) \approx_A a$  then  $n_2(x)(b) \approx_N n_2(x')(b')$  and

$$u(b) \approx_M s(n_2(x)(b)),$$
  
$$u'(b') \approx_M t(n_2(x')(b')).$$

By definition of  $\sim_0$ ,

$$u(b) \sim u'(b'). \tag{2}$$

Putting (1) and (2) together, we get  $\langle a, u \rangle \Phi(\sim_0) \langle a', u' \rangle$ , as required.

(5) Existence of homomorphisms: Let  $[n]: N \to P_f(N)$  be a  $P_f$ -coalgebra. We show that there is a  $P_f$ -coalgebra homomorphism  $[m]: N \to M$ . Define a continuous operator  $\Psi: |M|^{|N|} \to |M|^{|N|}$  by

$$(\Psi g)x = \langle n_1(x), g \circ n_2(x) \rangle,$$

where  $n = (n_1, n_2) : |N| \to |A| \times |N|^{|B|}$ . Let m be the least fixed point of  $\Psi$ , so that for all  $x \in |N|$ ,

$$m(x) = \langle n_1(x), m \circ n_2(x) \rangle. \tag{3}$$

We need to prove that m represents a morphism  $[m]: N \to M$ . Let  $\sim_0$  be a relation on |M| defined by

$$\langle a,u\rangle \sim_0 \langle a',u'\rangle$$
 if and only if 
$$\exists \, x,x' \in |N| \, . \, (x \approx_N x' \wedge \langle a,u'\rangle \approx_M m(x) \wedge \langle a',u'\rangle \approx_M m(x')) \; ,$$

and let  $\sim$  be the least partial equivalence relation that contains  $\sim_0$ . Just like in the previous paragraph, we can easily check that  $\sim \subseteq \approx_M$  by verifying that  $\sim \subseteq \Phi(\sim)$ .

The map m represents a morphism  $[m]: N \to M$  because  $x \approx_N x'$  implies  $m(x) \sim m(x')$ , which in turn implies  $m(x) \approx_M m(x')$ . That [m] is a  $P_f$ -coalgebra homomorphism is expressed exactly by the fixed point property (3).

#### Induction and Coinduction Principles 4

A polynomial functor is a functor built up from identity, constants, finite products, and finite coproducts, see [HJ96] for a more precise definition.

Since polynomial functors are special cases of the functors  $P_f$ , any polynomial functor T on the category of equilogical spaces has an initial algebra and a final coalgebra.

Consider the logic of subobjects  $\begin{array}{c} \operatorname{Sub}(\mathbf{PEqu}) \\ \mathbf{PEqu} \\ \end{array}$  described in detail in [Bir99].

(Here we do not consider dependencies.) Define  $\begin{array}{c} \operatorname{Rel}(\mathbf{PEqu}) \\ \mathbf{PEqu} \\ \end{array}$  by change-of-base:



Thus the fibre category  $Rel(\mathbf{PEqu})_X$  over  $X \in \mathbf{PEqu}$  is the subobjects on  $X \times X$ , i.e., binary relations on X.

Every polynomial functor  $T: \mathbf{PEqu} \to \mathbf{PEqu}$  can be lifted to a functor  $\operatorname{Pred}(T) : \operatorname{Sub}(\mathbf{PEqu}) \to \operatorname{Sub}(\mathbf{PEqu})$ , called the logical predicate lifting of T, by induction on the structucture of T as described in [HJ96]: Every constant  $A \in \mathbf{PEqu}$  occurring in T is replaced by the true predicate  $T_A$  and the bicartesian structure of **PEqu** used in T is replaced by the bicartesian structure in Sub(**PEqu**) (i.e.,  $\wedge$  and  $\vee$ ).

Similarly, a polynomial functor T can be lifted to a functor Rel(T):  $Rel(\mathbf{PEqu}) \rightarrow$  $Rel(\mathbf{PEqu})$ , called the **logical relation lifting** of T, by induction on the structure of T. Now we replace a constant  $A \in \mathbf{PEqu}$  occurring in T by the equality predicate Eq(A) =  $\coprod_{\delta} (A)(\top_A) \in \operatorname{Sub}(A \times A) = \operatorname{Rel}(A)$ , where  $\delta(A)$  is the diagonal on A.

Because PEqu is bicartesian closed with disjoint and stable coproducts  $\bigcup_{\substack{\mathbf{PEqu} \\ \mathbf{PEqu}}}^{\text{Sub}(\mathbf{PEqu})} \text{ is a first-order fibration, it admits com-}$ (hence distributive), and

prehension (subset types) and has quotient types, see [Bir99], we can conclude from the general results in [HJ96], that the following induction and coinduction principles are valid.

**Induction Principle** Let T be a polynomial functor and let  $c: TD \to D$  be the initial T-algebra. Let  $s: TX \to X$  be any T-algebra and let  $!: D \to X$  be the unique algebra map. The following inference rule is valid, for any prediate  $\varphi \in \operatorname{Sub}(\Gamma, x : X)$ .

$$\frac{\Gamma, x : TX \mid \Theta, \operatorname{Pred}(T)(\varphi)(x) \vdash \varphi(s(x))}{\Gamma, d : D \mid \Theta \vdash \varphi(!d)}$$

**Example 4.1.** Let T be the functor  $X \mapsto 1 + N \times X$ , with N the natural numbers object of **PEqu**. Write  $s = [n, c]: TL \to L$  for the initial algebra of T. Let  $TD \to D$  above be  $TL \to L$  and let  $TX \to X$  above also be  $TL \to L$ , so ! = id. Let  $\varphi \in \operatorname{Sub}(\Gamma, l: L)$  be any predicate. Then the inference rule specializes to the expected induction principle for lists

$$\frac{\Gamma \mid \Theta \vdash \varphi(n) \qquad \quad \Gamma, m \colon N, l \colon L \mid \Theta, \varphi(l) \vdash \varphi(c(m, l))}{\Gamma, l \colon L \mid \Theta \vdash \varphi(l)}$$

**Coinduction Principle** Let T be a polynomial functor and let  $c: D \to TD$  be the final T-coalgebra. Let  $s: X \to TX$  be any T-coalgebra and let  $!: X \to D$  be the unique coalgebra map. The following inference rule is valid, for any relation  $R \in \text{Rel}(X)$ ,

$$\frac{\Gamma, x, y \colon X \mid \Theta, R(x, y) \vdash \text{Rel}(T)(R)(sx, sy)}{\Gamma, x, y \colon X \mid \Theta \vdash !x =_{D} !y}$$

#### 5 Comments

If |B| and |A| are countably based algebraic lattices then also the lattice |W| is countably based. This means that  $\omega \mathbf{PEqu}$ , the countably based version of  $\mathbf{PEqu}$ , has W-types and M-types as well.

We thank Jaap van Osten and Steve Awodey.

#### References

- [Bir99] L. Birkedal. Developing Theories of Types and Computability via Realizability. PhD thesis, School of Computer Science, Carnegie Mellon University, 1999. Forthcoming.
- [HJ94] C. Hermida and B. Jacobs. An algebraic view of structural induction. In L. Pacholski and J. Tiuryn, editors, *Proceedings of Computer Science Logic 1994*, number 933 in LNCS, pages 412–426, 1994.
- [HJ96] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Unpublished Manuscript, full version of [HJ94], September 1996.