
ReLoC: A Mechanised Relational Logic for Fine-Grained
Concurrency

Dan Frumin

ICIS, Radboud University

dfrumin@cs.ru.nl

Robbert Krebbers

Delft University of Technology

mail@robbertkrebbers.nl

Lars Birkedal

Aarhus University

birkedal@cs.au.dk

Abstract
We present ReLoC: a logic for proving refinements of programs in

a language with higher-order state, fine-grained concurrency, poly-

morphism and recursive types. The core of our logic is a judgement

e ≾ e ′ : τ , which expresses that a program e refines a program e ′

at type τ . In contrast to earlier work on refinements for languages

with higher-order state and concurrency, ReLoC provides type- and

structure-directed rules for manipulating this judgement, whereas

previously, such proofs were carried out by unfolding the judge-

ment into its definition in the model. These more abstract proof

rules make it simpler to carry out refinement proofs.

Moreover, we introduce logically atomic relational specifications:
a novel approach for relational specifications for compound expres-

sions that take effect at a single instant in time. We demonstrate

how to formalise and prove such relational specifications in ReLoC,

allowing for more modular proofs.

ReLoC is built on top of the expressive concurrent separation

logic Iris, allowing us to leverage features of Iris such as invariants

and ghost state. We provide a mechanisation of our logic in Coq,

which does not just contain a proof of soundness, but also tactics

for interactively carrying out refinements proofs. We have used

these tactics to mechanise several examples, which demonstrates

the practicality and modularity of our logic.

1 Introduction
Recall that, roughly speaking, an expression e contextually refines

e ′ if, for all contexts C, if C[e] has some observable behaviour,

then so does C[e ′], and that e and e ′ are contextually equivalent

if e contextually refines e ′ and also e ′ contextually refines e . Con-
textual equivalence and contextual refinement are often referred

to as the gold standards of equivalence and refinement of program

expressions: contextual equivalence of e and e ′ means that it is safe

for a compiler to replace any occurrence of e by e ′, and contextual

refinement is often used to specify the behaviour of programs, e.g.,
one can show the correctness of a fine-grained concurrent imple-

mentation of an abstract data type by proving that it contextually

refines a coarse-grained implementation, which is understood as

the specification.

A simple example is the specification of a fine-grained concur-

rent counter by a coarse-grained version, counteri ≾ counters :

(1→ N) × (1→ N), see Figure 1 for the code. The increment oper-

ation of the coarse-grained version, counters is performed inside a

critical section guarded by a lock, whereas the fine-grained version,

counteri , takes an “optimistic” lock-free approach to incrementing

the value using a compare-and-set inside a loop. We will use the

counter as a simple running example throughout the paper.

Proving such refinements and equivalence of programs directly

is difficult because of the quantification over all contexts, and, for

higher-order languages, it is often the case that reasoning is done us-

ing the technique of logical relations. For programming languages

read ≜ λx (). !x

incs ≜ λx l . acquire l ;

letn = !x inx ← 1 + n; release l ; n

counters ≜ let l = newlock () in letx = ref(0) in

(read x , λ(). incs x l)

inci ≜ rec inc x = let c = !x in

if CAS(x , c, 1 + c) then c else inc x

counteri ≜ letx = ref(0) in (read x , λ(). inci x)

Figure 1. Two concurrent counter implementations.

with features such as impredicative polymorphism, recursive types,

higher-order state, and concurrency logical relations models can

be quite intricate. Such models usually involve recursively defined

worlds, qua step-indexing, and various forms of resource account-

ing [2, 4, 5, 10]. To simplify both the definition and the application

of logical relations, logical approaches to logical relations have

been invented, for increasingly richer programming languages

[13, 15, 26, 28].

A very recent publication [23], which is the basis for our work,

shows how logical relations for Fµ,ref,conc, a language with im-

predicative polymorphism, recursive types, general references, and

concurrency, can be defined in a state-of-the-art higher-order con-

current separation logic Iris [19–22].

Iris supports impredicative concurrent abstract predicates [12,

27] and includes general forms of ghost state which can be used

both for the definition of binary logical relations and for reasoning

about challenging program equivalences. The meta-theory of Iris is

formalised in Coq and Iris also comes equipped with a proof mode,
an extensive set of tactics, which made it possible to formalise the

definitions of logical relations in Iris in Coq [23].

However, the reasoning about logical relatedness of programs

in [23] proceeds by unfolding and working with the explicit def-

inition of the logical relations in the logic. In this paper, we ab-

stract further and introduce a higher-order relational logic ReLoC,

which extends Iris with refinement judgements to support first-class
relational reasoning. The calculus of ReLoC provides type- and

structure-directed rules for manipulating judgements of the form

∆ | Γ |=E e ≾ e ′ : τ , expressing that program e refines program e ′

at type τ . As a result, ReLoC allows a higher level of abstraction for

proofs of contextual refinements by providing a relational logic for

reasoning about logical refinements of programs. In comparison

with the approach in [23], ReLoC enables more modular proofs

due to the encapsulation and the first-class status of refinement

judgements. This means, in particular, that a representation inde-

pendence proof, a refinement of two modules, can be constructed

1

LICS, July, Oxford, UK Dan Frumin, Robbert Krebbers, and Lars Birkedal

modularly from the refinement proofs of module methods (under

suitable assumptions). Moreover, we introduce logically atomic re-
lational specifications: a novel approach to relational specifications

for compound expressions that take effect at a single instant in

time. Logically atomic relation specifications can be thought of as

a relational variant of logically atomic triples in recent concurrent

separation logics [11, 18, 21], and similarly to loc. cit. they support

more modular proofs.

ReLoC is built on top of Iris, allowing the user to leverage the

features of Iris such as invariants and higher-order ghost state. We

have formalised ReLoC on top of the Iris formalisation in Coq [23]

and also implemented new tactics which support mechanised in-

teractive reasoning in ReLoC in a practical and modular way. To

our knowledge, this is the first fully mechanised relational logic

enabling reasoning about contextual refinements of programs in a

concurrent higher-order imperative programming language.

Contributions and structure In summary, we present the fol-

lowing contributions in this paper:

• We present a novel relational logic ReLoC for reasoning

about contextual refinements of concurrent higher-order

imperative programs. We present our target programming

language (§2), an overview of ReLoC (§3), and amore detailed

definition of ReLoC (§4).

• We introduce logically atomic relational specifications to

support logical atomicity for relational reasoning (§5).

• We show how to use ReLoC to prove several challenging

refinements. In particular, we show its application to fine-

grained concurrent algorithms (§5 and §6).

• We describe our formalisation of ReLoC in Coq [16] and

explain how it supports mechanised interactive reasoning

in ReLoC in a practical and modular way (§7).

We discuss further related work in §8 and conclude in §9.

2 The programming language Fµ,ref,conc,∃
The programming language considered in this paper is Fµ,ref,conc,∃:
a typed polymorphic call-by-value λ-calculus with existential types,

isorecursive types, higher-order references and fork {−}-based
concurrency. The types are:

τ ∈ Type ::= 1 | 2 | N | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | ref τ
| µα .τ | ∀α .τ | ∃α .τ | α ,

where α ranges over a countable infinite set TVar of type variables.
The values and expressions are:

v ∈ Val ::= rec f x = e | Λ.e | fold v | pack v | . . .

e ∈ Expr ::= x | rec f x = e | e1(e2) | Λ.e | e [] | fold e | unfold e

| pack e | unpack e1 in e2 | fork {e}

| ref(e) | ! e | e1 ← e2 | CAS(e1, e2, e3) | . . .

(We omit the usual operations on pairs, sums, and integers.)

We use the following syntactic sugar: λx . e ≜ rec () x = e ,

letx = e1 in e2 ≜ (λx . e2) e1, and e1; e2 ≜ let () = e1 in e2.
Terms are untyped, so type-level abstraction is written as Λ.e

and type application as e [], as in [3]. Typing judgements take the

form Ξ | Γ ⊢ e : τ , where Γ is a context assigning types to program

variables and Ξ is a context of type variables. The inference rules

for the typing judgements are standard and hence omitted.

Thread-local CBV head-reduction (omitted): (e, σ) →h (e′, σ ′)

Thread-pool reduction: (®e, σ) →tp (®e′, σ ′)

(e, σ) →h (e
′, σ ′)

(®e1 K [e] ®e2, σ) →tp (®e1 K [e′] ®e2, σ ′)

(®e1 K [fork {e }] ®e2, σ) →tp (®e1 K [()] ®e2 e, σ)

Figure 2. Operational semantics of Fµ,ref,conc,∃.

The operational semantics is split into two parts: thread-local

head reduction→h and thread-pool reduction→tp, see Figure 2.

Both are defined using standard call-by-value evaluation contexts:

K ∈ ECtx ::= [•] | K(e2) | v1(K) | K [] | . . .

Thread-pool reduction is defined on configurations ρ = (®e,σ) con-
sisting of a state σ (a finite partial map from locations to values)

and a thread-pool ®e (a list of expressions corresponding to the

threads) by interleaving, i.e., by picking a thread and executing

it, thread-locally, for one step. The only special case is fork {e},
which spawns a thread e , and reduces itself to the unit value ().

An expression e1 contextually refines an expression e2 at type τ
if no well-typed C context can distinguish the two:

Ξ | Γ ⊢ e1 ≾ctx e2 : τ ≜ ∀τ ′ (C : (Ξ | Γ ⊢ τ) ⇒ (∅ | ∅ ⊢ τ ′))v ®ef σ .

(C[e1], ∅) →
∗
tp (v ®ef ,σ) =⇒

∃®e ′f σ ′v ′. (C[e2], ∅) →∗tp (v ′ ®e ′f ,σ ′)
The typing relation C : (Ξ | Γ ⊢ τ) ⇒ (Ξ′ | Γ′ ⊢ τ ′) on full

contexts C is standard, and can be found in the appendix [16].

3 A tour of ReLoC
We now give a brief tour of ReLoC, and demonstrate the purpose

of its most important logical connectives:

P ,Q ∈ iProp ::= True | False | ∀x . P | ∃x . P | P ∗Q | P −∗ Q
| ℓ 7→i v | ℓ 7→s v | (∆ | Γ |=E e1 ≾ e2 : τ)

| Jτ K∆(v1,v2) | P
N
| ▷ P | □ P | |⇛E1 E2 P | . . .

ReLoC is an extension of Iris and thus includes all connectives

of Iris, in particular, the later modality ▷, persistence modality □,

update modality |⇛E1 E2
, and the invariant assertion P

N
. We will

introduce these connectives on a by need basis throughout this

section. Some of the connectives are annotated by invariant masks
E ⊆ InvName and name spaces N ⊆ InvName, which are needed

for bookkeeping related to invariants. Until we introduce invariants

in §3.3, we will just omit these annotations.

An essential difference to ordinary Iris is that ReLoC has first-

class refinement judgements ∆ | Γ |= e1 ≾ e2 : τ , which should be

pronounced as “the expression e1 refines the expression e2 at type τ ”.
The judgement contains two environments: Γ is a typing environ-

ment assigning types to program variables, ∆ is an environment for

assigning interpretations to type variables. These interpretations

are given by an Iris relation of type Val × Val→ iProp. One such
relation, the value interpretation relation Jτ K∆ : Val × Val→ iProp
for each syntactic type τ will be discussed in §4.

The intuitive meaning of ∆ | Γ |= e1 ≾ e2 : τ is that e1 is safe,
and all of its behaviours can be simulated by e2. One should think

of e1 being demonic and e2 being angelic: for any behaviour (i.e.,
2

ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency LICS, July, Oxford, UK

order of scheduling) of e1 we should find at least one matching be-

haviour of e2. Since we often use refinement judgements to specify

programs, we refer to e1 as the implementation and to e2 as the

specification. The intuitive meaning is formally reflected by the

soundness theorem w.r.t. contextual refinement of Fµ,ref,conc,∃.
Theorem 3.1 (Soundness). Suppose that Ξ = α1, . . . ,αn and ∆ =
[α1 := R1] , . . . , [αn := Rn]. If the judgement ∆ | Γ |= e1 ≾ e2 : τ is
derivable in ReLoC, then Ξ | Γ ⊢ e1 ≾ctx e2 : τ .

The proof of this theorem hinges on the following facts: (1) the
relation ∆ | Γ |= e1 ≾ e2 : τ is a precongruence, which follows

from the compatibility lemmas (see §4); (2) soundness of weakest
preconditions in Iris [23], as the relational judgement is encoded in

terms of weakest preconditions. See the appendix for details [16].

Like ordinary separation logic, ReLoC has heap assertions. Since
ReLoC is relational, these come in two forms: ℓ 7→i v and ℓ 7→s v ,
which signify ownership of a location ℓ with value v on the imple-

mentation and specification side, respectively.

Contrary to earlier work on logical refinements in Iris, e.g., [23],
refinement judgements ∆ | Γ |= e1 ≾ e2 : τ in ReLoC are first class

propositions. As such, we can combine them in arbitrary ways with

the other logical connectives, e.g.,

(ℓ1 7→i v1 ∗ ℓ2 7→s v2 ∗ ∆ | Γ |= e ′
1
≾ e ′

2
: σ) −∗ ∆ | Γ |= e1 ≾ e2 : τ ,

which states that the refinement holds, under the assumption of

another refinement, and some properties of the heap.

The fact that refinement judgements are first class plays an im-

portant role in the presentation of inferences rules: Each inference

rule we present for the refinement judgements is really a shorthand

for a ReLoC proposition, namely a magic wand between the separat-

ing conjunction of the antecedents and the consequent. For instance,

the proposition above is presented as the following inference rule:

ℓ1 7→i v1 ℓ2 7→s v2 ∆ | Γ |= e ′
1
≾ e ′

2
: σ

∆ | Γ |= e1 ≾ e2 : τ

3.1 Proof of the counter refinement
Recall the counter example from Figure 1 in §1. We now show the

refinement of the two concurrent modules in ReLoC:

counteri ≾ counters : (1→ N) × (1→ N).

The proof of the refinement will be done by:

• performing symbolic execution;
• establishing an invariant that links the values of the counters;
• verifying that the returned closures refine each other while

preserving the invariant.

In the following paragraphs we describe each of these steps. For

the purposes of the proof we will use some (derived) ReLoC rules

presented in Figure 3, and the relational specifications for locks
as shown in Figure 4. The lock specification, which can be imple-

mented by e.g., a spinlock, is formulated in terms of an abstract

predicate isLock(v, false) (resp., isLock(v, true)) stating that v is

a lock which is free (resp., in use).

3.2 Symbolic execution
Performing symbolic execution means reducing the left or right

hand side of the refinement. For example, we can use the symbolic

execution rules pure-l and alloc-l’ on the left to obtain:

ci 7→i 0 −∗ (read ci , λ(). inci ci) ≾ counters : (1→ N) × (1→ N).

Subsequently, using the symbolic execution rules pure-r, alloc-r

and newlock-r on the right hand side the new goal becomes:

ci 7→i 0 ∗ cs 7→s 0 ∗ isLock(l , false) −∗

(read ci , λ(). inci ci) ≾ (read cs , λ(). incs cs l) : (1→ N)×(1→ N).

The symbolic execution rules are inspired by the “backwards” style

Hoare rules of [17] and weakest-precondition rules in Iris [20, 22].

3.3 Invariants and persistent propositions
At this point we wish to prove a refinement of two closures. By the

rule pair it would suffice to prove that both closures refine each

other. However, we cannot directly use this rule because the proofs

of both closures need access to the counter locations ci 7→i − and

cs 7→s −. To circumvent this issue we put said resources in a global

invariant P , which allows P to be shared between different parts

of the program (and between different threads). In our running

example, we establish the following invariant (using inv-alloc’):

Icnt = ∃n ∈ N. ci 7→i n ∗ cs 7→s n ∗ isLock(l , false) .

This invariant not only allows us to share access to ci and cs , but
also ensures that the values of the respective counters match up.

Invariants P are persistent: once established, they will remain

valid for the rest of the verification. This differentiates them from

ephemeral propositions like ℓ 7→i v and ℓ 7→s v , which could be

invalidated in the future by actions of the program or proof.

The notion of being persistent is expressed in ReLoC (and Iris)

by means of the persistence modality □. The purpose of □ P is to say

that P holds without asserting any ephemeral propositions. The

most important rules for the □ modality are □ P = □ P ∗ □ P and

□ P −∗ P , which allow to freely duplicate □ P and finally get P out.

We say that P is persistent, if P −∗ □ P ; otherwise, we say that P is

ephemeral. To prove □ P , one can only use persistent resources.

Once the invariant Icnt for our running example has been

established, we can duplicate it, and apply pair to obtain two goals:

Icnt −∗ read ci ≾ read cs : 1→ N (1)

Icnt −∗ λ(). inci ci ≾ λ(). incs cs l : 1→ N (2)

We first describe how to prove the refinement of read. As λx . e is
syntactic sugar for rec () x = e , we can apply closure-unit at the

function type 1→ N and obtain the new goal:

Icnt −∗ (λ(). ! ci) () ≾ (λ(). ! cs) () : N.

Note the persistence modality □ in the premise of closure-unit: it

ensures that we do not use ephemeral resources in the verification

of the body of a closure. After all, closures can be invoked arbitrarily

many times at different points in time (possibly concurrently). For

example, without the □ modality in the premise of closure-unit

one would be able to prove the following unsound refinement:

let ℓ = ref(0) in λ(). ℓ ← 1 + ℓ; ! ℓ ≾ λ(). 1 : 1→ N,

Accessing invariants. The fact that invariants are persistent (and
thus can be duplicated, i.e., P = P ∗ P) comes with a cost—

once a proposition P is turned into an invariant P , one is only

allowed to access P during a single atomic execution step on the

left hand side. To see why we have this restriction on the left hand

side and not the right hand side, let us consider:

letx = ref(1) in fork {x ← 0;x ← 1} ; !x ≾ 1 : N
3

LICS, July, Oxford, UK Dan Frumin, Robbert Krebbers, and Lars Birkedal

pure-l

e1 →pure e
′
1

▷∆ | Γ |= K[e ′
1
] ≾ e2 : τ

∆ | Γ |= K[e1] ≾ e2 : τ

pure-r

e2 →pure e
′
2

∆ | Γ |=E e1 ≾ K[e ′
2
] : τ

∆ | Γ |=E e1 ≾ K[e2] : τ

alloc-l’

∀ℓ. ℓ 7→i v −∗ ∆ | Γ |= K[ℓ] ≾ e : τ

∆ | Γ |= K[ref(v)] ≾ e : τ

alloc-r

∀ℓ. ℓ 7→s v −∗ ∆ | Γ |=E e ≾ K[ℓ] : τ

∆ | Γ |=E e ≾ K[ref(v)] : τ

load-r

ℓ 7→s v ℓ 7→s v −∗ ∆ | Γ |=E e ≾ K[v] : τ

∆ | Γ |=E e ≾ K[! ℓ] : τ

store-r

ℓ 7→s − ℓ 7→s v −∗ ∆ | Γ |=E e ≾ K[()] : τ

∆ | Γ |=E e ≾ K[ℓ ← v] : τ

nat

n ∈ N

∆ | Γ |= n ≾ n : N

pair

∆ | Γ |= e1 ≾ e2 : τ ∆ | Γ |= e ′
1
≾ e ′

2
: σ

∆ | Γ |= (e1, e
′
1
) ≾ (e2, e

′
2
) : τ × σ

closure-unit

□
(
∆ | Γ |= (rec f x = e) () ≾ (rec f ′ x ′ = e ′) () : τ

)
∆ | Γ |= rec f x = e ≾ rec f ′ x ′ = e ′ : 1→ τ

inv-alloc’

▷ P P
N
−∗ ∆ | Γ |= e1 ≾ e2 : τ

∆ | Γ |= e1 ≾ e2 : τ

load-l-inv

P
N

(
▷ P ∗ closeInvN(P)

)
−∗ ∃v . ℓ 7→i v ∗

▷
(
ℓ 7→i v −∗ ∆ | Γ |=⊤\N K[v] ≾ e2 : τ

)
∆ | Γ |= K[! ℓ] ≾ e2 : τ

cas-l-inv

P
N

(
▷ P ∗ closeInvN(P)

)
−∗ ∃v . ℓ 7→i v ∗

▷

((
v = v1 ∗ ℓ 7→i v2 −∗ ∆ | Γ |=⊤\N K[true] ≾ e2 : τ

)
∧(

v , v1 ∗ ℓ 7→i v −∗ ∆ | Γ |=⊤\N K[false] ≾ e2 : τ
))

∆ | Γ |= K[CAS(ℓ,v1,v2)] ≾ e2 : τ

inv-restore

closeInvN(P) ▷ P ∆ | Γ |=E e1 ≾ e2 : τ

∆ | Γ |=E\N e1 ≾ e2 : τ

Figure 3. Selected (derived) ReLoC rules for the running example.

newlock-r

∀v . isLock(v, false) −∗ ∆ | Γ |=E e ≾ K[v] : τ

∆ | Γ |=E e ≾ K[newlock ()] : τ

acqire-r

isLock(v, false) isLock(v, true) −∗ ∆ | Γ |=E e ≾ K[()] : τ

∆ | Γ |=E e ≾ K[acquire v] : τ

release-r

isLock(v,b) isLock(v, false) −∗ ∆ | Γ |=E e ≾ K[()] : τ

∆ | Γ |=E e ≾ K[release v] : τ

Figure 4. Relational specification for a lock implementation.

This refinement is obviously false because we have to consider

every scheduling of the program on the left hand side. If ReLoC

were to allow access to invariants for a duration longer than an

atomic step, we could prove this refinement using x 7→i 1 . The

reverse direction of this refinement does hold, however. It can be

proven because ReLoC allows one to perform multiple steps on the

right hand side while accessing an invariant.

Let us take a look at the way accessing invariants in ReLoC

works. We do so by continuing the proof of our running example

(after having performed some pure symbolic execution steps):

Icnt −∗ ! ci ≾ ! cs : N.

At this point we would like to access the locations ci and cs stored
in the invariant Icnt . For this we use the rule load-l-inv.

This rule is quite a mouthful, so let us first take a look at its shape

before going in detail about the mask annotations and ▷ modalities.

The essence of this rule is that it provides temporary access to the

resources P and an obligation closeInvN(P) to restore these. The

resources P can be used to prove ℓ 7→i v , which is needed to justify

the symbolic execution step on the left. After we proved they entail

ℓ 7→i v , we are left with the goal ∆ | Γ |=⊤\N K[v] ≾ e2 : τ .
We typically do not immediately restore the invariant (using the

rule inv-restore and the obligation closeInvN(P)), but first use P
to perform matching symbolic execution steps on the right.

In our example, by applying load-l-inv, we obtain ci 7→i n and

cs 7→s n and isLock(l , false), for some n ∈ N, reducing our goal

to |=⊤\N n ≾ ! cs : N. We then use load-r to reduce our goal to

|=⊤\N n ≾ n : N. Because these steps did not change the heap,

inv-restore’s premises for closing the invariant are trivially met.

Let us take a look at the rules load-l-inv and inv-restore in more

detail. A crucial aspect of these rules is that they ensure that access

to the invariant P is temporary, i.e., that P is only used during a

single symbolic execution step on the left hand side (but possibly

many on the right). This is achieved by tagging each invariant P
N

with a name space N ⊆ InvName, and by keeping track of which

invariants have been accessed. The latter is done in a way similar to

4

ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency LICS, July, Oxford, UK

Iris—like Iris’s Hoare triples {P } e {Q}E , our refinement judgements

Γ | ∆ |=E e1 ≾ e2 : τ are annotated with a mask E ⊆ InvName of
accessible invariants. By default all invariants are accessible, so we

write Γ | ∆ |= e1 ≾ e2 : τ for Γ | ∆ |=⊤ e1 ≾ e2 : τ , where ⊤ is the

set of all invariant names.

When accessing an invariant, e.g., using load-l-inv or cas-l-inv,

its namespace is removed from the mask annotation of the judge-

ment. The removal of the namespace from the mask guarantees

that invariants are only used for a single execution step on the left

hand side. After all, all rules for symbolic execution on the left hand

side require a ⊤ mask, whereas those for the right hand side allow

for an arbitrary mask. The only way of performing a subsequent

step on the left hand side is thus by first restoring the mask to ⊤,

which can only be done by restoring the invariants that have been

accessed (using the rule inv-restore).

One may wonder why refinement judgements are annotated

with a mask instead of a Boolean that indicates if an invariant has

been opened. As we will show in §4, ReLoC allows one to access

multiple invariants simultaneously. To avoid reentrancy—which
means accessing the same invariant twice in a nested fashion—we

need to know exactly which invariants are opened.

An additional aspect to note is that invariants P
N

in ReLoC

are impredicative [20, 27]. This means that P is allowed to contain

other invariant assertions Q
N′

or even refinement judgements.

As a consequence, to ensure soundness of the logic, all rules for

invariants only provide access to ▷ P , i.e., P “guarded” by the later
modality ▷. When invariants are not used impredicatively (i.e., they
consist solely of the connectives of first-order logic and e.g., heap
assertions), these modalities can be soundly omitted.

3.4 Later modality and Löb induction
As is custom in logics based on step-indexing [6], like Iris, the later

modality ▷ and Löb induction are used to reason about recursive

functions. In our example, this means that by Löb induction, we

may prove inci ci ≾ incs cs l : N, under the assumption of the

induction hypothesis ▷(inci ci ≾ incs cs l : N). The induction

hypothesis is ‘guarded’ by a ▷, and can only be used after we have

performed a step of symbolic execution on the left hand side. Let

us see how it works in the example. We use pure-l to arrive at:

▷(inci ci ≾ incs cs l : N) −∗

▷(let c = ! ci in if CAS(ci , c, 1 + c) then c else inci ci ≾ incs cs l : N).

By monotonicity of ▷, we can now remove the ▷ from the induction

hypothesis. Subsequently, we symbolically execute the load opera-

tion using the invariant, just like in the previous section, reaching:

if CAS(ci ,n, 1 + n) thenn else inci ci ≾ incs cs l : N

for some n ∈ N. In order to symbolically execute the CAS(−,−,−),
we use the rule cas-l-inv. By this rule, we have to consider two

outcomes, depending on whether the original value of the counter

has changed between the load and CAS(−,−,−) or not.

1. Suppose that the value of the counter ci has changed. In that

case the CAS(−,−,−) operation fails and we are left with:

ci 7→i m ∗ cs 7→s m ∗ isLock(l , false) −∗

|=⊤\N if false thenn else inci ci ≾ incs cs l : N

for somem , n. Because the symbolic heap has not been

changed, we can easily restore the invariant and execute the

if false then . . . else . . . to obtain inci ci ≾ incs cs l : N,
which is exactly our induction hypothesis.

2. If the value has not changed, then the CAS(−,−,−) succeeds
and we are left with the new goal:

ci 7→i (1 + n) ∗ cs 7→s n ∗ isLock(l , false) −∗

|=⊤\N if true thenn else inci ci ≾ incs cs l : N.

At this point we use the symbolic execution rules store-r,

load-r and the lock specifications from Figure 4 to sym-

bolically execute the right hand side of the refinement and

update the resources to match:

ci 7→i (1 + n) ∗ cs 7→s (1 + n) ∗ isLock(l , false) −∗

|=⊤\N if true thenn else inci ci ≾ n : N.

We can then restore the invariant to restore the masks and

symbolically execute the left hand side to finish the proof.

4 A closer look at ReLoC
In this section we explain some of the more technical details of

ReLoC and show how to obtain the principles that we have used in

§3.1 from more primitive and generic rules. Some of these primitive

rules are shown in Figure 5 and Figure 6.

First, we describe how to work with invariants using Iris’s update

modality |⇛. Then we go through a selection of primitive rules of

ReLoC and explain how the symbolic execution and compatibility

rules can be derived from them.

Invariants and the update modality The rules for invariants

as presented in §3.3 are fairly restricted, e.g., they allow at most one

invariant to be opened at the same time. We now show ReLoC’s

more generic rules, which integrate Iris’s flexible mechanism for

invariants and ghost state.

Invariants and ghost state in Iris are primarily controlled via the

(fancy) update modality |⇛E1 E2 P . The intuition behind |⇛E1 E2 P is

to express that under the assumption that the invariants in E1 are

accessible initially, one can obtain P , and end up in the situation

where the invariants in E2 are accessible. Furthermore, this modal-

ity allows one to perform changes to Iris’s ghost state via frame
preserving updates, but we defer the description of that to [20].

Before discussing the rules for the update modality, let us recap

some syntactic sugar used in Iris. We write |⇛E P for |⇛E E P , and
|⇛P for |⇛⊤P where ⊤ is the set of all invariant names. Moreover,

since the update modality is often combined with the magic wand,

we write P E1 E2 Q for P −∗ |⇛E1 E2Q , and follow the same

conventions for omitting masks in as used for |⇛.

ReLoC’s main rule for interacting with the update modality is

upd-logrel. It allows to eliminate an update modality around a

refinement judgement. To get an idea of how this rule is used, let us

take a look at the primitive rule for allocating an invariant inv-alloc.

As one can see, the derived rule inv-alloc’ from Figure 3 is just a

composition of upd-logrel and inv-alloc.

By combining upd-logrelwith Iris’s rule inv-access for accessing

invariants, one can turn an invariant P
N

into its content P , to-

gether with a way of restoring the invariant ▷ P E\N E True. It
is important to notice that by using the combination of these rules,

the mask on the refinement judgement changes from E into E \ N .

This prohibits access to the invariantN until it has been restored—

thus preventing reentrancy. Restoring the invariant is done by using

5

LICS, July, Oxford, UK Dan Frumin, Robbert Krebbers, and Lars Birkedal

upd-logrel

|⇛E1 E2 P P −∗ Γ | ∆ |=E2 e ≾ e ′ : τ

Γ | ∆ |=E1 e ≾ e ′ : τ

upd-upd

|⇛E1 E2 P P −∗ |⇛E2 E3Q

|⇛E1 E3Q

inv-alloc

▷ P E P
N

inv-access

N ⊆ E

P
N E E\N ▷ P ∗ (▷ P E\N E True)

Figure 5. A selection of primitive ReLoC rules for invariants (upd-upd, inv-alloc and inv-access are borrowed from Iris).

load-l

|⇛⊤ E

(
∃v . ℓ 7→i v ∗

▷
(
ℓ 7→i v −∗ ∆ | Γ |=E K[v] ≾ e : τ

))
∆ | Γ |= K[! ℓ] ≾ e : τ

store-l

|⇛⊤ E

(
ℓ 7→i − ∗

▷
(
ℓ 7→i v −∗ ∆ | Γ |=E K[()] ≾ e : τ

))
∆ | Γ |= K[ℓ ← v] ≾ e : τ

cas-l

|⇛⊤ E
©«
∃v ′. ℓ 7→i v

′ ∗

▷
(
v ′ , v1 −∗ ▷(ℓ 7→i v

′ −∗ ∆ | Γ |=E K[false] ≾ e : τ)
)
∧

▷
(
v ′ = v1 −∗ ▷(ℓ 7→i v2 −∗ ∆ | Γ |=E K[true] ≾ e : τ)

) ª®®®¬
∆ | Γ |= K[CAS(ℓ,v1,v2)] ≾ e : τ

closure

□

(
∀v v ′. Jτ K∆(v,v ′) −∗

∆ | Γ |= (rec f x = e) v ≾ (rec f ′ x ′ = e ′) v ′ : σ

)
∆ | Γ |= rec f x = e ≾ rec f ′ x ′ = e ′ : τ → σ

tlam

∀R : Val × Val→ iProp. □
(
[α := R] ,∆ | Γ |= e ≾ e ′ : τ

)
∆ | Γ |= Λ.e ≾ Λ.e ′ : ∀α .τ

pack

[α := R] ,∆ | Γ |= e ≾ e ′ : τ

∆ | Γ |= pack e ≾ pack e ′ : ∃α . τ

Figure 6. A selection of primitive ReLoC rules.

the rule upd-logrel with the premise ▷ P E\N E True. This re-
quires one to give up P , and in turn transforms the mask of the

judgement back into E. Note that one can use inv-access multiple

times to open multiple invariants.

Invariants and symbolic execution. The way of opening invari-

ants by using upd-logrel and inv-access in the way described above

is fairly limited. Once we open an invariant, the mask at the refine-

ment judgement changes from ⊤ into ⊤ \ N , which prevents any

symbolic execution on the left hand side. This is because the rules

for symbolic execution on that side require a ⊤ mask.

As we discussed in §3.3 already, the restriction to the ⊤ mask

on symbolic execution rules for the left hand side is crucial. It is

unsound to perform multiple symbolic execution steps on the left

while an invariant is opened. Instead, ReLoC provides additional

rules to simultaneously access an invariant and perform a single

atomic symbolic execution step on the left hand side. Examples of

such rules are load-l, store-l and cas-l.

We can now explain the derived rule load-l-inv in terms of the

primitive rules. The proposition ▷ P E\N E True is used for

closing the invariant. Thus closeInvN(P) ≜ ▷ P
⊤\N ⊤ True. In

order to prove load-l-inv, we apply load-l to obtain the goal:

|⇛⊤ ⊤\N

(
∃v . ℓ 7→i v ∗

▷
(
ℓ 7→i v −∗ ∆ | Γ |=⊤\N K[v] ≾ e : τ

))
We then use inv-access and upd-upd to get the premise of load-l-inv.

In the same way cas-l-inv can be derived from cas-l.

Finally, the closing rule inv-restore is a consequence of the

definition of closeInvN(P) and upd-logrel.

Using ReLoC’s primitive symbolic execution rules such as load-

l, store-l and cas-l one can also derive the following weaker, but

perhaps more intuitive, symbolic execution rules:

store-l’

ℓ 7→i v ▷
(
ℓ 7→i w −∗ ∆ | Γ |= K[()] ≾ e : τ

)
∆ | Γ |= K[ℓ ← w] ≾ e : τ

Since these rules have a ⊤ mask, they can only be used when no

invariants have been opened. Recall that by contrast, the symbolic

execution rules for the right hand side like load-r, store-r, which

are of a similar shape, can be performed even with invariants open

because they allow the mask to be arbitrary.

Value interpretation andmonadic rules. We now present some

rules for the value interpretation Jτ K∆ : Val × Val→ iProp. These
rules are mostly used in a few select places when doing representa-

tion independence proofs.

value-nat

∃n ∈ N.v1 = v2 = n
JNK∆(v1,v2)

value-var

□∆(α)(v1,v2)

JαK∆(v1,v2)

value-arr

□(∀w1w2. Jτ K∆(w1,w2) −∗ ∆ | ∅ |= v1 w1 ≾ v2 w2 : σ)

Jτ → σK∆(v1,v2)

The value interpretation is used in the following “monadic” rules

for the relational judgements:

return

Jτ K∆(v1,v2)

∆ | Γ |= v1 ≾ v2 : τ

bind

∆ | Γ |= e1 ≾ e2 : τ

(
∀v1v2. Jτ K∆(v1,v2) −∗

∆ | Γ |= K1[v1] ≾ K2[v2] : σ

)
∆ | Γ |= K1[e1] ≾ K2[e2] : σ

6

ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency LICS, July, Oxford, UK

The monadic rules are used to derive compatibility rules in the

system, as we will see later in this section.

Note that the value interpretation Jτ K∆(v1,v2) should be per-

sistent because our type system enjoys contraction (i.e., typing is
not substructural). As such, morally any interpretation relation in

the context ∆ should be persistent. While persistence is not en-

forced by rules like pack, the rule value-var includes a persistence

modality, which instead guarantees persistence of Jτ K∆(v1,v2). As
such, although one can use non-persistent interpretations in ∆, it
would make representation independence proofs like the ones in

§6 generally impossible: when one has to establish a refinement

at type α , the □ modality in value-var ensures that only persistent

resources can be used to prove ∆(α)(v1,v2).

Compatibility rules. Compatibility rules are type-directed rules

that relate two terms of a similar shape. The rules correspond to

“compatibility lemmas” in the logical relation literature and are

crucial for proving soundness of ReLoC (Theorem 3.1).

The sole primitive compatibility rules of ReLoC are the those

for rec f x = e , Λ.e , e [], pack(e), unpack e1 in e2, and fork {e}.
The others can be derived using the monadic rules return and

bind and the symbolic execution rules. As an example, consider the

compatibility lemma for the first projection π1.

Lemma 4.1. The following rule is derivable:

∆ | Γ |= e1 ≾ e2 : τ × σ

∆ | Γ |= π1(e1) ≾ π1(e2) : τ

Proof. By bind it suffices to show:

• ∆ | Γ |= e1 ≾ e2 : τ × σ—this is exactly our assumption;

• for any v,w : Jτ × σK∆(v,w) −∗ ∆ | Γ |= π1(v) ≾ π1(w) : τ .

According to the value interpretation we have values vi ,wi for

i ∈ {0, 1} such that v = (v1,v2) andw = (w1,w2) and Jτ K(v1,w1) ∗

JσK(v2,w2). Using pure-l and pure-r we reduce the goal to ∆ | Γ |=
v1 ≾ w1 : τ . At this point we just apply return. □

Using the compatibility rules we can show a standard result:

Theorem4.2 (Fundamental theorem). Suppose thatΞ = α1, . . . ,αn
and ∆ = [α1 := R1] , . . . , [αn := Rn]. If Ξ | Γ ⊢ e : τ , then ∆ | Γ |=
e ≾ e : τ is derivable in ReLoC.

5 Relational specifications and logical
atomicity

In our tour of ReLoC (§3) we saw an example of how relational

specifications support modularity: to prove properties of a client of

a module (in the example, a lock module) we do not need to know

anything about the source code of the module.

Relational specifications for symbolic execution on the right

hand side, such as the one used in §3, see Figure 4, follow a certain

pattern. For an expression e2 that under precondition P reduces to

v with postcondition Q(v), the rule has the following form:

P ∀v .Q(v) −∗ ∆ | Γ |=E e1 ≾ K[v] : τ

∆ | Γ |=E e1 ≾ K[e2] : τ

The symbolic execution rules for the left hand side can be presented

in a similar way:

P ∀v .Q(v) −∗ ∆ | Γ |= K[v] ≾ e2 : τ

∆ | Γ |= K[e1] ≾ e2 : τ

However, this specification for a left hand side program e1 is
sequential in the sense that the mask on the relational judgements

is ⊤, which means that we cannot use such a specification if the

resources mentioned in propositions P and Q are located in an

invariant. In this section we will see how to formulate and use

logically atomic relational specifications for resolving this issue.

5.1 Formulating atomic relational specifications
For any primitive operation of Fµ,ref,conc,∃ we have a symbolic

execution rule that allows the operation to access shared resources

stored in an invariant, e.g., the rules load-l and store-l. These rules

are sound because said operations are physically atomic—i.e., they
reduce in one step. Methods of a concurrent module are typically

compound programs and hence not physically atomic. However,

such operations often behave as if they were atomic, from a point

of view of an arbitrary client, and we wish to express that.

Consider, for example, the counter increment program inci x for

some counter x . It is a compound program which does not reduce

to a value in one step. Nevertheless, during the execution of this

program there is a single instant at which the whole operation

actually appears to take the effect—namely the successful reduction

of the CAS(-, -, -). Such instant is called a linearisation point. What it

means is that, for an outside observer, the program inci x behaves

“as if” it was atomic. This phenomenon is called logical atomicity in

the literature [11, 21].

The idea behind logically atomic relational specifications is to
provide (derived) proof rules for logically atomic operations that

allows them to access shared resources. Taking inspiration for the

encoding of atomic Hoare triples from [21] we write down the

logically atomic rule for inci in Jacobs-Piessens style [18]:

FG-increment-atomic-l

□ |⇛⊤ E
©«
∃n. x 7→i n ∗ R(n) ∗

(∀m. x 7→i m ∗ R(m)
E ⊤ True) ∧

(∀m. x 7→i (m + 1) ∗ R(m) −∗ ∆ | Γ |=E K[m] ≾ e : τ)

ª®®®¬
∆ | Γ |= K[inci x] ≾ e : τ

Intuitively, the expression inci x is logically atomic because it

could only do two things with the heap: it first reads the value

of x (this cannot break any invariants or resources held by other

threads), and subsequently, it either succeeds in incrementing the

counter (in an atomic fashion, using compare-and-swap), or it fails

to do so and starts over. In order to understand the logically atomic

rule we must think of a way of (symbolically) performing those

steps whenever the resources that we need are shared between

threads.

First of all, instead of requiring the resource x 7→i n, we require
a way of obtaining such a resource. One such a way of obtaining

x 7→i n is by accessing an invariant (using |⇛⊤ E
); however, an

invariant typically contains more resources than needed. To not

throw those resources away we collected them in a frame R(n).
Secondly, the atomic compare-and-swap can either succeed or

fail. If it succeeds, then we have managed to update our resources

to x 7→i (n + 1), and then we can proceed with proving ∆ | Γ |=E
K[n] ≾ e : τ under that premise. However, the caveat here is

that before compare-and-swap was executed, x 7→i n had to be

stored in the invariant. During this period another thread could

have changed the value store x to somem. Thus, we need to be

able to show that ∆ | Γ |=E K[m] ≾ e : τ from x 7→i (m+ 1) for an

7

LICS, July, Oxford, UK Dan Frumin, Robbert Krebbers, and Lars Birkedal

arbitrarym; the other resources depending onm in the invariant

have not been updated yet, as witnessed by R(m). This explains the
(∀m. x 7→i (m + 1) ∗ R(m) −∗ ∆ | Γ |=E K[m] ≾ e : τ) clause.

If, however, the compare-and-swap fails, then we need to be

able to restart the whole computation. For that we must be able to

return x 7→i n to the invariant. It might be the case that at the point

when we have realised that the computation has to be restarted,

we have already mingled with the value stored in x . Therefore, we
must be able to close the invariant with an arbitrary value stored

in x—however, the frame of the invariant has to match the same

value. Hence the (∀m. x 7→i m ∗ R(m)
E ⊤ True) clause.

Finally, we know that the computation either succeeds or has

to be restarted—but not both. Hence the last two clauses described

here are connected by an intuitionistic conjunction (∧), instead of

the separating conjunction (∗).

5.2 Using atomic relational specifications
We can now use FG-increment-atomic-l to prove the refinement

that we have seen in §3.3 more modularly:

Icnt
N
−∗ inci ci ≾ incs cs l : N

At this point we apply FG-increment-atomic-l with:

R(n) ≜ isLock(l , false) ∗ cs 7→s n.

After getting rid of the persistence modality, we get a new goal:

Icnt
N
−∗ |⇛⊤ ⊤\N ∃n. ci 7→i n ∗ R(n) ∗ . . .

At this point we can open up the invariant, and thereby introduce

the update modality. The contents of the invariant provides us with

a witness for the existential quantifier and allows us to frame the

first two conjuncts. We are left with showing the conjunction:

(∀m.ci 7→i m ∗ isLock(l , false) ∗ cs 7→s m
⊤\N ⊤ True) ∧

(∀m.ci 7→i (m + 1) ∗ isLock(l , false) ∗ cs 7→s m −∗

|=⊤\N m ≾ incs cs l : N)

under the premise of the invariant closing obligation:

▷ Icnt
⊤\N ⊤ True.

The first conjunct follows directly from the invariant closing obli-

gation. It thus remains to showm ≾ incs cs l : N from:

(▷ Icnt
⊤\N ⊤ True)∗ci 7→i (m+1)∗ isLock(l , false)∗cs 7→s m.

At this point we finish the proof by symbolically executing incs cs l
on the right hand side before closing the invariant. See the technical

appendix and Coq formalisation [16] for the full proof.

5.3 General form of logically atomic specifications
The general form of logically atomic rules for logical refinements

is thus the following:

R2 □ |⇛⊤ E

©«
∃x .P(x) ∗ R1(x) ∗(∀y. P(y) ∗ R1(y) E ⊤ True

)
∧(∀yv .Q(y,v) ∗ R1(y) ∗ R2 −∗

∆ | Γ |=E K[v] ≾ e2 : τ
)

ª®®®®®¬
∆ | Γ |= K[e1] ≾ e2 : τ

where P : X → iProp is a predicate describing consumed resources

and Q : X × Val → iProp is a predicate describing produced re-

sources, both dependent on a typeX supplied by a client of the rule.

In this version, in addition to an invariant frame R1 : X → iProp
that comprises the persistent resource P(x) ∗ R1(x) together with
the “precondition”, the client of the rule provides an ephemeral
frame R2 containing all the ephemeral. resources we had prior to

applying the rule. We get access to those resources once again when

we are ready to prove the new goal ∆ | Γ |=E K[v] ≾ e2 : τ .
The reason for including this frame is mainly technical: the other

premise of the rule resides behind the persistence modality. In order

to prove such a premise we have to give up all the ephemeral re-

sources. However, we do not want to throw away all the ephemeral

resources that we have, so we give them up only temporarily.

6 Case studies
To evaluate the feasibility of our approach we have formalised

several non-trivial example refinements including:

1. Generative ADTs from [5], such as a symbol generation and

lookup table.

2. Higher-order functions with state from [14].

3. Algebraic laws for a non-deterministic binary choice opera-

tor defined via concurrency.

or(e1, e2) ≜ letx = ref(0) in

fork {x ← 1} ; if !x = 0 then e1 () else e2 ().

4. A port of the Treiber stack refinement from [23] to ReLoC.

5. A ticket lock specification in terms of a spinlock.

The examples from the first two points were adapted to work in a

concurrent setting. They also demonstrate how Iris ghost state may

be tightly integrated into the proofs, to enforce protocols such as

monotonicity of the symbol table. Some of the proofs also involve

the relational specifications for locks and for the atomic counter

increment presented earlier. In the rest of this section we elaborate

on the ticket lock refinement.

6.1 Ticket lock refinement
In this example, our goal is to prove the refinement of a spinlock by

a ticket-based lock. This refinement demonstrates several impor-

tant features of ReLoC. In particular, it demonstrates modularity

and compositionality of proofs in ReLoC by employing logically

atomic relational specifications from §5 and by splitting the mod-

ule refinement proof into separate reusable refinement proofs of

module methods. Furthermore, the proof highlights the integra-

tion of Iris ghost state to facilitate CAP-like [12] reasoning with

abstract predicates, and it demonstrates our general approach to

refinements of ADTs (detailed below).

Spinlock. As a specification program we consider the following

simple implementation of a spinlock.

newlocks ≜ λ(). ref(false)

acquires ≜ rec acquire x =

if CAS(x , false, true) then () else acquire x

releases ≜ λx . x ← false

The relational specification for the spinlock is presented in Fig-

ure 4. We omit the proofs of the relational specifications for the

spinlock and instead refer the reader to the accompanying Coq

source code [16]. After establishing the soundness of the relational

specification, we no longer need to appeal to the actual source code

8

ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency LICS, July, Oxford, UK

for the spinlock. This allows us to reason on a more abstract level

and makes our proofs more resilient to change.

Ticket lock. As a more efficient version of a spinlock we consider

the following ticket-based lock implementation:

newlocki ≜ λ(). (ref(0), ref(0))

wait_loop ≜ recwait_loop n lo =

if (n = ! lo) then () elsewait_loop n lo

acquirei ≜ λ(lo, ln). letn = inci ln in

wait_loop n lo

releasei ≜ λ(lo, ln). lo← ! lo + 1

The two locations associated with the lock, lo and ln, point to the

ID of the current owner of the lock and to the total number of

issued tickets. When a thread wants to enter a critical section, it

first requests a new ticket (by atomically increasing the value of

ln), and then spins until the value of the current owner of the lock

matches the ticket number. The ticket lock is fair—threads racing to

enter a critical section will gain access to it in the order of arrival.

Proof setup. We show that:

pack(newlocki , acquirei , releasei)

≾ pack(newlocks , acquires , releases)

: ∃α . (1→ α) × (α → 1) × (α → 1) (3)

The proof follows our general strategy for proving refinements of

stateful fine-grained concurrent ADTs in ReLoC:

1. We define a predicate lockInv−(−,−,−) linking together the

underlying representations of each individual pair of locks.

2. As the witness for the existential type, we pick a relation

on the underlying representation of the two locks stating

that there is an invariant linking the locks together via

lockInv−(−,−,−).
3. We prove the refinements for each method in the signature.

Finally, we combine those proofs together into a module

refinement proof. This is what we refer to as a component-
wise refinement proof.

Due to space limitations, we are not able to present the refinement

proof in details in the main part of the paper. We chose to sketch the

main ideas pertaining to the points above in the remainder of this

section, while spelling out the proofs themselves in the appendix.

Abstract predicates and the representations of locks. The lock
invariant describes the relation between the values representing

locks, (lo, ln) for the ticket lock and l ′ for the spinlock:

lockInvγ (lo, ln, l ′) ≜ ∃(o n : N) (b : B).

lo 7→i o ∗ ln 7→i n ∗ isLock(l ′,b) ∗

issuedTicketsγ (n) ∗ (if b then ticketγ (o) else True)

It refers to abstract predicates ticketγ (n) and issuedTicketsγ (m).
The former represents a ticket with id n and the latter states that a

total ofm tickets have been issued. Each ticket lock is associated

with its own ticket dispensing machine—a ghost state gadget. The

index γ in ticketγ (−) and issuedTicketsγ (−) is an Iris ghost name

of the associated dispensing machine. The abstract predicates are

defined in terms of Iris ghost state, but for the purposes of the

refinement proof, we only require them to satisfy certain rules

(presented in the appendix) and we do not refer to the underlying

definition in terms of ghost state and resource algebras.

Then, the relation linking together the two modules is:

lockInt((lo, ln), l ′) ≜ ∃γ . lockInvγ (lo, ln, l ′) N .
Refinement proof. The refinement proof is subdivided into three

refinements for its components:

1. [α := lockInt] | ∅ |= newlocki ≾ newlocks : 1→ α ;
2. [α := lockInt] | ∅ |= acquirei ≾ acquires : α → 1;
3. [α := lockInt] | ∅ |= releasei ≾ releases : α → 1.

The proofs of these refinements are done without exposing the

underlying definitions of the abstract predicates and without ref-

erences to the source code of the spinlock. We also stress that the

proof of the acquirei refinement does not rely on the source code

for the inci operation, but only refers to the logically atomic speci-

fication for inci . Without a logically atomic relational specification

for inci , this would not have been possible (since atomicity is re-

quired for reasoning about updates to the invariant when proving

the acquirei refinement).

In order to prove the main statement we apply the compatibility

lemmas pack and pair, followed by the refinements above.

7 Coq formalisation
We have implemented the calculus presented here in Coq, building

on the formalisation of Iris [20] and Interactive Proof Mode (IPM)

[23]. The formalisation contains a machine-checked proof of sound-

ness directly against the operational semantics of Fµ,ref,conc,∃, and
all the examples presented and mentioned in this paper. The Treiber

stack refinement has already been formalised in [23] as a monolithic

proof. Our approach allowed for splitting the proof into distinct

pieces combinable together. The compilation time for the example

refinements has improved compared to loc. cit. , but we are not sure
if that can be attributed to the increased modularity of the proofs

or other optimisations, like the usage of explicit names and a better

performing substitution function in our formalisation vis-à-vis a
general purpose library for de Bruijn indices used in [23].

The backward-style reasoning is suitable for interactive proving,

as it is already the style of reasoning employed in Coq. The formal-

isation contains machinery around the proof calculus, including an

array of tactics for executing the proofs. Primitive rules of ReLoC

are formalised as lemmas in Coq; the tactic mechanism is then

used to automatically figure out the parameters for the proof rule

(e.g., the evaluation context K) and discharge proof obligations, if

possible. Altogether this allows for seamless reasoning in the logic,

as if the proofs were done on a whiteboard.

8 Related work
We described the most closely related work in the introduction (§1),

we now discuss other related work on relational logics.

The rules for symbolic execution in ReLoC are similar to corre-

sponding rules in the relational LSLR logic [13] for System F with

recursive types and in the relational LADR logic [15] for System F

with recursive types and references. However, ReLoC also includes

symbolic execution rules for a programming language with concur-

rency. Furthermore, ReLoC uses general Iris invariants, whereas

LSLR did not include support for invariants (since the programming

language did not include mutable state) and LADR had support for

9

LICS, July, Oxford, UK Dan Frumin, Robbert Krebbers, and Lars Birkedal

more specialised invariants. None of these earlier relational logics

came with mechanised tool support.

Liang and Feng present a relational rely-guarantee style logic

[24], which can be used to prove refinement for fine-grained con-

current algorithms but, in contrast to ReLoC, it can only be used

to reason about first-order programs. Moreover, it is not clear how

to use their logic to compose relational specifications modularly,

since specifications used in refinements are not reference imple-

mentations, but are an abstract form of programs. Unlike ReLoC

the logic of loc. cit. has not been mechanised.

RHOL [1] is a relational higher-order logic for reasoning about

relational properties of programs in (a terminating variant of) PCF.

Themain judgement of the logic allows one to prove that a relational

formula φ holds for two expressions (not necessarily of the same

type). The authors demonstrate the soundness of the logic and show

how to embed a number of type systems into their framework.

In our case, we take a more type-directed approach and relate

terms of the same type only. However, we can relate terms of

different type by relating them at some type variable α and picking

a suitable interpretation for it to substitute for α in the environment

∆. The authors of RHOL demonstrate proofs of various relational

properties (like those provided by the systems that they embed); in

our work we consider only one (family of) relation(s), namely the

logical relation for contextual refinement. On the other hand, the

programming language considered in RHOL is a pure terminating

variant of simply-typed PCF, while we consider a much richer

programming language with general references and concurrency.

Earlier work has also included relational logics for (higher-order)

programming languages with mutable state, but no concurrency.

Relational Hoare logic [9] and Relational Separation logic [29] can

be used for reasoning about relational properties for first-order

imperative programs, and they have inspired several extensions.

Relational Hoare Type Theory [25] is a dependent type theory for

specification and verification of information flow and access control

properties of higher-order programs with dynamically allocated

mutable first-order state, defined in Coq, A relational logic for a

sequential class-based language with dynamically allocated objects

has been introduced by Banerjee et al. [7]. The relational logic is
based on region logic [8], a first-order logic, which is amenable to

SMT-based automation. The relational logic is aimed at proving

refinement and noninterference. In contrast, we focus on reasoning

about refinement, but also treat concurrent programs and higher-

order store, and we provide tool support for interactive verification.

9 Conclusion and further work
We have presented ReLoC, a relational logic for abstract reasoning

about contextual refinement of fine-grained concurrent higher-

order imperative programs. ReLoC enables modular proofs due

to the first-class status of refinement judgements and the support

of a novel form of logically atomic relational specifications. We

have provided a mechanisation of our logic in Coq, which does not

just contain a proof of soundness, but also tactics for interactively

carrying out refinements proofs. We have used these tactics to

mechanise several examples, which demonstrates the practicality

and modularity of our logic.

One possible direction of further work is increased support for

showing refinements of programs that involve helping through side

channels. We have formalised (in Coq) a refinement of a coarse-

grained concurrent stack by a stack with helping; however, that

proof requires us to appeal to the interpretation of the logical rela-

tion judgements in the Iris logic and is thus perhaps not as abstract

as one could hope for, although parts of the proof are still carried

out in ReLoC. Another interesting problem that is not addressed

by the calculus is reasoning that involves speculating on possible

values in the program or in the heap. We are also interested in

exploring extensions of ReLoC to richer type-and-effect systems

and cross-language logical relations.

References
[1] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves

Strub. 2017. A relational logic for higher-order programs. PACMPL 1, ICFP (2017),

21:1–21:29.

[2] Amal Ahmed. 2004. Semantics of types for mutable state. Ph.D. Dissertation.

Princeton University.

[3] Amal Ahmed. 2006. Step-indexed syntactic logical relations for recursive and

quantified types. In ESOP (LNCS), Vol. 3924. 69–83.
[4] Amal Ahmed, Andrew W. Appel, and Roberto Virga. 2002. A stratified semantics

of general references embeddable in higher-order logic. In LICS. 75–86.
[5] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-dependent

representation independence. In POPL. 340–353.
[6] Andrew Appel and David McAllester. 2001. An indexed model of recursive types

for foundational proof-carrying code. TOPLAS 23, 5 (2001), 657–683.
[7] Anindya Banerjee, David A. Naumann, and Mohammad Nikouei. 2016. Relational

logic with framing and hypotheses. In FSTTCS (LIPIcs), Vol. 65. 11:1–11:16.
[8] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. 2013. Local reasoning

for global invariants, part I: region logic. JACM 60, 3 (2013), 18:1–18:56.

[9] Nick Benton. 2004. Simple relational correctness proofs for static analyses and

program transformations. In POPL. 14–25.
[10] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob

Thamsborg, and Hongseok Yang. 2011. Step-indexed Kripke models over recur-

sive worlds. In POPL. 119–132.
[11] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014.

TaDA: A logic for time and data abstraction. In ECOOP (LNCS), Vol. 8586. 207–
231.

[12] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson,

and Viktor Vafeiadis. 2010. Concurrent abstract predicates. In ECOOP (LNCS),
Vol. 6183. 504–528.

[13] Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2009. Logical step-indexed logical

relations. In LICS. 71–80.
[14] Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order

state and control effects on local relational reasoning. JFP 22, 4-5 (2012), 477–528.

[15] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010. A relational

modal logic for higher-order stateful ADTs. In POPL. 185–198.
[16] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. Appendix and Coq

development of ReLoC: A mechanised relational logic for fine-grained concurrency.
(2018). Available at http://cs.ru.nl/~dfrumin/reloc/.

[17] Samin S. Ishtiaq and Peter W. O’Hearn. 2001. BI as an assertion language for

mutable data structures. In POPL. 14–26.
[18] Bart Jacobs and Frank Piessens. 2011. Expressive modular fine-grained concur-

rency specification. In POPL. 271–282.
[19] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order

ghost state. In ICFP. 256–269.
[20] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal,

and Derek Dreyer. 2017. Iris from the ground up: A modular foundation for

higher-order concurrent separation logic. Submitted for publication (2017).

[21] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars

Birkedal, and Derek Dreyer. 2015. Iris: Monoids and invariants as an orthogonal

basis for concurrent reasoning. In POPL. 637–650.
[22] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer,

and Lars Birkedal. 2017. The essence of higher-order concurrent separation logic.

In ESOP (LNCS), Vol. 10201. 696–723.
[23] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in

higher-order concurrent separation logic. In POPL. 205–217.
[24] Hongjin Liang and Xinyu Feng. 2013. Modular verification of linearizability with

non-fixed linearization points. In PLDI. 459–470.
[25] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. Dependent type

theory for verification of information flow and access control policies. TOPLAS
35, 2 (2013), 6:1–6:41.

[26] Gordon D. Plotkin and Martín Abadi. 1993. A logic for parametric polymorphism.

In TLCA (LNCS), Vol. 664. 361–375.
[27] Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract

predicates. In ESOP (LNCS), Vol. 8410. 149–168.

10

http://cs.ru.nl/~dfrumin/reloc/

ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency LICS, July, Oxford, UK

ticket-nondup

ticketγ (n) ticketγ (n)

False
newIssuedTickets

|⇛∃γ , issuedTicketsγ (0)
issueNewTicket

issuedTicketsγ (m)

|⇛issuedTicketsγ (m + 1) ∗ ticketγ (m)

Figure 7. Properties of abstract predicates.

[28] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and

Hoare-style reasoning in a logic for higher-order concurrency. In ICFP. 377–390.
[29] Hongseok Yang. 2007. Relational separation logic. TCS 375, 1-3 (2007), 308–334.

A Ticket lock refinement
In this appendix we present the proofs of the refinements from §6.1.

The purpose of this appendix is to give an detailed description of

the way the rules of ReLoC are used for an actual proof.

Abstract predicates. We use the following abstract predicates:

• ticketγ (m) representing a ticket with the idm from the ticket

dispensing machine with the name γ ;
• issuedTicketsγ (m) stating that a total ofm tickets have been

issued for the dispensing machine γ ;

The predicates themselves are implemented in Iris using ghost

state over the resource algebra Auth(Pdisj(N)). For the purpose of
the proof, we are not concerned with the implementations of the

predicates and only require that they satisfy the rules presented in

Figure 7.

The relation linking together two modules (serving as the inter-

pretation for α) is:

lockInt((lo, ln), l ′) ≜ ∃γ . lockInvγ (lo, ln, l ′) N .
Lemma A.1. The following refinement holds:

[α := lockInt] | ∅ |= newlocki ≾ newlocks : 1→ α .

Proof. By closure it suffices to show:

[α := lockInt] | ∅ |= newlocki () ≾ newlocks () : α .

Performing symbolic execution on the left and the right hand sides

we get lo 7→i 0 ∗ ln 7→i 0 ∗ isLock(l ′, false) and the goal:

[α := lockInt] | ∅ |= (lo, ln) ≾ l ′ : α .

By upd-logrel and return it suffices to prove:

|⇛lockInt((lo, ln), l ′).

In other words:

|⇛∃γ . lockInvγ (lo, ln, l ′)
To prove this goal we first create a new ticket dispensing ma-

chine with a fresh name γ using newIssuedTickets. Together with

the resources that we already had, issuedTicketsγ (0) comprises

lockInvγ (lo, ln, l ′). □

To prove the acquire refinement we need the following helper.

Lemma A.2. Assume the ticket ticketγ (m), and the invariant:

lockInvγ (lo, ln, l ′)
N
,

linking the two locks together. Then:

[α := lockInt] | ∅ |= wait_loopm lo ≾ acquires l
′
: 1

Proof. By Löb induction it suffice to show goal from an assumption:

▷(ticketγ (m) −∗

[α := lockInt] | ∅ |= wait_loopm lo ≾ acquires l
′
: 1).

(We will get rid of the later modality after performing a symbolic

execution step—so we will ignore the later modality from now on.)

After performing pure symbolic reductions on the left had side

our goal becomes:

[α := lockInt] | ∅ |=

if (m = ! lo) then () elsewait_loopm lo ≾ acquires l
′
: 1.

At this point we apply the rule load-l, which allows us to open

the invariant N to get:

• the resources lo 7→i o∗ ln 7→i n∗ isLock(l ′,b) for some o,n,b;
• issuedTicketsγ (n) and if b then ticketγ (o), for some γ .

After framing and introducing resources our goal is:

[α := lockInt] | ∅ |=⊤\N
if (m = o) then () elsewait_loopm lo ≾ acquires ℓ

′
: 1.

Here we distinguish two cases:

1. Casem = o. In this situation we know that our turn to enter

the critical section has arrived, i.e., it must be the case that

b = false. This is the case because if b = true, then have

ticketγ (o) from the invariant N and ticketγ (m) by assump-

tion. This yields a contradiction by ticket-nondup.

Since b = false we can apply acqire-r to update the lock

to isLock(l ′, true) and reduce the goal to:

[α := lockInt] | ∅ |=⊤\N
if (o = o) then () elsewait_loopm lo ≾ () : 1.

We can close the invariant by giving up the original ticket

ticketγ (o). The goal then holds by pure-l and the compati-

bility property for the unit type.

2. Case m , o. We can immediately close the invariant to

restore the masks on the relational judgement, and reduce

the goal to the original statement of this lemma. Finally, we

discharge the goal by the induction hypothesis. □

Lemma A.3. The following refinement holds:

[α := lockInt] | ∅ |= acquirei ≾ acquires : α → 1.

Proof. By closure it suffices to assume the invariant:

lockInvγ (lo, ln, l ′)
N

for some γ , and show:

[α := lockInt] | ∅ |= acquirei (lo, ln) ≾ acquires l
′
: 1.

After applying pure-l, the goal becomes:

[α := lockInt] | ∅ |= K[inci ln] ≾ acquires ℓ
′
: 1

where K ≜ letn = [•] inwait_loop n lo.
At this point we can use the atomic rule for the fine-grained

counter FG-increment-atomic-l with the parameters E ≜ ⊤ \ N

11

LICS, July, Oxford, UK Dan Frumin, Robbert Krebbers, and Lars Birkedal

and R(n) ≜ issuedTicketsγ (n). We have to show:

|⇛⊤ ⊤\N ∃n. ln 7→i n ∗ issuedTicketsγ (n) ∗©«
(∀m.ln 7→i m ∗ issuedTicketsγ (m)

⊤\N ⊤ True) ∧

(∀m.ln 7→i (m + 1) ∗ issuedTicketsγ (m) −∗

|=⊤\N K[m] ≾ acquires l
′
: 1)

ª®®®¬ (4)

At this point we can introduce the update modality by opening

the invariant N and obtaining:

• the resources lo 7→i o∗ ln 7→i n∗ isLock(l ′,b) for some o,n,b;
• issuedTicketsγ (n) and if b then ticketγ (o), for some γ .

We can frame ln 7→i n and issuedTicketsγ (n) in Equation (4), it

then remains to show the conjunction:©«
(∀m.ln 7→i m ∗ issuedTicketsγ (m)

⊤\N ⊤ True) ∧

(∀m.ln 7→i (m + 1) ∗ issuedTicketsγ (m) −∗

|=⊤\N K[m] ≾ acquires l
′
: 1)

ª®®®¬ .
For the first conjunct we just apply the invariant closing proposi-

tion and show that the invariant lockInvγ (lo, ln, l ′) still holds. Since
we have not changed any ghost state it is trivial.

For the second conjunct, assume that we have ln 7→i (m + 1) and
issuedTicketsγ (m). We can apply the update issueNewTicket to get:

issuedTicketsγ (m + 1) ∗ ticketγ (m)

We restore the invariant using these resources and ln 7→i (m + 1),
which leaves us with the goal:

[α := lockInt] | ∅ |=

letn =m inwait_loop n lo ≾ acquires l
′
: 1

which reduces to the statement of Lemma A.2. □

Similarly we can show the refinement for release.

Lemma A.4. The following refinement holds:

[α := lockInt] | ∅ |= releasei ≾ releases : α → 1.

Theorem A.5. The following refinement holds:

pack(newlocks , acquires , releases)

≾ pack(newlocki , acquirei , releasei)

: ∃α .(1→ α) × (α → 1) × (α → 1).

Proof. The theorem follows from pack (with lockInt as the witness
for the existential type), pair and Lemmas A.1, A.3 and A.4. □

12

	Abstract
	1 Introduction
	2 The programming language F,ref,conc,
	3 A tour of ReLoC
	3.1 Proof of the counter refinement
	3.2 Symbolic execution
	3.3 Invariants and persistent propositions
	3.4 Later modality and Löb induction

	4 A closer look at ReLoC
	5 Relational specifications and logical atomicity
	5.1 Formulating atomic relational specifications
	5.2 Using atomic relational specifications
	5.3 General form of logically atomic specifications

	6 Case studies
	6.1 Ticket lock refinement

	7 Coq formalisation
	8 Related work
	9 Conclusion and further work
	References
	A Ticket lock refinement

