A Concurrent Logical Relation

Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

IT University of Copenhagen, Denmark
{birkedal, fisi, thamsborg}@itu.dk

—— Abstract
We present a logical relation for showing the correctness of program transformations based on a
new type-and-effect system for a concurrent extension of an ML-like language with higher-order
functions, higher-order store and dynamic memory allocation.

We show how to use our model to verify a number of interesting program transformations that
rely on effect annotations. In particular, we prove a Parallelization Theorem, which expresses
when it is sound to run two expressions in parallel instead of sequentially. The conditions are
expressed solely in terms of the types and effects of the expressions. To the best of our knowledge,
this is the first such result for a concurrent higher-order language with higher-order store and
dynamic memory allocation.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs
Keywords and phrases verification, logical relation, concurrency, type and effect system

Digital Object ldentifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Relational reasoning about program equivalence is useful for reasoning about the correct-
ness of program transformations, data abstraction (representation independence), compiler
correctness, etc. The standard notion of program equivalence is contextual equivalence and
in recent years, there have been many improvements in reasoning methods for higher-order
ML-like languages with general references, based on bisimulations, e.g., [1, 2, 3|, traces [4],
game semantics [5], and Kripke logical relations, e.g., [6, 7, 8, 9].

In this paper we present the first Kripke logical relation for reasoning about equivalence
of a concurrent higher-order ML-like language with higher-order store and dynamic memory
allocation.

To state and prove useful equivalences about concurrent programs, it is necessary to
have some way of restricting the contexts under which one proves equivalences. This point
was made convincingly in the recent paper by Liang et. al. [10], who presented a rely-
guarantee-based simulation for verifying concurrent program transformations for a first-order
imperative language (with first-order store). Here is a very simple example illustrating the
point. Consider two expressions

er=z:=1;y:=1 and ey =y:=1;z:=1.

Here = and y are variables of type refint. The expressions e; and ey are not contextually
equivalent. (To see why, consider expression e = x:=0; y:=0, and note that running e;
in parallel with e3 may result in a state with !z = 0 and !y = 1, but that cannot be the
case when we run es in parallel with ez.) The issue is, of course, that the context may also
modify the references x and y. On the other hand, if we know that no other threads have
access to x or y, then it should be the case that e; and es are equivalent. We can express
this restriction on the contexts using a refined region-based type-and-effect system.
@@@@ © Lars Birkedal, Filip Sieczkowski and Jacob Thamsborg;

G licensed under Creative Commons License NC-ND
Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1-31

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A Concurrent Logical Relation

We first recall that a type-and-effect system is a type system that classifies programs
according to which side effects the programs may have. A variety of effect systems have
been proposed for higher-order programming languages, e.g., [11, 12, 13], see [14] for a
recent overview. Effect systems can often be understood as specifying the results of a static
analysis, in the sense that it is possible to automatically infer types and effects. Effect
systems can be used for different purposes: they were originally proposed by Lucassen and
Gifford [12] for parallelization purposes but they have also, e.g., been used as the basis for
implementing ML using a stack of regions for memory management [13, 15]. In a recent
series of papers, Benton et. al. have argued that another important point of effect systems
is that they can be used as the basis for effect-based program transformations, e.g., compiler
optimizations, [16, 17, 18, 19], see also [20]. The idea is that certain program transformations
are only sound under additional assumptions about which effects program phrases may, or
rather may not, have.

Now, returning to our example, we refine the types of x and y to be refint and ref,int,
respectively. Intuitively, this expresses that z and y are references in different regions, but
it does not put any restrictions on whether other threads may access x or y. Thus, when we
type e and e; we will use two contexts of region variables, one for public regions that can be
used by other concurrently running threads, and one for private regions that are under the
control of the present thread. This idea is inspired by recent work on concurrent separation
logic, e.g., [21, 22, 23, 24]. We use a vertical bar to separate public and private regions: the
typing context

p,o | 0] x:refint,y : ref,int
expresses that p and ¢ are public regions, whereas the typing context
0| p,o|x:ref,int,y : refsint

expresses that p and o are private regions. The expressions e; and ey are well-typed in the
latter context and, with this refined typing, they are indeed contextually equivalent, because
our type-and-effect system guarantees that no well-typed context can access regions p or o.
(The expressions are also well-typed in the former context, but not contextually equivalent
with that refined typing.)

In this paper we present a step-indexed Kripke logical relations model of a type-and-effect
system with public and private regions for a concurrent higher-order language with general
references. Our model is constructed over the operational semantics of the programming
language, and builds on recent work by Thamsborg and Birkedal on logical relations for the
sequential sub-language [20]. Note that the type-and-effect annotations are just annotations;
the operational semantics of the language is standard and regions only exist in our semantic
model, not in the operational semantics.

As an important application of our model we prove a Parallelization Theorem, which
expresses when it is sound to run two expressions in parallel instead of sequentially. To the
best of our knowledge, this is the first such result for a higher-order language with higher-
order store and dynamic memory allocation. Here is a very simple instance of the theorem.
Consider two expressions

er=y:=lx+ly and ey =z:=lx+!z
each well-typed in a context

O | paspy, p= | - ref, int,y - ref, int, 2 : ref, int,



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

i.e., where x, y, and z are references in distinct private regions. In this context, running e;
and es sequentially is contextually equivalent to running e; and eq in parallel. Intuitively,
this also makes sense: e; and e; update references in distinct regions, and it is unproblematic
that they both read (but not write) from the same region.

As mentioned, this was a simple instance of the Parallelization Theorem. We stress that
the theorem is expressed solely in terms of the type and efffects of the expressions e; and
€2, so a compiler may automatically infer that it is safe to parallelize two expressions by
looking at the inferred effect types, and without reasoning about all interleavings. Moreover,
the theorem applies to contexts and expressions with general higher types (not just with
references to integers and unit types). Note that the distinction between private and public
regions is also crucial here (parallelization would not be sound if the effects of the expressions
were on public regions).

Our type-and-effect system crucially also includes a region-masking rule. Traditionally,
this rule has been used to hide local effects on regions, which makes it possible to view a
computation as pure even if it uses effects locally and makes the effect system stronger, in
the sense that it can justify more program transformations. Here we also observe that the
masking rule can be used for introducing private regions, since the masking rule intuitively
guarantees that effects on a region are not leaked to the context. It is well-known that region-
masking makes the model construction for a sequential language technically challenging, see
the extensive discussion in [20]. Here it is yet more challenging because of concurrency; we
explain how our model ensures soundness of the masking rule in Section 3.

The extension with concurrency also means that when we define the logical relation for
contextual approximation and relate two computations e; and es, we cannot simply require
relatedness after e; has completed evaluation (as in the sequential case), since other threads
should be allowed to execute as well. We explain our approach to relating concurrent
computations in Section 3; it is informed by recent soundness proofs of unary models of
concurrent separation logic [25, 26].

Another challenge arises from the fact that since our language includes dynamically
allocated general references, the existence of the logical relation is non-trivial; in particular,
the set of Kripke worlds must be recursively defined. Here we build on our earlier work [27]
and define the worlds as a solution to a recursive metric-space equation. Indeed, to focus on
the essential new aspects due to the extension with concurrency, we deliberately choose to
use the exact same notion of worlds as we used for the sequential sub-language in [20]. In the
same vein, we here consider a monomorphically typed higher-order programming language
with general references, but leave out universal and existential types as well as recursive
types. However, we want to stress that since our semantic techniques (step-indexed Kripke
logical relations over recursively defined worlds) do indeed scale well to universal, existential,
and recursive types, e.g. [27, 9], it is possible to extend our model to a language with such
types. We conjecture that it is also possible to extend our model to richer effect systems
involving region and effect polymorphism, but we have not done so yet.

2 Language and Typing

We consider a standard call-by-value lambda calculus with general references, and extended
with parallel composition and an atomic construct. We assume countably infinite, pairwise
disjoint sets of region variables RV (ranged over by p), locations L (ranged over by ) and
program variables (ranged over by z,y, f). As usual, the reduction relation is between
configurations, (e|h) — (¢’|h’) where heaps h,h’ € H are finite maps from locations



A Concurrent Logical Relation

(Elproj; (v1,v9)] | ) — (Elvi] [ 1)
m u=rd, | wr,|al, (E[(fun f(x).e) v] | h) — (Elelfun f(z).e/f,v/z]]| h)
€ N=T,..., Ty (Elrefv] | h) — (B[] | h[l — v]) if | ¢ dom(h)
T u=1]int|7 X2 |ref, T (Ell:=v]|h) — (E[()] | hll:=v]) if | € dom(h)
iy A (]| h) — (B |B) i1 € dom(h)
v u=x|{)] (v1,v2) (Elpar v1 and va] | h) — (E[{v1,v2)] | h)
| fun f(x).e|l (Elcas (I,n1,n2)]| h) — (E[1]| hll:=n2])
e n=v|projv|velrefv|lv if I € dom(h) and h(l) = nq
|v1:=v9 | par e; and ey (Elcas (I,n1,n2)] | h) — (E[0]| k)
| cas (v1,v2,v3) | atomic e if I € dom(h) and h(l) # ny
E :=][/|vE|par E and ey (E[atomic e] | h) — (E[v]| h)
|par e; and E if (e|h) —* (v| k')

(E[atomic e] | h) — (E[atomic e] | h)
Figure 1 Syntax

Figure 2 Operational semantics

to values. Figures 1 and 2 give the syntax and operational semantics; we denote the set
of expressions £ and the set of values V. The evaluation contexts allow parallel evaluation
inside par expressions, and there is a new primitive reduction covering the case when the two
subcomputations have terminated. For technical simplicity, we allow an atomic e expression
to reduce to itself, possibly introducing more divergence than the diverging behaviours of
e. The syntax is kept minimal; in examples we may use additional syntactic sugar, e.g.,
writing let = ey in ey for (fun f(x).e3) ey for some fresh f. For e € £, we write FV(e)
and FRV (e) for the sets of free program variables and region variables, respectively; also we
define rdse = {p € RV | rd, € ¢} and similarly for writes and allocation.

The form of the judgments of our type-and-effect system is standard with one important
refinement: regions are partitioned into public and private regions, with the purpose of
restricting interference from the environment. In greater detail, a typing judgement looks
like this:

IA|ITFe: T, e

The T', e and 7 are the usual: the variable context T' assigns types to program variables in
the expression e, with the resulting type of 7. To get an idea of — or rather an upper bound
of — the side-effects of e, we split the heap into regions; these are listed in IT and A. We
track memory accesses by adding a set ¢ of effects of the form rd,, wr, and al,, where p is a
region. Roughly, a computation with effect rd, may read one or more locations in region p,
and similarly for writes and allocation. This setup goes back to Lucassen and Gifford [12].

The novelty, as mentioned in the Introduction, is our partition of regions into the public
ones II and the private ones A. As opposed to the rest of the judgment, this public-private
division does not make promises about the behavior of e. Instead, it states the expectations
that e has of the environment: threads running in parallel with e may — in a well-typed
manner — read, write and allocate in the public regions but must leave the private regions
untouched.

When running parallel threads, the private regions of the parent are shared between
the children, and so are public from their point of view; this is reflected in the typing



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

IMAITFY : 7y X Ta, €
AT, z:7Fz:7,0 OAITE():1,0 II|A|TF proj,v: 7, ¢
OIAT v 71,61 IMA|ITF vy : 7o, &9 H|A\F,f:71—>€H7ATQ,x:T1l—e:Tg,E

II|A|TF (v1,v2) : 71 X Ta, €1 Ueg II|A|TFfun f(z).e: 7 =4 7, 0
MA|ITFv:7 =04 g IIAITFe: T, e DAITFv T, e pelllA
IMAITFve: T, e UeaUe IT|A|T Frefo:ref,r, eU{al,}
IN[A|T Fopcref,r, e IMAITFwvy : 7, €9 AT Fov:ref,r, e
IDA|TFovii=v 01, 61 Uega U{wr,} ODATH!v: 7, eU{rd,}
MAp|TFe:T, ¢ JILA|ITke: T, ¢
(p ¢ FRV(T', 7)) - (alse Crdse Nwrse)
HA|ITFe:T,e—p II|A|T | atomice: T, €

ILA|-[Tke:m,e; ILA|-|[TFey: 1, e
IT|A|TF pareg and eg : 71 X T2, €1 Ueg
I AT F vy : refint, &1 AT F vy :int, eg IIA|TFos :int, €3
IT|A|T F cas (vi,v2,v3) @ int, {wry, rd,} Ue; Uea Ues
IM|AITFe: T, e ILAFT <7 g1 Ceg (FRV(es) C 1, A)
II|A|TFe: 7, e

@FﬁgT{ @FTQSTé
— (FRV(r) € 9) - -
OFr<rT OF 7 X1 <7 X7y

@l‘T{STl @l‘TQSTé 81262 ngHQ AlgAg
T2, A2
€2

(FRV(EQ), Hg, A2 g 9)

OFn %gl’Al <1 = 5

Figure 3 Typing and subtyping relations. Notice that for a typing judgement II|A|T'Fe: 7,
we always have FRV(I', 7,¢) CTTUT.

rule for parallel composition, c.f. Figure 3. Note that the parent thread only continues
once both children have terminated; as a consequence, the parent regains ownership of its
private regions before it goes on. Running an expression atomically temporarily makes all
regions private. The side condition is a technical necessity. Finally, new, private regions are
introduced by the so-called masking rule:

MAp|ITHe: T, ¢

FRV(T,
H|A|1—‘}—e:7'75—p('0¢ @)

The subtraction of p in the conclusion removes any read, write or allocation effects tagged
with p. The reading of the masking rule is that we make a brand new, empty region p for
e to use, but once e has terminated we forget about p again; this works out since the side
condition prevents e from leaking locations from p. Traditionally, the masking rule has been
used to do memory-management [13] as well as a means of hiding local effects to facilitate
effect-based program transformations [17, 20]. Here we make another use of the rule: we
observe that, moreover, e cannot leak locations from p while running and so p is a private
region for the duration of e. After all, the only means of inter-thread communication is
shared memory. Note that from the perspective of the context, this rule allows to remove a
private region, and prepare a setup for application of the parallel composition.

All the typing rules are in Figure 3. We just remark here, that reference types are



A Concurrent Logical Relation

tagged with the region where the location resides and that function arrows are tagged with
the latent effects as well as with the public and private regions that the function expects; the
latter is natural once we remember that a function is basically just a suspended, well-typed
expression.

Because of the nondeterminism arising from par and shared references, the definition of
contextual equivalence could take into account both may- and must-convergence. In this
paper we only consider may-equivalence and formally we define (may-) contextual approxi-
mation by:

» Definition 1. II|A|T' F e <) ¢ : 7,¢ if and only if for all h and C typed such that
| - |-+ Cle],Cle'] : int, B, whenever (Cle] | h) | then (C[e']|R) .

Here, as usual, (e|h) | means that (e|h) — *(v|h') for some value v and some h’.

Contextual equivalence, ITI|A|T' e ~ € : 7,¢, is then defined as II|A|T Fe <) € :
7,e and II|A|T ¢ <) e : 7,e. Note that the diverging behaviours introduced by our
operational semantics of atomic e do not influence may-contextual equivalence.

3 Definition of the logical relation

Semantic Types and Worlds We give a Kripke or world-indexed logical relation. This
is a fairly standard approach to modeling dynamic allocation; in combination with higher-
order store, however, it comes with a fairly standard problem: the type-world circularity.
Roughly, semantic types are indexed over worlds and worlds contain semantic types, so both
need to be defined before the other. A specific instance of this circularity was solved recently
by Thamsborg and Birkedal [20] based on metric-space theory developed by Birkedal et. al.
[27]; we re-use that solution here. Semantic types (and worlds) are constructed as a fixed-
point of a endo-functor on a certain category of metric-spaces. We do not care about that,
though; we just give the result of the construction. In addition, we largely ignore the fact
that we actually deal in metric spaces and not just plain sets; the little metric machinery
we need is deferred to Appendix A.1.

There is a set T of semantic types and a set W of worlds; types are world-indexed rela-
tions on values and worlds describe the regions and type-layouts of heaps, roughly speaking.
Take a type p € T and apply it to a world w € W and you get an indexed relation on values,
ie., p(w) € N x V x V. These relations are downwards closed in the first coordinate; we
read (k,v1,v2) € p(w) as saying that v; and ve are related at type p up to approximation
k assuming world w.

We assume a countably infinite set of region names RA; a world w € W contains finitely
many such |w| Cg, RAN. Some of these dom(w) C |w| are live and the rest are dead. To each
live region r € dom(w) we associate a finite partial bijection w(r) on locations decorated
with types, i.e., w(r) Cga, L x L X T such that for ({1, 2, 1), (m1,ma,v) € w(r) we have that
both I3 = my and ly = mg imply 1 = myq, lo = mg and p = v. We write dom; (w(r)) for
the set of left hand side locations in the bijection and domsg(w(r)) for the right hand side
ones; different regions must have disjoint left and right hand side locations. For convenience,
we set domf (w) = U.-e Andom(w) domi (w(r)) whenever A C |w|, and we write dom (w) for

dom‘lwl(w), i.e., the set of all left hand side locations. Similarly for the right hand side.
Worlds evolve and types adapt. Triples of two locations and a type can be added to a live
region, as long as different regions remain disjoint. Orthogonal to this, one can add a fresh,
i.e., neither live nor dead, region name with an associated empty partial bijection. And one
can kill any live region, rendering it dead and losing the associated the partial bijection in



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

the process. The reflexive, transitive closure of all three combined is a preorder C on worlds;
it is a crucial property of types that they respect this, i.e., that w C v’ = p(w) C p(w’)
for any two w,w’ € W and any p € T. This is type monotonicity and it prevents values
from fleeing types over time.

Finally, to tie the knot, there is an isomorphism ¢ : T — T from the odd types stored in
worlds to proper types. Whenever a type is extracted from a world it needs to be coerced
by this isomorphism before it can be applied to some world.

The Logical Relation and Interpretation of Types Often, a logical relation goes like
this: two computations are related if they (from related heaps) reduce to related values (and
heaps); this is the extensional view: we do not care about the intermediate states. As we
consider concurrency, however, a computation can be interrupted and so we need to start
caring. In our setup, public regions are accessible from the environment. To address this,
we assume that before each reduction step, the public regions hold related values; in return,
we promise related values after the step. In other words, the granularity of extensionality
is just one step for the public regions. For private regions, however, there is no interference
and the granularity is an entire computation as usual. This is the fundamental idea; it is
how we propose to stay extensional in the face of concurrency.

Without further ado, let us look into the cornerstone of our model: the safety relation
defined in Figure 6; auxiliary relations are defined in Figure 8. What does it mean to have

o 10 IILA,AJR o
(k,hi,hy,e1,ea,hy, hy) € safe; . w®, w?

Overall, it says that after environment interference, we can match the behavior of ey, i.e.,
termination or any one-step reduction, by zero or more steps of es; match in the sense of
(re-)establishing certain relations, including safety itself. Safety is a local property of a pair
of computations, this is crucial: it has no knowledge of computations running concurrently
and hy and hs are the local heaps, i.e., the parts of the global heaps that the e; respectively
ez control exclusively. The computations consider R(II) to be their public, R(A) to be their
private and A to be their anonymous regions. The latter intuitively are private regions
that have been masked out: they exist only for the duration of these computations, but
we have to track them to deny the environment access; this is another difficulty imposed
by concurrency. Safety is indexed by a world w as well; note that worlds are global things:
all concurrent threads share one world, i.e., they agree about the division of the heap into
regions and the types associated to locations. Finally k is intuitively the number of steps
we are safe for, h{ and h$ are the (private parts of) the initial local heaps, 7 is the expected
return type, € the effects and w® the initial world.

We unroll the definition in writing. The first pair of big square brackets — the prerequi-
sites — translates to ‘the environment interferes’. This yields a new world w’ subject to the
constraints of the environment transition relation: no public, private or anonymous regions
are killed, and the latter two see no allocation either. The actual contents of the public
regions are unknown, but we are free to assume that they hold related values of the proper
type, at least where we have read effects; this is the public heaps g1 and gs in the precondition
relation. In addition we have frames f; and fo that cover the remainder of the world and
a triple-split relation that ensures coherence between the domains of corresponding parts of
the world and the heaps, see Figures 4 and 8.

The left hand side is irreducible in the termination branch and takes one step in the
progress branch. In either case, we must match this in zero or more steps on the right hand
side, not touching the frame; this means finding a future world w” and relating a number of
things. The choice of future world is restricted by the self transition relation: we must not



8

A Concurrent Logical Relation

(w) dom]f(A)(w) dom? (w)

dom(g1) dom(hy) dom(h1) dom(f;)  dom(hy)

Figure 4 The left hand side of the triple-split relation. The top dashed line is dom;(w), the bot-
tom dashed line dom(gi - h1 - f1). The local heap hi has a private part matching the private regions,
an anonymous part matching the anonymous regions and an off-world part outside the domain of
the world. The frame fi1 must cover regions that are neither public, private nor anonymous.

kill private or public regions, but we can allocate in them, and regions that we know nothing
about must be left untouched; this is our promise to the environment. In the termination
branch, we are furthermore required to kill off all anonymous regions as the computation is
done; any new regions added in the progress branch go to the set of anonymous regions. In
both branches, the changes made to the public heap must be well-typed and permitted by
the effects and, if we are done, we check the changes made to (the private part of) the local
heaps as well; the fact that the public heaps are compared across a single stage and the
(private parts of) the local heaps are compared across the entire computations is the crux
of the idea of having different granularities of extensionality.

In addition to performing actual allocation, we have the possibility of moving existing
locations from, say, the off-world part of the local heap into the public heap or the private
part of the local heap; this is a subtle point that permits the actual allocation of new
locations and the corresponding extension of the world to be temporarily out of sync.

We have glossed over one aspect of safety: the right hand side takes steps in the ordi-
nary operational semantics, but the left hand side works in the instrumented operational
semantics. A reduction (e |h) — (€' |h') in the latter implies a similar reduction in former;
in addition it counts the steps of a reduction with all atomic commands ‘unfolded’ (with
unfolding itself counting one step) and it records all heap accesses; the formal definition is
deferred to the Appendix. We need the former for compatibility of the atomic typing rule
below: atomic commands really unfold as they execute, hence we must count the number
of ‘unfolded’ steps. It is less immediate that we must test the actual reads, writes and
allocations, recorded by pu, against the effects described by €, as done in the progress branch
of safety. But if omitted, our present proof of the Parallelization Theorem falls short, since
it relies on the following simple, but crucial commutation property:

» Lemma 2. If we have I ¢ p and (e|h) =], (¢'|h'), then (e|h[l = v]) =] (¢"| B[l = 2]).

The actual logical relation is given in Figure 7. The existentially quantified ¢ € N is
the minimal number of anonymous regions required to run; apart from that it uses safety
in a straightforward way. There is some asymmetry to these definitions: the anonymous
regions A are required to exist (and be empty) in the world beforehand, but are killed
off in the termination branch; also the precondition on the (private parts of) the initial
local heaps is in the logical relation whereas the postcondition lives in the termination
branch. The interpretation of types is in Figure 5. Interpreting the function type looks
daunting, but a function is just a suspended expression with a single free variable, hence
we have to restate most of the logical relation in the definition. Apart from that, we just
remark that the R(p) ¢ dom(w) case of reference interpretation is part of an approach to
handling dangling pointers (due to region masking) proposed recently in [20]; similarly for
the R(FRV(g)) ¢ dom(w) case.



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

uﬂw—{@m)m\keN} [int]*w={(k,n,n) |k e NAn € Z}
[[7’1 X TQH k, 1111,’021) (U12,1}22)) ‘ (k,’UH,’Ulz) S [[TlﬂRw A (k,vgl,vzg) S [[Tz]]Rw}

{ (kyl1,12) | 3 € T. (11, lo, ) € w(R(p)) A

R dom (w
Yw' J w. HTH w (e p)(w') } (0) € (w)

{(k,v1,v2) | Kk e NAv1,v2 € V} R(p) ¢ dom(w)

[[repr

[[7'1 —)E’A 7'2] Rw =

(k,fun f(x).e1,fun f(z).e2) | Ja € N.Vj < k.Vo' J w.

VA C dom(w’).Vvl,vg € V.Vhy, ho, ll,hlg eH.

R(FRV())cdom(')mw,ébz(lIu/\)|A|>aAw'()_®A]:>
w',w

(jyv1,v2) € [m]Fw' ARy Chy AR C hy A (J, b}, By) € PMR
(4, Y, b, (fun f(z).e1) v1, (fun f(x).e3) va, hy, ha) € safeHAAR

(FRV(¢)) C dom(w)
(FRV(¢)) € dom(w)

R
{(kvvlaUQ)‘kEN/\U17U2€V} R

Figure 5 Interpretation of types. We require R : RV — 5, RN injective with FRV(7) C dom(R).
We assume R(FRV(7)) C |w| above, otherwise we define [7]®w to be the empty set. In the
interpretation of functions, and also below, we write # to denote disjoint sets. We get that [[T]]R e T.

To conclude this subsection we give a theorem that, combined with the upcoming com-
patibility, means that logical relatedness implies contextual may-approximation. The proof
is in Appendix A.3 and it is not hard, but it is worth noting that we need a proof at all:
with sequential languages, this is a result one reads off the definition of the logical relation.

» Theorem 3 (May-Equivalence). Assume that -|-|- | e1 = eq :int, O holds. Take any
hi,hy € H. If there are e, by with (ey|h1) — (e} | h,) such that irr(e}|h}) holds, then
there is n € Z such that €, =n and hly such that (ea | ha) — (n, hb).

Compatibility of the Logical Relation The logical relation is compatible, i.e., respects
all typing rules. This is a sine qua non of logical relations; it implies the fundamental lemma
stating that every well-typed expression is related to itself. And, as discussed just above, it
makes the logical relation approximate contextual may-approximation:

» Theorem 4. TI|A|T' =e; <ep:7,c impliesIT|A|TFep Sy eq:me.

Compatibility means that each typing rule induces a lemma by reading the (unary) typing
judgments as the corresponding (binary) logical relations. The three most interesting of these
have to do with concurrency and the divide between public and private regions; they are
listed here and proofs are given in Appendix A.5:

> Lemma 5. TI|A,p|T =e1 Rex: 7, ¢ impliesII|A|T =e1 R eq: 7, € — p provided that
p ¢ FRV(T, 7).

» Lemma 6. - |ILA|T Ee; <X ey : 7, ¢ implies II|A|T |= atomic e; < atomic ey : 7, € if
alse Crdse Nwrse.

» Lemma 7. ILA|- [T E e <ey:7 e and ILA|-|T | el < el : 71, el together imply
II|A|T |= par e; and el < par ey and el : 7 x 71, e Uel.



10 A Concurrent Logical Relation

o 10 IIL,LAJAJR | o
(k7h17h27617€23h13h2) € safe‘r,s w-,w

<
VJ < k'vw/aglvg%fla f2~
[envtranH’A’A’Rw,w' A (4,91, 92) € P/ A

(917 h17 fl?.gQu h2u f?) S splitSrLA,A,R U}/ =

{irr(eﬂgl “hi- f1) =
36’2,11)”, /1’ évgivgé'
(e2|go-ho - fo) — (| gh - hy - f2) A selftran
0 = (Andom(w”)) U (dom(w”) \ dom(w’)) A g1 - h1 =g} - B} A
<g£7 ll?flag/27hl27f2) S SplitSH’A7®7R ’LUN A (jagla927gllag/2) € QEH’R wlawl/ A

(er,eh) € [ (") A 3RY € B, RG © . (7, RS, 15, b, BE) € QP w® w”] A

II,A,AR w/7 w// A

Vel b < g (ex g ha - fr) <7 (¢4 |B]) =
Eleéaw”7A/7 /17 /279/179/2
(e2|ga - ha - fo) V> (€5 | gh - hy - f2) A selftran
A" = (AN dom(w")) U (dom(w”) \ dom(w')) A bl =g} - b - f1 A

. AA/ .
(g5, kY. f1. Gh, hh, f2) € splits™™ ™ Fw” A (j —n, g1, 92, 91, 95) € QLT w', 0w A

IIL,AA
A, ,Rw/’w///\

A" R 1 . o 10 I I 1/ 1.1 mAA R, o . 1
Meeﬁ‘ss,h/l w” A (]_nahla 2, €1, €9, 1ah2) esafe'r,e w-,w

Figure 6 Safety. The predicate is defined by well-founded induction. Nontrivial requirements
are: II#A, FRV(r,e) CITUA, FV(er,e2) =0, R: TTUA — |w°|, R(FRV(¢)) C dom(w®) and
w J w® with dom(w®) N R(ITU A) C dom(w), A C dom(w) and A# R(IIU A). See Figure 8 for
auxiliary definitions. We refer to the contents of the big square brackets as the prerequisites, the

termination branch and the progress branch, respectively.

MA|TEe Re:T7,¢
—
Jo € NVE € NVw € W.VR:TTUA < |w|.VA C dom(w).

v71772 € Vlr‘"vhlthv IlthQ € H.
R(FRV(g)) C dom(w) A A# RIMUA)AJA| > aAVre A w(r)=0A

(k,71,72) € [T1%w A By €l Al € ha A (kB ) € PP | =

(k, b, by, e1[y1 /T, ea[v2/T], h1, ha) € safeE’EA’A’Rw,w.

Figure 7 The logical relation with anonymous regions. We require that II# A, FRV(T', 7,¢) C
ITU A and, as always, that FV(e1,ez) € ||



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

envtran™M ARy ' = w Cw' AVr € dom(w) N (RATUA)U A).r € dom(w')

A Vr € dom(w) N (R(A) U A). w(r) = w'(r).

ILA, AR

selftran w,w <= wCw AVredom(w)\ A.r € dom(w')

AVT € dom(w) \ (R(MUA) U A). w(r) = w'(r).
(917 h17 f17927 h27 f2) € SplitSH7A7A’R w
dom(h,) # dom(g1) # dom( f1) A dom(hg) # dom(ge) # dom( f3) A
dom; (H)( ) = dom(g1) A dom1 A)UA( ) € dom(hy) A
domy, (H)( ) = dom(g2) A dom,, (A)UA( ) C dom(hg) A
domgom(w)\(R(HUA)UA))(w) c dom(fg)
(k,h1,hy) € PO w «— dom(h;) = domR(e)( ) A dom(hg) = domR(e)(
Vr € R(©) Ndom(w).Y(l1,l2, 1) € w(r).
r € R(xrdse) = k> 0= (k—1,h1(l1), ha(l2)) € (v u)(w).

w) A

(k,ha, ha, hy, By) € QG’R w,w =
dom(hy) = dom1 (w) A dom(hg) = domy (O)( ) A
dom(%}) = dom:® (w') A dom(h}) = dom5'® (w') A
(Vr € R(©) Ndom(w).V(l1,la, i) € w(r).
[h1(l1) = Wy () A ha(l2) = hb(12)] V [r € R(wrse) A
B> 02 (k- 1Ry (h), Ky(l)) € (o) ()]) A
(Vr € R(©) N dom(w).
V(ly,la, p) € w'(r) \w(r).r € R(alse) A
B> 0= (k= LR (0), k(1)) € (o)),

R(rds A
omy! 9 (1)

e effsi;LRw < {l| rd € p} Ndom;(w A

) €
{l| wr, € p} Ndomy (w) C domR(wrsa>UA(w
{l | al) € H} meml( ) C dom R(ale)UA(

) A
{l|rdy e uVwrepVal e p}\domg(w) C dom(h).

~

w

Figure 8 Six auxiliary definitions. The environment transition and self transition relations are
defined for IT#A, R : TUA — |w|, A C dom(w) and R(II U A)# A. The triple-split relation
has the same prerequisites. The precondition relation is defined for R : RV —p, |w| injective
with © UFRV(e) C dom(R). The postcondition relation additionally requires w’ J w such that
dom(w) N R(©) C dom(w'). Finally the actual-effects relation expects R : RY —g, |w| injective
with FRV(¢) C dom(R) and A C dom(w).

11



12

A Concurrent Logical Relation

4 Applications

4.1 Parallelization Theorem: Disjoint Concurrency

We now explain our Parallelization Theorem, which gives us an easy way to prove properties
about the common case of disjoint concurrency, where disjointness is captured using private
regions and effect annotations.

» Theorem 8 (Parallelization). Assuming that

1. ILA|-|T ke :m,eq,

2. ILA|-|TFeq:m,eq,

3. rdsey Uwrsey Urdses Uwrsey C A,

4. rdse; Nwrsey =rdsey N (wrsep Ualsey) = wrsey Nwrseg = 0,
the following property holds:

I A|T EE(e1,e2) = pareg and ez : 71 X To,61 U éa.

Intuitively, item 3 keeps the environment from detecting anything, and item 4 prevents the
two computations from talking among themselves, thereby making them independent; the
alse; in item 4 is a technicality that we cannot do without. We showed a concrete simple
application of this theorem in the Introduction. More generally, example usage includes
situations where we operate on two imperative data structures (say linked lists or graphs);
if we only mutate parts of the data structures that are in different regions, then we may
safely parallelize operations on the data structures.

The masking rule makes it possible to do more optimizations via the Parallelization
Theorem: Consider, for simplicity, the familiar example of an efficient implementation fib
of the Fibonacci function using two local references. We can use the masking rule to give it
type and effect int —;" int, (). This allows us to view the imperative implementation as pure,
and thus by Theorem 8 we find that it is sound to optimize two sequential calls to fib to two
parallel calls. This may sound like a simple optimization, but the point is that a compiler
can perform it automatically, just based on the effect types. It also underlines how we are
able to reason about more involved behaviors of concurrent threads, even though the type
system provides only rough bounds on interference through the private-public distinction.

The proof of the Parallelization Theorem is quite tricky. Please see the appendix for an
informal overview of the proof and the technical details.

4.2 Non-disjoint Concurrency

We now exemplify how our logical relations model can also be used to reason compositionally
about equivalences of fine-grained concurrent programs operating on public regions.
Consider the following type

_ . p,0
T = ref jint ', wr,}
of functions that take an integer reference in a public region, possibly read and write from

the reference, and return unit. The following two functions

funinci(z). lety =!zinlet z =y +1in and funincy(z). atomic (z:=!z + 1)
if cas (z,y, z) then () else incy (x)

both have type 7. (We have allowed ourselves to use a standard conditional expression; 1
corresponds to true and 0 to false.) Both functions increment the integer given in their ref-
erence arguments; inc; uses the fine-grained compare-and-swap to do it atomically, whereas



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

inco uses the brute-force atomic operation. Using our logical relations model, we can prove
that inc; and incy are contextually equivalent:

p|-| Fincy ~incy:7,0. (1)

Hence, replacing incy with inc; in any well-typed client gives two contextually equivalent
expressions. Thus our logical relation models a form of data abstraction for concurrency
(where we abstract over the granularity of concurrency in the module).

We now show how to use the equivalence of inc; and incy to derive equivalences of two
different clients using the fine-grained concurrency implementation incy.

To this end, consider the following two client programs of type

P,

_ p,0 .
o =71y ref,int —lrdy,wry}

int,
funcy(inc).An.incn;incn; !n  and funce(inc).An.(par incn and incn); In

Note that c¢; makes two sequential calls to inc, whereas cy runs the two calls in parallel.
Because of the use of compare-and-swap in incy, we would hope that the c; inc; and csincy
are contextually equivalent (in typing context p|0|0). We can prove that this is indeed
the case using compositional reasoning as follows. Using our logical relation, we prove that
¢y incy is contextually equivalent to coinca, i.e.,

. . . ,0 ;
p|-|-Fciincy &= cyincy : ref int %’{)po,wrp} int, 0. (2)

Finally, we conclude that c; incy is contextually equivalent to coincy by transitivity of con-
textual equivalence (using (1), (2) and (1) again for the respective steps):

C1iNCcy & €1iNCy & CoinNCy = Coincy

This proof illustrates an important point: to show equivalence of two clients of a module
implemented using fine-grained concurrency, it suffices to show that the clients are equiv-
alent wrt. a coarse-grained implementation, and that the coarse-grained implementation is
equivalent to the fine-grained implementation. This is often a lot simpler than trying to
show the equivalence of the clients wrt. the fine-grained implementation directly. We can
think of the coarse-grained implementation of the module (here incs) as the specification of
the module and the fine-grained implementation (here incy) as its implementation.
The formal proofs of (1) and (2) follow by straightforward induction.

5 Discussion

Gifford and Lucassen [11, 12] originally proposed type-and-effect systems as a static analysis
for determining which parts of a higher-order imperative program could be implemented
using parallelism. Here we are able to express the formal correctness of these ideas in a
succinct way by having a parallel construct in our programming language and establishing
the Parallelization Theorem.

In Section 4.2 we showed how contextual equivalence can be used to state that compare-
and-swap can be used to implement a simple form of locking, and how our logical relations
model could be used to prove this statement. We believe that it should be possible to give
similar succinct statements and proofs of other implementations of synchronization; confer
Turon and Wand [28]. For instance, we are working on a similar relational specification
and correctness proof of Peterson’s mutual exclusion algorithm, which involves (for the
specification) extending the language with a primitive notion of critical section.

13



14

A Concurrent Logical Relation

As mentioned earlier, we have deliberately used the same definition of worlds here as
in [20]. As discussed there [20, Section 8.2], this notion of world has somewhat limited
expressiveness: the only heap invariants we can state are those that relate values at two
locations by a semantic type. To increase expressiveness, it would thus be interesting to ex-
tend our model using ideas from [9], where worlds are defined using state-transition systems,
and then investigate more examples of equivalences.

Recently, Liang et. al. [10] have proposed RGSim, a simulation based on rely-guarantee,
to verify program transformations in a concurrent setting. Their actual definition [10, Defi-
nition 4] bears some resemblance to our safety relation; indeed, an early draft of loc.cit. was
a source of inspiration. They have no division of the heap into public and private parts,
instead they give a pair of rely and guarantee that, respectively, constrain the interference of
the environment and the actions of the computation. Their approach is essentially untyped;
one point of view is that we ‘auto-instantiate’ the many parameters of their simulation
based on our typing information. They consider first-order languages with ground store;
this obviously keeps life simple, but the example equivalences they give are not.

Our simple example of data abstraction for concurrency in Section 4.2 suggests that
there could be a relationship to linearizability. In [29], Filipovié¢ et. al. show a formal con-
nection between linearizability and simulation relations, for a simple first-order imperative
programming language. We intend to explore whether a similar kind of formal relationship
can be established in our higher-order setting.

6 Conclusion and Future Work

We have presented a logical relations model of a new type-and-effect system for a concurrent
higher-order ML-like language with general references. We have shown how to use the model
for reasoning about both disjoint and non-disjoint concurrency. In particular, we have proved
the first automatic Parallelization Theorem for such a rich language.

In this paper, we have focused on may contextual equivalence. Future work includes
investigating models for must contextual equivalence. Since our language allows the encoding
of countable nondeterminism, must equivalence is non-trivial, and will probably involve
indexing over w; rather than w [30]. Future work also includes extending the model to
region and effect polymorphism, as well as the extension to more expressive worlds, and to
other concurrency constructs such as fork-join.

In this paper we have used logical relations for reasoning about contextual equivalence
for a concurrent higher-order imperative language with a type-and-effect system. In the
future, it would be interesting to explore also the application of other methods, such as
bisimulations and game semantics.

The authors would like to thank Jan Schwinghammer and Xinyu Feng for discussions of
aspects of this work.

—— References

1 V. Koutavas and M. Wand, “Small bisimulations for reasoning about higher-order imper-
ative programs,” in POPL, 2006.

2 D. Sangiorgi, N. Kobayashi, and E. Sumii, “Environmental bisimulations for higher-order
languages,” TOPLAS, 2011.

3 E. Sumii, “A complete characterization of observational equivalence in polymorphic A-
calculus with general references,” in CSL, 2009.

4 J. Laird, “A fully abstract trace semantics for general references,” in ICALP, 2007.



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

5

10

11

12
13

14

15

16

17

18

19

20

21
22

23

24

25
26

27

28

29

30

A. Murawski and N. Tzevelekos, “Game semantics for good general references,” in LICS,
2011.

A. Ahmed, “Semantics of types for mutable state,” Ph.D. dissertation, Princeton University,
2004.

A. Ahmed, D. Dreyer, and A. Rossberg, “State-dependent representation independence,”
in POPL, 2009.

L. Birkedal, J. Thamsborg, and K. Stgvring, “Realizability semantics of parametric poly-
morphism, general references, and recursive types,” in FOSSACS, 2009.

D. Dreyer, G. Neis, and L. Birkedal, “The impact of higher-order state and control effects
on local relational reasoning,” in ICFP 2010. ACM, 2010, pp. 143-156.

H. Liang, X. Feng, and M. Fu, “A rely-guarantee-based simulation for verifying concurrent
program transformations,” in POPL, 2012.

D. Gifford and J. Lucassen, “Integrating functional and imperative programming,” in LISP
and Functional Programming, 1986.

J. Lucassen and D. Gifford, “Polymorphic effect systems,” in POPL, 1988.

M. Tofte and J.-P. Talpin, “Implementation of the typed call-by-value A-calculus using a
stack of regions,” in Proceedings of POPL, 1994.

F. Henglein, H. Makholm, and H. Niss, “Effect types and region-based memory manage-
ment,” in Advanced Topics in Types and Programming Languages, B. Pierce, Ed. MIT
Press, 2005.

L. Birkedal, M. Tofte, and M. Vejlstrup, “From region inference to von Neumann machines
via region representation inference,” in POPL, 1996.

N. Benton, A. Kenney, M. Hofmann, and L. Beringer, “Reading, writing and relations:
Towards extensional semantics for effect analyses,” in APLAS, 2006.

N. Benton and P. Buchlovsky, “Semantics of an effect analysis for exceptions,” in TLDI,
2007.

N. Benton, L. Beringer, M. Hofmann, and A. Kennedy, “Relational semantics for effect-
based program transformations with dynamic allocation,” in PPDP. ACM, 2007.

——, “Relational semantics for effect-based program transformations: Higher-order store,”
in PPDP. ACM, 2009.

J. Thamsborg and L. Birkedal, “A Kripke logical relation for effect-based program trans-
formations,” in ICFP, 2011.

P. W. O’Hearn, “Resources, concurrency, and local reasoning,” T'CS, 2007.

M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis, “Deny-guarantee reasoning,” in ESOP,
2009.

V. Vafeiadis and M. Parkinson, “A marriage of rely/guarantee and separation logic,” in
CONCUR, 2007.

X. Feng, R. Ferreira, and Z. Shao, “On the relationship between concurrent separation logic
and assume-guarantee reasoning,” in ESOP, 2007.

V. Vafeiadis, “Concurrent separation logic and operational semantics,” in MFPS, 2011.
A. Buisse, L. Birkedal, and K. Stgvring, “A step-indexed Kripke model of separation logic
for storable locks,” in MFPS, 2011.

L. Birkedal, B. Reus, J. Schwinghammer, K. Stgvring, J. Thamsborg, and H. Yang, “Step-
indexed Kripke models over recursive worlds,” in POPL, 2011.

A. J. Turon and M. Wand, “A separation logic for refining concurrent objects,” in POPL,
T. Ball and M. Sagiv, Eds. ACM, 2011, pp. 247-258.

I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang, “Abstraction for concurrent objects,”
TCS, 2010.

J. Schwinghammer and L. Birkedal, “Step-indexed relational reasoning for countable non-
determinism,” in CSL, 2011.

15



16

A Concurrent Logical Relation

A  Appendix

A.1 Well-definedness of Interpretation of Types

As explained in the main text, we import the worlds and types of Thamsborg and Birkedal
[20] wholesale; hence their non-trivial construction is for free. The details of the construction,
including metric prerequisites, can be found in Appendices A.1 and A.2 of the long version
of loc. cit.; it is available online.! Thus it only remains to verify that interpreting a syntactic
type actually gives a semantic ditto.

In metric terms, this means that for any syntactic type 7 and any R : RV —p, RN with
FRV(r) C dom(R) we must have

[7]® € T =W =0, URel(V),

i.e., it should map worlds to indexed, downwards closed relations on values in a non-expansive
and monotone manner. To prove this, we need two lemmas on the pre- and postcondition
relations:

» Lemma 9. We have P?’R w € URel(H). And for wi,wy € W with w; L wy we have
POR w, 2 PR wy as well.

» Lemma 10. We have Q2% w,w' € URel(H x H). And for wy,w}, wo,wh € W with
wy = wy and w) = wlh we have QT wi, wh = QF wy, w) too.

The proofs a quite straightforward. Then, by simultaneous induction, we can prove the
following two propositions and we are done:

» Proposition 11. We have [r]# € T.

» Proposition 12. For w$,wy,w$,ws € W we have that w$ = w$ together with w; = we
II,A,A,R ILAA,R

. . n
implies safe; ; wy,w; = safe, . ws, Wa.

A.2 Instrumented Operational Semantics
A.3 Proof of May-Equivalence Theorem

Theorem 3. Assume that -|-|- = e; = eg :int, O holds. Take any hi,hy € H. If there
are €y, by with (e1 | hy) — (e} | k) such that irr(e}|h}) holds, then there is n € Z such that
¢\ =n and hy such that (es | ho) — (n, hb).

n

Proof. Pick, by assumption, n € N such that (e1 | hi) — (€] | h}). We name the configu-
rations in this multi-step reduction (e{ | hY), (el | hi),..., (e} | A}) in order, i.e., such that
(1] 1) = (eF | W) — (e [ hy) — -
— (e | hY) = (1 | ).

For each of these standard reductions, there is a corresponding instrumented reduction. This
means, that we can pick ny,ns,...,n, € N non-zero and u1, 2, ..., iy such that

(e [AY) =yt (ex [ hy) —pz - —pr (ef [ A7),

For convenience, we furthermore write N,, = Z?:m 11T for each 0 < m < n.

! www.itu.dk/people/thamsborg/longcarnival .pdf



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

J1h) =g (Elvi] [ h)
J11h) =g (Ele[f:=fun f(z).e,z:=v]] | h)
JR) =1y (BUAL = o)) if ¢ dom(h)
(El:=v]|h) —>{WZ} (E[Q] | hll:=v]) if I € dom(h)
[1h) —>{le} (E[RD][h) if I € dom(h)
(E[par v1 and vo] | h)
(less (L] | 1) 1oy (EL1] Hfi])
if | € dom(h) and h(l) = ng
(Elcas (I,n1,n2)] | h) = {0,y (E[0]| 1)
if | € dom(h) and h(l) # ny
(E[atomic ] | h) = (E[v] | 1) if (e | h) %Z (v|h')
(Elatomic €] | h) — (E[atomic €] | k)

(elh) 5g (¢'|1) =>e=e Ah=H

(e|h) 5, (" |R") <= (e|h) =™ (¢'| 1) A
(€ [B) S (" [B") A
n=mniy+ne A pu=pu Upuls.

Figure 9 Instrumented operational semantics. (e|h) —} (e'|h’) is defined for e,e¢’ € £ with
FV(e,e') =0, h,h' e H,n>1land p C{al |l € LYU{wn |l € L} U {rd, | | € L}; the starred
version additionally permits a zero as superscript. Note that (e|h) — (¢|h’) if and only if there
are n and p such that (e|h) =], (¢'|h').

17



18

A Concurrent Logical Relation

Now let a € N be the required number of anonymous regions according to the definition
of the logical relation, and let w € W be any world with a empty, live regions and nothing
else. We now prove by induction that for all 0 < m < n the following holds:

Jeb, by, w'. (ea | ha) — (€ | hby) A
dom(h7") D dom; (w’) A dom(hi) 2 doma(w') A

0,0,d ",0
(Nma H7 []7 671n7 6l2a Ta h/2) S Safeintﬂ\ Om(w ) w, ’UJ/.

The base case is easy by the definition of the logical relation: Pick e} = es, hl, = hg, and
w’ = w and apply the assumption that - |-|- | e; < eq : int, 0.
For the inductive case, let 0 < m < n and unroll the assumptions for m — 1: we have e},
by w' with (ea | he) — (€ | hb) and dom(RT"™1) D dom; (w'), dom(hb) D domy(w’), and

(N, [ [ e~ e B0 ) € safeld o) 0w

By the overall setup, we know that (e/"~* | A1) = (ef" [ ") and the progress branch of
* *

safety provides for us: There are e and hy with (e | hy) — (€4 | hY) and hence (eg | hy) —
(ef | hY). There is w” with dom(h}*) D dom; (w”) and dom(hj) D doms(w’) and, finally,

(N, [ 1 €7 €5, 1, 1) € safed ™, w”.

We have now finished the induction proof; all that remains is to observe that the property
proved implies the overall goal in the case m = n by the termination branch of safety. <«

A.4 Properties of the Pre- and Postcondition Relations

R(A)(w) ’

» Lemma 13 (Precondition Separation). Assume that we have I # A, hy = fi ],
g1 =f1 rdomlf‘(n)(w)’ ho = fo rdomzR(A)(w) and go = fo fdoms(n)(w). Then it holds that

(k,husha) € PYR w A (k, g1, g2) € P
e
(kaflan) € PEHUA7R w

» Lemma 14 (Postcondition Separation). Assume that we have II# A, hy = f1 |

domlf'(A) (w)”’

gi =h Fdomllun)(/w), h/2 = fo fdom§<A>(w)7/ 92 f P2 Tgommm (s B = 1 Tgomi @ (s 91 =
fl rdomlf'(n)(w/)’ h2 = f2 rdomg(A)(w’) and 92 = f2 rdomg(n)(w/)' Then
(kyhy, ho, B, b)) € QM w,w' A

(k’glagQagllag/Q) € QER ’U/,U)I
<

(ks fu o, 1o f3) € QEVM T w0’
» Lemma 15 (Precondition Composition).

(k,h1,ha) € POBw A (K, by, ho, by, hYy) € QOB w'
=
(k, by, hb) € PO/



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

» Lemma 16 (Postcondition Composition).

(k, by, ha, By hY) € Q2 Rw, w' A

(kvhllv l27 /1/7h/2/) € Qs@7Rw,>wH
_—

(k, by, ho, B, hY) € QO Fw, w”.

A.5 Some Cases of Proof of Compatibility

Lemma 5. II|A,p|T Ee; <Xes: 7, ¢ impliesII|A|T = e; < es: 7, — p provided that
p ¢ FRV(T, 7).

Proof. Let a € N be the required number of anonymous regions from the assumption. To
prove the desired, we unroll the definition of the logical relation: choose a+ 1, pick arbitrary
ke N, w® € W, R:TTUA — |w°|, A° C dom(w®), v1,72 € VI'l and h$, hS, b2, hy € H.
Assume that R(FRV(e — p)) C dom(w®), A°# R(IIU A), |A°| > a, Vr € A°.w°(r) = 0,
(k°,v1,7v2) € [T]Fw®, by C RS, hi> C hS, and (k°, h°, hY) € PQ’fiwo. We must show that
(k()) /107 /207 €1 [’Yl/r]’ €2 [VQ/FL 1 hg) € SafeEE/E?O,RwO’ we.

We need, obviously, to make use of the assumption of the lemma. To do so, we claim
that to have

/ / IILAA,R
(k, by, hy' s e1, ez, ha, ho) € safe; 20w, w (3)

it suffices to know that
(k,h°,hYy e1,ea,hy,ha) € safeE’SA’p’A\{r}’R[pHr]wo,w (4)

whenever r € A holds. Observe first, that if we can prove this, then we are done by an easy
application of the assumption of the lemma. So all that remains is to prove the claim; this
we do by well-founded induction on k € N.

Assume that the claim holds for all naturals strictly less than & € N; we will try to
prove it for k. To prove (3) we proceed to unroll the definition of safety. Pick arbitrary
j<k,w € W and g1, g2, f1, fo € H. Assume that the prerequisites hold, i.e., that we have
envtran'™ ARy w' (4,91, 92) € PEHL}; w' and (g1, hi1, f1, 92, he, f2) € splits™® ARy,
Before we look into the termination and progress branches, observe that the w’ and the
g1, 92, f1, f2 match the prerequisites of safety for (4) as well, since R(A) UA = R[p —
rJ(A, p) UANA{r}.

So we follow the termination branch and assume that irr(e|gs - b1 - f1) holds. From (4)
we get eh, w”| Y, hY, g) and g, with properties aplenty:

(ealgz-ha- fa) = (eh]gh - hb - fo).

selftran'l A/ AT BRI 00 0,

0= ((A\{r}) Nndom(w")) U (dom(w") \ dom(w")).

g1-hi=g1-hi.

(gll’ /I’flagé7 /2af2) € SplitS

(G e1,e2) € [71H) (w),

(jv g1, 92792/[795) € QEI_LR[P'—)T] w/? w”.

30 C Iy, By C R (3, W s Y ) € QLTI e
Now note that we must have r € dom(w"”) and so we define the world w" by w" —,qek(r)
w', i.e., we kill off region r. So we need to discharge a number of obligations; most are

IL,A,p,0,R[p—>7] w'

"

19



20

A Concurrent Logical Relation

straightforward, but the type of the resulting expressions as well as the postcondition on
the local heaps take a bit of scrutiny: Note first that we have

[[T]]R[p»—w-] (w//) c HTHR[pHr] (w///) _ [[T]]R (w//)

by type monotonicity and since p ¢ FRV(7); this means that the resulting expressions are
indeed well-typed. Now define heaps hf C h} and kY C h} by demanding that dom(hY) =
domlf(A)(w”’) and dom(hy) = domQR(A)(w’”), i.e., we restrict to the private parts of the local
heaps, not including the locations (formerly) in region r. One easily verifies that this gives

.30 70 M 1M AR o "
(J7 1> 742y lahZ)eQaf w-,w
P

and the termination branch is done.

Finally we get to the progress branch: we assume that there are e, hJ{, wand n < j such
that (e1|g1-ha- f1) =7 (eq] hl). From (4) we get e, w', A', b}, hly, g}, gb with a range of
properties:

(ealga-ha- fo) = (eh]gh - R - f2).

selftran™ A/ ANTHRlo=r]

A = (A\ {r} ndom(w")) U (dom(w") \ dom(w’)).

hJ{ =91 M- fi

AR
p € effs_ o=l .
RS

(gllv hlla fla 9123 /23 f2) € Splits
(.] — N, 91,92, gia 9/2) € QEH,R[P’—)T'] wla w”.

(j — n, W2, BS €l eh, hi, hy) € safel oA Rlomrl oy,
Now we must have r € dom(w”) and letting A” = (A N dom(w”)) U (dom(w”) \ dom(w’))
gives r € A" as well as A” \ {r} = A’. With A” as the choice of new anonymous regions,
the obligations in proving the termination branch of (3) are easily met; we just remark that

we rely on the induction hypothesis to establish

!’
IIL,A,p, A" ,R[pr—r] w'.

/

. 10 100 1 Y ILAA" R o 1
(j —n,h°, hy, ey, e5, hy, hy) € safe w®, w".

T,E—p ’
<

There are many details to the proof, but the idea is simple: we simultaneously view the
computation in two ways, both with p as a private region and with p masked out. From the
safety of former, we then get safety of the latter. In the masked out case, p is no longer a pri-
vate region variable and the region name r associated with p joins the anonymous regions. In
most cases, however, (region names associated with) private regions and anonymous regions
are treated the same, so there is work to do only when anonymous regions are considered in
isolation.

Lemma 6. -|ILA|T = e; < ey : 7, ¢ implies II| A|T = atomic e; < atomic ez : 7, € if
alse Crdse Nwrse.

Proof. Let a € N be the required number of anonymous regions from the assumption. To
prove the desired, we unroll the definition of the logical relation: choose a, pick arbitrary
E° €N, w® € W, R: TTUA — |[uw°|, A C dom(w®), v1,72 € VI and h$,hg, h'e, by €
H. Assume that R(FRV(g)) C dom(w®), A#RIIUA), |A] > a, Vr € A.w°(r) = 0,
(k°,71,7%2) € [T]Rw®, hi® C kY, by C hS, and (k°, R, hy) € PAHBwe. We must show that

(k°, hY°, b, atomic eq[y1/T'], atomic ex[y2/T], kS, h3) € safeEjEA’A’Rwo, we.



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

We need to generalize a bit to handle the loopy behavior of atomic: we prove that for

any k < k° and any w € W with envtran'™4%4° 1 we have

(k, h'?, hY, atomic e1[y1/T7],

II,A,A,R, o
T.€ w

atomic e[y /T, h, hs) € safe ,W.

This we do by well-founded induction on k. Unroll the definition of safety. Pick arbitrary
j<k,w € W and g1, g2, f1, fo € H. Assume that the prerequisites hold, i.e., that we have
envtran™ 4w w'| (j,g1,92) € P w' and (g1, ha, f1, 92, ha, f2) € splits™™HF .
Atomic commands always have the possibility of looping; hence we need not consider the
termination branch. So we get to the progress branch: we assume that there are e/, hJ{, I
and n < j—1 such that (atomic e[y /T] | g1 -hi- f1) =3+ (e | hl) and we must match this.

Observe first that envtran™*4: 4,° ' holds. If, now, the configuration loops to itself,
we take no steps on the right hand side and conclude with the induction hypothesis. So we

n

are left to consider the case where (e1[y1/T]| g1 h1- f1) i>u (¢f |hl)and €} € V. Let m € N
be the number of reduction steps, we name the configurations (e | k), (el | A1), ..., (e | A)
in order and pick ni,no,...,n, € N non-zero and pq, fis, - - ., ttm such that

(ex[v1/TT | g1 - ha- f1) = (e} | BY) =7t (eq | hy) =32 -

—pm (e [ A7) = (ey | B])

withn=n; +ng+---+ny and g = pg U pe U--- U py,. For convenience, we furthermore
write N; = > ) n; for each 0 < j <m.

It is time for the crux: for any 0 < j < m there are w”’, A’ C dom(w"), kY, e, b such
that

(e2ly2/T] | g2 - ha - f2) = (e5 | hb - fo)

selftran'F’A’A’R w', w”

W f = H

j R(TTUA R(ITUA AR
U a0\ (domy ™Y () \ domy ™V (w)) € effs?f w”

([]7 /17.f1ﬂ[]? /23f2) € SplitS"l._I’A’A 7Rw” TAA R
(Nj+j—n,91-h1,92 - ha,e], €5, by, hy) € safe;
Notice the abuse of notation in item four: we do not really remove locations, we remove any

w', w”.

actual effects tagged with the listed locations. The base case follows from the assumption
of the lemma; the induction simply by unrolling the safety. In the end, we are able to use
the properties in the case j = m to produce a right hand side reduction in the overall proof.
There are many details to this; here we just remark that it would be more more pleasant to
have

J
U Wi € eﬁ"siﬂf w”
i=1
as item four. Unfortunately, that would break in the inductive step, and we are stuck with
the more complex version, which again forces the side condition on the rule. |

Lemma 7. ILA|-|T e < ex:7 e and ILA|-|T |= el < el : 71, e together implies
II|A|T |= par e; and el < par ey and el : 7 x 71, e Uel.

Proof. Let ai,as € N be the required numbers of anonymous regions from the respective
assumptions. To prove the desired, we unroll the definition of the logical relation: choose
ay + ag, pick arbitrary k° € N, w® € W, R : TUA < |w°|, A° C dom(w®), v1,72 €

21



22

A Concurrent Logical Relation

VIl and RS, hs, hie, bl € H. Assume that R(FRV(e — )) C dom(w®), A°# R(IT U A),
|A°| > a1 + a9, Vr € A% w°(r) = 0, (k°,y1,72) € [[F]]R , bl C hg, and (k°, R, hY) €

Pé\lﬁgz w®. We must show that (k°, h/°, b, par e1 and el [71/1"]7 par ey and e} [y, /T, h$, hg) €
MAA°R o . o
safe w®, we.

T1 XT2,61Ue2
We need, obviously, to make use of the assumptions of the lemma. To this end, we claim
that to have

(k, b, by, par e and e, par e} and €2,

hy - hl-h2 hy-hi-h3) € safelll: 41042 0 ) (5)

T1 XT2,61Ue2

it suffices to know that

(k hy, ho w

61U€2

(k7®7®7615627h quAnALR

T1,€1
2 2
(k7@7®761a627h

€ safe w®, w

TIUA,-, A2, R
T2,62

) € (6)
(h, b, 1 by ho) € QAL we,w (7)
3) (8)
5) 9)

€ safe w®, w,
whenever A;#A; and dom;* (w) C dom(h}) holds. Observe, that if we can prove this,
then we are done by splitting A° into two parts of appropriate sizes followed by an easy
application of the assumptions of the lemma. The remaining part is to prove the claim, this
we do by complete induction on k.

Assume the claim holds for all naturals strictly less then k € N; we will now prove
it also holds for k. To prove 5 we unroll the definition of safety. Pick arbitrary j <
k,aw' € W and ¢1,99, f1,fo € H. Assume the prerequisites hold, i.e., that we have
envtran ™M AVA2 R g, 0l (5 g1 go) € P€1U€2 w’ and (g1, hy - h} R, f1, 92, ho - hd - 13, f2) €
splitsH’A’AIUAZ’R w’. Observe that we can instantiate assumptions 8 and 9 by taking g; - h;
as the public part of the heap, and adding the spare private part to the frame.

We follow the termination branch first, and assume that irr(par ei and e?|gy - hy - hi - h3).
This means each of the subexpressions is also irreducible so from safety assumptions we
learn, among other things, that ei,e? € V. However, this means that (par el and €?|g; - h; -
hi-h?) — ((el,€2)|g1 - h1 - hi - h3), which contradicts the irreducibility assumption.

For the progress branch, we are left with three possibilities of reduction: either both
e and e? are values, or the reduction happens inside one of them. We omit the case for
reduction inside €2, since it is completely symmetric to the one for e}; the other two cases
follow.

Assume that (e1 |g1-hy-hi-hi- f1) =7 (ef! | k1) for some n < j. From 8 we get e, w”

b, g4, gh, hit and hf, along with the following properties:

(€2|g2 ha - hy - h3 - fz) " (e5']gh - hy - by - h3 - fa),
selftran™A A0 4 4,

Al = (A1 Ndom(w”)) U (dom(w”) \ dom(w")),

Wi =gy by B Ri -,

7

uwe effs8 h’l w”

9
/

(gll . I fl hlag2 127 h/21a f2 hQ) € SplitSHUAﬁAé’R U}N,
. A,

(] —n,91- h1a92 h2,gl : /17gé ) QHU " ’LU/,U}”,

(j—n,0,0,el, et b, h2) € safel A~ AR 0 gy,

Obviously, we can now replay the reduct1on sequence for the whole right-hand-side expres-
sion. By postcondition separation and postcondition weakening lemmas, we can also split



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

up the postcondition into separate parts for IT and A, the first of which is needed by progress
branch. The other obligations of the progress branch are simple, leaving us with the final
safety requirement: (j — n, h\°, Y, par ef' and e?, par €4 and €3, R} - it - h3, hh - Wi - h3) €
E’Q"é}:é;lz w®, w”. This follows by induction hypothesis, since n > 0, if we can show
the four assumptions. 6 and 7 hold due to downwards-closure and composition lemmas for
pre- and post-condition, and the A part of the assumption above, and 8 we have verbatim
as an assumption. This leaves us only 9 to show. To show it, notice that safety is both
downwards closed in the step index, and closed under environment transitions and observe
HUA A2, Ry 0’ by composing the two world transitions above. This,
in conjunction with the original assumption, suffices to finish this part of the proof.

safe

that we have envtran

The final case we consider is when e},e? € V and (par e} and €3 |g1 - hy - h} - h3) —>é
({et,e?) | g1-h1-hi-h?). In this case, we start with instantiating 8 and from the termination
branch obtain:

(e3lgz - ho - hy - h3 - f2) —* (ei|gh - By - 1y - h3 - fa),

selftran™ A ALE o/

0 = (A; Ndom(w”)) U (dom(w”) \ dom(w’)),

g1-hi-hi=gi-hi-hi,

(j7 e}, 6/21) € [[Tl]]R (’LUN),

(jog1-h1,g2 - ho,gf -y, gy - hh) € QEVNF w w.
Now, with the new heaps, we can instantiate 9, and get:

(€3lgs - by - By - h3 - fa) =" (eF]gh - hiy - hy - B - fa),

SelftI’anHUA"’AQ’R w//7 w///7

0 = (A2 Nndom(w")) U (dom(w") \ dom(w")),

gy by hi =g hi-his,

(G ed, e8) € [r] * (™),

(.91 - hi, gb - By, g - b, g5 - hy) € QUM w” w'™.

Now we can build the complete reduction for the right-hand side: (par e} and €3|gs - ho - h3 -
h3- fa) —* ((e4, )| gy - hYy -hit-hi - f2), and prove the rest of the required obligations: self-
transition out of the composition of the two given, postcondition of public heap fragments by
postcondition separation, composition and weakening, and the rest by simple manipulations.
This leaves the final safety of two pairs to be proven. We unroll the definition again,
taking ¢ < j — 1, this time only considering the termination branch, since the left-hand
side is a value, and do not do any reductions. This leaves us with proving two interesting
obligations. The first one is (i, (e}, 2, ) (elt, e2)) € [ x 7] (w'). However, since w 3
w'’, we can easily show this by definition of the denotation of product types, downwards-
and future-world-closure, and the value assumptions obtained above. The other interesting
obligation is showing the postcondition for the local, A part of the heap. This is done by
using postcondition separation, composition and weakening on the postcondition properties
obtained from assumptions and by assumption 7 itself. |

A.6 Proof of the Parallelization Theorem
A.6.1 Informal overview

The proof of the Parallelization Theorem is quite tricky. We now sketch the idea of the
proof; please see the appendix for the technical details.

The left-to-right direction of the theorem is not too hard, intuitively since sequential
sequencing clearly can be mimicked by parallel reduction. Thus, the hard part of the proof

23



24

A Concurrent Logical Relation

is to show the direction
II|A|T Epare; and ex <) (e1,e2) : 71 X To,61 Uea. (10)

The challenge is that if we take a step of reduction on the left, then we cannot always
immediately mimick it on the right, because if it is a step in (a derivative of) ey then we
might not be ready to make it on the right, since we haven’t yet started reducing in e; on the
right (we only start reducing es on the right when we are done with all the e; reductions).

We address this issue by formulating a notion of potential safety to relate (a derivative
of) es on the left with (a derivative of) ey on the right. Safety, and also potential safety,
really involves configurations (expressions and heaps) rather than just expression), but to
keep the overview, we will continue just using expression notation in the high-level sketch
here. Potential safety of es and €s then allows é5 to catch up by doing some reductions to
reach &), and then ey and €&, should be safe (in the usual sense).

The idea of the proof of (10) is then to show (for suitable ey, €1, e, & satisfying
conditions corresponding to those in the parallelization theorem) that

safe(e1, €1) A potentially-safe(es, €2)

— safe((par e; and eg), (€1, €2))). (11)

Now, for this to work, potential safety actually needs to allow for some transitions by e;
and é; — and the context — but regulated by the overall assumptions regarding effects,
etc., of the parallelization theorem. Thus potential safety of e; and é; actually says that
for any good (in the sense that it is governed by overall assumptions regarding effects, etc.)
pair of transitions, A and 3, going from ey to eh and €3 to €3 respectively, there is some
sequence of catching-up reductions, call them ~, that reaches a e’s such that e}, and &, are
safe. Diagrammatically:

pot. safe _

€2

D
(V)

To show (11), we proceed by induction on the index used in the safety predicate. There
are three cases to consider, corressponding to possible reductions of par e; and es. The case
where e; reduces is not too hard since we have defined potential safety to accomodate such
reductions (the ’s). The case where e; and es are both values is not too hard either. The
case where ey reduces, say to e}, by a reduction «, is more tricky. We then show potential
safety of e, and és (argument outline follows below), and that e; and €1 stay safe (this
follows from the assumption on effects, etc.), which allows us to conclude by induction.
The argument for the potential safety of e}, and €&, is outlined in Figure 10 By assumption
e2 and é5 are potentially safe, as depicted by the topmost arrow, and we need to show the
potential safety depicted by the dashed arrow. Hence we consider any 3 and 3 as shown, and
we need to show that there exists a catching-up reduction 7/ from ég to é5. By properties
of the instrumented operational semantics, we can commute a and § to get 3 and af, as
shown in the diagram (essentially, this is Lemma 2). Hence by the assumption of potential
safety of es and és, we get safety of eg and &), as shown. Using this safety and the af
reduction, we get a reduction @' and the final required safety of ¢/} and &. Thus the
required catching-up reduction v’ is v followed by &'. Note that the latter makes intuitive



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

Figure 10 Proving parallelization: recovering potential safety after o transition.

sense; we did a reduction on the left in es and now we have correspondingly extended the
catching-up reduction to be done on the right.

Formally, the Catch-up lemma in Appendix A.6 gives the precise formulation and proof
of (11); item 3 in that lemma gives the precise technical formulation of potential safety.

A.6.2 Technical details

We start by stating and prooving the catch-up lemma mentioned in the explanation in the
paper, that covers most of the proof of the theorem.

» Lemma 17 (Catch-up). Assuming that
1. (k,hi,h2) € P2R

2. (ka @7 @7 €1, évlv hll; h12) € Safe‘il:IlL,Js/},')Al)R ,wo, w and
3' fOT’ any 917927h17h;7f13f2’w/7j§k SUCh that
envtranVA A2 R g

(91 i, hat, fr, g2 - b, 0, f2) € splits"Oh A2 4y
(js by hoy b}, BY) € QRE w,w!
there exist hf, ’z,gi,gé,hgg,hél,g’l,w” such that

selftranVA A2 R w', w"

(€2lhl - ga - f2) —* (eh|hh - gh - haa - f2)

Iy - g hay = hi - gy - by

(k. 91,92,91, 95) € QL w', w”

(k, by, hy) € PLE w”

(j7 (f7 Sv /17 /2> € Q?{L}}sz woaw//

(k,0,0, ez, e~’2, hbq,hag) € safegtfé\z"’Aé’R w®, w”,
we have (k,h$, h3, par ey and eq, (€1, €3), hi-hi1-ho1, ho hia) € safegl’ﬁ’éf;éjél{ w®, w, as long
asrdse;Uwrsey UrdsesUwrses C A, rdsey # wrseg, rdsea#(wrsey Ualser), wrseg # wrs e,
dom(h;1) D dom? (w), dom(hyz) D domy? (w) and domsy? (w) = (.

Proof. The proof proceeds by well-founded induction on k. Take any j < k, g1, g2, f1, f2, w1
such that

envtranh A1 T4 R

(.jv gl7g2) € PEH;L_IJ%EQ w1

w, wq

25



26

A Concurrent Logical Relation

(g1, P - hat - hat, f1, 92, ho - haz, fo) € splits™ A1t A28,
There are two branches to consider. However, par e; and e; can always reduce, so the
termination branch is trivial. In the progress case, we proceed by case analysis on the
reduction to get three subcases.

(e1]gr-hy-hay-hay- f1) =7 (€ | hl)

In this case we can use the assumption (2), which we instantiate with j < k, g1 - h1, g2 -

ho, f1 - ho1, fo, w1. We need to show the prerequisites:

envtranWA AR

w, w1, which holds by env-transition weakening
(j+1,91-h1,92 - ha) € PEIUA’R wi, which holds by assumptions, precondition com-
position, precondition weakening and future-world closure of precondition
(g1 - hi1,hi1, f1 - ho1,92 - ha, hia, f2) € splits™ A0 4, which holds by massaging
the assumption about splits.

From the progress branch we obtain the following properties:
(€1lg2 - ha - haa - fo) ¥ (€ilgy - My - By - f2)
selftran VA ALR w1, Wa

Al = (A1 Ndom(wsz)) U (dom(ws) \ dom(wy))

hT =9\ h/ hiy - fi-ha

ue eﬂ'sEl h, Wa

., TIUA, AR
(91 - hllvfl o1, gb - B, his, f2) € splits' 24 Anfty

UA,R
(]_n g1 h1792 hZagl h17g2 h/) EQ . Wy, W2
= TTUA,-, A/ ,R
(j —n,0,0,¢), €}, by, hyy) € safe, =27 1w, wy

From these we can conclude that:
((e1,€2)|g2 - ho - hia - f2) —* ((eN’17 €2)|gh - hly - by - f2) (recall pairs of expressions is
syntactic sugar)
selftran A1+ Az By 0 by self-transition strengthening
A4+ Ay = ((A1+Az)Ndom(we))U(dom(ws) \ dom(wy)), by self-transition restrictions
(g4, h] - By - hov, f1, g5, hh - Wig, fo) € splitsH’A’AllJrAQ’R we, by massaging the splits
assumption

Al+A .
RS eﬂ'ssld;2 Qh’, B hay 025 by effs strengthening

(j —n, gl,gg,gl,gz) € QEIUE2 w1, wse, by postcondition separation and postcondition

weakening
(j —n,hl,hh) € PQ l’R ws, by postcondition separation and precondition composition
envtranV 428 4 1, by envtransition composition and relation of env-transition

and self-transition

(j —n,hy,ho, b, hE) € Q?{R w, ws, by postcondition separation
Since 0 < n < j, we can now use the induction hypothesis to discharge the final safety
obligation: we have already obtained preconditions (1) and (2), while (3) is closed under
the world transition that we have made (see the final two properties above).

2. (e2|g1-h1-hir-har- f1) =) (€l2|hT)

First, we need to establish that hl = gy - k) - hly, - f1 - by, dom(h}) = dom(hy), p €
effs i’fzél wand (j—mn,hi, he) € Pé\lR . ThlS can be obtained by using the assumption
(3), as follows. Take g1, g2, h1, ha, f1 ~h11, f2 - hi2, w1, k < k as the universally quantified
variables in (3). We need to show:

envtran'!VA 42,7
(g1 - hi,hot, f1 - h11,92 - ho, 0, fo - hia) € splitsHUA"’Az’R w1, by massaging the splits
we have assumed earlier
(k,hi,ha, by, ho) € QY™ wy, wy, again, by reflexivity.

w1, wy, which holds by reflexivity



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

From this we obtain a bunch of properties, by unfolding safety. However, we are only
. . AlLR
interested in a few, namely that hl = ¢P - kL - hY - f - hyy, and p € eﬁ'sgihf w’ and

selftran'™A A28 )t Let bt = g? - hl . b2,
Now, as witnesses for the progress case, we take ey, w1, A1+ Ag, b} -h11-hbq, ha-hi2, 91, g2,
where hy = b [y na,,, ) and By = hi |

(6~2|gg . hQ . h12 . fQ) }—)* (€~Q|gg . hg . h12 . fg) by reﬂexivity
II,A,A1+A2,R

dom (w1 )\dom TN (4, ) It suffices to show:

selftran wy,wy by reflexivity

hl = gy -y - hyy - Bb, - f1 by the restriction on actual effects (1) we know g; didn’t
change, and we have an assumption to finish this off

(g1, B - hay - Bhy, f1, g2, ha - hag, f2) € splits™A1+42. R 4, by assumption

e eﬂ'si%’hlzl wy, since any region killed between w; and w' has to be in Aj, dom(hf}) C

dom(h%;), and we have an assumption for the other effects inside the world

(] - n791792791392) € QEH17LIJ262 w1, wy by reﬂeXiVity7
so it remains to show that (j — n, kS, h3, par ex and e, (€1, €2),h} - h11 - hby, he - hia) €

II,A,A1+A2,R
T1 X T2,e1Uen

show the three assumptions. The first one ((j — n, ki, he) € Pé\l’R wy) is simple, since
1 is confined to e, the second one ((j —n,0,0, 1,1, hi1, hia) € safel™ A ALR 0 )
holds by env-transition closure and downwards closure of safe. This leaves us the last
precondition to show. To this end, we take hJ{, h;,gi,g;, flT, fot,i < j —n and ws, such
that

envtran w1, Wa

(i, by, hoy BY,RY) € QA wy, wo

(91L ) hL 515 f{fvg; : h; 0, f;r) € SplitSHUA’.7A2’R w2
Now we can instantiate the original assumption (3) with h4 [h;/h’l}, h;, gi, gg, flT, f;f,i <k
and wq, where the heap substitution notation means that any change (allocation or
update) from A} to hl should be replayed on hy (this is well-specified, since dom(h;) =

dom(h})). We need to prove the following:
TIUA,-, A2, R

safe w°®, wy holds. We can use induction hypothesis to prove it, provided we

T1,€1

TIUA,-,A2,R

envtran w, we, by envtran-comp and envtran-weaken
(i, h1, ha, hy [hj{/h’l], h;) € Q?{R w, wa, by definition of heap substitution, and assump-
tion
(gI . hl[hi/h'l],hgl,ff,g; . hg,@, f;r) e splits'™A 428 1) by assumption, given that
dom(h}) = dom(hi[h} /)

By proving these properties, we obtain the following:
(k,hi, hy) € PR wy

selftran'VA 427 Wo, W3

(€2lh} - gb - f1) =" (eblh - g} - hom - f3)

bl /M) gl - hor = by - g7 - b,

(k, 9], 95, g1, 93) € QL™ wo, ws

(i, h3,h3, by, hy) € QLT w ws

(9% : hi h%u ff»gg : héa haa, f;) € SplitSHUA"’A;’R"US

(k,0,0, e, e~’2, h%u hao) € safegLfE/;"’A/Z’R w°, w3
Recall that p € effsgi;le wy, and (ez | g1 - hy -1y -hot - f1) -0 (e |gr-hy-hbyy - f1-h1).
Hence, we can use Lemma 2 to get

(e2|gl - hu[hl/hY] - hav - f]) =7 (eb | gl - bl - hby - £),

27



28

A Concurrent Logical Relation

which allows us to instantiate the safety predicate above. Note that this argument is
precisely the commutation of @ and 3 in the explanation in Section 4.1 (cf. Figure 10).

We need to show:
TTUA,-, AL R

IR
P,

envtran w3, ws, by reflexivity
(4,91,93) €
(4, h:{, h%) € P?,;R ws, by assumption

(gF - Wby, fo- s - S gh - b oo, 1) € splits™ 4Ry by massaging the as-
sumption.

ws, trivial, since rdseq#I1

These facts, along with the reduction step, give us the following:

’
selftranHUA"’A27R w3, Wy

<e2|h c g5 - has - f3) —* (eflgd - hd - hdy - fD)

h Ty = {-h{~h£1 )
(1 hl»thfpgz h h227f2)esplitSHUA"’AQ’RU)
(G —n, gf'hfagﬁ higl hi,gf - hd) € QUME wy, wy

IIUA,,AY R

(j—n,0,0,¢5, ey, 217h22) € safe,, .,

Now we can show the remaining goals:
TIUA,-,A2,R

w,w4

selftran wa, Wy, by self-transition composition

(€2lgh - bl - 1) — <e’é'|g£ -h{ - hdy - 1), by transitivity

hl gl b, =gf - h1 h217 by assumption

(j—n g},g;,gl , 92) Q R sy, w4, by postcondition composition
(j —n, hf hf) PA R wy, by precondition composition

(i,h3, h{, hf) € Qelum w® w4, by postcondition composition
(U

j—n 91 hf, h%, g1 h{, hf) € QHUA R w3, wy, by assumption

TUA,-, A} R
T2,€2

(j —n,0,0,¢y, e, b, hi,) € safe
which ends this case.
(par ey and ez | g1 - hy - hi1 - hai - f1) %(}) ((e1,€2) | g1 - h1 - ha1 - ha1 - f1)
This means in particular that irr(e;|gy - hy - 11 - hoy - f1). We only need to consider the

case where j > 1. We start by using the assumption (2). We need to provide:
TIUA,-,A1,R

w®, wy, by assumption,

envtran
(4,91 - h1,92 - ha) €
(91-h1,h11, f1-h21,92-ho, hia, f2) € splitsHUA"’Al’R w1, by massaging the assumption
about splits.

“w, w1, by env-transition weakening
PEIUA R w1, by precondition separation, assumption and (1)

From the termination case we can now get:

(e1lgz - ha - hiz - f2) =" (€}|g5 - hy - by - fa)

selftran'VA A2 R w1, Wa

g1-h1-hiy =gj-hy - Ry

(g1 - Wy, Ry, f1-hot, g5 - by, B, f2) € SplitSHUA”@’Rw

(j?glvg%g/l’gé) € Qg’R wi, W2

(G ha, o, By 1) € QT wy, wy

(j,e1,€h) € [r] ™ wo
Note that €] is irreducible, as it’s a value. At this point we can use assumption (3). We
need to show:

envtranWA A2 R

w, ws, by relation between self-transition and env-transition and
env-transition weakening

(J, h1, ha, by, hY) € QQI’R w, we, by assumption

(gh - B hor, f1- By, gh - By 0, fo - BYy) € splits™ A28 4 by splits above.

By these facts we are able to obtain the following:



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

selftran'VA 427 Wo, W3

(éélgé hy - f2 - hig) =" (€5lg5 - By - haa - f2 - hly)
g1+ ha =hi-gf - hy
(k 91a92a91a92) € Q627R Wa, W3
(k, by 1Y) € PLR wy
(] o o // h//) c Q?{L}}az w®, ws
(k, @ U) 62,62,h21,h22) € safeHUA’ A2 R 100 g
(g7 - WY, hiy, fu- Ry, g5 - b, hoo, fo - RYg) € SplitSHUA"’A;’Rw
Finally, we can instantiate the safety predicate obtained above. We need to show:

’
HUA A2 R0 g, by reflexivity

envtran

(4, hY, hY) € PQZ’R ws, by assumption

(4,97, 9%) € PEZ’R ws, trivial, since rds eo#I1

(g1 - PYs hagy, fo- Py, g5 - s haa, fa - By,) € splits
From the termination branch (by irreducibility of es), we get:
IIUA,-, AL R

7
VA, A3, B w3, by assumption.

selftran w3, Wy
(ezlg B Ry fo o) " (elgl By WY - fa - hly)

h// 1 /l/ h/// . //l

21 —
(J 917927911//79/2”) € QEZ s
(j7 // // /II hl//) e Q wg’w4
(]7 €2, 62) IITZ]] Wy

i /// " / " /// n

(91" - 21:f1 - P11, 99" 99 f2 + h}y) € splits

At this pomt we can finally prov1de witnesses and prove the remaining properties:
selftran'™ A1+ A2. R, 0 by weakening and composition of previous self-transitions
((e1,€2)[g2 - ha - hia - fa) —* ((61,62)|g”’ hy' - Rl - hiy - fa), by transitivity and
irreducibility of e}
0e eﬂ'sE Uea skl bl
“hy-hiy - h21 = g’l" Y"1’ ’2’{, by congruence closure of equalities
(g’l”,h’” 0 f gy R B - By, f2) € splits™ M 4, by massaging the as-
sumption above

(1—1,91,92,91",99") € QE;L’TEQ w1, wy, by weakening and composition of postcondition

TIUA,-,0,R w

ny Was which is trivially true

assumptions
This leaves us with the final obligation to prove: (j —1, kS, h3, (e1, e2), (€], 62> bl
I,A,0,R :
51, RS- hly - hYS) € Safeﬁxg,elum w®, wy. To do this, we assume:
envtrann AQ.R w4, ws

(i givgg) € P€1U82 Ws
(o} b oy e 11 g - ey 15 £1) € splits™ 0T
Obviously, both expressions are irreducible, so we take the same values as witnesses.
Most obligations are proved by reﬂex1v1ty or assumption, the ones left are:
(1, {e1, e2), <el, €2>) € [ x )% ws, which holds by donwards- and future-world-
closure of type denotation, and definition of product types, and
(i,hS, S, Y RY) € QsluEQ w®, ws, which holds by weakening, composition and down-
wards closure of previous postcondition assumptions.
This ends the proof.

» Lemma 18 (Parallelization). Assuming that
1. H,A H I'kFe tT1,€E1;,

29



30

A Concurrent Logical Relation

2. H,A||F|_€2:7—2752,

3. rdseg Uwrsey Urdses Uwrsey C A,

4. rdsey Nwrsey =rdsey N (wrsep Ualsey) = wrsey Nwrseg = 0,
the following property holds:

IT|A|T EE(e1,e2) = parep and ez : 7 X To,61 Uéa.

Proof. The proof consists of two parts, for two directions of contextual approximation. For
both these direction we need assumptions about e; and es, that follow by the fundamental
theorem of logical relations:

H,AHF':BlelSTl,é'l H,AHF’ZGQjeQ:TQ,EQ

1. Toshow: II | A|T | (e1,e2) < pare; and eg : 71 X To,1 Ues.

We start this part, by taking a; and ag, the witnesses from the logical relations above,
and setting a = a; + ao as the witness for the logical relation. Now we can assume the
initial conditions:

R(FRV (g1 Uez)) € dom(w)

A+ A#R(ITUA)

|A;| > a;, for i € {1,2}

Vr e Ar + Ag. w(r) =0

(k,’Yl,’YQ) € [[F]]R

h$ C h,, fori e {1 2}

(k’ h(1)7 hg) € P51U€2

What remains to be shown is safety: (k, h$, hS, (e}, el), par €2 and €2, hy, hy) € safel241 421

T1 XT2,61Ue2 w, w,

where eg = e;[yj/T']. We can also use the initial conditions above to obtain:
(k,0,0,el,e2,0,0) € safeHUA’ ARy .

We proceed by well-founded induction, keeping the additional assumption that (k, hq | dom™™ (1)
1

he Tom mB (4 ))GP

ei are both irreducible, in which case we can recover the final reductions for e?, replay

those, and reduce the parallel composition to the pair of values related to the left-hand-
side pair, or at least one of e} can reduce. In the latter cases, we can use the respective
assumption to obtain the matching reduction, perform it, and use the induction hypoth-

o U, W. After unrolling safety, there are three possibilities. Either

esis (with downwards- and envtran-closure ensuring that the other safety assumption
matches and the precondition assumption fulfilled due to A being public). The details
are very similar to the compatibility of parallel composition, and so are omitted.

2. Toshow: II | A|T |=par e; and ez < (e1,ea) : 71 X 7,61 Uea.
We proceed in the similar manner, by taking the witnesses, providing a; + a2 as the
witness for the whole computation, and obtaining the safety obligations: show that

(k,h$, hS, par el and €}, (e3,€3), h1, ha) € safe?1 /X\’T‘,jf;éjZ’R w, w provided that (k, 0,0, e}, e2,0,0) €
safeg%‘}’ Aol w, where eg = e;[v;/T]. However, to show it we use the catch-up

lemma proved above. To do this, we need to show its three preconditions (we let
hll = h,l rdomll)"(A)(w)’ hll = hl \hll, h12 = @, and similar for hg):

(k,hY, R € P?{R w, which holds by pre-weakening,

(k,0,0,el,e2, h11,h12) € Safegeafi"’Al’Rw,w, which is easy to show since hy; is just

some random heap outside the control of the world (regions in A; are empty),

and the final catching-up precondition. To show this property, take any g1, g2, hI, hg, fi, fo,w'j <

k such that:



Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg

envtran'TVA A28 4, 4

(g1 - 11,0, f1, 92 - 3,0, f2) € splits™ A A2F o

(. h1, ha, B, BY) € QM w,w!
We take the witnesses to be the precise same things, so most of the obligations hold
by reflexivity. The ones left are:

(4, hS, hs, h]{, h;) € Q?l’i? w,w’, which by post-weaken, since h$ = hl,

(k,0,0,ek,e3,0,0) € safegfﬁ"’AQ’Rw,w’, which holds by envtran-closure of the

safety assumption, and
(k,hl nl) e P?ZJR w’, which holds because of disjointness condition on €; and &g

— when cut down to the es-read regions, hZT = h7, for which we have the right

assumption.
This ends the proof.

31



	Introduction
	Language and Typing
	Definition of the logical relation
	Applications
	Parallelization Theorem: Disjoint Concurrency
	Non-disjoint Concurrency

	Discussion
	Conclusion and Future Work
	Appendix
	Well-definedness of Interpretation of Types
	Instrumented Operational Semantics
	Proof of May-Equivalence Theorem
	Properties of the Pre- and Postcondition Relations
	Some Cases of Proof of Compatibility
	Proof of the Parallelization Theorem
	Informal overview
	Technical details



