
MFPS XX1 Preliminary Version

Synthetic domain theory and models of Linear
Abadi & Plotkin logic

Rasmus Ejlers Møgelberg, Lars Birkedal 1,2

Department of Theoretical Computer Science, IT University
Copenhagen, Denmark

Giuseppe Rosolini 3

DISI, Università di Genova
Genova, Italy

Abstract

In a recent article [4] the first two authors and R.L. Petersen have defined a notion
of parametric LAPL-structure. Such structures are parametric models of the equa-
tional theory PILLY , a polymorphic intuitionistic / linear type theory with fixed
points, in which one can reason using parametricity and, for example, solve a large
class of domain equations [4,5].

Based on recent work by Simpson and Rosolini [22] we construct a family of
parametric LAPL-structures using synthetic domain theory and use the results of
loc. cit. and results about LAPL-structures to prove operational consequences of
parametricity for a strict version of the Lily programming language. In particular
we can show that one can solve domain equations in the strict version of Lily up
to ground contextual equivalence.

Key words: Synthetic domain theory, parametric polymorphism,
categorical semantics, domain theory

1 Introduction

It was first realized by Plotkin [16] that PILLY , a polymorphic type theory
with linear as well as intuitionistic variables and fixed points, combined with
relational parametricity has surprising power, in that one can define recursive

1 This work was partly supported by the Danish Technical Research Council under grant
no.: 56–00–0309.
2 Email: mogel@itu.dk, birkedal@itu.dk
3 Email: rosolini@disi.unige.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Møgelberg, Birkedal, Rosolini

types in the theory. This theory can be seen as an approach to axiomatic
domain theory where the concept of linear and intuitionistic maps correspond
to strict and non-strict continuous maps between domains. In this approach
recursive domain equations are solved using polymorphism instead of the tra-
ditional limit-colimit construction.

In [16] Plotkin also sketched a logic for reasoning about parametricity for
PILLY (the logic is a variant of Abadi & Plotkin’s logic for parametricity [17])
and how to solve domain equations for PILLY and prove correctness of the
solutions in the logic using parametricity.

Recently the first two authors together with R.L. Petersen have given a
detailed presentation of the logic sketched by Plotkin and defined the cat-
egorical notion of parametric LAPL-structure (Linear Abadi-Plotkin Logic),
which are models the logic [4,5]. Using Plotkin’s constructions one can solve
recursive domain equations in LAPL-structures. In loc. cit. a concrete domain
theoretical LAPL-structure based on admissible pers on a reflexive domain is
constructed, and in the first authors PhD-thesis [12] a parametric completion
process along the lines of [20] is presented constructing parametric LAPL-
structures out of a large class of models of PILLY .

In recent work Simpson and Rosolini [22] have constructed an interpre-
tation (or rather a family of interpretations) of Lilystrict a strict version of
Lily [2] based on Synthetic Domain Theory (SDT). The interpretation uses
a class of domains in an intuitionistic set theory, and the type constructors
are interpreted using simple set-theoretic constructions. It is a result of SDT
that such a theory has models, but one does not have to know the details of
these models to use the interpretation.

Simpson and Rosolini further show how one can use the interpretation to
prove operational properties of Lilystrict. In particular, they prove a version
of the strictness theorem for Lily [2] for the new language Lilystrict. The
strictness theorem states that the two versions of ground contextual equiva-
lence obtained by observing termination at lifted types for a call-by-value and
a call-by-name operational semantics coincide. They show that the interpre-
tation is adequate with respect to this ground contextual equivalence.

In this paper we present a parametric LAPL-structure based on the in-
terpretation of Lilystrict of [22]. We have three motivations for this work.
First of all, we would like to show that the concept of parametric LAPL-
structure is general enough to incorporate many different models. As men-
tioned we have already constructed a concrete domain-theoretic parametric
LAPL-structure and shown how to construct parametric LAPL-structures
from PILLY -models using a parametric completion process. In a future pa-
per we intend to construct a parametric LAPL-structure using operational
semantics of Lily, showing that the parametric reasoning used in [2] can be
presented as reasoning in an LAPL-structure.

Our second motivation is that the interpretation presented in [22] is para-
metric and thus one should be able to solve recursive domain equations in

2

Møgelberg, Birkedal, Rosolini

it. Proving that the interpretation gives rise to an LAPL-structure provides a
formal proof of this.

Our third motivation is that we can use the LAPL-structure and the ad-
equacy of the interpretation of Lilystrict to show formally consequences of
parametricity for Lilystrict. This builds upon the idea from [22] of giving
denotational proofs of the theorems in [2], and extends it to prove properties
not included in [2].

No prior knowledge of LAPL-structures or synthetic domain theory is
needed for this paper. In Section 2 we sketch the definition of parametric
LAPL-structure, and in Section 3 we introduce synthetic domain theory con-
structing a category of domains. The material in sections 2 and 3 are taken
from [4,5] and [22] respectively, and so the original contributions of this paper
start in Section 4. In Sections 4-6 we present the LAPL-structure. We first
present a model of PILLY based on the category of domains, and then we
create a parametric version of this model, and finally we construct the full
parametric LAPL-structure.

In Section 7 we show how to use the parametric LAPL-structure to rea-
son about Lilystrict. In particular, we show how to solve recursive domain
equations in Lilystrict. First, however, we present the language and sketch
the results of [22].

For reasons of space, many proofs have been left out of this paper. For
these proofs, see [15,12] 4 .

Acknowledgments. We thank Alex Simpson for helpful discussions. Also
thanks to the anonymous referees for constructive suggestions.

2 LAPL-structures

The equational theory PILLY is a variant of DILL [1] extended with polymor-
phism and fixed points given by a fixed point combinator of type

∏
α. (α →

α) → α, where in general we use σ → τ as notation for !σ (τ .

We start off by sketching the notion of LAPL-structure as described in [4].
LAPL-structures model a variant of Abadi & Plotkin’s logic for parametricity
[17,16] designed for reasoning about PILLY . Propositions in the logic exist
in contexts of free type variables, free variables of PILLY and free relational
variables. The free relational variables may be simply relations or admissible
relations. Propositions are written as

α | x : σ | R : Rel(σ, σ′), S : AdmRel(τ , τ ′) ` φ : Prop.

The vector α is a list of free type variables. We will not describe the logic in
details, but only mention a few main points. The variables x : σ are treated
intuitionistic in the logic. We may reason about linear terms by for example

4 The reader can find an online copy of [15] at www.itu.dk/people/birkedal/papers

3

Møgelberg, Birkedal, Rosolini

using variables of type σ (τ , but the reasoning about the terms is purely
intuitionistic.

The logic comes equipped with a notion of admissible relations, which
is required to be closed under certain constructions. For example, equality
relations (relating equal elements of some type) are required to be admissible,
and admissible relations must be closed under reindexing along linear maps
and universal quantification.

For any type α ` σ(α) : Type with n free variables, and any n-vector
of admissible relations ρ : AdmRel(τ , τ ′), we can form an admissible relation
σ[ρ] : AdmRel(σ(τ), σ(τ ′)). This is called the relational interpretation of σ,
and it is important for reasoning about parametricity. For example we can
form the identity extension schema [19] as σ[eqα] ≡ eqσ(α), which we use as
our definition of parametricity.

A pre-LAPL-structure is a schema of categories and functors

Prop

r

��
LinType

p
**UUUUUUUUUUUUUUUUUU 22 Type

pp

%%JJJJJJJJJ
� � I // Ctx

q

��
Kind

(1)

such that the diagram

LinType

p
&&MMMMMMMMMM
G

11⊥ Type
Fqq

yyttttttttt

Kind

(2)

is a model of PILLY [14] (a fibred version of models of DILL [1], with generic
object Ω ∈ Kind for p, simple products modeling polymorphism in p, and a
term modeling the fixed point combinator).

We further require that the fibration q has fibred products and that I
is a faithful map preserving fibred products. The pair of fibrations (r, q) is
an indexed first-order logic fibration which has products and coproducts with
respect to projections Ξ×Ω → Ξ in Kind [3], meaning that each fibre of r over
an object Ξ in Kind is a first-order logic fibration with structure preserved
under reindexing, and that the logic models quantification along the mentioned
projections in Kind.

Finally, there should exist a fibred functor U mapping pairs of types σ, τ
in the same fibre of LinType to an object U(σ, τ) in Ctx acting as an object
of all relations from IG(σ) to IG(τ) in the logic of Prop.

A notion of admissible relations for a pre-LAPL-structure is a subfunctor
V of U closed under the constructions for admissible relations in the logic.

A pre-LAPL-structure models Abadi & Plotkin’s logic for parametricity,

4

Møgelberg, Birkedal, Rosolini

except for the relational interpretation of types. The contexts of the logic are
modeled in Ctx using U , V to model the sets of all relations and admissible
relations between types respectively. The propositions of the logic are modeled
in Prop.

From a pre-LAPL-structure with a notion of admissible relations one can
define a PILL model (a PILLY model that does not necessarily model Y)

LinAdmRel 00

''PPPPPPPPPPPP ⊥ AdmRelations
pp

vvmmmmmmmmmmmmm

AdmRelCtx

(3)

of admissible relations. There exists two maps of PILL-models ∂0, ∂1 from (3)
to (2) basically mapping a relation to its domain and codomain respectively.
An LAPL-structure is a pre-LAPL-structure with a notion of admissible rela-
tions and a map of PILL-models J from (2) to (3) such that

∂0 ◦ J = ∂1 ◦ J = id .

The functor J models the relational interpretation of types. It enables us to
talk about parametricity at all types in the model, not just the interpretations
of types in pure PILLY .

A parametric LAPL-structure is an LAPL-structure satisfying the identity
extension schema in the internal logic. Moreover the extensionality schemes

∀x : σ. f(x) =τ g(x) ⊃ f =σ→τ g

∀α : Type. t α =σ u α ⊃ t =∏
α.σ u,

should hold and the model should have very strong equality. The latter means
that if two terms of PILLY are provably equal in the logic, then they are in
fact equal in the model.

Parametric LAPL-structures are interesting because we can reason about
the contained PILLY -model using parametricity. In particular, we can solve a
large class of domain equations in parametric LAPL-structures, and show that
a large class of endo-functors have initial algebras and final coalgebras. We
present these results in a restricted form, which is sufficient for the purposes
of this paper.

We distinguish between pure PILLY and other PILLY -theories with added
type-constants and term-constants, such as the internal languages of models
of PILLY . A type of pure PILLY α ` σ(α) : Type in which α occurs only
positively induces by standard constructions a functor, in the sense that there
exists a term of type ∏

α, β. (α (β) → (σ(α) (σ(β))

preserving composition and identities. In the model σ induces an endofunctor

5

Møgelberg, Birkedal, Rosolini

[[σ]] on LinType1, the fibre over the terminal object 1, which is the model of
the closed types.

For each such type there exists a closed type µα. σ(α), and closed terms,

in : σ(µα. σ(α)) (µα. σ(α),

fold :
∏
α. (σ(α) (α) → (α (µα. σ(α))

such that for any algebra f : σ(α) (α, fold α !f is a map of algebras from in
to f in the sense that

f ◦ σ(fold α !f) = (fold α !f) ◦ in.

Likewise there exists a closed type να. σ(α) and closed terms,

out : να. σ(α) (σ(να. σ(α)),

unfold :
∏
α. (α (σ(α)) → (να. σ(α) (α)

such that for any coalgebra g : α (σ(α), unfold α !g is a map of coalgebras
from g to out.

Theorem 2.1 ([4]) Suppose α ` σ(α) is a type in pure PILLY in which α oc-
curs only positively. In any parametric LAPL-structure in is interpreted as an
initial algebra and out as a final coalgebra for [[σ]] : LinType1 → LinType1.

The next theorem provides solutions to recursive domain equations.

Theorem 2.2 ([4]) Suppose α ` σ(α) : Type is a type in pure PILLY (α may
appear both positively and negatively). There exists a closed type recα. σ(α)
in PILLY and terms

f : recα. σ(α) (σ(recα. σ(α)),

g : σ(recα. σ(α)) (recα. σ(α)

such that in any parametric LAPL-structure, f, g are interpreted as each others
inverses.

We refer to [4,5] for further details.

3 Synthetic Domain Theory

The parametric models of PILLY which we shall produce are based on (a
refined version of) ω-cpo’s. Since these must model polymorphism, we shall
consider an effective version of these and the simplest way to handle such
structures is to view them within a realizability topos. Yet, that requires
becoming acquainted with the logical/category-theoretic notion of realizability
interpretation.

6

Møgelberg, Birkedal, Rosolini

Fortunately, (all these possible choices of) effective ω-cpo’s have been stud-
ied in great details and, following an intuition of Dana Scott, these were syn-
thesized in an “elementary” theory, namely Synthetic Domain Theory.

The simplification is quite essential: domains are simply special sets, and
continuous maps between them are all the set-theoretic maps. As one expects
that every (continuous) endofunction has a fixed point, it is clear that the
underlying set-theory is not classical.

As every new theory, SDT has lived through many reincarnations which
have always tried to achieve an underlying level of elementarity in order to
make it palatable for non-intuitionistically prone readers, see e.g. the original
paper [7], [25] for some interesting achievements with the theory, [6] for quick
review, and [9] and [18].

In this section we briefly recall the Synthetic Domain Theory introduced
recently by Alex Simpson and the third author and described, though yet
unpublished, in [22] as we shall only need some results of SDT. Since all the
realizability models we are interested in satisfy the axioms for SDT, those
results are true in such models, but we believe that the presentation via SDT
will make them more intuitive (as it should be).

As we said, classical set theory is inconsistent with the basic view of SDT,
so all must be developed in an intuitionistic theory of classes such as Algebraic
Set Theory [8]—in fact, we shall want to be slightly more refined, but we
postpone this issue to section 4. Hence, it is no longer the case that the
powerset of a singleton P {∗}—the set of truth values which will be written
Ω as usual—consists of exactly two elements. This gives enough elbowroom
to consider a subset Σ ⊆ Ω whose truth values should be thought of as of the
form “P terminates”, for P some program.

The first axiom requires that Σ is a dominance, see [21]:

• > ∈ Ω.

• If p ∈ Σ, q ∈ Ω and p ⊃ (q ∈ Σ) then p ∧ q ∈ Σ.

For any set X and p ∈ Σ denote by Xp the set of subsets e of X with at
most one point such that ∃x ∈ e is p. Following [22], a set is pointed when it
is endowed with operations rp : Xp → X, for each p in Σ, such that

• r>({x | >}) = x for all x ∈ X,

• rp∧q(e) = rp({rp∧q(e) | p}) for all p, q ∈ Σ, e : Xp∧q → X.

The interested reader is referred to the basic reference [22] for a cleaner pre-
sentation.

The definition above is an extension of the notion of non-empty set (a
set with a chosen element) which allows for more than just the classic two
possibilities: p = > and p = ⊥. Indeed, in those cases one computes from
the definition that r> is the obvious isomorphism and r⊥ : 1 → X chooses the
element witnessing that X is non-empty.

The first evidence that the extension is appropriate is that a homomor-

7

Møgelberg, Birkedal, Rosolini

phism f : X → Y between pointed sets—i.e. such that for all p ∈ Σ and
e ∈ X{∗|p}

f(rp(e)) = sp({f(x) | x ∈ e})
—extends the usual notion of a strict map. As in [22], we shall use the same
adjective strict for such a map.

It duly happens that the forgetful functor from the category of such alge-
bras creates all limits. Moreover, for X and Y pointed sets, the set X (Y
of homomorphisms from X to Y is a pointed subset of the product pointed
set

∏
x∈X Y = X → Y , see [22].

As usual, neither → nor (define a cartesian closed structure on the
category of pointed sets and strict maps. As one may expect, → defines a
cartesian closed structure on the category of pointed sets and all maps, and
(is part of a symmetric monoidal closed structure.

Finally, the free pointed set on the set Z is (LZ, (µp)p∈Σ) where LZ =
{{z | p} | z ∈ Z, p ∈ Σ} and µp(E) = {z | z ∈ e, e ∈ E} for E in (LZ)p. By
freeness, a map f : Z → W induces a strict map L(f) : L(Z) → L(W) defined
by L(f)(e) = {f(z) | z ∈ e}.

It is easy to check that Σ ∼= L1 and so Σ bears a pointed structure.

Always following the approach to SDT of loc.cit., one requires axiomati-
cally the existence a class of sets (whose elements are called predomains) closed
under appropriate constructions. As we already mentioned, such an axiomatic
approach is supported by a host of models, each with its own peculiarities,
but all verifying the following properties.

The class of predomains is a class of sets which is closed under isomorphic
copies, set-indexed products and equalizers (so singletons are all predomains).
Moreover,

• if A is a predomain, so is LA (hence Σ = L1 is a predomain)

• the set N of natural numbers is a predomain.

Lastly, there is a set P collecting all predomains “up to iso”: for any predomain
A, there exists B ∈ P such that A ∼= B.

A domain is declared in [22] to be a pointed predomain. Denote by Dom⊥
the category of domains with strict maps and by Dom the category of domains
with all maps. If D denotes the set of pointed structures on objects of P

{(B, (rp)p∈Σ) | B ∈ P, (rp)p∈Σ pointed structure on B}

Clearly the set D has the property that for all A ∈ Dom⊥, there exists an
element B ∈ D such that A ∼= B in the category Dom⊥.

The crucial axiom in [22] about the class of (pre)domains is the following.

AXIOM For every domain A there is a function fixA : (A → A) → A with
the following properties

fixed points: for any f : A→ A, f(fixA(f)) = fixA

8

Møgelberg, Birkedal, Rosolini

uniformity: for any f : A1 → A1, g : A2 → A2, h : A1 (A2 such that

A1
f //

h

◦

A1

h

◦
A2

g //A2

commutes, h(fixA1(f)) = fixA2(g).

We end this section stating some properties of the categories Dom⊥ and
Dom which we shall need in the following sections.

Lemma 3.1 (i) The category Dom⊥ is complete.

(ii) The category Dom is cartesian closed.

From the axioms above, it is easy to check that (−) ((=) defines a
functor Dom⊥

op ×Dom⊥ → Dom⊥, and that for any domain A the functor
A ((−) preserves limits. Since the solution set condition is guaranteed by
the existence of the set D, one applies the Special Adjoint Functor Theorem
to obtain that A ((−) has a left adjoint A ⊗ (−). So there is a natural
isomorphisms

(B1 ((A (B2)) ∼= ((A⊗B1) (B2).

One can read the isomorphism as a certain universal property of the domain
A ⊗ B: say that a map f : A × B → C between domains is strict in the first
variable if for all p ∈ Σ, e ∈ A{∗|p}, y ∈ B f(rp(e), y) = rp({f(x, y) | x ∈ e}).
Likewise one can say what being strict in the second variable means. A map
f is bistrict if it is strict in both variables. Bistrict maps are strict, but strict
maps need not be bistrict (in general, projections in Dom⊥ are not bistrict).
A bistrict map A×B → C can be extended to a unique strict map A⊗B (C.

Lemma 3.2 There is a functor (−) ⊗ (=): Dom⊥ ×Dom⊥ → Dom⊥ and
a domain I = Σ giving Dom⊥ a symmetric monoidal closed structure.
Moreover, the adjunction

Dom⊥
forgetful

11⊥ Dom
Lqq

is symmetric monoidal.

A situation, as above, of a symmetric monoidal adjunction where the cate-
gory on the right is cartesian closed and the category on the left is symmetric
monoidal closed gives rise to a linear category structure on the category on the
left. Hence Dom⊥ is symmetric monoidal closed, has a symmetric monoidal
comonad L and bears a linear structure, see e.g. [14,10,11] for details.

Lemma 3.3 The functor L : Dom⊥ → Dom⊥ extends the symmetric monoidal
closed category on Dom⊥ to a linear structure.

9

Møgelberg, Birkedal, Rosolini

4 The domains fibration

In this section we construct a PILLY -model based on the linear structure on
the category Dom⊥. A first attempt at such a model would model types
with n free variables as maps f : (Dom⊥)n0 → (Dom⊥)0 where (Dom⊥)0 is
the class of domains. But to be able to handle polymorphism, we change
this model slightly, such that types become functors f : (Dom⊥)niso → Dom⊥
where (Dom⊥)iso is the restriction of Dom⊥ to isomorphisms. The model
described in this section will be turned into a parametric PILLY -model in
Section 5.

Some of the constructions of the present section cannot be carried out in
the set theoretic setting used in Section 3, since they involve constructions on
classes. In particular, since (Dom⊥)0 is a class and not a set, the collection
of all class maps (Dom⊥)0 → (Dom⊥)0 is not a class, and so since a category
has a class of objects, we cannot use this collection to construct a category.

For the concerned reader, we sketch how these issues may be resolved. As
the given model of SDT, we will assume that we have a category of classes
satisfying the axioms of Joyal and Moerdijk’s algebraic set theory [8] as refined
in [24] with the notion of classic structure on a regular category with a universe
and a small natural numbers object. Given such a setting, the categories Dom
and Dom⊥ mentioned above are internal categories in the regular category of
classes while the collection of all internal functors (Dom⊥)0 → (Dom⊥)0 is a
class in the external sense, since it is a subclass of the class of morphisms of the
category of classes. Thus the fibrations in (4) below are defined externally. The
examples of realizability toposes mentioned in Section 3 still provide models
as they embed into categories of classes as described in [25].

The reader should keep in mind that we really construct a family of para-
metric LAPL-structures. Since the LAPL-structure is constructed using SDT,
we get a parametric LAPL-structure for each model of SDT.

We now begin the detailed description of the model. We define the fibration

DFam(Dom⊥) → {(Dom⊥)niso | n}

by defining the base category to have as objects natural numbers and as
morphisms from n to m functors (Dom⊥)niso → (Dom⊥)miso. Objects in
DFam((Dom⊥)iso) over n are functors (Dom⊥)niso → Dom⊥ and morphisms
are natural transformations.

Lemma 4.1 The fibration

DFam(Dom⊥) → {(Dom⊥)niso | n}

has a fibred linear structure plus fibred products.

Proof. Suppose f, g : (Dom⊥)niso → Dom⊥ are objects of DFam((Dom⊥)iso)n.

We define (f (g)(D) = f(D) (g(D) and if i : D (D
′
is a vector of iso-

10

Møgelberg, Birkedal, Rosolini

morphisms, then (f (g)(i)(h : f(D) (g(D)) = g(i) ◦ h ◦ f(i
−1

).

The rest of the structure is defined pointwise in the same manner. 2

Lemma 4.2 There exists right Kan extensions for all functors (Dom⊥)n+1
iso →

Dom⊥ along projections (Dom⊥)n+1
iso → (Dom⊥)niso.

Proof. We sketch the proof. The main idea of the proof is due to [22]. Sup-
pose g : (Dom⊥)n+1

iso → Dom⊥. We define RKπ(g) : Domn
iso → Dom⊥ as

RKπ(g)(A) = {x ∈
∏

D∈D g(A,D) | ∀D,D′ ∈ D∀i : D (D′ iso. g(A, i)xD = xD′}

Intuitively, this acts as a product of g(A,B) over all domains B, since we can
define projections as follows. If B is a domain and D ∈ D is a domain such
that there exists an isomorphism i : D (B, we define

RKπ(g)(A)
πD // g(A,D)

g(idA,i)// g(A,B) .

We show that this definition is independent of the choice of D, i. So suppose
D′, i′ is another such choice. Then we have a commutative diagram

RKπ(g)(A)
πD ◦

πD′
◦N

NNNNNNNNNN g(A,D)
g(A,i)

◦

g(A,(i′)−1◦i)
◦

g(A,B)

g(A,D′)

g(A,i′)

◦rrrrrrrrrr

where the first triangle commutes by definition of RKπ(g) and the second
triangle commutes by g being a functor. 2

Lemma 4.3 The fibration

DFam(Dom⊥) → {(Dom⊥)niso | n}

has a generic object and simple products.

Proof. The generic object is simply the inclusion (Dom⊥)iso → Dom⊥. The
simple products are given by the right Kan extensions. 2

Remark 4.4 The sketch of the proof of 4.2 shows how type specialization is
interpreted.

Consider the fibration

DFam(Dom) → {(Dom⊥)niso | n}

defined to have as objects in the fiber over n functors (Dom⊥)niso → Dom
and as vertical maps natural transformations.

11

Møgelberg, Birkedal, Rosolini

Since Dom is the coKleisli category for the lift comonad on Dom⊥, DFam(Dom) →
{(Dom⊥)niso | n} is the coKleisli fibration for the fibred comonad on DFam(Dom⊥) →
{(Dom⊥)niso | n}, and so it is easy to prove that

DFam(Dom⊥)

((PPPPPPPPPPPP 00⊥ DFam(Dom)

wwnnnnnnnnnnnn

pp

{(Dom⊥)niso | n}

(4)

is a PILL model.

The element (fixD)D∈D models the fixed point combinator of type
∏
α. (α→

α) → α, which leads us to the following proposition.

Proposition 4.5 The diagram (4) is a PILLY -model.

5 The parametric fibration

In this section, we basically apply a parametric completion process as in [20,12]
to the model of the last section. Types in the resulting model will be types
in the old model with a relational interpretation mapping identity relations
to identity relations, i.e., satisfying the identity extension schema. First we
discuss two notions of relations.

By a relation R between domains A,B we mean a subset of A × B and
we write Rel(A,B) for the set of relations from A to B. By an admissible
relation between domains A,B we mean a subdomain (i.e. a pointed subset
which is itself a domain) of A × B and we write AdmRel(A,B) for the set
of admissible relations from A to B. This is the same notion of admissible
relations used in [22]. We shall often write R(x, y) for (x, y) ∈ R. Since the
category of domains with strict maps is complete we can show the following
lemma.

Lemma 5.1 Admissible relations are closed under reindexing by strict maps
and arbitrary intersections.

Consider the category AdmRel(Dom⊥) whose objects are admissible re-
lations on domains, and whose morphisms are pairs of strict maps preserving
relations, i.e., mapping related elements to related elements. We denote by
AdmRel(Dom⊥)iso the restriction of AdmRel(Dom⊥) to isomorphisms.

We have canonical reflexive graphs of functors:

AdmRel(Dom⊥)iso
//
// (Dom⊥)isooo

AdmRel(Dom⊥)
//
// Dom⊥oo

where in both graphs, the functors from left to right map relations to domain
and codomain respectively and the functor going from right to left map a
domain to the identity relation on the domain.

12

Møgelberg, Birkedal, Rosolini

Lemma 5.2 The category AdmRel(Dom⊥) has a linear category structure
and products. The maps of the reflexive graph

AdmRel(Dom⊥)
//
// Dom⊥oo

preserve this structure.

Proof. For R : AdmRel(A,B), S : AdmRel(C,D) we define

R× S : AdmRel(A× C,B ×D)

R (S : AdmRel(A (C,B (D)

as

{((x, y), (w, z)) : (A× C)× (B ×D) | R(x,w) ∧ S(y, z)}

and

{(f, g) : (A (C)× (B (D) | ∀x : A, y : B.R(x, y) ⊃ S(f(x), g(y))}

An admissible relation can be considered as a jointly monic span in the
usual sense. We write R̄ for the domain of the maps of the span in the
following, in order not to confuse this with the relation. A first attempt at
defining

R⊗ S : AdmRel(A⊗ C,B ⊗D)

would be the span obtained by taking tensors of maps:

R̄⊗ S̄
%%KKK

KK
zzuuuu

A⊗ C B ⊗D.

However, we do not know that this is a jointly monic span, so instead we
define R ⊗ S to be the intersection of all subdomains of (A ⊗ C) × (B ⊗D)
containing the image of this span.

The lift of a relation is obtained by lifting both maps in the span. 2

We define the category PDom to have as objects natural numbers, and
as morphisms from n to m pairs of functors making the diagram

AdmRel(Dom⊥)niso

����

// AdmRel(Dom⊥)miso

����
(Dom⊥)niso

OO

// (Dom⊥)miso

OO

commute.

13

Møgelberg, Birkedal, Rosolini

We define the category PFam(Dom⊥) fibred over PDom to have as ob-
jects over n pairs of functors making the diagram

AdmRel(Dom⊥)niso

����

fr
// AdmRel(Dom⊥)

����
(Dom⊥)niso

OO

fd
// Dom⊥

OO

commute. A vertical morphisms from (f r, fd) to (gr, gd) is a a pair of nat-
ural transformations (s : f r ⇒ gr, t : fd ⇒ gd) making the obvious diagrams
commute, i.e., for all R : AdmRel(α, β),

dom(sR) = tα,

codom(sR) = tβ,

seqα
= (tα, tα),

where dom, codom denote the domain and codomain maps respectively. Since
maps in AdmRel(Dom⊥) are given by pairs of maps in Dom⊥, clearly the
equations determine s from t, so an alternative description of vertical mor-
phisms would be natural transformations t : fd ⇒ gd such that for all vectors
of relations R : AdmRel(α, β), (tα, tβ) is a map of relations f r(R) → gr(R).

Reindexing in the fibration PFam(Dom⊥) → PDom is by composition.

Lemma 5.3 The fibration PFam(Dom⊥) → PDom has a fibred linear struc-
ture and fibred products.

The structure is defined pointwise.

Lemma 5.4 The fibration PFam(Dom⊥) → PDom has a generic object
and simple products.

Proof. The generic object is the inclusion

AdmRel(Dom⊥)iso

����

// AdmRel(Dom⊥)

����
(Dom⊥)iso

OO

// Dom⊥

OO

For the simple products, we define for fd : (Dom⊥)n+1
iso → Dom⊥ the prod-

uct (
∏
f)d : (Dom⊥)niso → Dom⊥ by defining (

∏
f)d(A) to be the subset of∏

D∈D f
d(A,D) of elements x satisfying

∀D,D′ ∈ D.∀R ∈ AdmRel(D,D′). f r(eqA, R)(xD, xD′)

where we write xD for πD(x). We define the relational interpretation as

(
∏
f)r(R : AdmRel(A,B))(x, y)

14

Møgelberg, Birkedal, Rosolini

for x ∈ (
∏
f)d(A), y ∈ (

∏
f)d(B) iff

∀D,D′ ∈ D.∀R′ ∈ AdmRel(D,D′)f r(R,R′)(xD, yD′).

Since this is an intersection of admissible relations it is admissible by Lemma 5.1.2

We define the category PFam(Dom) fibred over PDom to have the same
objects as PFam(Dom⊥). A vertical morphisms from (f r, fd) to (gr, gd) is
a natural transformation t from fd to gd, as seen as functors with codomain
Dom instead of Dom⊥, i.e., the components of t are not required to be strict,
such that for all vectors of relations R : AdmRel(A,B), the pair (tA, tB) is a
map of relations f r(R) → gr(R). Reindexing in the fibration PFam(Dom) →
PDom is given by composition.

Again PFam(Dom) → PDom is the co-Kleisli fibration for the fibred
monad on PFam(Dom⊥) → PDom, and so we can prove that we have a
PILL-model:

PFam(Dom⊥)

''OOOOOOOOOOO 00⊥ PFam(Dom)

wwppppppppppp

pp

PDom.

(5)

Proposition 5.5 The diagram (5) is a PILLY -model.

For the proof of Proposition 5.5 we just have to show that the fixed point
combinator is modeled. To do this, we basically have to show that for any pair
of domains A,B, any pair of maps f : A → A, g : B → B and any admissible
relation R : AdmRel(A,B), such that R(x, y) implies R(f(x), g(y)), we have
R(fixAf, fixB(g)). This can be done using uniformity of fix.

6 The LAPL-structure

In this section we show that the PILLY -model (5) is parametric by constructing
a parametric LAPL-structure around it. Even though types in this model are
pairs (f r, fd), when reasoning about parametricity, we will just consider the
fd part of a type. We can consider f r as a relational interpretation of the
type (f r, fd) since for each vector of relations R : AdmRel(A,B) we have
f r(R) : AdmRel(fd(A), fd(B)). Notice also, that since terms from (f r, fd)
to (gr, gd) are natural transformations t : fd ⇒ gd, so forgetting the f r-part of
a type represents a faithful functor.

Since the category Ctx of (1) should contain all functors fd : (Dom⊥)niso →
Dom and types for all relations between them, a natural choice is to have
this category contain all functors fd : (Dom⊥)niso → Set. We will use set
theoretic logic to reason about the model, so the category Prop should contain
subfunctors of the functors in Ctx.

15

Møgelberg, Birkedal, Rosolini

The pre-LAPL-structure will be given by the diagram

DFam(Sub(Set))

��
PFam(Dom⊥) 00

,,XXXXXXXXXXXXXXXXXXXXXXXXX PFam(Dom)
oo

((QQQQQQQQQQQQQ
// DFam(Set)

��
PDom.

(6)

The category DFam(Set) is fibred over PDom. Its fibre over n has
as objects functors (Dom⊥)niso → Set, and reindexing along a morphism
from m to n in PDom is by composition with the functor ((Dom⊥)iso)

m →
((Dom⊥)iso)

n. The category DFam(Sub(Set)) is a fibred partial order over
DFam(Set) and has as objects over f : (Dom⊥)niso → Set subfunctors of f
ordered by inclusion. The map PFam(Dom) → DFam(Set) is given by the
inclusion of Dom into Set.

Lemma 6.1 The fibration DFam(Set) → PDom has fibred products and
products in the base.

Proof. The fibred products are given pointwise. 2

Lemma 6.2 The fibred functor

PFam(Dom)

))RRRRRRRRRRRRRR
// DFam(Set)

��
PDom

given by (f r, fd) 7→ i ◦ fd, where i : Dom → Set is the inclusion, preserves
fibred products and is faithful.

Lemma 6.3 The composite fibration DFam(Sub(Set)) → DFam(Set) →
PDom is a fibred first-order logic fibration with products with respect to pro-
jections in PDom.

Proof. The fibred first-order logic structure is defined pointwise using the
first-order logic structure of Sub(Set) → Set.

What remains to be shown is that the composable fibration has simple
products [3, Appendix A], which means that the logic models quantification
along projections in PDom.

To be precise, suppose f : (Dom⊥)niso → Set is an object of DFam(Set)n
and h : (Dom⊥)n+1

iso → Set is a subfunctor of π∗f = f ◦ π. We must define
(
∏
h) : (Dom⊥)niso → Set a subfunctor of f and prove that for any other

subfunctor g of f

∀A. g(A) ⊆ (
∏
h)(A) iff ∀A,B. g(A) ⊆ h(A,B). (7)

16

Møgelberg, Birkedal, Rosolini

Moreover, we must prove that
∏

is a functor, i.e. if h′ ⊆ h′′ then
∏
h′ ⊆

∏
h′′,

and that the Beck-Chevalley conditions are satisfied.

Define

(
∏
h)(A) =

⋂
D∈D

h(A,D).

Clearly, the right to left implication of (7) holds. Suppose on the other hand
that

∀A. g(A) ⊆ (
∏
h)(A).

If A,B are domains, we must show that g(A) ⊆ h(A,B). We know that there
exists D ∈ D and isomorphism i : B ∼= D. Since h(A, i) : h(A,B) → h(A,D)
is an isomorphism of subobjects of f(A) we must have h(A,B) = h(A,D), so
since clearly g(A) ⊆ h(A,D), also g(A) ⊆ h(A,B) as desired. 2

Lemma 6.4 The diagram (6) defines a pre-LAPL-structure.

Proof. All that is missing in this proof is the definition of the fibred functor U
mapping a pair of types in the same fibre to an object of all relations between
them. We define

U((f r, fd), (gr, gd))(A) = Rel(fd(A), gd(A)).

2

Lemma 6.5 The subfunctor of U given by

V ((f r, fd), (gr, gd))(A) = AdmRel(fd(A), gd(A))

defines a notion of admissible relations for the APL-structure (6).

As mentioned in the introduction, one of our aims with this paper is to
show that the notion of parametric LAPL-structures is a general notion of
parametric models. Lemma 6.5 is important in this respect, since it shows that
the concrete notion of admissible relations of the SDT-model interprets the
abstract notion of admissible relations presented in the definition of parametric
LAPL-structures.

Theorem 6.6 The pre-LAPL-structure (6) is an LAPL-structure.

Basically, what needs to be proved in Theorem 6.6 is that all types in the
model have a relational interpretation. Since a type in the model is a pair
(fd, f r) where fd : (Dom⊥)niso → Dom⊥ and f r maps n-vectors of admissible
relations R : AdmRel(A,B) to relations f r(R) : AdmRel(fd(A), fd(B)), the
map f r can be taken as a relational interpretation of (fd, f r). Notice that the
reason this works, is that in the logic of the pre-LAPL-structure (6) relations
on types (fd, f r), (gd, gr) are families of relations on fd(A), gd(A) for A ∈
Domn, since the inclusion of PFam(Dom) into DFam(Set) forgets the f r-
part of a type.

17

Møgelberg, Birkedal, Rosolini

Since the relational interpretation of types in LAPL-structures is given by a
map of PILL-models, the proof of Theorem 6.6 also checks that the linear struc-
ture ((,⊗, !) and the polymorphic structure of PFam(Dom⊥) → PDom
agrees with the abstractly defined structure on LinAdmRel → AdmRelCtx.

Theorem 6.7 The LAPL-structure (6) is a parametric LAPL-structure, i.e.,
satisfies identity extension, extensionality and very strong equality.

Proof. Identity extension holds basically because we have required that f r

preserves identities. Very strong equality follows from very strong equality
in the subobject fibration over Set. Extensionality is a consequence of very
strong equality. 2

7 Proving consequences of parametricity for Lilystrict

In [22] a language, which we shall call Lilystrict is introduced. This language
is a modification of Lily [2], where the function type σ (τ is interpreted as
strict rather than linear functions. The reason for using strictness rather than
linearity is that it is more general, i.e., gives types to more terms, and that it
is exactly what is needed for call-by-value and call-by-name to give the same
notion of ground contextual equivalence. This intuitively also corresponds
more directly to strict functions in domain theory, since these are the functions
that diverge if their input does.

Simpson and Rosolini define an interpretation of Lilystrict into models of
synthetic domain theory, and use this to prove that call-by-value and call-by-
name give the same notion of contextual equivalence. This has been proved
for Lily in [2] using operational methods, but Simpson and Rosolini give a
different semantic proof. In [2] operational methods are also used for proving
simple consequences of parametricity for Lily, and in this section, we show
how to use the LAPL-structure (6) to prove more advanced parametricity
results for Lilystrict.

The model of PILLY in (6) is based on the interpretation of Lilystrict
given in [22]. In this section we show that the two interpretations of PILLY
and Lily are basically the same. The two languages are of course not the
same, but since linear maps are strict, we can basically include PILLY into
Lilystrict, and show that the interpretations agree up to this inclusion.

As mentioned earlier, the LAPL-structure we have constructed using syn-
thetic domain theory is really a family of LAPL-structures, since we have one
LAPL-structure for each model of synthetic domain theory.

In this section we will assume that we have chosen one such model which is
also 1-consistent in the sense of [23,25]: any sentence of the form ∃n : N. φ(n),
for φ a primitive recursive predicate,—a Σ0

1-sentence—is true in the model iff
there exists (in the external sense) a natural number n such that φ(n) is true.
This is, for example, the case for a realizability topos satisfying the strong
completeness axiom [9] where one takes predomains to be the well-complete

18

Møgelberg, Birkedal, Rosolini

objects. The reason for this assumption is that adequacy (Theorem 7.1 be-
low), will be proved in the internal language of the model; it will hold in the
real world only under the assumption of 1-consistency (and precisely when
1-consistency holds), as explained also in Section 8 of [22]. This technique
was introduced in [23,25].

We emphasize that the results about Lilystrict (Theorems 7.6, 7.7) hold
in general and independently of any model. Yet, to prove the results we need
to refer to a model of SDT satisfying 1-consistency (which is known to exist).

7.1 The language Lilystrict

This subsection sums up some definitions and results from [22]. In particular
we review the language Lilystrict and with two operational semantics, a call-
by-value and a call-by-name semantics. Each of these semantics give rise to a
concept of contextual equivalence corresponding to observing termination at
!- types.

The types of Lilystrict are

σ, τ ::= α | σ (τ |!σ |
∏
α. σ

where α ranges over an infinite set of type variables. Except for ⊗, I these are
exactly the types of PILLY . The notation `Ξ σ : Type means that σ is a well
formed type with free type variables contained in Ξ.

Typing judgements of Lilystrict are of the form

Γ | δ `Ξ t : σ

where Γ is the context of free variables, i.e., an assignment of types to a
finite set of variables usually written as x1 : σ1, . . . , xn : σn such that the free
variables of t are contained in the domain of Γ, i.e., {x1, . . . , xn}. Ξ is a finite
set of free type variables containing the free type variables of σ1, . . . , σn, σ.
The notation Ξ, α means Ξ ∪ α and α /∈ Ξ. δ is a labeling of the variables in
the domain of Γ, i.e., a map from {x1, . . . , xn} to {0, 1}. Intuitively δ(xi) = 1
means that t is strict in xi.

The notation `Ξ Γ means that Γ is a well-formed context with free variables
contained in Ξ.

Figure 1 recalls the term formation rules as defined in [22]. The notation
Γ | δ, x :i σ `Ξ t : τ for i = 0, 1 is short for Γ, x : σ | δ[x 7→ i] `Ξ t : τ ,
where δ[x 7→ i] is the extension of δ to dom(δ) ∪ {x} such that δ(x) = i. The
notation x :− σ means that either x :0 σ or x :1 σ. For δ, δ′ labellings of the
same set of variables, the notation δ ∨ δ′ is the labeling mapping x : dom(δ)
to max(δ(x), δ′(x)). The constant zero labeling is denoted 0.

Figure 2 recalls the two operational semantics for Lilystrict as defined in
[22]. Formally these are given as relations t ⇓s v and t ⇓n v between closed
terms t of closed types and values v, where the set of values is the set of closed

19

Møgelberg, Birkedal, Rosolini

Γ | 0, x :1 σ `Ξ x : σ

Γ | δ, x :1 σ `Ξ t : τ

Γ | δ `Ξ λx :1 σ. t : σ (τ

Γ | δ `Ξ s : σ (τ Γ | δ′ `Ξ t : σ

Γ | δ ∨ δ′ `Ξ s(t) : τ

Γ | δ `Ξ t : σ

Γ | 0 `Ξ!t : !σ

Γ | δ `Ξ s : !σ Γ | δ′, x :− σ `Ξ t : τ

Γ | δ ∨ δ′ `Ξ let !x be s in t

Γ | δ `Ξ,α t : σ `Ξ Γ

Γ | δ `Ξ Λα. t :
∏
α. σ

Γ | δ `Ξ t :
∏
α. σ `Ξ τ : Type

Γ | δ `Ξ t(τ) : σ[τ/α]

Γ | δ, x :− σ `Ξ t : σ

Γ | δ `Ξ rec x : σ. t : σ

Fig. 1. Term formation rules for Lilystrict

terms of closed types of the form

v ::= λx : σ. t |!t | Λα. t.

λx : σ. t ⇓ λx : σ. t

s ⇓s λx : σ. s′ t ⇓s v′ s′[v′/x] ⇓s v

s(t) ⇓s v
s ⇓n λx : σ. s′ s′[t/x] ⇓n v

s(t) ⇓n v !t ⇓!t

s ⇓!s′ t[s′/x] ⇓ v

let !x be s in t ⇓ v Λα. t ⇓ Λα. t

t ⇓ Λα. t′ t′[σ/α] ⇓ v

t(σ) ⇓ v

t[rec x : σ. t/x] ⇓ v

rec x : σ. t ⇓ v

Fig. 2. Operational semantics of Lilystrict

In Figure 2 the notation t ⇓ v is used in some rules. This means that each
of these rules exist both in the definition of the ⇓n and the ⇓s semantics. The
notation t ⇓n is short for ∃v. t ⇓n v and likewise for t ⇓s.

The two operational semantics give rise to two concepts of operational
equivalence, by observing termination at !-types. To be more precise, a ground
σ-context is a term x :− σ ` C : !τ for some type τ , and if t : σ the notation
C[t] denotes the substitution C[t/x]. For t, t′ : σ closed terms of closed types,
t, t′ are equivalent, written as t ≡s

gnd t′, if for all ground σ-contexts C[−],

20

Møgelberg, Birkedal, Rosolini

C[t] ⇓s iff C[t′] ⇓s. Likewise t ≡n
gnd t′ if for all ground σ-contexts C[−],

C[t] ⇓n iff C[t′] ⇓n. These two relations are clearly equivalence relations and
congruences.

In [22] an interpretation of Lilystrict is defined. We shall denote this in-
terpretation ([−]). As with the interpretation [[−]] of PILLY in the model (5)
above, the interpretation has an interpretation of types as domains denoted
([−])d and an interpretation of types as relations denoted ([−])r. Terms are
interpreted as maps preserving relations. Since the interpretation almost co-
incides with the model defined here, we will not repeat the definition of the
interpretation, but only state the results that we need.

Theorem 7.1 (Adequacy [22]) Suppose t, t′ : τ are closed terms of closed
types. If ([t]) = ([t′]) then t ≡s

gnd t
′ and t ≡n

gnd t
′.

In [22], basically as a consequence of Theorem 7.1, it is proved that ≡s
gnd

and ≡n
gnd coincide. Therefore we shall denote either of them by ≡gnd.

7.2 Translating PILLY into Lily

Consider the language PILLY \⊗ obtained by removing the type-constructors
⊗, I from PILLY and removing the corresponding term constructors such as
the corresponding let-expressions, ?, and ⊗ of terms.

Now, the language PILLY \ ⊗ has the same types as Lilystrict and so the
only real difference between the two languages is that (in PILLY \⊗ denotes
linear function space and in Lilystrict it denotes strict function space. Since
linear functions are strict, we can basically include PILLY \⊗ into Lilystrict.

Theorem 7.2 There exists an interpretation φ of PILLY \ ⊗ into Lilystrict
such that for all closed terms t of PILLY , [[t]] = ([φ(t)]). This translation is the
identity on types.

The translation is functorial in the following sense: φ preserves identities
and for u : σ (τ, t : τ (ω closed terms of closed types of PILLY \⊗, φ(t◦u) =
φ(t) ◦ φ(u).

The restriction of the translation to PILLY \ ⊗ in Theorem 7.2 is not
essential as the next proposition shows.

Proposition 7.3 There exists a translation ψ of PILLY into PILLY \ ⊗ such
that for any parametric PILLY -model X the diagram

PILLY
ψ //

[[−]] ##FF
FF

FF
FF

F PILLY \ ⊗

[[−]]
yyssssssssss

X

commutes up to natural isomorphism. To be more precise, there exists a family
of isomorphisms fσ : [[σ]] → [[ψ(σ)]] indexed by closed types of PILLY , such that

21

Møgelberg, Birkedal, Rosolini

for each closed term t : σ (τ of closed type, the diagram

[[σ]]
fσ //

[[t]]

��

[[ψ(σ)]]

[[ψ(t)]]

��
[[τ]]

fτ // [[ψ(τ)]]

commutes. Furthermore, the restriction of ψ to PILLY \ ⊗ is the identity, for
α ` σ(α) a type in PILLY \ ⊗, ψ(σ(τ)) = σ(ψ(τ)), and ψ is functorial in the
sense of Theorem 7.2.

The core of the proof of Proposition 7.3 is the well known theorem that
using parametricity,

σ ⊗ τ ∼=
∏
α. (σ (τ (α) (α,

I ∼=
∏
α. α (α,

see [16,4]. Using these isomorphisms, one can translate any type σ of PILLY
into a type ψ(σ) of PILLY \ ⊗ and construct an isomorphism fσ : σ (ψ(σ).
However, this is not the complete proof of the proposition, since we need to
show that the smaller language can still express all the terms of the larger
language. To be more precise we need to translate each term t of PILLY
possibly involving let-constructions not present in PILLY \⊗ into a term ψ(t)
of PILLY \⊗, and show that the collection fσ defines a natural transformation
as described in Proposition 7.3. Details can be found in [15,12].

Corollary 7.4 There exists a translation of PILLY into Lilystrict which com-
mutes with interpretation up to natural isomorphism. The translation is an
extension of the translation of Theorem 7.2, and it is functorial.

Proof. This follows from Theorem 7.2 and Proposition 7.3. 2

Lemma 7.5 The translation of PILLY into Lilystrict maps β, η- equivalent
terms to ground contextually equivalent terms.

Proof. Externally equal terms of PILLY are interpreted as equal terms in the
model. Since the translation commutes with interpretation into the model,
by adequacy (Theorem 7.1), the translated terms are ground contextually
equal. 2

7.3 Consequences of parametricity for Lilystrict

We end this section by showing how to use Corollary 7.4, computational ade-
quacy of the interpretation ([−]) and the results of [4] to obtain consequences
of parametricity for the language Lilystrict.

Consider the category whose objects are the closed types of Lilystrict and
whose morphisms from σ to τ are closed terms of type σ (τ of Lilystrict
identified up to ground contextual equivalence. We call this category Lilystrict.

22

Møgelberg, Birkedal, Rosolini

As always, type expressions `α σ(α) in Lilystrict for which α only appears
positively in σ induce endofunctors on Lilystrict.

Theorem 7.6 All functors Lilystrict → Lilystrict induced by types σ(α) in
Lilystrict have initial algebras and final coalgebras.

Proof. We define the initial algebra by applying the translation of Corol-
lary 7.4 to in : σ(µα. σ(α)) (µα. σ(α) of Theorem 2.1. To show that this
defines a weak initial algebra, consider φ(fold), that is, φ applied to the term
that takes an algebra and produces a map from the initial algebra. Since

Λα. λf : σ(α) (α. f ◦ σ(fold α !f) = Λα. λf : σ(α) (α. (fold α !f) ◦ in

using Lemma 7.5 it is easy to see that this defines a weak initial algebra.

Suppose we have two maps g, h out of this initial algebra definable in
Lilystrict. Then ([g]), ([h]) are maps out of [[in]] in the model. But since we
know that [[in]] is an initial algebra in the model, ([h]) = ([g]), and so by
adequacy h ≡gnd g.

The proof for final coalgebras is exactly the same. 2

Theorem 7.7 For all types α ` σ(α) : Type of Lilystrict, there exists a closed
type τ of Lilystrict such that τ and σ(τ) are isomorphic as objects of Lilystrict.

Proof. From Theorem 2.2 we obtain a type τ and isomorphisms τ ∼= σ(τ) in
pure PILLY . Now, applying the translation of Corollary 7.4 to these isomor-
phisms we get a type τ ′ and morphisms σ(τ ′) (τ ′, τ ′ (σ(τ ′) definable in
Lilystrict. By functoriality, the interpretations of both compositions of the
two maps are identities. Thus, by adequacy, the two compositions are ground
contextual equivalent to the identity, and thus τ ′ and σ(τ ′) are isomorphic in
Lilystrict. 2

8 Conclusion

We have constructed an LAPL-structure based on the interpretation of Lilystrict
into models of synthetic domain theory presented in [22]. Comparing this with
the concrete domain theoretic LAPL-structure of [14], the completion process
for LAPL-structures of [13,12], and the LAPL-structure based on the oper-
ational semantics of Lily [2] under development at the moment of writing,
this shows that the notion of LAPL-structure is general enough to handle very
different kinds of parametric models.

The LAPL-structure also provides formal proof of the consequences of
parametricity, such as the existence of recursive types, for the interpretation
of [22].

Using adequacy of the interpretation of Lilystrict, we have shown conse-
quences of parametricity for Lilystrict up to ground contextual equivalence.

23

Møgelberg, Birkedal, Rosolini

These consequences include encodings of inductive, coinductive and recursive
types.

References

[1] A. Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis,
Edinburgh University, 1997.

[2] G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily,
a polymorphic linear lambda calculus with recursion. In Fourth International
Workshop on Higher Order Operational Techniques in Semantics, Montréal,
volume 41 of Electronic Notes in Theoretical Computer Science. Elsevier,
September 2000.

[3] L. Birkedal and R. E. Møgelberg. Categorical models of Abadi-Plotkin’s logic
for parametricity. Mathematical Structures in Computer Science, 15(4):709–
772, 2005.

[4] L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Parametric domain-theoretic
models of linear Abadi & Plotkin logic. Technical Report TR-2005-57, IT
University of Copenhagen, February 2005.

[5] L. Birkedal, R. E. Møgelberg, and R. L. Petersen. Parametric domain-theoretic
models of polymorphic intuitionistic / linear lambda calculus. In Proceedings of
the Twenty-first Conference on the Mathematical Foundations of Programming
Semantics, 2005. To appear.

[6] M. Fiore, A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini, and I. Stark.
Domains and denotational semantics: History, accomplishments and open
problems. Bulletin of the EATCS, 59:227–256, jun 1996. Also published as
Technical Report CSR-96-2, University of Birmingham School of Computer
Science.

[7] J.M.E. Hyland. First steps in synthetic domain theory. In A. Carboni, M.C.
Pedicchio, and G. Rosolini, editors, Proceedings of the 1990 Como Category
Theory Conference, volume 1488 of Lecture Notes in Mathematics, pages 131–
156. Springer, Berlin, 1991.

[8] André Joyal and Ieke Moerdijk. Algebraic Set Theory. Number 220 in London
Mathematical Society Lecture Notes in Mathematics. Cambridge University
Press, 1995.

[9] J.R. Longley and A.K. Simpson. A uniform approach to domain theory in
realizability models. Math. Struct. in Comp. Science, 11, 1996.

[10] Maria E Maietti, Paola Maneggia, Valeria de Paiva, and Eike Ritter. Relating
categorical semantics for intuitionistic linear logic. Technical Report CSR-01-7,
University of Birmingham, School of Computer Science, August 2001.

[11] Paola Maneggia. Models of Linear Polymorphism. PhD thesis, University of
Birmingham, Feb. 2004.

24

Møgelberg, Birkedal, Rosolini

[12] R. E. Møgelberg. Categorical and domain theoretic models of parametric
polymorphism. PhD thesis, IT University of Copenhagen, 2005.

[13] R. E. Møgelberg. Parametric completion for models of polymorphic
intuitionistic / linear lambda calculus. Technical Report TR-2005-60, IT
University of Copenhagen, February 2005.

[14] R. E. Møgelberg, L. Birkedal, and R. L. Petersen. Categorical models of PILL.
Technical Report TR-2005-58, IT University of Copenhagen, February 2005.

[15] R. E. Møgelberg, L. Birkedal, and G. Rosolini. Synthetic domain theory and
models of linear Abadi & Plotkin logic. Technical Report TR-2005-59, IT
University of Copenhagen, February 2005.

[16] G.D. Plotkin. Second order type theory and recursion. Notes for a talk at the
Scott Fest, February 1993.

[17] Gordon Plotkin and Mart́ın Abadi. A logic for parametric polymorphism. In
Typed lambda calculi and applications (Utrecht, 1993), volume 664 of Lecture
Notes in Comput. Sci., pages 361–375. Springer, Berlin, 1993.

[18] B. Reus and T. Streicher. General synthetic domain theory — a logical
approach. Mathematical Structures in Computer Science, 1998.

[19] J.C. Reynolds. Types, abstraction, and parametric polymorphism. Information
Processing, 83:513–523, 1983.

[20] E.P. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism.
In S. Abramsky, editor, Proc. 9th Symposium in Logic in Computer Science,
pages 364–371, Paris, 1994. I.E.E.E. Computer Society.

[21] G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis, University of
Oxford, 1986.

[22] G. Rosolini and A. Simpson. Using synthetic domain theory to prove
operational properties of a polymorphic programming language based on
strictness. Manuscript, 2004.

[23] A. Simpson. Computational adequacy in an elementary topos. In CSL: 12th
Workshop on Computer Science Logic. LNCS, Springer-Verlag, 1998.

[24] A. Simpson. Elementary axioms for categories of classes. In 14th Symposium
on Logic in Computer Science (LICS’99), pages 77–87, Washington - Brussels
- Tokyo, July 1999. IEEE.

[25] A. Simpson. Computational adequacy for recursive types in models of
intuitionistic set theory. Annals of Pure and Applied Logic, 130, 2004.

25

	Introduction
	LAPL-structures
	Synthetic Domain Theory
	The domains fibration
	The parametric fibration
	The LAPL-structure
	Proving consequences of parametricity for Lilystrict
	The language Lilystrict
	Translating PILLY into Lily
	Consequences of parametricity for Lilystrict

	Conclusion
	References

