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Abstract
We show that Equ has all W-types and all M-types. From this we con-
clude that induction and coinduction principles for polynomial functors
are valid in the logic of equilogical spaces.

1 W-Types and M-types

Let C be a a finitely complete, locally cartesian closed category. For a morphism
f: B — A define the “polynomial functor” P;: C — C by

Pr(X) =y X7
aEA
where 3" is a dependent sum and f~!(a) is the fiber in B over a. More precisely,
P¢(X) is the total space of the exponential
(X x A 12 A B=4)

in the slice category C/A. For a morphism [g]: X — Y, Ps[g] = [id|4| x g"¥151].
The W-type W(f), if it exists, is an initial algebra for the functor Py. The
M-type M(f), if it exists, is a final coalgebra for the functor Py.

2 W-Types in PEqu

A morphism in PEqu is an equivalence class [f]: B — A, but we often write
J instead of [f] where no confusion can arise. Wherever it makes sense, f
should be interpreted as a continuous map |B| — |A|, and otherwise it should
be interpreted as the morphism represented by f.

Let [f]: B = A be a morphism in PEqu. For an object X = (|X|,~x)
in PEqu, P;(X) is concretely defined as P¢(X) = (J4] x |X||B|,zpf(X)), where

(a,u) =p,(x) (a',u')
if and only if
axya and Vb, b €|B|.(bx~p U A f(b) ~a a = u(b) mx u'(V)).

For a morphism [¢]: X — Y, Plg] = [idja| x g**121]. The rest of this section
consists of a proof that P; has an initial algebra W = W (f).



(1) The underlying lattice |W|: The initial Py-algebra W, if it exists, is
isomorphic to Py (WW). Thus, it makes sense to choose the underlying lattice |W|
so that |IW| = |A] x |[W|IPl. We know that such a lattice exists because domain
equations can be solved in the category of algebraic lattices. In particular, we
choose the lattice

wi =TT 1aM®",
k=0

with an isomorphism (0,0): |A| x |[W|IBl = |W|, defined component-wise by:

mola,u) = a

migi(a,u) = Ab,B) € [BIH . ((m(u(9)(5)

(2) The partial equivalence relation ~y:  Let PER(|W]) be the complete
lattice of partial equivalence relations on |W|, ordered by inclusion C. Define

an operator &: PER(|W|) — PER(|W]) by

(a,u) (=) (@, )
if and only if
a=xya and Vb,V €|B|.(b~p b A f(b) ma a = u(b) ~u'(V)).

The operator ¢ is a monotone operator on a complete lattice. Let sy be the
least fixed point of ®.

The operator ® is defined on partial equivalence relations on |M|. Never-
theless, it can be applied to an arbitrary binary relation R on |M|. If R is a
relation on | M|, let o(R) be its symmetric closure, and let 7(R) be its transitive
closure. It is not hard to check that & satisfies

and thus also

(3) W is a Ps-algebra: To show that [(O,0)]: P;(W) — W is a Ps-algebra
all that has to be checked is that (OJ,0) preserves the partial equivalence rela-
tion. Suppose (a,u) ~p, ) (a’,u'). This means that

ax~ya and Vb,V €|B|.(bap b A f(b) ~a a = u(b) mw /(b))

which is equivalent to {a, u) ®(=w) (¢’, u’), and since m is a fixed point of D,
this is just (a, u) =w {(a’, u').



(4) Uniqueness of homomorphisms: Let [v]: Pf(V) — V be a P;-algebra,
and suppose [s],[t]: W — V are P;-homomorphisms from W to V. Let ~ be
the partial equivalence relation on |W/|, such that {a,u) ~ {a’,u') if, and only

if, all of the following hold:

,sou) Rp, vy (a',s0u'),

s{a,u) myv v(a,sou) my v(d,sou') my s(a,u)

t(a, u) &y via,tou) ~y v(d tou) ~y t{(a,u'),

which means that ¢ and s preserve ~. Similarly, using the third condition, it
follows from (a, u) ~ (a’, u') that

s{a,u) my v(a,sou) ~y v(a' tou') xy t{a,u).

To show that [t] = [s], we demonstrate that 4w C ~ by proving that ~ is a
prefixed point of ®. Suppose (a,u) ®(~) {(a’,u'). Then a =4 o', and for all
b,b' € |B| such that b ~p b’ and f(b) =4 a it is the case that u(b) ~ u/(b").
Because s and ¢ preserve ~ and they coincide on it up to equivalence in V it
follows that:

o s(u(b)) v s(u' (V)
"(¥)),
v (' (8),
o s(u/(V)) v t(u(b)).

t(u

<

o~

~
o~
~

It is now clear that {a,u) ~ (a’, u').

(5) Existence of homomorphisms: Let [v]: P;(V) — V be a P;-algebra.
We show that there exists a Pj-homomorphism [w]: W — V. Let ¥: [V|W] -
|V|I"! be the operator defined by

(Tg){a,u) = v(a,gou).
Let w € |[W| — |V| be the least fixed point of ¥, so that

w{a,u) = v(a,wou).



We need to show that [w] is a P¢-homomorphism. Let ~ be a partial equivalence
relation on |WW| defined by

(a,uy ~(a' vy <= (a,wou)rp,v)(d wou').

First, observe that w preserves ~: if (a,u) ~ (a’,u’), then (a,w o u) ~p,(v)
(a',wou'), hence

w(a,u) = v(a, wou) oy v(ad',wou') = wld u).

To see that w preserves =y, we show that s C ~. This is the case because
~ is a prefixed point of the operator ®. Indeed, suppose (a,u) ®(~) {(a’,u').
Then a ~4 o, and for every b,0' € |B| such that b ~p b and f(b) =4 a we
have u(b) ~ u/(b’). Since w preserves ~, it follows that w(u(b)) ~v w(u'(V')),
therefore (a,wou) ~p, vy (a',wou), which is just (a,u) ~ (a’, u’).

3 M-Types in PEqu

In this section we prove that every polynomial functor Py in PEqu has a final

coalgebra M = M (f).

(1) The underlying lattice |M|:  Let | M| be the algebraic lattice |W| defined
in Section 2. We consistently switch the notation from W’s to M’s to indicate
the duality between W-types and M-types.

(2) The partial equivalence relation rsy;:  Recall that in Section 2 we de-
fined a monotone operator ® on the complete lattice PER(]M|) and considered
its least fixed point. Now let 03 be the greatest fixed point of the operator &,
and let M = (|M|, ).

(3) M is a P-coalgebra: To show that [(O,0)7']: M — P;(M) is a Py-
coalgebra all that needs to be checked is that (0, 0)~! preserves azps. The proof
1s analogous to the case of W-types and sy, since &y 1s a fixed point of ®.

(4) Uniqueness of homomorphisms: Let [n]: N — P;(N) be a Ps-coalgebra
and suppose that [s], [t]: N — M are Pj-coalgebra morphisms. We show that
[s] = [t]. Let ~¢ be the relation on |M| defined by

(a,u) ~o (a’,u)
if and only if
Jz, 2" €|N|. (x =n o' Ala,u) =y s(z) A{d,u') = t(2)),

and let ~ be the least partial equivalence relation that contains ~q. In other
words, ~ is the transitive closure of the symmetric closure of ~g.



We show that ~ is a postfixed point of @, i.e., that ~ C ®(~), from which
it follows that ~ C sy because sy is the greatest postfixed point of ®. Then
[s] = [t] holds because ~ is defined so that z ~n @’ implies s(z) ~ t(z').

By the remarks at the end of the second paragraph in Section 2, in order to
show that ~ C ®(~), we only need to check that ~; C ®(~g). Suppose that for
some 2, 2’ € |[N|it is the case that # &~y @, (a, u) ~p s(z) and (o', ') &5 t(2).
Taking into account that [s] and [t] are Py-coalgebra morphisms, we see that

(a,u) =y s(x) mpr (n1(x), s o na(x))
(a/ u'y oy t(2") mpr (n1(2'),t 0 na(z’)),
where n = (ny,n2): |[N| = |A| x |N|IBl. Since ~yr is a fixed point of &, it
follows that
aman(z)~an ()~ d. (1)

Also, if b0 € |B|, b~g V', and f(b) =4 a then na(z)(d) ~n na(z') (V') and

u(b) mar s(na(2)(b)),
u'(b') A t(na(2) (b))
By definition of ~q,
u(b) ~ u'(b'). (2)
Putting (1) and (2) together, we get (a, u) ®(~g) (@', u’), as required.

(5) Existence of homomorphisms: Let [n]: N — P¢(N) be a P;-coalgebra.
We show that there is a Py-coalgebra homomorphism [m]: N — M. Define a
continuous operator W: |M|NT — | M|V by

(Tg)e = (ni(x), g ona(x)),

where n = (n1,n2): |[N| = |A| x |N|IBl. Let m be the least fixed point of ¥, so
that for all z € |N|,

m(z) = (ni(z), monsy(z)). (3)

We need to prove that m represents a morphism [m]: N — M. Let ~¢ be a
relation on | M| defined by

{(a,u) ~q {a’, u)
if and only if
Jz, 2" €|N|. (x oy &' A{a,u’) mpyr m(z) A {d' 0’y ~p m(2')),

and let ~ be the least partial equivalence relation that contains ~g. Just like
in the previous paragraph, we can easily check that ~ C =a3s by verifying that
~C B(~).

The map m represents a morphism [m]: N — M because z &y 2’ implies
m(z) ~ m(z'), which in turn implies m(z) = m(z’). That [m] is a Ps-
coalgebra homomorphism is expressed exactly by the fixed point property (3).



4 Induction and Coinduction Principles

A polynomial functor is a functor built up from identity, constants, finite prod-
ucts, and finite coproducts, see [HJ96] for a more precise definition.

Since polynomial functors are special cases of the functors P¢, any polyno-
mial functor T on the category of equilogical spaces has an initial algebra and

a final coalgebra.
Sub(PEqu)
Consider the logic of subobjects 1 described in detail in [Bir99].
PEqu
Rel(PEqu)
(Here we do not consider dependencies.) Define 1 by change-of-base:
PEqu

Rel(PEju) —— Sub(PEqu)

| |

Thus the fibre category Rel(PEqu)x over X € PEqu is the subobjects on
X x X, i.e., binary relations on X.

Every polynomial functor 7: PEqu — PEqu can be lifted to a functor
Pred(7T): Sub(PEqu) — Sub(PEqu), called the logical predicate lifting
of T', by induction on the structucture of 7' as described in [HJ96]: Every
constant A € PEqu occurring in 7' is replaced by the true predicate T 4 and
the bicartesian structure of PEqu used in 7' is replaced by the bicartesian
structure in Sub(PEqu) (i.e., A and V).

Similarly, a polynomial functor T' can be lifted to a functor Rel(7) : Rel(PEqu) —
Rel(PEqu), called the logical relation lifting of 7', by induction on the struc-
ture of 7. Now we replace a constant A € PEqu occurring in 7" by the equality
predicate Eq(A) = [[;(A4)(Ta) € Sub(A x A) = Rel(A4), where §(A) is the
diagonal on A.

Because PEqu is bicartesian closed with disjoint and stable coproducts
Sub(PEqu)
(hence distributive), and 1 is a first-order fibration, it admits com-
PEqu
prehension (subset types) and has quotient types, see [Bir99], we can conclude
from the general results in [HJ96], that the following induction and coinduction

principles are valid.

Induction Principle Let T" be a polynomial functor and let ¢: T'D — D be
the initial T-algebra. Let s: T'X — X be any T-algebra and let !: D — X be
the unique algebra map. The following inference rule is valid, for any prediate
@ € Sub(T, z: X).
Tyo:TX | O, Pred(T) () () & p(s(x))
I,d:D|OF ¢(ld)




Example 4.1. Let T be the functor X — 14+ N x X, with N the natural
numbers object of PEqu. Write s = [n,¢]: TL — L for the initial algebra of
T. Let TD — D above be TL — L and let TX — X above also be TL — L,
so ! = id. Let ¢ € Sub(T,l: L) be any predicate. Then the inference rule
specializes to the expected induction principle for lists

I'OF ¢(n) Tym: N2 L O, p(l) F plc(m,]))
T L0k el)

Coinduction Principle Let 7' be a polynomial functor and let ¢: D — T'D
be the final T-coalgebra. Let s: X — T'X be any T-coalgebra and let !: X — D
be the unique coalgebra map. The following inference rule is valid, for any
relation R € Rel(X),
T,z,y: X | O, R(z,y) F Rel(T)(R)(sz, sy)
Fe,y: X|OFla=ply

5 Comments

If |B] and |A| are countably based algebraic lattices then also the lattice ||
i1s countably based. This means that wPEqu, the countably based version of
PEqu, has W-types and M-types as well.

We thank Jaap van Osten and Steve Awodey.
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