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Abstract

Recently, data abstraction has been studied in the
context of separation logic, with noticeable practical
successes: the developed logics have enabled clean
proofs of tricky challenging programs, such as subject-
observer patterns, and they have become the basis of ef-
ficient verification tools for Java (jStar), C (VeriFast)
and Hoare Type Theory (Ynot). In this paper, we give
a new semantic analysis of such logic-based approaches
using Reynolds’s relational parametricity. The core of
the analysis is our lifting theorems, which give a sound
and complete condition for when a true implication be-
tween assertions in the standard interpretation entails
that the same implication holds in a relational inter-
pretation. Using these theorems, we provide an algo-
rithm for identifying abstraction-respecting client-side
proofs; the proofs ensure that clients cannot distinguish
two appropriately-related module implementations.

1 Introduction

Data abstraction is one of the key design principles
for building computer software, and it has been the fo-
cus of active research from the early days of computer
science. Recently, data abstraction has been studied in
the context of separation logic [14, 4, 11, 15, 7], with no-
ticeable practical successes: the developed logics have
enabled clean proofs of tricky challenging programs,
such as the subject-observer pattern, and they have
become the basis of efficient verification tools for Java
(jStar [8]), C (VeriFast [10]) and Hoare Type Theory
(Ynot [12]).

In this paper, we give a new semantic analysis
of these logic-based approaches using Reynolds’s re-
lational parametricity. Our techniques can be used
to prove representation independence, i.e., that clients
cannot distinguish between related module implemen-
tations, a consequence that we would expect from using
data abstraction, but (as we shall see) a consequence
that only holds for certain good clients.

Interface Specification

{1↪→ }init{a} {a}nxt{b} {b}fin{1↪→ }
{a}inc{a} {b}dec{b}

Two Implementations of a Counter

init1
def= [1]:=0 nxt1

def= skip fin1
def= skip

inc1
def= [1]:=[1]+1 dec1

def= [1]:=[1]−1

init2
def= [1]:=0 nxt2

def= [1]:=−[1] fin2
def= [1]:=−[1]

inc2
def= [1]:=[1]+1 dec2

def= [1]:=[1]+1

Definitions of Abstract Predicates

a1
def= 1↪→ , b1

def= 1↪→ , a2
def= 1↪→ , b2

def= 1↪→

Client-side Proof Attempts

{1↪→ } init; {a}
inc; {a}
nxt; {b}
dec; {b}
fin {1↪→ }

{1↪→ } init; {a}
inc; {a}
nxt; {b}
[1]:=[1]−1; {???}

Figure 1. Two-stage Counter

Logic-based Data Abstraction The basic idea of
the logic-based approaches is that the private states of
modules are exposed to clients only abstractly using
assertion variables [4], also known as abstract predi-
cates [14]. For concreteness, we consider a two-stage
counter module and client programs in Figure 1. The
module realizes a counter with increment and decre-
ment operations, called inc and dec. An interesting
feature is that the counter goes through two stages in
its lifetime; in the first stage, it can perform only the
increment operation, but in the second, it can only run
the decrement. The interface specification in the figure
formalizes this intended behavior of the counter using
assertion variables a and b, where a means that the
counter is in the first stage and b that the counter is
in the second. The triple for init says that the ini-
tialization can turn the assertion 1↪→ , denoting heaps
with cell 1, to the assertion variable a, which describes
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an abstract state where we can only call inc or nxt
(since a is the precondition of only those operations).
The abstract state a can be changed to b by calling
nxt, says the triple for the nxt operation. In b we are
allowed to run dec but not inc. Finally, fin can turn
the abstract state b back to 1↪→ . Note that by using
a and b, the interface specification does not expose the
private state of the module to the client. It reveals only
partial information about the private state of the mod-
ule; here it is whether the private state is in the first or
the second stage. The flexibility afforded by revealing
partial information is very useful in applications; see
the examples mentioned in the references above.

In these logic-based approaches, proof attempts for
clients of a module can succeed only when they are
given with respect to the abstract interface specifica-
tion, without making any further assumptions on as-
sertion variables. For instance, the proof attempt on
the bottom left of Figure 1 is successful, whereas the
bottom right one is not, because the latter assumes
that the assertion variable b entails the allocatedness
of cell 1. This is so, even when the entailment holds
for an actual definition of b.

Representation Independence In this paper, we
analyze the condition for successful client-side proofs,
using representation independence: given two imple-
mentations of a module, if there are coupling relations
between the definitions of assertion variables in the two
modules and, furthermore, the relations are preserved
by the corresponding operations of the implementa-
tions, then a proved client will give the same result
no matter whether it is executed with one or the other
module implementation. For instance, Figure 1 de-
scribes two implementations of the counter, where cell
1 is used in both to represent their private states, but
in different ways — the first stores the current value
of the counter, but the second stores the current value
or its negative version, depending on whether it is in
the first stage or the second. In both cases, the asser-
tion variables a and b are defined to be the same 1↪→ .
The operations of the two implementations preserve
the coupling relations ra and rb:

ra
def= {(h1, h2) | 1∈dom(h1)∩dom(h2) ∧ h1(1)=h2(1)}

rb
def= {(h1, h2) | 1∈dom(h1)∩dom(h2) ∧ h1(1)=−h2(1)}

Thus, the representation independence result says that
all proved clients, such as the one on the left bottom of
Figure 1, should behave the same for both implemen-
tations.

In earlier work [6] we were able to prove such a rep-
resentation independence result for a more restricted
form of logical data abstraction, namely one given

Interface Specification

{1↪→ }init{1↪→ ∧ a ∗ b} {a}fin{1↪→ }
{1↪→ ∗ a ∨ 1↪→ ∗ b}badfin{1↪→ }

Two Implementations

init1
def= skip fin1

def= skip badfin1
def= [1]:=1

init2
def= skip fin2

def= skip badfin2
def= [1]:=2

Definitions of Abstract Predicates

a1
def= 1↪→ , b1

def= true, a2
def= 1↪→ , b2

def= true

Two Client-side Proofs

{1↪→ }
init;
{1↪→ ∧ a ∗ b}
{a}
fin
{1↪→ }

{1↪→ }
init;
{1↪→ ∧ a ∗ b}
{1↪→ ∗ a ∨ 1↪→ ∗ b}
badfin
{1↪→ }

Figure 2. Good or Bad Client-side Proofs

by frame rules rather than general assertion variables.
Roughly speaking, frame rules use a restricted form of
assertion variables that are not exposed to clients at all,
as can be seen from some models of separation logic
in which frame rules are modelled via quantification
over semantic assertions [5]. This means that the rules
do not allow the exposure of even partial information
about module internals. (On the other hand, frame
rules implement information hiding, because they com-
pletely relieve clients of tracking the private state of a
module, even in an abstracted form.) Our model in [6]
exploited this restricted use of assertion variables, and
gave relational meanings to Hoare triple specifications,
which led to representation independence.

Removing this restriction and allowing assertion
variables in client proofs turned out to be very chal-
lenging. The main problem was that it was unclear
under which conditions a standard unary implication
between assertions in the rule of consequence could be
lifted to a relational one. “Always” is not an answer,
because only some, not all, implications can be lifted.
In this paper, we provide a sound and, in a certain
sense, complete answer to when the lifting can be done.

For instance, consider the example in Figure 2. Our
answer lets us conclude that the client on the left is
good but the one on the right is bad. The client on
the left calls init and ends with the post-condition
(1↪→ ∧ a ∗ b). Since (1↪→ ∧ a ∗ b) =⇒ a is true in the
standard interpretation (in an intuitionistic setup1),

1In an intuitionistic setup, ϕ ∗ ψ =⇒ ϕ holds for all ϕ,ψ.
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the rule of consequence can be applied to yield the pre-
condition of fin, which can be called, ending up with
the postcondition (1↪→ ). The key point here is the im-
plication used in the rule of consequence. Our results
imply that this implication can indeed be lifted to an
implication between relational meanings of assertions
(1↪→ ∧ a ∗ b) and a (Theorem 8 in Section 4). They
also entail that this lifting implies the representation
independence theorem. We can confirm the claim of
the theorem, simply noting that both init1; fin1 and
init2; fin2 are the same skip command.

The client on the right also first calls init and then
uses the rule of consequence. But this time our results
say that a true implication (1↪→ ∧ a ∗ b) =⇒ (1↪→ ∗
a ∨ 1↪→ ∗ b) in the rule of consequence does not lift
to an implication between relational meanings of the
assertions (Theorem 15 in Section 5 or just Example
12.) Because of this failure, the proof of the client does
not ensure representation independence. In fact, the
client can indeed distinguish between the two module
implementations — when the client is executed with
the first module implementation, the final heap maps
address 1 to 1, but when the client is executed with the
second, the final heap maps address 1 to 2.

Note that we phrase the lifting only in terms of se-
mantically true implications, without referring to how
they are proved. By doing so, we make our results rel-
evant to automatic tools that use the semantic model
of separation logic to prove implications, such as the
ones based on shallow embeddings of the assertion
logic [12, 9].

To sum up, the question of whether representation
independence holds for a client comes down to whether
the implications used in the rule of consequence in a
client-side proof can be lifted to a relational interpre-
tation. In this paper, we give a sound and complete
characterization of when that is the case.

2 Semantic Domain

In the following section we will define the meaning
of an assertion to be an n-ary relation on heaps. To
formalize this relational meaning, we need a semantic
domain IReln of relations, which we define and explain
in this section.

Let Heap be the set of finite partial functions from
positive integers to integers (i.e., Heap

def= PosInt →fin

Int), ranged over by f, g, h. This is a commonly used
set for modelling heaps in separation logic, and it has
a partial commutative monoid structure ([], ·), where []
is the empty heap and the · operator combines disjoint
heaps:

[] def= ∅, f · g def=
{
f ∪ g if dom(f)∩ dom(g) = ∅
undefined otherwise

The operator · induces a partial order v on Heap, mod-
elling heap extension, by f v g iff g = f ·h for some h.

We also consider the + operator for combining
possibly-overlapping but consistent heaps, and the −
operator for subtracting one heap from another:

f + g
def=
{
f ∪ g if ∀l∈dom(f) ∩ dom(g). f(l)=g(l)
undefined otherwise

(f − g)(l) def=
{
f(l) if l ∈ dom(f) \ dom(g)
undefined otherwise

We call an n-ary relation r ⊆ Heapn upward closed
iff (f1, . . . , fn) ∈ r ∧ (∀i. fi v gi) =⇒ (g1, . . . , gn) ∈ r.

Definition 1 IReln is the family of upward closed n-
ary relations on heaps.

Note that IRel1 consists of upward closed sets of heaps,
which are frequently used to interpret assertions in sep-
aration logic for garbage-collected languages. We call
elements of IRel1 predicates and denote them by p, q.

For every n ≥ 1, domain IReln has a complete lat-
tice structure: join and meet are given by union and
intersection, bottom is the empty relation, and top is
Heapn. The domain also has a semantic separating
conjunction connective defined by

(f1, .., fn)∈ r ∗ s def⇐⇒ ∃(g1, .., gn)∈ r. ∃(h1, .., hn)∈ s.
(f1, .., fn) · (g1, .., gn) = (h1, .., hn).

Here we use the component-wise extension of · for tu-
ples. Intuitively, a tuple is related by r ∗ s when it can
be splitted into two disjoint tuples, one related by r
and the other by s.

The domain IRel1 of predicates is related to IReln for
every n, by the map ∆n

def= λp.{(f, . . . , f) | f ∈ p}↑,
where ↑ is the upward closure on relations. Note that
each predicate is turned into an n-ary identity relation
on p modulo the upward closure. This map behaves
well with respect to the structures discussed on IRel1
and IReln, as expressed by the lemma below:

Lemma 2 Function ∆n preserves the complete lattice
structure and the ∗ operator.

3 Assertions and Relational Semantics

Let Var and AVar be disjoint sets of normal variables
x, y, ... and assertion variables a, b, ..., respectively. Our
assertions ϕ are from higher-order separation logic, and
they conform to the following grammar:

E ::= x | 0 | 1 | E + E | . . . P ::= E ↪→E | . . .
ϕ ::= P | a | ϕ ∗ ϕ | true | ϕ ∧ ϕ | false | ϕ ∨ ϕ
| ∀x. ϕ | ∃x. ϕ

3



[[P ]]nη,ρ
def= ∆n(LP Mη) [[ϕ ∗ ψ]]nη,ρ

def= [[ϕ]]nη,ρ ∗ [[ψ]]nη,ρ
[[a]]nη,ρ

def= ρ(a) [[ϕ ∧ ψ]]nη,ρ
def= [[ϕ]]nη,ρ ∩ [[ψ]]nη,ρ

[[true]]nη,ρ
def= Heapn [[ϕ ∨ ψ]]nη,ρ

def= [[ϕ]]nη,ρ ∪ [[ψ]]nη,ρ
[[false]]nη,ρ

def= ∅ [[∀x.ϕ]]nη,ρ
def=
⋂
v∈Int[[ϕ]]nη[x7→v],ρ

[[∃x.ϕ]]nη,ρ
def=
⋃
v∈Int[[ϕ]]nη[x7→v],ρ

where LP Mη is the standard semantics of P as an upward
closed set of heaps, which satisfies:

LE↪→F Mη = {f | [[E]]η ∈ dom(f) ∧ f([[E]]η) = [[F ]]η}.

Figure 3. Interpretation of Assertions

In the grammar, E is a heap-independent expression,
and P is a primitive predicate, which in the standard
interpretation denotes an upward closed set of heaps.
For instance, E↪→E′ means heaps containing cell E
with contents E′. Formulas ϕ are assertions in higher-
order separation logic that do not include negation nor
implication. Note that these assertions can include as-
sertion variables, thus called higher-order. The dots in
the grammar indicate possible extensions of cases, such
as multiplication for E and inductive predicates for P .
We will use the abbreviation E↪→ for ∃y.E↪→y.

An assertion ϕ is given a meaning [[ϕ]]nη,ρ ∈ IReln as
an n-ary relation on heaps, where n is a parameter of
the semantics. Here environment η maps normal vari-
ables in ϕ to integers, and ρ maps assertion variables
in ϕ to n-ary relations in IReln. When ϕ does not con-
tain any assertion variables, we often omit ρ and write
[[ϕ]]nη , because the meaning of ϕ does not depend on ρ.

We define the semantics of ϕ, using the complete lat-
tice structure and the ∗ operator of the domain IReln;
see Figure 3. Note that the relational semantics of
primitive predicates is defined by embedding their stan-
dard meanings via ∆n. In fact, this embedding rela-
tionship holds for all assertions, because ∆n preserves
the semantic structures of the domains (Lemma 2).

Lemma 3 For all ϕ and η, ρ, ρ′, if ∆n(ρ(a)) = ρ′(a)
for every a ∈ AVar, we have that ∆n([[ϕ]]1η,ρ) = [[ϕ]]nη,ρ′ .

We write ϕ |=n ψ to mean that [[ϕ]]nη,ρ ⊆ [[ψ]]nη,ρ
holds for all environments η, ρ. If n=1, this reduces
to the standard semantics of assertions in separation
logic. We will use the phrase “ϕ =⇒ ψ is n-ary valid”
to mean that ϕ |=n ψ holds. In addition, we write
ϕ |=n

η ψ for a fixed η to mean that [[ϕ]]nη,ρ ⊆ [[ψ]]nη,ρ
holds for all environments ρ; we say that “ϕ =⇒ ψ is
n-ary η-valid” if this is true.

4 Lifting Theorems and Completeness

We call an assertion ϕ simple if it is of the form
(
∨I
i=1

∧J
j=1 ϕ(i,j) ∗ a(i,j)), where a(i,j) is a vector of

assertion variables and ϕi,j is an assertion not contain-
ing any assertion variables. We will consider the ques-
tion of lifting an implication between simple assertions
ϕ,ψ to a binary relational interpretation: when does
ϕ |=1 ψ imply that ϕ |=2 ψ?

The starting point is to realize that it is sufficient to
study implications of the form:

M∧
i=1

ϕi∗ai,1∗· · ·∗ai,Mi
=⇒

N∨
j=1

ψj ∗bj,1∗· · ·∗bj,Nj
(1)

where ϕi’s and ψj ’s do not contain assertion variables,
and no assertion variables occur only on the right hand
side of the implication.

Lemma 4 There is an algorithm taking simple as-
sertions ϕ,ψ and returning finitely many implica-
tions {ϕl =⇒ ψl}l∈L, such that (a) ϕl =⇒ ψl has the
form (1) and (b) for any n ∈ {1, 2}, we have that
ϕ |=n ψ holds iff ϕl |=n ψl holds for all l ∈ L.

The algorithm in the lemma is given in Appendix B.
Thus, in this section, we will focus on lifting impli-

cations of the form (1). Specifically, we will give a com-
plete answer to the following question: Given one such
implication that is η-valid in the unary interpretation
for some environment η, can we decide if the implica-
tion is η-valid in the binary interpretation merely by
inspection of the layout of the assertion variables? The
answer will come in two parts. The first part, in Sec-
tion 4.2, provides three lifting theorems, each of which
has a criterion on the variable layout that, if met, im-
plies that η-validity may be lifted regardless of the ϕi’s
and ψj ’s. The second part, in Section 4.3, is a com-
pleteness theorem; it states that if the variables fail
the criteria of all three lifting theorems then there are
choices of ϕi’s and ψj ’s with no variables such that we
have unary but not binary validity.

This approach has ups and downs. Assume that we
have an implication of the aforementioned form that is
valid in the unary interpretation, and we would like to
know if it is valid in the binary interpretation too. Try-
ing out the layout of the variables against the criteria
of the three lifting theorems is an easily decidable and
purely syntactical process – and if it succeeds then we
have binary validity. If it fails, however, we are at a
loss; we know that there are ϕi’s and ψj ’s with the same
variable layout such that lifting fails but we do not
learn anything about our concrete implication. There
is, however, an alternate use of the theory below if the
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lifting criteria fail: We can sidestep the general lifting
theorems and try to verify directly the Parametricity
Condition from Definition 6 for all environments η. It
is a semantic condition and probably undecidable in
general, but it involves no assertion variables and only
unary semantics – and if it holds then, by Proposition
7, we have binary validity. Indeed, the lifting theorems
with direct verification of the Parametricity Condition
as backup can be thought of as an algorithm. It is com-
plete in some cases: Theorem 15 expresses that binary
η-validity and the Parametricity Condition imply each
other if Mi ≤ 2 for all 1 ≤ i ≤M .

4.1 Notation

We need some notation that will accompany us
throughout this section. Consider an implication of
the form (1). Let V =

⋃M
i=1{ai,1, . . . , ai,Mi

} be the
set of all left hand side assertion variables, these in-
clude the right hand side assertion variables too by
assumption. Define Π : {1, . . . ,M} → NatV and
Ω : {1, . . . , N} → NatV by the following:

Π(i)(c) def= |{k | ai,k ≡ c}|, Ω(j)(c) def= |{k | bj,k ≡ c}|.

These functions give vectors of assertion variable
counts for each conjunct and disjunct. For 1 ≤ i ≤ M
and 1 ≤ j ≤ N we write Π(i) ≥ Ω(j) if we have
Π(i)(c) ≥ Ω(j)(c) for each variable c ∈ V , i.e., if
conjunct i has the same or a greater number of oc-
currences of all variables than disjunct j. We write
Π(i) � Ω(j) if this fails, i.e., if there is c ∈ V such that
Π(i)(c) < Ω(j)(c). If a conjunct, say conjunct i, has no
variables, i.e., if Π(i)(c) = 0 holds for all c ∈ V , then
we say it empty ; the same goes for the disjuncts.

We shall write − to denote ∃n,m. n↪→m, meaning
heaps with at least one cell. On the semantic side, we
write [m] for m ∈ PosInt to denote the heap that stores
0 at location m and nothing else. For m0, ...,mn ∈
PosInt different we write [m0, ...,mn] for [m0] · ... · [mn].

Finally we introduce a piece of sanity-preserving
graphical notation. We depict an implication of the
form (1) as a complete bipartite graph with the con-
juncts lined up on the left hand side and the disjuncts
on the right hand side. For any 1 ≤ i ≤M and any 1 ≤
j ≤ N we draw a solid line from conjunct i to disjunct
j if Π(i) ≥ Ω(j). We label that line with all the c ∈ V
such that Π(i)(c) > Ω(j)(c) if indeed there are any
such. If, on the other hand, Π(i) � Ω(j) then we draw
a dashed line instead and label it with all the c ∈ V
such that Π(i)(c) < Ω(j)(c). Note that the drawing of
edges depend solely on the layout of the variables; the
ϕi’s and ψj ’s have no say in the matter. As examples
we refer the reader to Examples 12 and 13 for graphical

representations of 1↪→ ∧ a ∗ b =⇒ 1↪→ ∗ a ∨ 1↪→ ∗ b
and −∗a∗b∧a∗a =⇒ −∗a∗a∨−∗−∗b respectively.

4.2 Layouts that Lift

The following is a first example of a layout of vari-
ables that ensure that for any choice of ϕi’s and ψj ’s
we get that unary η-validity of the implication yields
binary η-validity. That it holds is a consequence of
Theorem 8 but we have spelled out a concrete proof
that will serve as a guide to the further development.

Example 5 (Shadow-Lift) For any four assertions
ϕ1, ϕ2, ψ1, ψ2 with no assertion variables and any ap-
propriate environment η we have that unary η-validity
of the following implication implies binary η-validity:

ϕ1 ∗ a ∗ b • b ___

b

9
9

9
9

9 • ψ1 ∗ a ∗ b ∗ b

ϕ2 ∗ a ∗ b ∗ b •
a

���������
• ψ2 ∗ b ∗ b

Assume that we have unary η-validity. Before we go on
to consider the binary case we derive a simple unary
consequence that does not involve assertion variables:
For any h ∈ Heap with subheaps h1 v h and h2 v h
such that h1 ∈ [[ϕ1]]1η and h2 ∈ [[ϕ2]]1η we get that h2 ∈
[[ψ1]]1η or that h2 ∈ [[ψ2]]1η.

To prove this, let h, h1 and h2 be as assumed. We
build ρ : {a, b} → IRel1 by letting ρ(a) = Heap and
letting ρ(b) be the following union of sets of heaps:

{(h− h1) · [n, n+ 1]}↑ ∪ {(h− h2) · [n]}↑ ∪ {[n+ 1]}↑

where n = max(dom(h) ∪ {0}) + 1. It is now immedi-
ate that h · [n, n + 1] lies in the interpretation of both
conjuncts and by our assumption on the original im-
plication it must lie in the interpretation on one of the
disjuncts too. Suppose that we have

h · [n, n+ 1] ∈ [[ψ1 ∗ a ∗ b ∗ b]]1η,ρ = [[ψ1]]1η ∗ ρ(b) ∗ ρ(b),

where the equality holds because ρ(a) = Heap is the
unit for ∗. We then write h · [n, n + 1] = g1 · g2 · g3

for g1 ∈ [[ψ]]1η and g2, g3 ∈ ρ(b). But as g2 and g3 have
disjoint domains we must have (h − h2) · [n] v g2 and
[n+ 1] v g3 or the version with g2 and g3 swapped. In
any case we have that

dom(g1) = dom(h · [n, n+1]) \ (dom(g2 · g3))
⊆ dom(h · [n, n+1]) \ (dom(h−h2)∪{n, n+1})
= dom(h2).

But then we have g1 v h2 and since g1 ∈ [[ψ1]]1η we get
h2 ∈ [[ψ1]]1η too. If we have h · [n, n+ 1] ∈ [[ψ2 ∗ b ∗ b]]1η,ρ
we proceed similarly.
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The above short proof is the crux of the example. It
implies unary η-validity – this we knew already – but
also the binary η-validity. To see this, we pick an arbi-
trary environment ρ : {a, b} → IRel2, we take arbitrary
(h1, h2) ∈ [[ϕ1 ∗ a ∗ b ∧ ϕ2 ∗ a ∗ b ∗ b]]2η,ρ and we aim to
prove that (h1, h2) ∈ [[ψ1 ∗ a ∗ b ∗ b ∨ ψ2 ∗ b ∗ b]]2η,ρ too.
We split (h1, h2) according to the conjuncts. Because
of Lemma 3 and the upward closedness condition of
IRel2, we can write

(h1, h2) = (g1, g1) · (g2
1 , g

2
2) · (g3

1 , g
3
2)

for g1 ∈ [[ϕ1]]1η, (g2
1 , g

2
2) ∈ ρ(a) and (g3

1 , g
3
2) ∈ ρ(b). Also

we can write

(h1, h2) = (f1, f1) · (f2
1 , f

2
2 ) · (f3

1 , f
3
2 ) · (f4

1 , f
4
2 )

for f1 ∈ [[ϕ2]]1η, (f2
1 , f

2
2 ) ∈ ρ(a) and (f3

1 , f
3
2 ), (f4

1 , f
4
2 ) ∈

ρ(b). But now g1 + f1 with subheaps g1 and f1 fulfills
the above properties and so we get f1 ∈ [[ψ1]]1η or f1 ∈
[[ψ2]]1η and the second splitting of (h1, h2) shows that
(h1, h2) lie in the binary interpretation of the first or
second disjunct, respectively. Notice that neither g1 ∈
[[ψ1]]1η nor g1 ∈ [[ψ2]]1η would have worked since the first
conjunct has too few variables, i.e., Π(1) � Ω(1) and
Π(1) � Ω(2)

Generalizing the unary consequence that served as
the crucial stepping stone in the above example we ar-
rive at the following condition on our implications:

Definition 6 (Parametricity Condition) Assume
that we have an implication of the form (1) and an ap-
propriate environment η. For all h, h1, . . . , hM ∈ Heap
with hi v h and hi ∈ [[ϕi]]1η for all 1 ≤ i ≤M we must
have one or two of these options:

1. There are 1 ≤ i ≤ M and 1 ≤ j ≤ N such that
hi ∈ [[ψj ]]1η, Π(i) ≥ Ω(j) and the j-th disjunct is
not empty.

2. There is 1 ≤ j ≤ N such that h ∈ [[ψj ]]1η and the
j-th disjunct is empty.

Note that specializing the Parametricity Condition,
henceforth just the PC, to an implication of the form
treated in the above example yields the stated unary
consequence because no disjuncts are empty. The sec-
ond option in the PC will be motivated later.

We emphasize that the PC may hold or may fail for
any given combination of an implication and environ-
ment η. But if it holds then we have binary η-validity;
the proof in case of the first option of the PC is an easy
generalization of the latter half of the above example:

Proposition 7 The PC implies binary η-validity.

We arrive now at the first lifting theorem. It is a gen-
eralization of the former half of Example 5; the proof
of the theorem has a lot more details to it than the
example but the overall idea is the same. The theorem
states a criterion on the layout of the variables that, if
met, means that unary η-validity implies the PC and
hence also binary η-validity. The criterion is, loosely,
that we can remove all variables that occur as labels
of solid lines without introducing new solid lines and
without emptying any disjuncts:

Theorem 8 (Shadow-Lift) Unary η-validity of an
implication implies the PC if each dashed line has a
label that is not a label on a solid line and each dis-
junct has an occurrence of a variable that is not a label
on a solid line. Spelling it out in symbols, we require,
with L = {(i, j) | 1 ≤ i ≤M ∧ 1 ≤ j ≤ N}, that

∀(i, j) ∈ L. Π(i) � Ω(j) =⇒
∃c ∈ V. Π(i)(c) < Ω(j)(c) ∧(
∀(k, l) ∈ L. Π(k) ≥ Ω(l) =⇒ Π(k)(c) = Ω(l)(c)

)
and

∀1 ≤ j ≤ N. ∃c ∈ V. Ω(j)(c) > 0 ∧(
∀(k, l) ∈ L. Π(k) ≥ Ω(l) =⇒ Π(k)(c) = Ω(l)(c)

)
.

As motivation for the next lifting theorem, we note
that the variable layout criterion of the above theo-
rem fails if one or more disjuncts are empty. Corre-
spondingly, we never touch upon the second option of
the PC. But there are variable layouts with empty dis-
juncts that ensure lifting:

Example 9 (Balloon-Lift) For any four assertions
ϕ1, ϕ2, ψ1, ψ2 with no assertion variables and any ap-
propriate environment η we have that unary η-validity
of the following implication implies binary η-validity:

ϕ1 ∗ a • b ___
a

999999999 • ψ1 ∗ a ∗ b

ϕ2 ∗ a ∗ b •
a,b

���������
• ψ2

Assume unary η-validity. As in Example 5 we derive
a unary consequence as intermediate result: For any
h ∈ Heap with subheaps h1 v h and h2 v h such
that h1 ∈ [[ϕ1]]1η and h2 ∈ [[ϕ2]]1η we have that either
h2 ∈ [[ψ1]]1η or h ∈ [[ψ2]]1η .

To prove this, let h, h1 and h2 be as assumed. We
construct ρ : {a, b} → IRel1 by letting ρ(a) = Heap and
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ρ(b) = {h− h2}↑. We get that

h w h1 ∈ [[ϕ1]]1η = [[ϕ1]]1η ∗ Heap = [[ϕ1 ∗ a]]1η,ρ,

and

h = h2 · (h− h2)
∈ [[ϕ2]]1η ∗ ρ(b) = [[ϕ2]]1η ∗ Heap ∗ ρ(b) = [[ϕ2 ∗ a ∗ b]]1η,ρ.

This means that h must lie in the interpretation of
one of the disjuncts. If it is the first, we inspect the
interpretation and get that

h = g1 · g2 · g3

for g1 ∈ [[ψ1]]1η, g2 ∈Heap and g3wh−h2. It means that

dom(g1) = dom(h) \ dom(g2 · g3) ⊆ dom(h) \ dom(g2)
⊆ dom(h) \ dom(h− h2) = dom(h2)

which implies that g1 v h2 and so h2 ∈ [[ψ1]]1η. If,
on the other hand, h lies in the interpretation of the
second disjunct then we are done immediately.

Now we prove the claim of binary η-validity. We
pick an arbitrary environment ρ : {a, b} → IRel2, we
take arbitrary (h1, h2) ∈ [[ϕ1 ∗ a ∧ ϕ2 ∗ a ∗ b]]2η,ρ and we
must prove that (h1, h2) ∈ [[ψ1 ∗ a ∗ b ∨ ψ2]]2η,ρ too. We
write

(h1, h2) = (g1, g1) · (g2
1 , g

2
2)

for g1 ∈ [[ϕ1]]1η and (g2
1 , g

2
2) ∈ ρ(a), and

(h1, h2) = (f1, f1) · (f2
1 , f

2
2 ) · (f3

1 , f
3
2 )

for f1 ∈ [[ϕ2]]1η, (f2
1 , f

2
2 ) ∈ ρ(a) and (f3

1 , f
3
2 ) ∈ ρ(b). But

now g1+f1 with subheaps g1 and f1 satisfies the above
properties and so we get f1 ∈ [[ψ1]]1η or g1 +f1 ∈ [[ψ2]]1η.
If f1 ∈ [[ψ1]]1η holds then the second splitting shows that
(h1, h2) is in the interpretation of the first disjunct. If
g1 + f1 ∈ [[ψ2]]1η, we are done too, since we may write
(h1, h2) = (g1 +f1, g1 +f1) · (e1, e2) for some (e1, e2) ∈
Heap2 and so (h1, h2) lies in the interpretation [[ψ2]]2η =
∆([[ψ2]]1η) of the second conjunct.

Just as we did for Example 5 we may generalize the
former half of this example, this yields Theorem 10
below. The latter half of the example, on the other
hand, constitutes an example of the approach of the
proof of Proposition 7 in case we run into the second
option of the PC.

Theorem 10 (Balloon-Lift) Unary η-validity of an
implication implies the PC if there is a subset B ⊆ V
with the following three properties. First, each conjunct
has at most one occurrence of a variable from B, i.e.,

∀1 ≤ i ≤M.
∑
c∈B

Π(i)(c) ≤ 1.

Second, each disjunct is empty or has exactly one oc-
currence of a variable from B, i.e.,

∀1 ≤ j ≤ N.
∑
c∈V

Ω(j)(c) = 0 ∨
∑
c∈B

Ω(j)(c) = 1.

Third, each dashed line must have a label from B. That
is, when L = {(i, j) | 1 ≤ i ≤M ∧ 1 ≤ j ≤ N},

∀(i, j)∈L. Π(i) � Ω(j) =⇒ ∃c∈B. Π(i)(c) < Ω(j)(c).

One thing to note about the theorem is that if we have
no empty disjuncts, none of the variables in the subset
B ⊆ V can be labels of a solid line. In particular, the
conditions of Theorem 8 are met, so the above theorem
is really only useful if one or more disjuncts are empty.

The final lifting theorem captures the oddities of the
special case of just one conjunct:

Theorem 11 (Lonely-Lift) Unary η-validity of an
implication implies the PC if there is just one conjunct,
i.e., M=1, and all lines are solid, i.e., Π(1)≥Ω(j) for
all 1≤ j≤N .

4.3 Completeness

It is now time for examples of implications that do
not lift, i.e., that are valid in the unary interpretation
but not in the binary. The first is based on the following
observation: If h ∈ [[1↪→ ]]1η and h ∈ p ∗ q for h ∈ Heap
and p, q ∈ IRel1 then we have h ∈ [[1↪→ ]]1η ∗ p or h ∈
[[1↪→ ]]1η ∗ q. This is because we must have [1 7→ n] v h
for some n ∈ Int and so writing h = h1 · h2 with h1 ∈ p
and h2 ∈ q gives us [1 7→ n] v h1 or [1 7→ n] v h2.
But this line of argument breaks down if we change to
binary reading. We have, e.g., ([1], [1]) ∈ [[1↪→ ]]2η and
([1], [1]) ∈ {([1], [])}↑ ∗ {([], [1])}↑ but both [[1↪→ ]]2η ∗
{([1], [])}↑ and [[1↪→ ]]2η ∗ {([], [1])}↑ are empty. We can
recast this as an implication that cannot be lifted:

Example 12 (Fan-Counter) This implication is
valid on the unary but not on the binary level:

1↪→ •
a

___

b

:
:

:
:

: • 1↪→ ∗ a

a ∗ b •
a

b

���������
• 1↪→ ∗ b

First we argue that the implication holds on the unary
level. Let ρ : {a, b} → IRel1 be an arbitrary environ-
ment of upwards closed sets of heaps to a and b. Let
h ∈ Heap be arbitrary and assume that

h ∈ [[1↪→ ∧ (a ∗ b)]]1η,ρ = [[1↪→ ]]1ρ ∩ (ρ(a) ∗ ρ(b)).
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By the above observation we get either h ∈ [[1↪→ ]]1η ∗
ρ(a) or h ∈ [[1↪→ ]]1η ∗ρ(b) which matches the right hand
side of the implication.

Now we move on to prove that the implication fails
on the binary level. Define an environment ρ : {a, b} →
IRel2 by ρ(a) = {([1], [])}↑ and ρ(b) = {([], [1])}↑. Then,
[[1↪→ ∧ a ∗ b]]2η,ρ = [[1↪→ ]]2η,ρ ∩ (ρ(a) ∗ ρ(b)), which con-
tains the pair ([1], [1]). But, as observed, both disjuncts
have empty binary interpretations.

An observation of similar nature is that for p ∈ IRel1
we have either p = Heap or p ⊆ [[−]]1η = {[m 7→n] |
m ∈ PosInt, n ∈ Int}↑ because if h 6= Heap then
it cannot contain the empty heap. On the binary
level, however, we have Heap2 6= {([1], [])}↑ * [[−]]2η =
{([m7→n], [m7→n]) | m ∈ PosInt, n ∈ Int}↑. One conse-
quence is this:

Example 13 (Bridge-Counter) This implication is
valid on the unary but not on the binary level:

− ∗ a ∗ b • a ___
a

999999999 • − ∗ a ∗ a

a ∗ a •
b

___

���������
• − ∗ − ∗ b

First we argue that the implication holds on the unary
level. Let ρ : {a, b} → IRel1 be an arbitrary environ-
ment that assigns upwards closed sets of heaps to each
of the two variables. We branch on the value of ρ(a).
If ρ(a) 6= Heap then we have ρ(a) ⊆ [[−]]1η which again
means that the first conjunct directly implies the sec-
ond disjunct. If ρ(a) = Heap holds, we get that

[[− ∗ a ∗ b]]1η,ρ = [[−]]1η,ρ ∗ Heap ∗ ρ(b) = [[−]]1η,ρ ∗ ρ(b)
⊆ [[−]]1η,ρ = [[−]]1η,ρ ∗ Heap ∗ Heap = [[− ∗ a ∗ a]]1η,ρ

because Heap is the unit for ∗. Hence we get that the
first conjunct implies the first disjunct and we have
proved that the implication holds unarily.

Now we prove that the implication fails on the bi-
nary level. Define an environment ρ : {a, b} → IRel2
by ρ(a) = {([1], [])}↑ ∪ {([2], [2])}↑ and ρ(b) = Heap2.
Observe now that ([1, 2], [2]) = ([2], [2]) · ([1], []) · ([], []),
which implies that ([1, 2], [2]) ∈ [[− ∗ a ∗ b]]2η,ρ. From
the rewriting ([1, 2], [2]) = ([1], []) · ([2], [2]), we get
([1, 2], [2]) ∈ [[a ∗ a]]2η,ρ too and so this pair of heaps
lies in the interpretation of the left hand side. But
it does not belong to the interpretation of either dis-
junct. An easy – if somewhat indirect – way of real-
izing this is to note that any pair of heaps in either
[[−]]2η,ρ or in [[a ∗ a]]2η,ρ must have a second component
with nonempty domain. But then any pair of heaps in

the interpretation of either disjunct must have a second
component with a domain of at least two elements. In
particular, neither can contain the pair ([1, 2], [2]).

In principle, the above two observations are all that
we need to prove completeness. Or, phrased differently,
assume that we have a layout of variables that fail the
criteria of all three lifting theorems; by applying one
of the two observations, we can then build a concrete
implication with that variable layout and with unary
but not binary validity.

Having said that, the territory to cover is huge; the
full completeness proof is a lengthy and rather techni-
cal journey, the details of which do not provide much
insight. We supply it as a series of lemmas in Appendix
D; these include generalizations of Example 12 and Ex-
ample 13 above. If one verifies the lemmas in the order
listed and apply them as sketched then it is feasible, if
not exactly easy, to prove the following:

Theorem 14 (Completeness) If a variable layout
meets none of the criteria in Theorems 8, 10 and 11,
then there are choices of ϕi’s and ψj’s with no variables
such we have unary but not binary validity.

5 Higher Arities and Parametricity

We saw in Proposition 7 that the PC implies binary
η-validity of an implication. It is easy to show that the
PC also implies unary η-validity, either directly or by
observing that binary implies unary. A natural ques-
tion to ask is whether we can reverse this? Example 12
shows that unary validity does not entail the PC, be-
cause the latter fails for that concrete implication. But
as binary validity fails too, we could hope that binary
validity would enforce the PC. Unfortunately, this is
not the case, as demonstrated by the implication

1↪→ ∧ a ∗ a ∗ b =⇒ 1↪→ ∗ a ∨ 1↪→ ∗ b.

Here the PC is the same as for Example 12 and hence
still is not true, but we do have binary validity. We
do not, however, have ternary validity but the example
could easily be scaled: having n occurrences of a in the
second conjunct means n-ary but not n+1-ary validity
for any n ≥ 1. In summary, we have seen that for any
n ≥ 1 we can have n-ary validity whilst the PC fails.

What does hold, however, is the following:

Theorem 15 For an implication of the form (1) and
an appropriate environment η we have that n-ary η-
validity implies the PC if n ≥ max{M1, . . . ,MM}.

Notice how this fits nicely with the above example:
with n occurrences of a we have n-ary validity but we
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need (n+1)-ary validity to prove the PC since there is
also a single b. The proof is in Appendix E, and reuses
techniques from the proofs of Theorems 8 and 10.

By an easy generalization of Proposition 7 we have
the following corollary to the above theorem:

Corollary 16 The PC holds iff we have n-ary η-
validity for all n ≥ 1.

This corollary can be read, loosely, as a coincidence
between parametric polymorphism as introduced by
Strachey [19] and relational parametricity as proposed
by Reynolds [18]: The PC corresponds to Strachey
parametricity in the loose sense that if it holds, then
there is an approach, parametric in the assertion vari-
ables, that produce right hand side proofs of heap mem-
bership from the left hand side ones: Take a heap, split
it along the conjuncts, apply the PC to the parts in
the interpretations of the ϕ’s and you are done, pos-
sibly after discarding some variables. This involves no
branching or other intrinsic operations on the assertion
variables, which we are free to discard by our intuition-
istic setup. If, on the other hand, the implication is
η-valid for arbitrary arity, then it is fair to call it re-
lationally parametric. Note also that the Examples 12
and 13 branch on assertion variable values.

This result is analogous to the conjecture of coin-
cidence between Strachey parametricity and n-ary re-
lational parametricity for traditional type-based para-
metricity [17, Page 2].

Finally we note that as a consequence of the above
corollary we have that the lifting theorems in the pre-
vious really show that unary validity can be lifted
to validity of arbitrary arity. In some sense, they
are stronger than required for representation indepen-
dence, for which binary validity suffices. The authors
are unaware of any practical applications of this fact.

6 Representation Independence

In this section, we relate our lifting theorems to
representation independence. We consider separation
logic with assertion variables where the rule of con-
sequence is restricted according to our lifting theo-
rems, and we define a relational semantics of the logic,
which gives a representation independence theorem:
all proved clients cannot distinguish between appro-
priately related module implementations. For space
reasons, our presentation will be minimalistic, covering
only a part of the logic; the missing parts, in particu-
lar allocation of new cells, we believe, can be handled
using FM sets, following [6].

We consider commands C given by the grammar:

C ::= k | [E]:=E | let y=[E] inC | C;C | if BC C

Chk(ϕ′, ϕ) ϕ′ |=1 ϕ {ϕ}C{ψ} ψ |=1 ψ′ Chk(ψ,ψ′)
{ϕ′}C{ψ′}

{ϕ}C{ϕ′}
{ϕ ∗ ψ}C{ϕ′ ∗ ψ}

{ϕ}C{ψ}
{∃x. ϕ}C{∃x. ψ}

x 6∈FV(C)

Γ, {ϕ}k{ψ} ` {ϕ}k{ψ} {E↪→ }[E]:=F{E↪→F}
{ϕ ∗E↪→x}letx=[E] inC{ψ}
{∃x.ϕ ∗E↪→x}letx=[E] inC{ψ}

x 6∈FV(ψ)

{ϕ}C{ϕ′} {ϕ′}C ′{ψ}
{ϕ}C;C ′{ψ}

{ϕ ∧B}C{ψ} {ϕ ∧ ¬B}C ′{ψ}
{ϕ}if BC C ′{ψ}

Figure 4. Proof Rules

Here B is a heap-independent boolean expression, such
as x=0. Commands C are from the loop-free simple
imperative language. They can call module operations
k, and manipulate heap cells; command [x]:=E assigns
E to the heap cell x, and this assigned value is read
by let y=[x] inC, which also binds y to the read value
and runs C under this binding.

Properties of commands C are specified using Hoare
triples Γ ` {ϕ}C{ψ}, where the context Γ is a set of
triples for module operations. Figure 4 shows rules
for proving these properties. In the figure, we omit
contexts, if the same context Γ is used for all the triples.

The rule of consequence deserves attention. Note
that the rule uses semantic implications |=1 in the
standard unary interpretation, thus allowing the use of
existing theorem provers for (higher-order) separation
logic. The rule does not allow all semantic implica-
tions, but only those that pass our algorithm Chk, so
as to ensure that the implications can lift to the re-
lational level. Our algorithm Chk(ϕ,ψ) performs two
checks, and returns true only when both succeed. The
first check is whether ϕ and ψ can be transformed to
simple assertions ϕ′ and ψ′, using only the distribution
of ∗ over ∃x and ∨ and distributive lattice laws for ∨
and ∧. If this check succeeds and gives ϕ′ and ψ′, the
algorithm transforms ϕ′ |=1 ψ′ to a set of implications
of the form (1) in Section 4 (Lemma 4). Then, it uses
the method outlined just before Section 4.1, and does
the second check on whether all the implications in the
resulting set lift to the relational level.

Commands C are interpreted in a standard way, as
functions of the type: [[C]]η,u ∈ Heap→ (Heap∪{err}).
Here err denotes a memory error, and η and u are en-
vironments that provide the meanings of, respectively,
free ordinary variables and module operations. For in-
stance, [[k]]η,u is u(k).

Our semantics of triples, on the other hand, is not
standard, and uses the binary interpretation of asser-
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tions: (η, ρ,u) |=2 {ϕ}C{ψ} iff

∀r ∈ IRel2. ∀f, g ∈ Heap. (f, g)∈ [[ϕ]]2η,ρ ∗ r =⇒
([[C]]η,u1(f), [[C]]η,u2(g)) ∈ [[ψ]]2η,ρ ∗ r.

The environment ρ provides the meanings of assertion
variables, and the 2-dimensional vector u gives the two
meanings for module operations; intuitively, each ui
corresponds to the i-th module implementation. The
interpretation means that if two module implementa-
tions u are used by the same client C, then these com-
binations should result in the same computation, in the
sense that they map ϕ-related input heaps to ψ-related
outputs. The satisfaction of triples can be extended to
(η, ρ,u) |=2 Γ, by asking that all triples in Γ should
hold wrt. (η, ρ,u). Using these satisfaction relations on
triples and contexts, we define the notion of 2-validity
of judgements: Γ ` {ϕ}C{ψ} is 2-valid iff

∀(η, ρ,u). (η, ρ,u) |=2 Γ =⇒ (η, ρ,u) |=2 {ϕ}C{ψ}.

Theorem 17 Every derivable Γ` {ϕ}C{ψ} is 2-valid.

It is this theorem that we use to derive the represen-
tation independence results mentioned in the introduc-
tion. Consider again the example in Figure 1. Since the
proof of the left hand side client C is derivable using
the above rules, with Γ being the interface specification
for the operations of the counter, we get 2-validity of
Γ ` {1↪→ }C{1↪→ }. Therefore, when we run the client
C with the related module implementations in the in-
troduction, we find that C maps [[1↪→ ]]2-related heaps
(i.e, heaps with the same value at cell 1) to [[1↪→ ]]2-
related heaps again.

7 Conclusion and Discussion

In this paper, we have given a sound and com-
plete characterization of when semantic implications
between assertions in higher-order separation logic can
be lifted to a relational interpretation. This characteri-
zation has, then, been used to identify proofs of clients
that respect the abstraction of module internals, spec-
ified by means of assertion variables, and to show rep-
resentation independence for clients with such proofs.
We hope that our results provide a solid semantic basis
for recent logic-based approaches to data abstraction.

In earlier work, Banerjee and Naumann [2] stud-
ied relational parametricity for dynamically allocated
heap objects in a Java-like language. Banerjee and
Naumann made use of a non-trivial semantic notion of
confinement to describe internal resources of a mod-
ule; here instead we use higher-order separation logic
to describe which resources are internal to the module.

Relational interpretations have also been used to
give models of programming languages with local state,
which can validate representation independence re-
sults [13, 16, 3, 1]. These results typically rely on the
module allocating the private state, whereas we use
the power of separation logic and allow the ownership
transfer of states from client to module. For instance,
in the two-stage counter in the introduction, the own-
ership of the cell 1 is transferred from the client to
the module upon calling init. Even with this own-
ership transfer, representation independence is guar-
anteed, because we consider only those clients having
(good) proofs in separation logic. This contrasts with
representation independence results in local state mod-
els, which consider not some but all well-typed clients.
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A Proofs of Lemma 2 and Lemma 3

Lemma 2 Function ∆n preserves the complete lattice
structure and the ∗ operator.

Proof: From the definition, it is immediate that
∆n(Heap) = Heapn and ∆n(∅) = ∅. Now consider a
non-empty family {pi}i∈I of predicates in IRel1. In or-
der to show the preservation of the complete lattice
structure, we need to prove that

∆n(
⋂
i∈I

pi) =
⋂
i∈I

∆n(pi) ∧
⋃
i∈I

∆n(pi) = ∆n(
⋃
i∈I

pi).

The ⊆ direction in both cases is easy; it follows from
the monotonicity of ∆n.

We start with the ⊇ direction for the meet operator.
Pick (h1, . . . , hn) from

⋂
i∈I ∆n(pi). Then,

∀i ∈ I. (h1, . . . , hn) ∈ ∆n(pi).

By the definition of ∆n, this means that

∀i ∈ I. ∃fi ∈ pi. fi v h1 ∧ . . . ∧ fi v hn. (2)

Let f =
∑
i∈I fi. The sum here is well-defined, because

(a) there are only finitely many f ’s such that f v hk for
all 1 ≤ k ≤ n, and (b) any two such f and g should have
the same value for every location in dom(f) ∩ dom(g).
Since all fi’s satisfy (2), their sum f also satisfies

f v h1 ∧ . . . ∧ f v hn.

Furthermore, f ∈
⋂
i∈I pi, because pi’s are upward

closed and f is an extension of fi in pi. Hence,
∆n(

⋂
i∈I pi) ⊆

⋂
i∈I ∆n(pi).

Next we prove the ⊇ direction for the join operator.
Pick (h1, . . . , hn) from ∆n(

⋃
i∈I pi). Then,

∃i ∈ I. ∃f ∈ pi. f v h1 ∧ . . . ∧ f v hn.

Hence, by the definition of ∆n,

(h1, . . . , hn) ∈ ∆n(pi) ⊆
⋃
i∈I

∆n(pi),

as desired.
Finally, it remains to show that ∆n preserves the ∗

operator. Consider predicates p, q ∈ IRel1. We need to
prove that

∆n(p ∗ q) = ∆n(p) ∗∆n(q).

Choose an arbitrary (h1, . . . , h1) from ∆n(p ∗ q). By
the definition of ∆n(p ∗ q), it follows that

∃f ∈ p. ∃g ∈ q. (dom(f) ∩ dom(g) = ∅) ∧
f v h1 ∧ . . . ∧ f v hn ∧ g v h1 ∧ . . . ∧ g v hn.

Now, define fi = f and gi = hi − f for i ∈ {1, . . . , n}.
Then,

(∀i ∈ {1, . . . , n}. fi · gi = hi)
∧ (f1, . . . , fn) ∈ ∆n(p) ∧ (g1, . . . , gn) ∈ ∆n(q).

Hence, (h1, . . . , hn) ∈ ∆n(p) ∗∆n(q). This shows that
∆n(p ∗ q) ⊆ ∆n(p) ∗ ∆n(q). For the other inclusion,
suppose that

(h1, . . . , h1) ∈ ∆n(p) ∗∆n(q).

Then, by the definition of ∗,

∃(f1, . . . , fn) ∈ ∆n(p). ∃(g1, . . . , gn) ∈ ∆n(q).
(∀i ∈ {1, . . . , n}. fi · gi = hi).

Since (f1, . . . , fn) ∈ ∆n(p) and (g1, . . . , gn) ∈ ∆n(q),
there are f ∈ p and g ∈ q such that

f v f1 ∧ . . . ∧ f v fn ∧ g v g1 ∧ . . . ∧ g v gn.

Furthermore, since f1 and g1 have disjoint domains,
their subheaps f and g must have disjoint domains as
well. Consequently, f · g is well defined, and it satisfies

f · g ∈ p ∗ q ∧ (∀i ∈ {1, . . . , n}. f · g v fi · gi v hi).

This implies that (h1, . . . , hn) ∈ ∆n(p ∗ q), as desired.

Lemma 3 For all ϕ and η, ρ, ρ′, if ∆n(ρ(a)) = ρ′(a)
for every a ∈ AVar, we have that ∆n([[ϕ]]1η,ρ) = [[ϕ]]nη,ρ′ .

Proof: We prove by induction on the structure of ϕ.
All the inductive cases and the cases of true and false
follow from the preservation result of Lemma 2. Thus,
it is sufficient to show the lemma when ϕ ≡ a or ϕ ≡ P .
When ϕ ≡ a, the assumption of the lemma implies that

∆n([[a]]1η,ρ) = ∆n(ρ(a)) = ρ′(a) = [[a]]nη,ρ′ .

When ϕ ≡ P , we note that ∆n◦∆1 = ∆n, and conclude
that

∆n([[P ]]1η,ρ) = ∆n(∆1(LP Mη)) = ∆n(LP Mη) = [[P ]]nη,ρ′ .

B Proof of Lemma 4

Lemma 4 There is an algorithm taking simple as-
sertions ϕ,ψ and returning finitely many implica-
tions {ϕl =⇒ ψl}l∈L, such that (a) ϕl =⇒ ψl has the
form (1) and (b) for any n ∈ {1, 2}, we have that
ϕ |=n ψ holds iff ϕl |=n ψl holds for all l ∈ L.

11



Proof: The algorithm first transforms ψ in the con-
junctive normal form, using proof rules in classical
logic, which hold in all the n-ary semantics. This gives
an implication of the form:

I∨
i=1

J∧
j=1

ϕ(i,j) ∗ a(i,j) =⇒
K∧
k=1

L∨
l=1

ψ(k,l) ∗ b(k,l).

Then, the algorithm constructs the below set:
J∧
j=1

ϕ(i,j) ∗ a(i,j) =⇒
L∨
l=1

ψ(k,l) ∗ b(k,l)


1≤i≤I,1≤k≤K

.

Finally, it removes, in each implication, all the dis-
juncts that include assertion variables not appearing
on the LHS of the implication. The outcome of this
removal becomes the result of the algorithm.

C Layouts that Lift

Lemma 18 (Segregation) For any I, J ≥ 1 there
are non-empty, finite segregating subsets SI,Ji,j ⊆ PosInt
for all 1 ≤ i ≤ I and 1 ≤ j ≤ J with these properties:

1. ∀1≤ i1, i2≤ I.
⋃

1≤j≤J SI,Ji1,j =
⋃

1≤j≤J SI,Ji2,j .

2. ∀1≤ i≤ I. ∀1≤ j1 6= j2≤ J. SI,Ji,j1 ∩ SI,Ji,j2 = ∅.

3. ∀1≤ i1 6= i2≤ I. ∀1≤ j1, j2≤ J. SI,Ji1,j1∩SI,Ji2,j2 6= ∅.

By 1 we define SI,J =
⋃

1≤j≤J SI,Ji,j for any 1 ≤ i ≤ I.

Theorem 8 (Shadow-Lift) Unary η-validity of an
implication implies the PC if each dashed line has a
label that is not a label on a solid line and each disjunct
has an occurrence of a variable that is not a label on a
solid line. Spelling it out in symbols, we require, with
L = {(i, j) | 1 ≤ i ≤M ∧ 1 ≤ j ≤ N}, that

∀(i, j) ∈ L. Π(i) � Ω(j) =⇒
∃c ∈ V. Π(i)(c) < Ω(j)(c) ∧(
∀(k, l) ∈ L. Π(k) ≥ Ω(l) =⇒ Π(k)(c) = Ω(l)(c)

)
and

∀1 ≤ j ≤ N. ∃c ∈ V. Ω(j)(c) > 0 ∧(
∀(k, l) ∈ L. Π(k) ≥ Ω(l) =⇒ Π(k)(c) = Ω(l)(c)

)
.

Proof: Assume that we have an implication of the
form (1) in Section 4 and an appropriate environment
η, that the stated criterion on the variable layout holds
and that we have unary η-validity. We must show that
the PC holds.

According to Definition 6 we assume that we have
heaps h, h1, . . . , hM ∈ Heap with hi v h and hi ∈ [[ϕi]]1η
for all 1 ≤ i ≤ M . The core of the proof is the con-
struction of a particular environment ρ : V → IRel1.
For that purpose we need some notation. For a subset
M ⊆ PosInt we denote by [M ] the heap that has do-
main M and stores some fixed value, say 0, at all these
locations. Let C ⊆ V be the set of assertion variables
that do not occur as labels on solid edges, i.e., for a
c ∈ V we have that c ∈ C iff

∀1 ≤ i ≤M. ∀1 ≤ j ≤ N.
Π(i) ≥ Ω(j) =⇒ Π(i)(c) = Ω(j)(c).

For each 1 ≤ i ≤ M we let Ki be the set of second
indices of all variables in conjunct i that lie in C, i.e.,
we set Ki = {1 ≤ k ≤ Mi | ai,k ∈ C}. If non-empty,
we let ki = min(Ki).

We now define ρ(c) = Heap for c ∈ V \ C. For a
variable c ∈ C we let ρ(c) be the union of⋃

1 ≤ i ≤M,
Ki 6= ∅,
ai,ki

≡ c

(h−hi) · [SM,K
i,ki

+L] ·
∏

1 ≤ k ≤ K,
k /∈ Ki

[SM,K
i,k +L]

and ⋃
1≤i≤M,Ki 6=∅,k∈Ki\{ki},ai,k≡c

[SM,K
i,k + L],

where we have used K = max{M1, . . . ,MM} and L =
max(dom(h) ∪ {0}). For each 1 ≤ i ≤M we can write
h · [SM,K + L] as the following product

hi · (h− hi) ·
∏
k∈Ki

[SM,K
i,k + L] ·

∏
1≤k≤K,k/∈Ki

[SM,K
i,k + L],

which implies that we have h · [SM,K +L] a member of
[[ϕi ∗ ai,1 ∗ · · · ∗ ai,Mi

]]1η,ρ. In summary, we have shown
that h · [SM,K + L] lies in the unary interpretation of
the left hand side in the environments η and ρ. By
assumption, the same must hold for the right hand side
and from this we aim to derive the PC.

We now know that h · [SM,K + L] lies in the inter-
pretation of some disjunct, say disjunct j. This means
that

h · [SM,K + L] ∈ [[ψj ∗ bj,1 ∗ · · · ∗ bj,Nj
]]1η,ρ

= [[ψj ]]1η ∗
∏
k∈J

ρ(bj,k),

where J = {1 ≤ k ≤ Nj | bj,k ∈ C} is the set of second
indices of variables of disjunct j that are in C. By the
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second assumption of the theorem we know that J 6= ∅.
We write

h · [SM,K + L] = g ·
∏
k∈J

gk

for g ∈ [[ψj ]]1η and gk ∈ ρ(bj,k) for each k ∈ J . By the
properties of segregating sets we get that there must
be a common 1 ≤ i ≤ M such that for all k ∈ J there
is lk ∈ Ki with

[SM,K
i,lk

+ L] v gk,

i.e., the gk’s are all ‘from the same conjunct’. But this
implies Π(i)(c) ≥ Ω(j)(c) for all c ∈ C as the segre-
gating sets are non-empty. But then Π(i)(c) ≥ Ω(j)(c)
must hold for c ∈ V \ C too by the first assumption
of the lemma and so Π(i) ≥ Ω(j). Also we must have
Π(i)(c) = Ω(j)(c) for each c ∈ C by definition of C.
By construction we have

dom

(∏
k∈J

gk

)
⊇ dom(h− hi) ∪ (SM,K + L)

But then dom(g) ⊆ hi and so we have hi ∈ [[ψj ]]1η too
and we have proved the first option of the PC.

Theorem 10 (Balloon-Lift) Unary η-validity of an
implication implies the PC if there is a subset B ⊆ V
with the following three properties. First, each conjunct
has at most one occurrence of a variable from B, i.e.,

∀1 ≤ i ≤M.
∑
c∈B

Π(i)(c) ≤ 1.

Second, each disjunct is empty or has exactly one oc-
currence of a variable from B, i.e.,

∀1 ≤ j ≤ N.
∑
c∈V

Ω(j)(c) = 0 ∨
∑
c∈B

Ω(j)(c) = 1.

Third, each dashed line must have a label from B. That
is, when L = {(i, j) | 1 ≤ i ≤M ∧ 1 ≤ j ≤ N},

∀(i, j)∈L. Π(i) � Ω(j) =⇒ ∃c∈B. Π(i)(c) < Ω(j)(c).

Proof: Assume that we have an implication of the
form (1) in Section 4 and an appropriate environment
η, that the stated criterion on the variable layout holds
and that we have unary η-validity. We must show that
the PC holds.

According to Definition 6 we assume that we have
heaps h, h1, . . . , hM ∈ Heap with hi v h and hi ∈ [[ϕi]]1η
for all 1 ≤ i ≤ M . The core of the proof is the con-
struction of a particular environment ρ : V → IRel1.

We define ρ(c) = Heap for c ∈ V \ B. For a variable
c ∈ B we let ρ(c) be the following union⋃

1≤i≤M,1≤k≤Mi,ai,k≡c

h− hi.

For each 1 ≤ i ≤M we can write h = hi · (h− hi) and
so we have h in [[ϕi ∗ ai,1 ∗ · · · ∗ ai,Mi ]]

1
η,ρ by the first

of the original assumption on the set B. In summary,
we have shown that h lies in the unary interpretation
of the left hand side in the environments η and ρ. By
assumption, the same must hold for the right hand side
and from this we aim to derive the PC.

We now know that h lies in the interpretation of
some disjunct, say disjunct j. If this disjunct is empty
we have proved the second option of the PC. Otherwise
we know that there is exactly one 1 ≤ k ≤ Nj such that
bj,k ∈ B. But then we have

h ∈ [[ψj ∗ bj,1 ∗ · · · ∗ bj,Nj
]]1η,ρ = [[ψj ]]1η ∗ ρ(bj,k).

We write
h = g · gk

for g ∈ [[ψj ]]1η and gk ∈ ρ(bj,k). There must be an 1 ≤
i ≤M such that gk w h−hi and such that Π(i)(bj,k) =
Ω(j)(bj,k) = 1. The first gives hi ∈ [[ψj ]]1η and the
second implies Π(i) ≥ Ω(j) by the third assumption on
B. And we have arrived at the first option of the PC.

D Completeness

Lemma 19 (Fan-Counter) Suppose that the layout
of variables is as follows. There are at least two con-
juncts, i.e., M ≥ 2, and one conjunct has the property
that each variable occurring in the conjunct also occurs
as a label of a solid line leaving the conjunct and ending
in a non-empty disjunct. In symbols the latter is

∃1 ≤ i ≤M. ∀c ∈ V. Π(i)(c) > 0 =⇒
∃1 ≤ j ≤ N. Π(i) ≥ Ω(j) ∧Π(i)(c) > Ω(j)(c) ∧
∃d ∈ V. Ω(j)(d) > 0.

Then there are choices of ϕi’s and ψj’s with no vari-
ables such that the implication holds on the unary level
but not on the binary level.

In the search for counterexamples we may without loss
of generality assume the negation of the conditions of
the above lemma. This means, provided at least two
conjuncts, that for any non-empty set of solid lines
leaving one common conjunct and ending in non-empty
disjuncts there is a variable that occurs in the conjunct
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but is not a label of either of the lines. If, loosely
phrased, we invalidate that variable, then all the solid
lines break down, i.e., become dashed.

Lemma 20 (X-Counter) Suppose that the layout of
variables is as follows. There are two distinct con-
juncts i0 and i1 and two distinct non-empty disjuncts
j0 and j1 such that Π(i0) � Ω(j0) while Π(i0) ≥ Ω(j1),
Π(i1) ≥ Ω(j0) and Π(i1) ≥ Ω(j1). Then there are
choices of ϕi’s and ψj’s that the implication holds on
the unary level but not on the binary level.

Again we may without loss of generality assume that
the negation of this lemma holds when building coun-
terexamples. Picture the graph of the implication with-
out empty disjuncts and without dashed lines. The
negation of the above means that we may arrive at all
vertices in the connected component containing some
vertex by paths from that vertex of length 2 or less.
Also all connected components are complete, in partic-
ular no two vertices with a dashed line between them
can belong to the same component.

Lemma 21 (Bridge-Counter) Suppose that the lay-
out of variables is as follows. There are at least two
conjuncts, i.e., M ≥ 2, all disjuncts are non-empty
and there is a dashed line with labels that all occur as
labels on solid lines too. In symbols the last demand is

∃1 ≤ i ≤M. ∃1 ≤ j ≤ N. Π(i) � Ω(j) ∧
∀c ∈ V. Π(i)(c) < Ω(j)(c) =⇒
∃1 ≤ k ≤M. ∃1 ≤ l ≤ N.

Π(k) ≥ Ω(l) ∧Π(k)(c) > Ω(l)(c).

Then there are choices of ϕi’s and ψj’s with no vari-
ables such that the implication holds on the unary level
but not on the binary level.

This lemma deals with the case of a variable layout
with at least two conjuncts and no empty disjuncts
but where the first condition of Theorem 8 fails.

Lemma 22 (All-Out-Counter) Suppose that the
layout of variables is as follows. There are at least
two conjuncts, i.e., M ≥ 2, at least one non-empty
disjunct and for each variable one of the following two
holds: Either the variable occurs as a label on a solid
line ending in a non-empty disjunct. Or it occurs at
least twice in a conjunct and we have an empty dis-
junct. In symbols the variable condition is

∀c ∈ V.
(
∃1 ≤ i ≤M. ∃1 ≤ j ≤ N. Π(i) ≥ Ω(j) ∧

Π(i)(c) > Ω(j)(c) ∧ ∃d ∈ V. Ω(j)(d) > 0
)
∨(

∃1 ≤ i ≤M. Π(i)(c) ≥ 2 ∧
∃1 ≤ j ≤ N. ∀d ∈ V. Ω(j)(d) = 0

)
.

Then there are choices of ϕi’s and ψj’s ϕi’s and ψj’s
with no variables such that the implication holds on the
unary level but not on the binary level.

This lemma deals with two cases. The first is the case
of a variable layout with at least two conjuncts and
no empty disjuncts but where the second condition of
Theorem 8 fails while the first holds. The second is the
case of a variable layout with at least two conjuncts, at
least one empty disjunct and no dashed lines for which
Theorem 10 fails.

E Higher Arities and Parametricity

Theorem 15 For an implication of the form (1) and
an appropriate environment η we have that n-ary η-
validity implies the PC if n ≥ max{M1, . . . ,MM}.

Proof: Assume that we have an implication of the
form (1) in Section 4 and an appropriate environment
η, that n ≥ max{M1, . . . ,MM} and that we have n-
ary η-validity. We must show that the PC holds. We
consider only the case n ≥ 2, the case n = 1 proceeds
along the lines of the proof of Theorem 10.

According to Definition 6 we assume that we have
heaps h, h1, . . . , hM ∈ Heap with hi v h and hi ∈ [[ϕi]]1η
for all 1 ≤ i ≤ M . The core of the proof is the con-
struction of a particular environment ρ : V → IReln.
For that purpose we need some notation. Define, for
each 1 ≤ k ≤ n, a map γk : Heap→ Heapn by letting

γk(h) =
( k−1︷ ︸︸ ︷

[], . . . , [], h,

n−k︷ ︸︸ ︷
[], . . . , []

)
for any h ∈ Heap, i.e., it returns the n-tuple that has h
as the k-th entry and the empty heap everywhere else.
Similarly, we define δ : Heap→ Heapn by setting

δ(h) =
( n︷ ︸︸ ︷
h, . . . , h

)
for any h ∈ Heap, i.e., it returns the n-tuple that has
h as all entries. For a subset M ⊆ PosInt we denote
by [M ] the heap that has domain M and stores some
fixed value, say 0, at all these locations.

For a variable c ∈ V we now define ρ(c) to be the
following union of relations in IReln:⋃

1≤i≤M,1≤k≤Mi,a(i,k)≡c

{γk(h− hi) · γ1([SM,K
i,k + L])}↑

where K = max{M1, . . . ,MM}, L = max(dom(h)).
This is well-defined because of our assumption that n ≥
max{M1, . . . ,MM}. For each 1 ≤ i ≤M we have that

δ(h) = δ(hi) · γ1(h− hi) · · · · · γn(h− hi)
w δ(hi) · γ1(h− hi) · · · · · γMi(h− hi)
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where we use the extension order for heap tuples de-
fined by pointwise extension in all entries. Also, we
have that

[SM,K + L] = [SM,K
i,1 + L] · · · · · [SM,K

i,K + L]

w [SM,K
i,1 + L] · · · · · [SM,K

i,Mi
+ L].

This gives us that δ(h) · γ1([SM,K + L]) extends the
following n-tuple of heaps:

δ(hi) ·
∏

1≤k≤Mi

γk(h− hi) · γ1([SM,K
i,k + L])

which again means that δ(h) · γ1([SM,K + L]) lies in

[[ϕi ∗ ai,1 ∗ · · · ∗ ai,Mi
]]nη,ρ.

In summary, we have shown that δ(h) · γ1([SM,K +L])
lies in the n-ary interpretation of the left hand side in
the environments η and ρ. By assumption, the same
must hold for the right hand side and from this we aim
to derive the PC.

There is 1 ≤ j ≤ N such that we have

δ(h) · γ1([SM,K + L]) ∈ [[ψj ∗ bj,1 ∗ · · · ∗ bj,Nj
]]nη,ρ.

Consider first the case of a non-empty disjunct, i.e., the
case Nj > 0. We split along the disjunct and get

δ(h) · γ1([SM,K + L]) = δ(g) · g1 · · · · · gNj

for g ∈ [[ψj ]]1η and gk ∈ ρ(bj,k) for all 1 ≤ k ≤ Nj .
By the properties of segregating sets we get that there
must be a common 1 ≤ i ≤ M such that for all 1 ≤
k ≤ Nk there is 1 ≤ kk ≤Mi with

γkk
(h− hi) · γ1([SM,K

i,kk
+ L]) v gk,

i.e., the gk’s are all ‘from the same conjunct’. But
this implies Π(i) ≥ Ω(j) as the segregating sets are
non-empty. Also the above equality enforces dom(g) ⊆
dom(h) by the definition of γ1. Indeed we must have
dom(g) ⊆ dom(hi) since in particular we have

γ1k
(h− hi) · γ1([SM,K

i,1k
+ L]) v g1.

But then g v hi so we have hi ∈ [[ψj ]]1η too and the first
option of the PC holds.

We consider now the case of an empty disjunct, i.e.,
the case Nj = 0. As above we split along the disjunct
and get

δ(h) · γ1([SM,K + L]) = δ(g) · g

for g ∈ [[ψj ]]1η and g ∈ Heapn. Again we must have
dom(g) ⊆ dom(h) which implies g v h and the second
option of the PC holds.

F Proof of Theorem 17

Theorem 17 Every derivable Γ` {ϕ}C{ψ} is 2-
valid.

Proof: We will show that all the rules in Figure 4 are
sound. This lets us prove the theorem by induction
on the height of the derivation of a judgment, because
using the soundness of the rules, we can handle all the
base and inductive cases.

Let’s start with the rule for the module operation k.
Suppose that (η, ρ,u) |=2 (Γ, {ϕ}k{ψ}). Then, by the
definition of |=2, we should have (η, ρ,u) |=2 {ϕ}k{ψ}
as well. From this follows the soundness of the rule.

Next, consider four rules: (a) the frame rule for
adding − ∗ ϕ to the pre and post-conditions, (b) the
rule for adding ∃x to the pre and post-conditions, (c)
the rule for sequencing, and (d) the rule for the condi-
tional statement. All these rules are sound, because of
the following four facts:

(η, ρ,u) |=2 {ϕ}C{ϕ′}
=⇒ (η, ρ,u) |=2 {ϕ ∗ ψ}C{ϕ′ ∗ ψ}

(x 6∈ FV(C)) ∧ (η, ρ,u) |=2 {ϕ}C{ψ}
=⇒ (η, ρ,u) |=2 {∃x.ϕ}C{∃x.ψ}

(η, ρ,u) |=2 {ϕ}C{ϕ′} ∧ (η, ρ,u) |=2 {ϕ′}C ′{ψ}
=⇒ (η, ρ,u) |=2 {ϕ}C;C ′{ψ}

(η, ρ,u) |=2 {ϕ ∧B}C{ψ} ∧
(η, ρ,u) |=2 {ϕ ∧ ¬B}C ′{ψ}

=⇒ (η, ρ,u) |=2 {ϕ}if BC C ′{ψ}

The first fact is an easy consequence of using the quan-
tification over IRel2 in the semantics of triples. The sec-
ond also follows easily from the semantics of triples and
the fact that [[C]]η,ui = [[C]]η[x7→v],ui

for all v ∈ Int, as
long as one remembers that the ∗ operator distributes
over union. The third and fourth are not different,
and they follow from the semantics of triples and com-
mands. Here we will go through the details of proving
the fourth fact. Consider (η, ρ,u) satisfying the as-
sumption of the fact. Pick r ∈ IRel2 and heaps f, g
such that

(f, g) ∈ [[ϕ]]2η,ρ ∗ r.

Now we do the case analysis on whether [[B]]η is true
or not. If it is true, then

(f, g) ∈ [[ϕ ∧B]]2η,ρ ∗ r
∧ [[if BC C ′]]η,u1(f) = [[C]]η,u1(f)

∧ [[if BC C ′]]η,u2(g) = [[C]]η,u2(g).
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Hence, by assumption, we get that(
[[if BC C ′]]η,u1(f), [[if BC C ′]]η,u2(g)

)
=

(
[[C]]η,u1(f), [[C]]η,u2(g)

)
∈ [[ψ]]2η,ρ ∗ r.

If [[B]]η is not true, we reason similarly, but with C ′

instead of C, and get that(
[[if BC C ′]]η,u1(f), [[if BC C ′]]η,u2(g)

)
∈ [[ψ]]2η,ρ ∗ r.

We have just shown that in both cases, the outcomes
of the conditional statements are related by [[ψ]]2η,ρ ∗ r,
as claimed by the fourth fact.

We move on to the rules for heap update and deref-
erence. They are sound because of the below two facts:

(η, ρ,u) |=2 {E↪→ }[E]:=F{E↪→F}

x 6∈ FV(ψ) ∧ (η, ρ,u) |=2 {ϕ ∗E↪→x}letx=[E] inC{ψ}
=⇒ (η, ρ,u) |=2 {∃x.ϕ ∗E↪→x}letx=[E] inC{ψ}

To prove the first, we pick (η, ρ,u), a relation r ∈ IRel2
and heaps f, g such that

(f, g) ∈ [[E ↪→ ]]2η,ρ ∗ r.

Then, there exist heaps h, f1, g1 such that

(f, g) = (h, h)·(f1, g1) ∧ [[E]]η ∈ dom(h) ∧ (f1, g1) ∈ r.

Thus,

( [[[E]:=F ]]η,u1(f), [[[E]:=F ]]η,u2(g) )

=
(
h[[[E]]η 7→[[F ]]η] · f1, h[[[E]]η 7→[[F ]]η] · g1

)
∈ [[E↪→F ]]2η,ρ ∗ r,

as desired by the first fact. For the proof of the second
fact, suppose that the assumption of the second fact
holds, and pick r ∈ IRel2 and heaps f, g such that

(f, g) ∈ [[∃x. ϕ ∗ E↪→x]]2η,ρ ∗ r.

Then, there exists an integer v and heaps h, f1, g1 such
that

(f, g) = (h, h) · (f1, g1) ∧ (f1, g1) ∈ r
∧ h ∈ [[ϕ ∗ E↪→x]]1η[x7→v],ρ.

Thus, (f, g) ∈ [[ϕ ∗ E↪→x]]1η[x 7→v],ρ ∗ r, and f([[E]]η) =
g([[E]]η) = v. Using these and the assumed triple of the
second fact, we derive the below:

( [[letx=[E] inC]]η,u1(f), [[letx=[E] inC]]η,u2(g) )

=
(

[[C]]η[x 7→v],u1(f), [[C]]η[x 7→v],u2(g)
)

∈ [[ψ]]2η[x 7→v],ρ ∗ r
= [[ψ]]2η,ρ ∗ r.

The last equality holds, because x does not appear in ϕ.
We have just proved that the output states of two deref-
erencing commands are ([[ψ]]2η,ρ ∗ r)-related, as claimed
by the second fact.

Finally, we prove that the rule of consequence is
sound. It is sufficient to show that

Chk(ϕ′, ϕ) ∧ ϕ′ |=1 ϕ ∧
Chk(ψ,ψ′) ∧ ψ |=1 ψ′ ∧ (η, ρ,u) |=2 {ϕ}C{ψ}

=⇒ (η, ρ,u) |=2 {ϕ′}C{ψ′}.

From the first four conjuncts of the assumption, it fol-
lows that

ϕ′ |=2 ϕ ∧ ψ |=2 ψ′.

This is due to the correctness of Chk, which holds
because all the transformations used in the first check
of Chk are based on semantic equivalences holding in
IRel2 and the second lifting check is sound because of
our lifting theorems. In order to prove the conclusion
of the above implication, pick r ∈ IRel2 and heaps f, g
such that

(f, g) ∈ [[ϕ′]]2η,ρ ∗ r.

Since the ∗ operator is monotone and ϕ′ |=2 ϕ, we get
that

(f, g) ∈ [[ϕ]]2η,ρ ∗ r.

This relationship and the assumed triple {ϕ}C{ψ},
then, imply the below:

( [[C]]η,u1(f), [[C]]η,u2(g) ) ∈ [[ψ]]2η,ρ ∗ r.

Again, since ψ |=2 ψ′, the monotonicity of the ∗ oper-
ator implies that

( [[C]]η,u1(f), [[C]]η,u2(g) ) ∈ [[ψ′]]2η,ρ ∗ r.

Note that this is the conclusion that we are looking for.

16


