
A note on the transitivity of step-indexed logical relations

Lars Birkedal and Aleš Bizjak

November 1, 2012

Abstract

We present and discuss a simple semantic approach to force step-indexed logical relations to be transitive.

1 Introduction

Step-indexed logical relations have proved to be useful for reasoning about operational equivalence of programs in

programming languages with features that are otherwise hard to model, such as recursive types, general ML-like

references or other variations of higher-order store [AAV02, Ahm06, DAB09, DNB10, CD11, HDA10, BRS+11,

HDNV12].

However, it has been unclear from the beginning of the development of step-indexed logical relations, whether

step-indexed logical relations are actually transitive [Ahm06]. In many cases step-indexed logical relations have

primarily been used as a proof-technique for contextual equivalence, and since contextual equivalence is transitive,

one has then been able to compose equivalences (even if the step-indexed logical relation itself was possibly not

transitive). However, in other applications, e.g., for giving more abstract meaning to low-level languages, we

would like to use step-indexed logical relations for defining the right notion of equivalence. In this case we cannot

rely on a pre-existing notion of contextual equivalence but would really like to ensure that the step-indexed logical

relation itself defines a good notion of equality, i.e., that it is transitive.

In this short note, we show how one can force a step-indexed logical relation to be transitive by using a variation

of transitive closure proposed by Hoshino in his more abstract account of step-indexed realizability [Hos12].

We end this introduction by remarking that Hur et. al. [HDNV12, HNDV12] also discuss the problems with

transitivity for step-indexed logical relations. Indeed, they go on to develop a new notion of relation, called relation

transition systems, and prove, via a very technical tour-de-force, that those relations are indeed transitive. Hur

et. al. refer to the issue they are addressing as “transitive composability”, because they are partly motivated by

compiler correctness applications for which one would like to be able to compose logical relations. However, the

formal notion Hur et. al. address is nothing but transitivity of the logical relation, as the relation they consider is

defined on a single language. In the same vein, the solution we present only addresses transitivity of step-indexed

logical relations; it does not address the well-known problem of composability of logical relations. We think that

is an orthogonal problem, which might be addressed using ideas from prelogical relations [HS02].

2 Transitive closure of quasi-reflexive symmetric interior

Suppose A and B are nonempty sets, ϕ : A → P (B) a function, o :
∏

(a : A) (P (ϕ(a)× ϕ(a))) an indexed

relation and (C, aC , bC , cC), where aC , bC , cC ∈ A and C : ϕ (aC)× ϕ (bC)→ ϕ (cC).

Assume that o is a congruence relation for the operation C, meaning, explicitly,

∀a, b ∈ ϕ(aC),∀a′, b′ ∈ ϕ(bC), a oaC b ∧ a′ obC b′ =⇒ C(a, a′) ocC C(b, b′).

Suppose that o is not a pointwise transitive relation and let ≡ be its pointwise transitive closure. There is no

reason to believe that ≡ is also a congruence for C. Indeed, there are simple counterexamples, even when o is

symmetric (but not when it is reflexive!).

1



If we try to examine where the obvious attempt gets stuck we see that the problem is that we can have

essentially different lengths of chains. To be specific, we have

a oaC a1 oaC a2 oaC · · · oaC an = b

a′ obC a′1 obC a′2 obC · · · obC a′n+k = b′

so we can prove C(a, a′) ocC C(a1, a
′
1) ocC · · · ocC C(an, a

′
n) but now we cannot continue, so we cannot conclude

C(a, a′) ≡cC C(b, b′). If we knew that b was related to itself in the original relation, we could extend the first

chain with k b’s and so we could conclude C(a, a′) ≡ C(b, b′). Quasi reflexive relations in [Hos12] accomplish

exactly this.

Definition 1. A relation © on a set X is quasi-reflexive when

∀a, b ∈ X, a© b =⇒ a© a ∧ b© b

or, in prose, a relation is quasi reflexive, when if an element is related to any other element, it must be related to

itself.

Definition 2. For a relation © on X its quasi-reflexive interior, denoted by ©•, is defined to be its largest

quasi-reflexive subrelation. It can be specified explicitly as

©• =
{

(a, b)
∣∣∣ a© a ∧ a© b ∧ b© b

}
.

Definition 3. For a relation © on X its quasi-reflexive symmetric interior, denoted by ©�, is defined to be its

largest quasi-reflexive symmetric subrelation. It can be specified explicitly as

©� =
{

(a, b)
∣∣∣ a© a ∧ a© b ∧ b© a ∧ b© b

}
.

Proposition 4. Let o• and o� be the pointwise quasi-reflexive and quasi-reflexive symmetric interiors of o, respec-

tively. We list some properties of these constructions which are easily proved.

• o• is a congruence for operation C

• o� is a congruence for operation C

• (o�)∗ is a congruence1

• If o is pointwise symmetric and transitive (a pointwise per), then o = o• = o� = (o�)∗.

• ∀a ∈ A,∀b ∈ ϕ(a), b oa b ⇐⇒ b (o�a)∗ b

3 A Transitive Step-Indexed Logical Relation

Let us now see how the results in the previous section can be used to obtain a transitive step-indexed logical

relation.

Suppose that we have a step-indexed logical approximation relation Θ
∣∣ Γ ` c ≺ c ′ : A. In this section, we

assume the reader is familiar with such definitions; for readers who are not, we recall a specific definition in

appendix, for a higher-order polymorphic call-by-value language with recursive types.

Let us be more precise about what kind of relation this is. Let S be the set of type variable contexts, for

Θ ∈ S let DΘ be the set of well formed contexts in type variable context Θ and TΘ the set of well formed types

in type variable context Θ. For a variable context Γ let EΓ denote the set of terms with at most variables in Γ

free.

Then ·
∣∣ · ` · ≺ · : · can be seen as a dependent function of type∏

(Θ ∈ S) (Γ ∈ DΘ) (A ∈ TΘ) .P (EΓ,EΓ)

1∗ denotes the pointwise transitive closure

2



or for each Θ ∈ S, Γ ∈ DΘ and A ∈ SΘ, Θ
∣∣ Γ ` · ≺ · : A is a binary relation on EΓ.

For this relation we prove compatibility lemmas, the fundamental property of logical relations, and that it is

sound with respect to contextual approximation.

We then define the relation Θ
∣∣ Γ ` c ∼ c ′ : A to be the pointwise quasi-reflexive symmetric interior of the

standard step-indexed logical relation and then we define Θ
∣∣ Γ ` c ≈ c ′ : A to be the pointwise transitive closure

of this quasi reflexive symmetric interior.

Proposition 4 then tells us that the last relation has the following properties

• It is a congruence relation.

• The compatibility lemmas hold.

• Θ
∣∣ Γ ` c ≺ c : A ⇐⇒ Θ

∣∣ Γ ` c ≈ c : A

The last item above means that our resulting logical relation satisfies the fundamental property of logical relations.

It is also sound with respect to contextual equivalence, because contextual equivalence is a transitive relation.

Note that for all of these points, it doesn’t matter how the original relation was defined, but just that it

satisfied certain properties.

Let us see one case in the proof that this transitive closure is indeed a congruence relation, the case of applica-

tion. Suppose Θ
∣∣ Γ ` c ≈ d : A→ B and Θ

∣∣ Γ ` c ′ ≈ d ′ : A. We then wish to conclude that Θ
∣∣ Γ ` c c ′ ≈ d d ′ : B.

By assumption we have a sequence of terms c1, . . . , cn, such that

Θ
∣∣ Γ ` c ∼ c1 : A→ B, Θ

∣∣ Γ ` cn ∼ d : A→ B, ∀i ∈ {1, 2, . . . , n − 1},Θ
∣∣ Γ ` ci ∼ ci+1 : A→ B

and a sequence of terms c ′1, c
′
2, . . . , c

′
m such that

Θ
∣∣ Γ ` c ′ ∼ c ′1 : A, Θ

∣∣ Γ ` c ′m ∼ d ′ : A, ∀i ∈ {1, 2, . . . , n − 1},Θ
∣∣ Γ ` c ′i ∼ c ′i+1 : A

Assume further that m ≥ n, the other case being completely symmetric. Define cn+1 = cn+2 = · · · = cm+1 =

d . We then have

Θ
∣∣ Γ ` c ∼ c1 : A→ B

and

∀i ∈ {1, 2, . . . , m},Θ
∣∣ Γ ` ci ∼ ci+1 : A→ B

crucially due to the fact that ∼ is quasi reflexive. Using the fact that ∼ is a congruence we get the following

sequence of equalities

Θ
∣∣ Γ ` c c ′ ∼ c1 c

′
1 : B

Θ
∣∣ Γ ` c1 c

′
1 ∼ c2 c

′
2 : B

...

Θ
∣∣ Γ ` cm c ′m ∼ cm+1 d

′ : B

and as cm+1 = d , we have Θ
∣∣ Γ ` c c ′ ≈ d d ′ : B.

Further, if the original relation was complete with respect to contextual equivalence then in particular it was

pointwise symmetric and transitive. Then Proposition 4 tells us that we get back the same relation, so it is still

complete.

4 Discussion

In [Ahm06], the author notices that the immediate proof of transitivity of the defined logical relation does not

work, and the problem is precisely that terms that are related to other terms are not necessarily related to

themselves. The solution Ahmed proposes is to construct the relation with more typing information built in so

that the fundamental property of logical relations can be used to get transitivity. This change is disruptive and

3



requires essentially reproving all of the auxiliary lemmas. Moreover, this approach does not work in general when

constructing relations over low-level machine languages. If we just need a reflexive logical relation that is well

behaved, using the quasi-reflexive symmetric interior and then the transitive closure seems to be a clean approach.

We preserve the essential characteristics of logical relations, but we also get a proper equality relation on open

terms.

Moreover, the approach described in this note can be seen as the semantic analogue to a more syntactic

solution described in [Ahm06]. The solution in loc. cit. exploited the fact that relations could be defined over

well-typed terms to get a quasi-reflexive and transitive relation, whereas we propose to take any relation and make

it transitive in a way that preserves its quintessential properties. We also note that this approach works even in

the case of low-level languages, where we cannot run to the safety of typed realizers.

A ”Standard” step-indexed logical relation

For completeness, we include here a definition of a reasonably standard step-indexed logical relation. For detailed

studies see [DNB10, Ahm06, DAB09]. The language under consideration is a an extension of simply typed

lambda calculus with recursive types, polymorphism and call by value evaluation order. We employ the Curry-style

semantics where terms are not intrinsically typed. Let V denote the set of closed values, E the set of closed

terms, E the set of evaluation contexts and T the (countably infinite) set of type variables.

Let Ξ be the set of decreasing sequences of binary relations on values, explicitly

Ξ =
{
X : N→ P (V× V)

∣∣∣ ∀n ∈ N, Xn ⊇ Xn+1

}
.

For Θ ⊂fin T we define

Map (Θ) = Θ→ Ξ.

Next, we define three relations, a value relation, an evaluation relation and a computation relation, the last

one being here just for convenience. These are binary relations on closed values, evaluation contexts and closed

terms, respectively, and are defined by recursion on the type and the step index.

Specifically, for each type A in type variable context Θ we have
q

Θ
∣∣ Ay·

· : N→Map (Θ)→ P (V× V)

E
q

Θ
∣∣ Ay·

· : N→Map (Θ)→ P (E × E)

C
q

Θ
∣∣ Ay·

· : N→Map (Θ)→ P (E× E)

and for a given ϕ ∈Map (Θ) and n ∈ N the application is then written as
q

Θ
∣∣ Ayϕ

n
⊆ V× V.

The following definitions are essentially the same as (for a subset of) the language in [DNB10], but where the

worlds are just natural numbers.

q
Θ
∣∣ αyϕ

n
= ϕ(α)n

q
Θ
∣∣ 1

yϕ
n

= {(〈〉, 〈〉)}
q

Θ
∣∣ A× Byϕ

n
=
{

(〈a, b〉 , 〈a′, b′〉)
∣∣∣ (a, a′) ∈

q
Θ
∣∣ Ayϕ

n
∧ (b, b′) ∈

q
Θ
∣∣ Byϕ

n

}
q

Θ
∣∣ A→ B

yϕ
n

=

{
(λx.b,λx.b′)

∣∣∣ ∀i ≤ n, ∀(a, a′) ∈
q

Θ
∣∣ Ayϕ

i
,∀(e, e ′) ∈ E

q
Θ
∣∣ Byϕ

i
,

e
[
b
[
a
/
x
]]
⇓≤i =⇒ e ′

[
b′
[
a′
/
x
]]
⇓

}
q

Θ
∣∣ ∀α.Ayϕ

n
=

{
(λα.b,λα.b′)

∣∣∣ ∀i ≤ n, ∀R ∈ Ξ,∀(e, e ′) ∈ E
q

Θ, α
∣∣ Ayϕ[α 7→R]

i
,

e [b] ⇓≤i =⇒ e ′ [b′] ⇓

}
q

Θ
∣∣ µα.Ayϕ

n
=
{

(fold a, fold a′)
∣∣∣ ∀i < n, (a, a′) ∈

q
Θ
∣∣ A [µα.A/α]yϕ

i

}
E

q
Θ
∣∣ Ayϕ

n
=
{

(e, e ′)
∣∣∣ ∀i ≤ n, ∀(a, a′) ∈

q
Θ
∣∣ Ayϕ

i
, e [a] ⇓≤i =⇒ e ′ [a′] ⇓

}
C

q
Θ
∣∣ Ayϕ

n
=
{

(c, c ′)
∣∣∣ ∀(e, e ′) ∈ E

q
Θ
∣∣ Ayϕ

n
, e [c ] ⇓≤n =⇒ e ′ [c ′] ⇓

}

4



To extend the relations to open terms we introduce an auxiliary relation G as follows (γ0 denotes the empty

substitution)

G
q

Θ
∣∣ ∅yϕ

n
= {(γ0, γ0)}

G
q

Θ
∣∣ Γ, x : A

yϕ
n

=
{

(γ [x 7→ v ] , γ′ [x 7→ v ′])
∣∣∣ (v , v ′) ∈

q
Θ
∣∣ Ayϕ

n
∧ (γ, γ′) ∈ G

q
Θ
∣∣ Γ

yϕ
n

}
We can then define the relations we are interested in as

Θ
∣∣ Γ ` c ≺ c ′ : A⇔ ∀n ∈ N,∀ϕ ∈Map (Θ) ,∀(γ, γ′) ∈ G

q
Θ
∣∣ Γ

yϕ
n
, (cγ, c ′γ′) ∈ C

q
Θ
∣∣ Ayϕ

n

Θ
∣∣ Γ ` c ◦∼ c ′ : A⇔

(
Θ
∣∣ Γ ` c ≺ c ′ : A

)
∧
(

Θ
∣∣ Γ ` c ′ ≺ c : A

)
Θ
∣∣ Γ ` c ∼ c ′ : A⇔

(
Θ
∣∣ Γ ` c ≺ c ′ : A

)
∧
(

Θ
∣∣ Γ ` c ′ ≺ c : A

)
∧
(

Θ
∣∣ Γ ` c ≺ c : A

)
∧
(

Θ
∣∣ Γ ` c ′ ≺ c ′ : A

)
The first relation is the standard approximation relation and the subsequent two are its subrelations. The

approximation relation is a congruence relation and is sound with respect to contextual approximation. This is

shown with the standard tedious argument, but the specifics are not important for our current purposes.

References

[AAV02] Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. A stratified semantics of general references

embeddable in higher-order logic. In Proceedings of 17th Annual IEEE Symposium Logic in Computer

Science, pages 75–86. IEEE Computer Society Press, 2002.

[Ahm06] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In of Lecture

Notes in Computer Science, pages 69–83. Springer, 2006.

[BRS+11] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg, and H. Yang. Step-indexed

Kripke models over recursive worlds. In Proceedings of POPL, 2011.

[CD11] Chung Kil-Hur and Derek Dreyer. A kripke logical relation between ml and assembly. In POPL 2011,

2011.

[DAB09] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations. In Logic In Computer

Science, 2009. LICS ’09. 24th Annual IEEE Symposium on, pages 71 –80, aug. 2009.

[DNB10] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control effects on

local relational reasoning. SIGPLAN Not., 45(9):143–156, September 2010.

[HDA10] Aquinas Hobor, Robert Dockins, and Andrew Appel. A theory of indirection via approximation. In

POPL, 2010.

[HDNV12] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. The marriage of bisimulations and

kripke logical relations. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’12, pages 59–72, New York, NY, USA, 2012. ACM.

[HNDV12] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The transitive composability of

relation transition systems. Technical Report MPI-SWS-2012-002, MPI-SWS, 2012.

[Hos12] Naohiko Hoshino. Step indexed realizability semantics for a call-by-value language based on basic

combinatorial objects. In Proceedings of LICS 2012, 2012.

[HS02] Furio Honsell and Donald Sannella. Prelogical relations. Inf. Comput., 178(1):23–43, October 2002.

5


	Introduction
	Transitive closure of quasi-reflexive symmetric interior
	A Transitive Step-Indexed Logical Relation
	Discussion
	"Standard" step-indexed logical relation

