
Verifying Event-Driven Programs using Ramified Frame
Properties

Neelakantan R. Krishnaswami
Microsoft Research

neelk@microsoft.com

Lars Birkedal
IT University of Copenhagen

birkedal@itu.dk

Jonathan Aldrich
Carnegie Mellon University

jonathan.aldrich@cs.cmu.edu

Abstract
Interactive programs, such as GUIs or spreadsheets, often maintain
dependency information over dynamically-created networks of ob-
jects. That is, each imperative object tracks not only the objects its
own invariant depends on, but also all of the objects which depend
upon it, in order to notify them when it changes.

These bidirectional linkages pose a serious challenge to verifi-
cation, because their correctness relies upon a global invariant over
the object graph.

We show how to modularly verify programs written using
dynamically-generated bidirectional dependency information. The
critical idea is to distinguish between the footprint of a command,
and the state whose invariants depends upon the footprint. To do
so, we define an application-specific semantics of updates, and in-
troduce the concept of a ramification operator to explain how local
changes can alter our knowledge of the rest of the heap. We illus-
trate the applicability of this style of proof with a case study from
functional reactive programming, and formally justify reasoning
about an extremely imperative implementation as if it were pure.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms languages, verification

Keywords separation logic, frame rule, ramification problem,
dataflow, functional reactive programming, subject-observer

1. Introduction
In many interactive programs, there are mutable data structures
which change over time, and which must maintain some relation-
ships with one another. For example, in a spreadsheet, each cell
contains a formula, which may refer to other cells, and whenever
the user changes a cell, all of the cells which transitively depend
upon it must be updated. Since spreadsheets can get very large, this
should ideally be done in a lazy way, so that only the cells visible
on the screen (and the cells necessary to compute them) are them-
selves recomputed.

Typically, these dependencies are written using the subject-
observer pattern. A mutable data structure (the subject) maintains

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI ’10 January 23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-891-9/10/01. . . $10.00

a list of all of the data structures whose invariants depend upon it
(the observers). Whenever it changes, it calls a function on each
observer to update it in response to the change. (And in turn, the
observers of the subject may be subjects of still other observers.)

While natural, these programs are very challenging to verify in
a modular way, even when using a resource-sensitive logic adapted
to reasoning about aliased mutable data, such as separation logic.
The reason is that there are two directions of dependency, both of
which matter for program proof. First, our program invariant must
have ownership over the subject’s data (its footprint) in order to
prove the correctness of code modifying the subject. This direction
of ownership is natural to verify with separation logic.

However, we must explicitly maintain the other direction of
dependency as well — we track everything which depends upon
the subject, and modify the dependent data appropriately whenever
the subject changes. Hence, the natural program invariant now
becomes a global property: we need to know the full dependency
graph covering all subjects and observers to express that the reads
and is-read-by relations are relational transposes of one another.
The global nature of this invariant means that a naive correctness
proof will not respect the modular structure of the program — if we
modify the dependency graph in any way, we now have to re-verify
the entire program!

But, the intention of the subject-observer pattern is precisely
to allow the program to remain oblivious to the exact number
and nature of the observers, so that the programmer may add
new observers without disturbing the behavior of the rest of the
program. Our goal, then, is to find a way of taking this piece of
practical software engineering wisdom, and casting it into formal
terms amenable to proof.

Concretely, our contributions are as follows:

• We define a library with a monadic API for writing demand-
driven computations with dynamic dependencies and local
state. This library is implemented using higher-order functions
dynamically creating networks of imperative callbacks.
We then give an “abstract semantics” for this library, structured
as a set of separation logic lemmas about our dataflow library.
These lemmas permit modular correctness proofs about pro-
grams using this API, even in the face of the fact that the pro-
gram invariants must be defined globally upon the whole call-
back network.
The key idea is to distinguish between the direct footprint of
a command, and the program state which depends upon that
footprint. The lemmas are then phrased so that they refer only
to the direct footprint of each command in the API. In addition,
we structure our lemmas to justify an unusual frame property
for our abstract semantics, which we can use to verify different
parts of an imperative dataflow network separately.

Unlike typical frame properties, the frame in our frame rule is
not the same in the pre- and the post-states. Instead, the two
sides of the frame are related by a ramification operator (so
named in analogy to the “ramification problem” in AI), which
explains how local changes can alter our knowledge of the rest
of the heap.
• To illustrate the utility of this proof technique, we verify an im-

perative implementation of combinators implementing stream
transducers in the style of functional reactive programming.
Ultimately, clients can reason about the behavior of the impera-
tive implementation as if it were purely functional, even though
it is implemented using local state and imperative callback pro-
cedures.

For space reasons, many of the detailed proofs have been omitted
from this extended abstract, but we emphasize that full proofs have
been carried out; in particular, each triple in the library specification
has been proven using the specification logic in Section 2.

2. Programming Language and Logic
The formal system we present has three layers. First, we have a core
programming language we call Idealized ML. It is a predicatively-
polymorphic functional language which isolates all side effects
inside a monadic type (Pfenning and Davies 2001). Our notion of
side effects includes nontermination in addition to the allocation,
access, and modification of general references (including pointers
to closures). Then, we give an assertion language based on higher-
order separation logic (Biering et al. 2007) to describe the state
of a heap. Separation logic allows us to give a clean treatment of
issues related to specifying and controlling aliasing, and higher-
order predicates allow us to abstract over the heap, hiding the exact
layout of a module’s heap data structures and thereby enforcing
encapsulation. Finally, we have a specification logic to describe
the effects of programs, which is a first-order logic whose atomic
propositions are Hoare triples {p}c{a : A. q}, which assert that if
the heap is in a state described by the assertion p, then executing the
command c will result in a postcondition state q (with the variable
a referring to the return value of the command).

Programming Language. The core programming language we
have formalized is an extension of the polymorphic lambda cal-
culus with a monadic type constructor to represent side-effecting
computations. The types of our language are the unit type 1, the
function space A → B, inductive types like the natural number
type N, the reference type ref A, as well as universal and existen-
tial types ∀α : κ. A and ∃α : κ. A.1

In addition, we have the monadic type ©A, which is the type
of suspended side-effecting computations producing values of type
A. Side effects include both heap effects (such as reading, writing,
or allocating a reference) and nontermination.

We maintain such a strong distinction between pure and impure
code for two reasons. First, it allows us to use strong equational rea-
soning principles for our language: we can validate the full β and η
rules of the lambda calculus for terms of non-monadic types, such
as functions, sums, and products. These rules simplify reasoning
even about imperative programs, because we can relatively freely
restructure the program source to follow the logical structure of a
proof. Second, when program expressions appear in assertions —
that is, the pre- and post-conditions of Hoare triples — they must
be pure. However, allowing a rich set of program expressions like

1 These quantifiers are actually all restricted to predicative quantification
(i.e., they can only be instantiated with terms lacking any quantifiers them-
selves) in order to keep the denotational semantics simple, though recent
work (Birkedal et al. 2009) has studied how to combine store with impred-
icative polymorphism.

function calls or arithmetic in assertions makes it much easier to
write specifications. So we restrict which types can contain side-
effects, and thereby satisfy both requirements.

The pure terms of the language are typed with a typing judgment
Θ; Γ ` e : A, which can be read as “In the type context Θ
and the variable context Γ, the pure expression e has type A.”
Computations are typed with the judgment Θ; Γ ` c ÷ A, which
can be read as “In the type context Θ and the variable context Γ,
the computation c is well-typed at type A .” The rules for both of
these judgments are standard and omitted.

We have 〈〉 as the inhabitant of 1, natural numbers z and s(e),
and functions λx : A. e. We also have the corresponding elimi-
nations for each type, including projections for products and case
statements for sum types. For the natural numbers, we add a primi-
tive iteration construct iter(e, ez, x. es). If e = z, this computes ez
, and if e = s(e′), it computes es[(iter(e′, ez, x. es))/x]. Bounded
iteration allows us to implement (for example) arithmetic opera-
tions as pure expressions. We will also freely make use of other
polynomial data types (such as sum types, lists, option types, and
trees) as needed.

Suspended computations [c] inhabit the monadic type ©A.
These computations are not immediately evaluated, which allows
us to embed them into the pure part of the programming language.
Furthermore, we can take fixed points fix x : D. e of terms, to give
us a general recursion. Because we wish to permit nonterminating
programs only at monadic types, we must restrict fix to a limited
family of typesD (given in Figure 2), so that we do not contaminate
our language with infinite loops at every type.2 We will write
recursive functions as syntactic sugar for fix.

The computations themselves include all expressions e, as com-
putations that coincidentally have no side-effects. Furthermore, we
have sequential composition letv x = e in c. Intuitively, the be-
havior of this command is as follows. We evaluate e until we get
some [c′], and then evaluate c′, modifying the heap and binding the
return value to x. Then, in this augmented environment, we run c.
The fact that monadic commands have return values explains why
our sequential composition is also a binding construct. Finally, we
have primitive computations newA(e), !e, and e := e′, which let us
allocate, read and write references (inhabiting type ref A), respec-
tively. To save space, we will also write run e, when e is a term of
monadic type, as an abbreviation for letv x = e in x. Consider the
following example, which creates and swaps the contents of two
references:

1 letv r = [newN(5)] in
2 letv s = [newN(14)] in
3 letv x = [!r] in
4 letv y = [!s] in
5 letv = [r := y] in
6 letv = [s := x] in
7 x+ y

On lines 1 and 2, we allocate two references to natural numbers,
r and s, initializing them with the contents 5 and 14. Then, on
lines 3 and 4, we dereference r and s, binding their contents to the
variables x and y, respectively. Then, in lines 5 and 6, we swap the
contents of the two references, assigning y to r and x to s, so that r
now points to 14 and s now points to 5. Finally, on line 7, we return
x+ y, the sum of the two contents.

The primitive commands are all composed using the letv x =
e in c construct. Because this form expects the bound term to be
an expression of monadic type, each of the primitive commands

2 The allowed types are those whose interpretations are pointed CPOs in
domain theory.

Kinds κ ::= ? | κ→ κ

Monotypes τ ::= 1 | τ × τ | τ → τ
N | ref A | © τ |
α | τ τ | λα : κ. τ

Polytypes A ::= 1 | A×B | A→ B
N | ref A | ©A |
α | τ τ |
∀α : κ. A | ∃α : κ. A

Type Contexts Θ ::= · | Θ, α : κ

Figure 1. Language Types

Pure expressions e ::= 〈〉 | 〈e, e′〉 | fst e | snd e
| x | λx : A. e | e e′
| z | s(e) | iter(e, e0, x. e1)
| Λα : κ. e | e τ
| pack(τ, e) | unpack(α, x) = e in e′

| [c] | fix x : D. e

Computations c ::= e | letv x = e in c
| newA(e) | !e | e := e′

Contexts Γ ::= · | Γ, x : A

Pointed Types D ::= 1 | ©A | D ×D | A→ D
| ∀α : κ. D

Figure 2. Syntax of the Programming Language

(allocation, dereference, assignment) are wrapped in a suspension
[c] before being given to the let-binder.

Assertion Language. The sorts and syntax of the assertion
language are given in Figure 3. The assertion language is a version
of separation logic (Reynolds 2002), extended to higher order.

In ordinary Hoare logic, a predicate describes a set of program
states (in our case, heaps), and a conjunction like p ∧ q means that
a heap in p ∧ q is in the set described by p and the set described
by q. While this is a natural approach, aliasing can become quite
difficult to treat — if x and y are pointer variables, we need to
explicitly state whether they alias or not. So as the number of
variables in a program grows, the number of aliasing conditions
grows quadratically.

With separation logic, we add the spatial connectives to address
this difficulty. A separating conjunction p ∗ q means that the state
can be broken into two disjoint parts, one of which is in the set
described by p, and the other of which is in the set described by
q. The disjointness property makes the noninterference of p and
q implicit, letting us avoid the unwanted quadratic growth in the
size of our assertions. In addition to the separating conjunction, we
have its unit emp, which is true of the empty heap, and the points-to
relation e 7→ e′, which holds of the one-element heap in which the
value of the reference e has contents equal to the value of e′.

The universal and existential quantifiers ∀x : ω. p and ∃x : ω. p
are higher-order quantifiers ranging over all sorts ω. The sorts
include the language typesA, kinds κ, the sort of propositions prop,
and function spaces over sorts ω ⇒ ω′. Constructors for terms of
all these sorts are given in Figure 3. For the function space, we
include lambda-abstraction and application. Because our assertion
language contains within it the classical higher-order logic of sets,
we will freely make use of features like subsets, indexed sums, and
indexed products, exploiting their definability.

Finally, we include the atomic formulas S valid, which are as-
sertions that a specification S holds. This facility is useful when we
write assertions about pointers to code — for example, the asser-
tion r 7→ e ∧ ({p}run e{a : A. q} valid) says that the reference r

Assertion Sorts ω ::= A | κ | ω ⇒ ω | prop

Assertion p ::= e | A | x | λx : ω. p | p q
Constructors | > | p ∧ q | p ⊃ q | ⊥ | p ∨ q

| emp | p ∗ q | e 7→ e′

| ∀x : ω. p | ∃x : ω. p | S valid

Specifications S ::= {p}c{a : A. q} | {p}
| S and S′ | S implies S′ | S or S′

| ∀x : ω. S | ∃x : ω. S

Figure 3. Syntax of Assertions and Specifications

points to a monadic expression e, whose behavior is described by
the Hoare triple {p}run e{a : A. q}.

Specification Language. Given programs and assertions about
the heap, we need specifications to relate the two. We begin with
the Hoare triple {p}c{a : A. q}. This specification represents the
claim that if we run the computation c in any heap the predicate p
describes, then if c terminates, it will end in a heap described by
the predicate q. Since monadic computations can return a value in
addition to having side-effects, we add the binder a : A to the third
clause of the triple to let us name and use the return value in the
postcondition.

We then treat Hoare triples as one of the atomic proposition
forms of a first-order intuitionistic logic (see Figure 3). The other
form of atomic proposition are the specifications {p}, which are
specifications saying that an assertion p is true. These formulas are
useful for expressing aliasing relations between defined predicates,
without necessarily revealing the implementations. In addition, we
can form specifications with conjunction, disjunction, implication,
and universal and existential quantification over the sorts of the
assertion language.

With a full logic of triples at our disposal, we can express pro-
gram modules as formulas of the specification logic. We can ex-
pose a module to a client as a collection of existentially quantified
functions and variables, and provide the client with Hoare triples
describing the behavior of those functions. Furthermore, modules
can existentially quantify over predicates to grant client programs
access to module state without revealing the actual implementa-
tion. A client program that uses an existentially quantified specifi-
cation cannot depend on the concrete implementation of this mod-
ule, since the existential quantifier hides that from it.

The language and specification logic have been given a denota-
tional semantics in the first author’s forthcoming PhD thesis (Krish-
naswami 2009). We do not give the semantics here both for space
reasons, and because it is not central to the contributions of this
paper.

3. Demand-Driven Notification Networks
A simple intuition for a “demand-driven notification network” is
to think of it as a generalized spreadsheet. We have a collection of
cells, each of which contains a program expression whose evalua-
tion may read other cells. When a cell is read, the expression within
the cell is evaluated, recursively triggering the evaluation of other
cells as they are read by the program expression. Furthermore, each
cell memoizes its expression, so that repeated reads of the same cell
will not trigger re-evaluation.

In addition, we can modify the code expression within a cell.
Any time a cell is updated, its memoized value is cancelled, so that
any future reads of that cell will force the evaluation of its new
code. Furthermore, every cell also maintains a set tracking every
other cell which has read it, so that when its code is updated, it can
notify all of its readers — i.e., every other cell whose value may
depend upon it – to invalidate their own memoized values.

We will call the entire collection of cells a “notification net-
work”, because we have a graph (i.e., network) structure of cells,
which maintains dependency information between themselves, and
whenever a change is made to a cell, it notifies everything that de-
pends on it of the change.

In this section, we will describe an implementation of a notifi-
cation network library, informally explaining its design and how it
works. Then, in the next section, we will see how to take the infor-
mal explanation and turn it into a precise specification suitable for
verification.

3.1 Implementing Notification Networks
Our API for creating notification networks is given in Figure 4.
First, we’ll describe the interface, and then discuss its implementa-
tion.

The interface exposes two basic abstract data types, cell and
code.

The type cell α (defined on line 3) is the type of dynamic data
values. A cell contains a reference to a piece of code, a possible
memoized value, plus enough information to correctly invalidate
its memoized value when the cell’s dependencies change. We can
create a new cell by calling newcell α e, which returns a brand new
cell with the code expression e inside it. We can also modify a cell
with the command update α cell e, which modifies the cell cell
by installing the new expression e in it.

The type code α (defined on line 1) is a monadic type, rep-
resenting the type of computations that can read cells. It supports
the usual operations return α e and bind α β e (λx. e′), which
embed a pure value into the code type and implement sequential
composition, respectively. In addition, the primitive operations on
this monad include reading a cell with the read α cell function
call, and reading and modifying local state with the getref α r and
setref α r v operations.

This monadic type is not the state monad of the programming
language; it is a user-level monadic type we implement as a library
(as is commonly done in Haskell, for example), in order to sup-
port the transparent propagation and maintenance of dependency
information. For example, assuming that a and b are variables of
type cell N, then the following code expression will read the two
cells and return their sum (suppressing obvious type arguments to
functions):

1 bind (read a) (λx : N.
2 bind (read b) (λy : N.
3 return (x+ y)))

This expression does not explicitly mention any dependency infor-
mation; it is up to the primitive operations of our library to generate
it, and up to the return and bind operations to propagate it appro-
priately. In this way, we can (1) avoid the error-prone business of
explicitly managing the dependencies, and (2) we can use typing
to forbid invoking arbitrary stateful operations that might ruin the
invariants of the library. The only state manipulations we perform
are the ones under our control.

The actual implementation is also given in Figure 4. The ab-
stract type of code is implemented using the underlying monad of
imperative commands, so that code τ is implemented with the type
©(τ × cellset). The intuition is that when we evaluate a term we
are allowed to read some cells along the way, and so we must return
a set of all the cells that we read in order to do proper dependency
management. So, cellset is a type representing sets of cells3. (The
precise specification of cellset is given in Appendix A, since de-
scribing it is a distraction from the main development.)

3 Properly, these are sets of cells packed inside an existential type – i.e.,
terms of type ∃α : ?. cell α

1 code : ?→ ?
2 code α =©(α× cellset)

3 cell : ?→ ?
4 cell α = {code : ref code α;
5 value : ref option α;
6 reads : ref cellset;
7 obs : ref cellset;
8 unique : N}
9 ecell = ∃α : ?. cell α

10 return : ∀α : ?. α→ code α
11 return α x = [〈x, emptyset〉]
12 bind : ∀α, β : ?. code α→ (α→ code β)→ code β
13 bind α β e f = [letv (v, r1) = e in
14 letv (v′, r2) = f v in
15 〈v′, union r1 r2〉]
16 read : ∀α : ?. cell α→ code α
17 read α a = [letv o = [!a.value] in
18 run case(o,
19 Some v → [〈v, singleton a〉],
20 None→
21 [letv exp = [!a.code] in
22 letv (v, r) = exp in
23 letv = [a.value := Some(v)] in
24 letv = [a.reads := r] in
25 letv = iterset (add observer pack(α, a)) r in
26 〈v, singleton a〉])
27 getref : ∀α : ref α→ code α
28 getref α r = [letv v = [!r] in 〈v, emptyset〉]
29 setref : ∀α : ref α→ α→ code 1
30 setref α r v = [letv = [r := v] in 〈〈〉, emptyset〉]
31 newcell : ∀α : ?. code α→©cell α
32 newcell α code = [letv unique =!counter in
33 letv = [counter := unique+ 1] in
34 letv code = newcode α(code) in
35 letv value = newoption α(None) in

36 letv reads = newcellset(emptyset) in
37 letv obs = newcellset(emptyset) in
38 (code, value, reads, obs, unique)]

39 update : ∀α : ?. code α→ cell α→©1
40 update α exp a = [letv = mark unready pack(α, a) in
41 a.code := exp]

42 mark unready : ecell→©1
43 mark unready cell = unpack(α, a) = cell in
44 [letv os = [!a.obs] in
45 letv rs = [!a.reads] in
46 letv = iterset mark unready os in
47 letv = iterset (remove obs cell) rs in
48 letv = [a.value := None] in
49 letv = [a.reads := emptyset] in
50 a.obs := emptyset]

51 add observer : ecell→ ecell→©1
52 add observer a pack(β, b) = [letv os = [!b.obs] in
53 b.obs := addset os a]

54 remove obs : ecell→ ecell→©1
55 remove obs a pack(β, b) = [letv os = [!b.obs] in
56 b.obs := removeset os a]

Figure 4. Implementation of Notification Networks

Cells, defined on line 3, are represented with a 5-tuple. (We
take the liberty of using record syntax for this tuple.) We have a
field code, which is a reference pointing to the code expression,
as well as a field value which is a pointer to an optional value.
The value field’s contents will be None if the cell is in an unready,
un-memoized state, and will be Some v if the cell’s code has
already been evaluated to a value v. In addition there are two
fields representing the dependencies. If the code expression has
been evaluated and a memoized value generated, then the reads
field will point to the set of cells that the computation directly
read while computing its value. Otherwise it will point to the
empty set. Conversely, the field obs contains the cell’s observers
— the set of cells that have read the current cell as part of their
own computations. Obviously, this is only non-empty when the
cell has been evaluated. Finally, each cell also has a numeric field
unique, which is a unique numeric identifier for each cell created
by the dependency management library in Figure 4. It allows us to
compare cells (even of different type) for equality, which we need
to implement the cellset type.

The return operation (defined on line 10) for the library simply
returns its argument value and the empty set, since it does not read
any cells. Likewise, bind α β e f (defined on line 12) will evaluate
the argument e and pass the returned value to the function f . It will
then return the function’s return value, together with the union of
the two read sets.

There are two functions getref α r (line 27) and setref α r v
(line 29) whose specifications say that they simply read and update
their argument reference. These two functions allow us to use
local state within a notification network, which we will need to
implement things like accumulators when implementing reactive
programs. They both return empty read sets, since neither of them
read any cells.

Interesting things first happen with the read α e operation,
defined on line 16. This function will first check to see if the cell
has a memoized value ready. If it does, we return that immediately.
Otherwise, we evaluate the cell’s code, and update the current
cell’s value and read set. In addition, each cell that was read in
the evaluation of the code (i.e., the set returned as the second
component of the monadic type’s return value) also has its observer
set updated with the newly-ready current cell. Now, if any of the
dependencies change, they will be able to invalidate the current cell,
which observes them. Note that the dependencies between cells are
all dynamic — we cannot examine the inside of a code expression
to find its “free cells”, and so we rely upon the invariant that a code
expression will return every cell it read, in addition to its return
value.

Further interesting things happen with the newcell α e op-
eration, defined on line 31. It creates a new cell value, initializ-
ing the code field with the argument e, and generating a unique
id by dereferencing and incrementing the variable counter. The
counter variable occurs freely in this definition, because it is a
piece of state global to this module, which must be initialized by
whatever initialization routine first constructs the whole module
as an existential package. Since counter is otherwise private, we
can generate unique identifiers by incrementing it as we create new
cells.

Finally, the update cell e operation (line 39) updates a cell
cell with a new code expression e. (As an aside, it’s worth noting
that this is a genuine, unavoidable, use of higher-order store: we
make use of pointers to code, including the ability to dynamically
modify them.) Once we modify a cell, any memoized value it has
is no longer necessarily correct.

Therefore, we have to drop the memoized value of the cell,
and any cell that transitively observes the cell. The mark unready
function (line 42) does this. Given a cell, it takes all of the observers

of the current cell and recursively makes all of them unready. Then
it removes the current cell from the observer sets of all the cells it
reads, and then it nulls out the current cell’s memoized value, as
well as setting its read and observer sets to empty. Notice that there
is no explicit base case to the recursive call; if there are any cycles
in the dependency graph, invalidation could go into an infinite loop.

So far, we have described the implementation invariants incre-
mentally. Before proceeding to describe them formally, we will
state them again informally, all in one place:

• Every cell must have a unique numeric identifier
• Every cell is either ready, or unready.
• Every ready cell has a memoized value, and maintains two sets,

one containing every cell that it reads, and the other containing
every cell it is observed by.
• Every unready cell has no memoized value, and has both an

empty read set and an empty observer set.
• The overall dependency graph among the valid cells must form

a directed acyclic graph.
• The reads and the observers must be the same, only pointing in

opposite directions.

Formalizing these constraints is relatively straightforward, but
we have the problem that these constraints are global in nature: we
cannot be sure that the dependency graph is acyclic without having
it all available to examine, and likewise we cannot in general know
that a cell is in the read set of everything in its observed set without
knowing the whole graph. Handling this difficulty is one of the
primary contributions of this work.

4. The Abstract Semantics of Notifications
We will formalize the informal invariants of the previous section in
three stages. In the first stage, we will describe how to accurately
formalize the global invariant of the cell graph, albeit in a non-
modular way. In the second stage, we will recover a basic modular
reasoning principle through an interesting use of polymorphism,
which will suffice to let us reason modularly about adding cells to
and modifying the cells in the cell graph. However, this will not
be strong enough to reason modularly about evaluating cells in the
network, and so in the third stage we will introduce a generalized
frame rule, which we will call a “ramified frame rule” after a similar
concept in AI.

4.1 The Structure of the Global Invariant
The key to getting around our difficulties lies in the difference be-
tween the implementation of update and of read. The update func-
tion calls mark unready, which recursively follows the observers.
The read function, on the other hand, proceeds in the opposite di-
rection — it evaluates code expressions, recursively descending
into the footprint of its command. The opposite direction these two
functions look is why we end up needing a global invariant: we
need to know that these two directions are in harmony with one
another.

Now, note that we have given the type of mark unready the
monadic type©1. This precludes it from being called from within
a code τ , because the user-level monadic type discipline of code τ
will only let us compute with pure expressions and other code σ
terms. Therefore, when we evaluate a code expression, we will
never actually follow the observer fields – we will only add entries
to them whenever we evaluate a cell and change it from unready
to ready. As a result, an abstract description of the heap which
does not explicitly mention the observer sets will prove sufficient
for reasoning about the behavior of code τ expressions.

With this plan, we introduce abstract heap formulas, which are
syntactic descriptions of the state of part of the cell heap. These
syntactic expressions are given by the following grammar:

φ, ψ ::= I | φ⊗ ψ | cell+(a, e, v, r) | cell−(a, e, ,)
| local(r, v)

Informally, a formula I represents an empty abstract heap, and
a formula φ⊗ψ represents an abstract heap that can be broken into
two disjoint parts φ and ψ. We will only consider formulas modulo
the associativity and commutativity of ⊗, and take I to be the unit
of this binary operator.

The atomic form local(r, v) says that r is a piece of local state
owned by the network, currently with value v. There are two atomic
forms representing cells. cell−(a, e, ,) says that a is a cell with
code e, which is unready to deliver a value — it needs to be re-
evaluated before it can yield a value. cell+(a, e, v, r) says that a
is a cell with code e. Furthermore, it is ready to deliver the value
v, but only if all the cells in its read set r are themselves ready.
Otherwise, if anything in a’s read set r is unready, then a is unready
itself. (Because we will sometimes want to write cell±(a, e,−,−)
when we do not care whether a is ready or not, the cell−(a, e, ,)
formula has two dummy argument positions.)

First, notice the must/may flavor of this reading. The for-
mula cell−(a, e, ,) says that a must be unready. The formula
cell+(a, e, v, r) says that a may be ready, conditional on the readi-
ness of the elements of its read set r. Second, notice that the back-
wards dependencies are entirely missing from these formulas. We
have simply left out the other half of the dependency graph from
this description. Forgetting this information will let us begin to
regain local reasoning, as we will see in the statements of Proposi-
tions 1 and 2.

We have emphasized that the straightforward invariant is not
obviously modular. To elaborate upon this point, we will need to
look at the formal statement of the heap invariant, to see how
exactly modularity fails. We introduce the predicate G(φ). This
predicate describes the entire heap of cells allocated by our library
and ensures they satisfy the conditions described at the end of the
previous section. It also enforces the additional constraint that the
cell heap agree with φ.4

G(φ) , ∃H ∈ CellHeap. Inv(H,φ)

Inv(H,φ) ,
R†H = OH ∧R+

H strict partial order
∧ RH ⊆ VH × VH ∧ uniqueids(H)
∧ satisfies(H,φ) ∧ heap(H) ∗ localstate(φ)

The auxiliary definitions we used in this definition are all given in
Figure 5.

We first assert the existence of a cell heap H drawn from the
set CellHeap. An element of CellHeap, defined on line 1 of
Figure 5, is a collection of cells, paired with a function mapping
each cell in that collection to a code expression, a possible value,
a read set, an observed set, and an identifier. We will use H as
a variable ranging over cell heaps, and will use the pair pattern
(D,h) to range over cell heaps when we need to use the individual
components of the pair.

In the first two lines of Inv(H,φ), we assert all of the global
conditions in terms of the mathematical cell heap H . First, we
assert that the relational transpose (·)† of the reads relation RH
is the observes relation OH . These two relations (defined in lines
9 and 10) are computed from the cell heap. RH consists of those

4 This is why we insisted that the abstract heap formulas are syntactic
objects — this permits us to define predicates on them by induction over
the structure of the formula.

1 CellHeap =
2 ΣD ∈ Pfin(ecell).
3 (Π(pack(α,)) ∈ D.(code α × option α ×
4 Pfin(ecell) × Pfin(ecell) × N)

5 code = π1 obs = π4

6 value = π2 unique = π5

7 reads = π3

8 V(D,h) = {c ∈ D | ∃v. value(h(c)) = Some(v)}
9 R(D,h) = {(c, c′) ∈ D ×D | c′ ∈ reads(h(c))}
10 O(D,h) = {(c, c′) ∈ D ×D | c′ ∈ obs(h(c))}
11 uniqueids(D,h) = ∃i : Fin(|D|)→ D.
12 i ◦ (unique ◦ h) = id ∧
13 (unique ◦ h) ◦ i = id

14 satisfies((D,h), φ) = sat((D,h), D, φ)

15 sat((D,h), D′, local(r, v)) = >
16 sat((D,h), D′, I) = >
17 sat((D,h), D′, φ⊗ ψ) = ∃D1, D2. D = D1]D2

18 ∧ sat((D,h), D1, φ)
19 ∧ sat((D,h), D2, ψ)
20 sat((D,h), D′, cell−(a, e, ,)) =
21 a ∈ D ∧ code(h(a)) = e ∧ a 6∈ VH
22 sat((D,h), D′, cell+(a, e, v, r)) =
23 a ∈ D ∧ code(h(a)) = e ∧
24 (if r ∩ VH = r
25 then value(h(a)) = Some v ∧ reads(h(a)) = r
26 else a 6∈ VH)

27 heap(D,h) =
28 counter 7→ |D| ∗
29 ∀∗c ∈ D. ∃vr, vo : cellset.
30 c.code 7→ code(h(c)) ∗
31 c.value 7→ value(h(c)) ∗
32 c.reads 7→ vr ∗
33 c.obs 7→ vo ∗
34 c.unique = unique(h(c)) ∧
35 set(D, vr, reads(h(c))) ∧
36 set(D, vo, obs(h(c)))

37 localstate(cell±(a, e,−,−))= emp
38 localstate(I) = emp
39 localstate(φ⊗ ψ) = localstate(φ) ∗ localstate(ψ)
40 localstate(local(r, v)) = r 7→ v

Figure 5. Definitions for Heap Invariant

pairs of cells in H , such that the first component reads the second
component. Likewise, OH consists of those pairs of cells in H
such that the first component is observed by the second component.
Requiring thatRH = O†H enforces the condition that the reads and
observe relations be the same, only pointing in opposite directions
(i.e., if a reads b, then b is observed by a).

Then, we require that the transitive (but not reflexive) closure
of the reads relation, R+

H form a strict partial order. Strictness
enforces the condition that there be no cycles in the dependence
graph (because otherwise there could be elements a, such that
(a, a) ∈ R+

H). Next, we require that the reads relation RH is a
subset of the Cartesian product VH × VH of the set VH of cells
carrying values (defined on line 8). This ensures that (1) there are
no dependencies on unready cells, and (2) all unready cells have
empty read and observe sets.

Finally, we ask that all of the cells in H have unique identifiers
— uniqueids(D,h) (defined on line 11) asserts that there is a
bijective map between Fin(|D|) (the finite set consisting of the
natural numbers from 0 to the size of the cell heap) and the cells
in D, and that each cell carry its uniquely identifying number in its
unique field.

In the third line of the definition of Inv(H,φ), we begin by
requiring that the cell heap H satisfy the abstract heap formula φ,
which formalizes the informal reading of the abstract heap formulas
given earlier. The definition of the satisfaction relation is given
on line 14. The satisfaction relation satisfies(H,φ) asserts that φ
describes the heap H .

This relation closely follows the standard pattern of separation
logic, with one exception: we need to remember the whole heap in
order to check whether or not the read sets of positive cell formulas
like cell+(a, e, v, rs) are ready. To model this, we use an auxilliary
relation sat((D,h), D′, φ), in which (D,h) is the whole heap, and
D′ is the fragment of the heap within which φ must lie. The case
for the unit I , on line 16, is satisfied by any cell heap, and the tensor
φ⊗ ψ (on line 17) is satisfied if we can break D′ into two disjoint
pieces, one of which satisfying φ and the other satisfying ψ. In
this sense, we are building a domain-specific separation logic on
top of separation logic. The clause for cell−(a, e, ,), on line 20,
says that (1) the cell a must be within D′, (2) its code must be
e, and (3) it must be unready (i.e., have no value). The clause for
cell+(a, e, v, r) (on line 22) is a little more complex. It also says
that a must be in D′ and that a’s code must be e. In addition, it
says that if all the cells in r have values, then a’s value must be v
and otherwise a must not have a value. The clause for local(r, v) is
simply the true assertion — since this is a piece of local state that
does not participate in dependency tracking, we leave it out of this
invariant and use an ordinary separation logic formula to track it.

The second-to-last clause of Inv(H,φ) is the predicate heap(H).
This predicate, defined on line 27, finally connects the cell heap,
which is a purely mathematical object, to the actual low-level heap
the implementation uses. We ask that the global counter refer-
ence counter point to an integer field equal to the size of the cell
heap, and then use the iterated separating conjunction ∀∗ to re-
quire that for each cell in the cell heap, we have pointers to the
appropriate code, value, read, observer, and unique identifier fields.
The unique identifier field contains the natural number uniquely
identifying the cell. The read and observer fields point to values
of type cellset, with the predicate set(D, vr, reads(h(c))) and
set(D, vo, obs(h(c))) asserting that the program value vr and vo
respectively representing the read and observed sets of the cell.
(This predicate is explained in the appendix, as part of the specifi-
cation of sets of cells.)

The last clause in Inv(H,φ) is localstate(φ), which finds each
local reference formula in φ and asserts that it is in the physical
heap.

The global character of this invariant should be evident; we
describe all of the cells in the heap at once in order to state our
invariants. So it is not immediately clear that we have made much
progress towards a modular proof technique. However, we are
actually very close: with just two more ideas, we will be able to
give a solution to this problem.

4.2 Frame Properties via Polymorphism
As we mentioned earlier, our abstract heap formulas essentially
give us a small domain-specific separation logic. This means that
in order to reason locally over cell heaps, we need to find an
application-specific version of the frame rule for our library.

To do this, we will adapt some ideas proposed by Birkedal et.
al. (Birkedal et al. 2005). They suggested interpreting the frame
rule of separation logic as a form of quantification — instead of
having a separate frame rule that allows adding a frame to any
triple, they proposed that all of the atomic rules of the program
logic be replaced with rules possessing an extra quantifier ranging
over “the rest of the heap”:

∀R. {(e 7→ v) ∗R} e := v′ {(e 7→ v′) ∗R}
EXAMPLE

This quantifier is propagated through the proof, and any use
of the frame rule can be interpreted as instantiating the universal
quantifier appropriately. The reason this idea is fruitful for us is that
it will allow us to give a frame rule, even though the underlying
semantics of our library does not actually satisfy any analogues
of the traditional safety, monotonicity, and frame lemmas. For
example, the update operation certainly does not act locally – it
recursively traverses the observers set, possibly mutating a very
large part of the cell graph.

Nonetheless, we can prove the soundness of the following triple
specifying update.

PROPOSITION 1. (Update Rule) For all appropriately-typed cells
o and code expressions e and e′, the following triple is derivable in
our specification logic:

∀ψ : formula. {G(cell±(o, e′,−,−)⊗ ψ)}
run update o e
{a : 1. G(cell−(o, e, ,)⊗ ψ)}

Proof (Sketch). The key to this proof is the conditional interpre-
tation of the cell+(c, e, v, r) formula. When the update o e com-
mand executes, it recursively finds every cell which depends on o,
and modifies it to be unready.

Now consider any positive cell formula in ψ which depends on
o, directly or indirectly. The satisfaction relation for φ asserts that in
order for a positive cell formula to represent a ready cell, everything
in its read set also has to be ready. So when o’s formula switches
to the unready state, we now require that every positive formula
depending on o represents an unready cell — which is exactly the
effect of executing update. As a result, we can leave the entire
frame ψ untouched, even though the physical heap it represents
may have been (quite drastically) modified, and many cells may
have gone from a ready to an unready state. �

We can prove the soundness of a similar specification for
newcell as well:

PROPOSITION 2. (New Cell Rule) For all code expressions e, the
following specification is derivable in our specification logic:

∀ψ : formula. {G(ψ)}
run newcell e
{a : cell τ. G(cell−(a, e, ,)⊗ ψ)}

Proof (Sketch). This is much easier than update: after newcell
allocates a new numeric id for the new cell, we can extend the cell
heap with the new cell and show that it continues to satisfy the
invariant. �

As we can see, the conditional interpretation of cell+(a, e, v, r)
gives us quite a strong modular reasoning property for update and
newcell – we can simply pretend that we are locally changing or
creating a cell, and leave the frame unchanged. This property lets us
write programs whose components independently modify the cell
heap, without having to know what cells might be updated by the
change.

4.3 Ramified Frame Properties
While this strategy is sufficient for newcell and update, it is not
adequate for defining a frame property for code τ expressions.

As an example, suppose that we want to evaluate the code ex-
pression read τ a, in a cell heap described by cell−(a, return 5, ,).
Clearly, this is a sufficient footprint, and we expect to get the return
value 5, and see the cell formula change to cell+(a, return 5, 5, ∅).
However, the fact that we are now changing cells from negative to

∀a′ ∈ r. ∃v′. ready(φ, a′, v′)

ready(φ⊗ cell+(a, e, v, r), a, v)
READY

∃a′ ∈ r. unready(φ, a′)

unready(φ⊗ cell+(a, e, v, r), a)
UNREADYPOS

unready(φ⊗ cell−(a, e, ,), a)
UNREADYNEG

Figure 6. Ready and Unready Judgments

closed(I, s) = >
closed(φ⊗ ψ, s) = closed(φ, s) ∧ closed(ψ, s)
closed(local(r, v), s) = >
closed(cell−(a, e, ,), s) = >
closed(cell+(a, e, v, r), s) = r ⊆ s

Figure 7. Closedness predicate

R(s, I) = I
R(s, φ⊗ ψ) = R(s, φ)⊗R(s, ψ)
R(s, local(r, v)) = local(r, v)
R(s, cell−(a, e, ,)) = cell−(a, e, ,)

R(s, cell+(a, e, v, r)) =

cell+(a, e, v, r) if s ∩ r = ∅
cell−(a, e, ,) otherwise

Figure 8. Definition of the Ramification Operator R

positive means that the conditional character of readiness, which
worked in our favor with update and newcell, now works against
us.

In particular, suppose that we run this command with a framed
abstract heap formula ψ = cell+(b, read a, 17, {a}). Now, the
whole starting heap will be described by the formula:

cell−(a, return 5, ,)⊗ cell+(b, read a, 17, {a})

In any heap satisfying this formula, b will be unready, because it
depends on an unready cell. But when we execute read a, simply
copying ψ into the post-state will give us the cell formula:

cell+(a, return 5, 5, ∅)⊗ cell+(b, read a, 17, {a})

That is, our satisfaction relation now expects b to be ready and have
the value 17, even though read a never touches b at all!

Clearly, we cannot expect to be able to simply copy the same
frame formula into the pre- and the post-condition states in the
specification of commands like read a.

To deal with this problem, we look back to the original paper
introducing the frame problem (McCarthy and Hayes 1969). They
described the frame problem as the problem of how to specify what
parts of a state were unaffected by the action of a command, which
inspired the name of the frame rule in separation logic. In that
paper, he also described the qualification problem. He observed that
many commands (such as a flipping a light switch turning on a light
bulb) have numerous implicit preconditions (such as there being a
bulb in the light socket), and dubbed the problem of identifying
these implicit preconditions the qualification problem.

Some years later, Finger (1987) observed that the qualification
problem has a dual: actions can have indirect effects that are not
explicitly stated in their specification (e.g., turning on the light can
startle the cat). He called the problem of deducing these implicit

consequences the “ramification problem” — is there a simple way
to represent all of the indirect consequences of an action?

We can understand our difficulty as an instance of the ramifica-
tion problem. When we evaluate a code expression, we may read
some unready cells and send them from an unready state in the pre-
condition to a ready state in the postcondition. However, we may
have had some cell formulas in our frame which claimed their cor-
responding cells were unready purely because one of the cells in
our footprint was unready. Therefore, when we update the foot-
print, we must modify the frame formula to account for the rami-
fications of our update in the footprint. So even though the actual
physical storage representing the frame does not change at all, we
need to modify our abstract formula to reflect our updated state of
knowledge.

In our case, all of the effects on the frame will arise from the
cell formulas we change from unready to ready. Thus, given the set
of cells which became ready, we can repair the framing formula by
taking each positive cell formula, and setting it to a negative state if
its read set includes anything that went from unready to ready. We
define the ramification operator R(s, ψ) in Figure 8. It is a simple
structural induction over a framing formula, whose only action is
to replace the positive cell formulas in ψ whose read sets intersect
with swith a corresponding negative cell formula. The ramification
operator has a number of useful properties, which are most easily
expressed after we have introduced a few auxiliary judgments and
predicates.

In Figure 6 we define the two judgments unready(φ, o) and
ready(φ, o, v), which establish whether a cell is ready or unready,
from the syntactic structure of φ. ready(φ, o, v) is intended to
mean that the cell o is ready and will return value v, in any heap
described by φ. Correspondingly, unready(φ, o) means that o is not
ready in any heap described by φ. Since these are purely syntactic
judgments, we need to show that they are consistent with heaps
described by φ.

PROPOSITION 3. (Soundness of ready(φ, o, v) and unready(φ, o))
For all φ, o, andH such thatH = (D,h), the following assertions
are tautologies in separation logic.

• (Inv(H,φ) ∧ ready(φ, o, v)) ⊃ value(h(o)) = Some v
• (Inv(H,φ) ∧ unready(φ, o)) ⊃ o 6∈ VH

Next, in Figure 7, we define the closed(φ, s) predicate, which
asserts that every cell formula in φ reads at most the cells in s.
Now, we can summarize the interactions between the ramification
operator R and abstract heap formulas as follows:

PROPOSITION 4. (Interaction Properties) Given sets of cells s and
u, cell o, value v, and formula φ, we have that:

• R(s,R(u, φ)) = R(s ∪ u, φ)
• If unready(φ, o), then unready(R(u, φ), o)
• If ready(R(u, φ), o, v), then ready(φ, o, v)
• If closed(φ, s), then R(u, φ) = R(u ∩ s, φ)

All of these facts can be proved with simple inductive argu-
ments, since they are all syntactic facts.

The first property means that if we evaluate two expressions,
we can simply combine their ramification effects without having to
worry about the order that they were evaluated in. The second and
third let us know that a ramification cannot make us forget a cell is
unready, nor can it make anything ready that was not ready before.
The last property permits us to constrain the effect of a ramification
— if we know that two parts of the abstract heap formula do not
read each other at all, we can deduce that ramifications from one
will not affect the other.

Now we can define the abstract semantics of the code monad.
We introduce the “judgment” 〈φ; e〉 ⇓ 〈φ′; v〉 [r|u], which is read

〈φ; e〉 ⇓ 〈φ′; v〉 [r|u] ,

∀ψ. {G(φ⊗ ψ)}
run e

{a : τ. G(φ′ ⊗ R(u, ψ)) ∧ ∃z. a = (v, z) ∧ set(u, z, u)}
and
{∀o. (unready(φ⊗ ψ, o) ∧ o ∈ dom(ψ))

⊃ unready(φ′ ⊗R(u, ψ), o)}
and
{∀c ∈ r ∪ u. ∃v. ready(φ′, c, v) ∧ ∀c ∈ u. unready(φ, c)}

Figure 9. Definition of the Abstract Semantics

〈I; return α v〉 ⇓ 〈I; v〉 [∅|∅]
AUNIT

〈φ; e〉 ⇓
˙
φ′; v′

¸
[r1|u1]

˙
φ′; f v′

¸
⇓

˙
φ′′; v′′

¸
[r2|u2]

〈φ; bind α β e f〉 ⇓
˙
φ′′; v′′

¸
[r1 ∪ r2|u1 ∪ u2]

ABIND

ready(φ, a, v)

〈φ; read α a〉 ⇓ 〈φ; v〉 [{a}|∅]
AREADY

unready(cell±(a, e,−,−)⊗ φ, a) 〈φ; e〉 ⇓
˙
φ′; v

¸
[r|u]˙

cell±(a, e,−,−)⊗ φ; read α a
¸
⇓˙

cell+(a, e, v, r)⊗R({a}, φ′); v
¸

[{a}|u ∪ {a}]

AUNREADY

〈local(r, v); getref r〉 ⇓ 〈local(r, v); v〉 [∅|∅]
AGETREF

˙
local(r, v); setref r v′

¸
⇓

˙
local(r, v′); 〈〉

¸
[∅|∅]

ASETREF

〈φ; e〉 ⇓
˙
φ′; v

¸
[r|u]

〈φ⊗ ψ; e〉 ⇓
˙
φ′ ⊗R(u, ψ); v

¸
[r|u]

ABSTRACTFRAME

Figure 10. Abstract Semantics of Notifications

as “from an initial state φ, evaluating the code τ expression e will
result in a modified state φ′ and a return value v of type τ . The
expression e will have directly read the cells in r, and will have
evaluated the cells in u, sending them from an unready to a ready
state.” The formal definition of the meaning is given in Figure 9,
where our “judgment” is revealed to be a notational abbreviation
for a formula in our logic of specifications.

The step relation 〈φ; e〉 ⇓ 〈φ′; v〉 [r|u] really means three
things. First, it means that if we run e in a heap G(φ ⊗ ψ), then
we will end in a heap G(φ′ ⊗ R(u, ψ)), and that the return value
will be a pair consisting of the value v and the read set u (that is,
the return value is a pair (v, z), and the second component of the
return value z is a cellset which represents the set u, as indicated
by the predicate set(u, z, u)). Note the use of quantification over
ψ to describe the frame, and that furthermore we need to use the
ramification operator to describe the change in the frame in the
postcondition.

Second, we assert that anything which was unready in the frame,
remains unready in the frame in the postcondition, which is a way
of saying that we never read anything outside the footprint φ. Third,
we assert that everything that was read or evaluated (the cells in
r or u) is really syntactically ready in the postcondition, and that
everything we claim we evaluated (i.e., the cells in u) was really
syntactically unready in the precondition.

The reason we have to maintain these conditions is that the
readiness judgments are syntactic derivations which do not know
anything about the effect of the execution of the command e. So we
need to explicitly construct syntactic facts reflecting any changes in
the semantic heap if we wish to use them in further reasoning about
the syntactic description. In particular, we need these facts to prove
the rules given in Figure 10, where we finally show that terms of
type code α behave as we claimed in our informal description. We
give a number of implications over specifications in inference rule
format, mimicking the structure of a big-step semantics. Again, we
emphasize that these rules are really just implications in specifica-
tion logic — the inference rule format is just a suggestive notation
for the actual specifications we use.

In rule AUNIT, we give a specification for the return com-
mand, which simply returns its argument and neither reads nor up-
dates any cells or state. The ABIND rule explains how sequential
composition works — as expected, we evaluate the first monadic
argument, and pass the result to the functional argument, and eval-
uate that. The read and update sets are simply the union of the
two executions. Reading a cell comes in two variants, AREADY
and AUNREADY. If a cell is ready, we simply return its memo-
ized value without any further computation. If a cell is unready, we
need to evaluate its code body, and then update the cell with its
new value. Note that we have to apply the ramification operator in
AUNREADY, because the cell we are reading goes from unready to
ready itself. We can also read (AGETREF) and write (ASETREF)
local state, which do not have any effect on the cells.

Finally, we have the ABSTRACTFRAME rule, which allows us
to extend the abstract heap formulas in the style of the frame rule
of separation logic — the signal difference being that we have to
apply the ramification operator R to the frame in the post-state.

PROPOSITION 5. (Soundness of Abstract Semantics) All of the
rules of the abstract semantics in Figure 10 are derivable in our
specification logic.

We can now reason about the behavior of our imperative notifi-
cation network library in terms of its action on the abstract heap.
Quantification and ramification give us a domain-specific frame
property, which allows us to modularly prove the correctness of
programs that construct and use this dependency-tracking library.

5. Verifying an Imperative Implementation of
Functional Reactive Programming

In this section, we will see how to verify an imperative implementa-
tion of a simple synchronous functional reactive programming sys-
tem. We will begin by giving the purely functional/mathematical
semantics of stream transducers. This semantics is easy to reason
about, but too inefficient to consider as an implementation. Then,
we’ll give an imperative implementation of the reactive primitives,
which is intended to be driven by an event loop. Finally, we will
prove the correctness of a realization relation between the impera-
tive and functional implementations, which will let us reason about
the imperative implementation as if it were functional.

5.1 Specifying Functional Reactive Programs
Functional Reactive Programming (Elliott and Hudak 1997) is a
style of writing interactive programs based on the idea of stream
transducers. The idea is to model a time-varying input signal of
type A as an infinite stream of A’s, and to model an interactive
system as a function that takes a stream of inputs stream(A) and
yields a stream of outputs stream(B). Note that a stream can be
viewed either as an infinite sequence of values, or isomorphically
as a function from natural numbers to values (i.e., a function from

1 ST(A,B) = {f ∈ stream(A)→ stream(B) | causal(f)}
2 lift : (A→ B)→ ST(A,B)
3 lift f as = map f as

4 seq : ST(A,B)→ ST(B,C)→ ST(A,C)
5 seq p q = q ◦ p
6 par : ST(A,B)→ ST(C,D)→ ST(A× C,B ×D)
7 par p q abs = zip (p (map π1 abs)) (q (map π2 abs))

8 switch : N→ ST(A,B)→ ST(A,B)→ ST(A,B)
9 switch k p q = λas. (take k (p as)) · (q (drop k as))

10 loop : A→ ST(A×B,A× C)→ ST(B,C)
11 loop a0 p = (map π2) ◦ (cycle a0 p)

12 cycle : A→ ST(A×B,A× C)→ ST(B,A× C)
13 cycle a0 p = λbs. λn. last(gen a0 p bs n)

14 gen : A→ ST(A×B,A× C)→ stream(B)
15 → N→ list (A× C)
16 gen a0 p bs 0 = p̂ [(a0, bs0)]
17 gen a0 p bs (n+ 1) =
18 p̂ (zip(a0 :: (map π1 (gen a0 p bs n))) (take (n+ 2) bs))

Figure 11. Semantics of Stream Transducers

times to values). In our discussion, we’ll switch freely between
these two views, using the most convenient viewpoint.5

However, not all functions stream(A)→ stream(B) are legiti-
mate stream transducers: we need to restrict our attention to causal
functions. A transducer is causal if we can compute the first n ele-
ments of the output having read at most n elements of the input.

causal(f : stream(A)→ stream(B)) ≡
∃f̂ : list A→ list B. ∀as : stream(A), n : N.
take n (f as) = f̂ (take n as)

Given a causal transducer p, we will write p̂ to indicate the cor-
responding list function which computes its finite approximations.
In Figure 11, we define a family of combinators acting on causal
transducers.

The type ST(A,B) of stream transducers (defined on line 1)
is the set of causal functions from stream(A) to stream(B). The
operation lift f (line 2) creates a stream transducer that simply
maps the function f over its input. Calls to seq p q (line 4) are
sequential composition: it feeds the output of p into the input of
q. The operator par p q (line 6) defines parallel composition — it
takes a stream of pairs, and feeds each component to its arguments,
respectively, and then merges the two output streams to produce the
combined output stream. The function switch k p q (line 8) is a
very simple “switching combinator”. It behaves as if it were p for
the first k time steps, and then behaves as if it were q, only starting
with the input stream beginning at time k.

The combinator loop a0 p is a feedback operation. It acts upon
a transducer p which takes pairs of As and Bs, and yields pairs of
As and Cs. It turns it into a combinator that takes Bs to Cs, by
giving p the value a0 (and its B-input) on the first time step, and
uses the output A at time n as the input A at time n + 1. This

5 Given an infinite stream vs, we will use use take n vs to denote the finite
list consisting of the first n elements of the stream vs. Correspondingly,
drop n vs is the infinite stream with vs with its first n elements cut off.
With a function f , map f vs maps f over the elements of vs, and given
another infinite stream us, the call zip us vs returns the infinite stream
of pairs of elements of us and vs. If v is an element, v :: vs will denote
consing v to the front of vs, and if xs is a finite list, then xs ·vs will denote
appending the finite sequence xs to the front of vs. Finally, we will write
vsn to denote the n-th element of the stream vs, and last xs to denote the
last element of a non-empty finite list.

is useful for constructing transducers that do things like sum their
inputs over time, and other stateful operations.

Because this function involves feedback, it should not be sur-
prising that it makes use of the causal nature of its argument oper-
ation. The loop function is defined in terms of cycle , which also
returns the sequence of output As, and cycle is defined in terms of
gen , which is a function that given an argument n returns a list of
outputs for the time steps from 0 to n. Notice that gen a0 p bs n
will always return n+1 elements (e.g., at argument 0, it will return
a 1 element list containing the output at time step 0), which means
that the call to last in cycle is actually safe. In order to calculate
gen, we need to recursively calculate the outputs for all smaller
time steps, and this is why p must be a causal stream function —
we need to be able to call the approximation p̂ to operate on the list
consisting of the first n elements.

All of these definitions are familiar to functional programmers,
and there are many techniques to prove properties of these func-
tions — coinductive proofs, the take-lemma of Bird and Wadler
(1988), arguments based on the isomorphism between streams and
functions from natural numbers. All of these serve to make prov-
ing properties about stream transducers very pleasant. For example,
one property we will need in the next section is the following:

LEMMA 1. (Loop Unrolling) We have that

cycle a0 p bs = p (zip (a0 :: (map π1 (cycle a0 p bs))) bs)

Proof (Sketch). This is easily proved using take-lemma of Bird
and Wadler (1988), which states that two streams are equal if all
their finite prefixes are equal. �

5.2 Realizing Stream Transducers with Notifications
While the definitions in the previous subsection yield very clean
proofs, they are not suitable as implementations — e.g., loop re-
computes an entire history at each time step! We can derive better
implementations by looking at how imperative event loops work.

The intuition underlying event-driven programming is that a
stream transducer is implemented with the combination of a no-
tification network, and an event loop. The event loop is a (possibly-
infinite) loop which does the following on each time step. First, it
updates an input cell, to reflect any input events that occurred on
that time step. Then, it reads the output cell of the network, to dis-
cover the output value for that time step. When the input cell is up-
dated, invalidations propagate throughout the dependency network,
and when the outputs are read, only the necessary re-computations
are performed.

Before formalizing this idea, we will first discuss the implemen-
tation given in Figure 12 in informal terms. (In the definitions, we
suppress the type arguments to functions in order to make the code
more readable.) We define the type of imperative stream transduc-
ers from types α to β as the type cell α → ©(cell β). This type
should be read as saying that the implementation is a function that,
given an input cell of type A, will construct a dataflow network
realizing a transducer, and which returns the output cell of type B
that the event loop should read.

The simplest example of this is lift f , defined on line 3. It will
take an input cell input, and build a new cell which reads input,
and return f applied to that value. Likewise, given two imperative
implementations p and q, seq p q (defined on line 6) will take an
input cell, and feed the input to p to build a network whose output
is named middle, and will then give middle to q to get the final
output cell. The overall network will be the network built by the
calls to both p and q, which interact via p’s network installing a
value in middle, which q’s network reads and processes.

The operation switch k p q (defined on line 23) is the first ex-
ample that uses local state. Given an input cell, we first create a

1 ST : ?→ ?→ ?
2 ST(α, β) ≡ cell α→©cell β

3 lift : ∀α, β : ?. (α→ β)→ ST(α, β)
4 lift α β f input =
5 newcell (bind (read input) (λx : α. return (f x)))

6 seq : ∀α, β : ?. ST(α, β)→ ST(β, γ)→ ST(α, γ)
7 seq α β p q input = [letv middle = p input in
8 letv output = q middle in
9 output]

10 par : ∀α,β, γ, δ : ?.
11 ST(α, β)→ ST(γ, δ)→ ST(α× γ, β × δ)
12 par α β γ δ p q input =
13 [letv a = newcell (bind (read input)
14 (λx : α× β. return (fst x))) in
15 letv b = p a in
16 letv c = newcell (bind (read input)
17 (λx : α× β. return (snd x))) in
18 letv d = q c in
19 letv output = newcell (bind (read b) (λb : β.
20 bind (read d) (λd : δ.
21 return 〈b, d〉)))] in
22 output]

23 switch : ∀α, β : ?. N→ ST(α, β)→ ST(α, β)→ ST(α, β)
24 switch α β k p q input =
25 [letv r = newN(0) in
26 letv a = p input in
27 letv b = q input in
28 letv out = newcell (bind (getref r) (λi : N.
29 bind (setref r (i+ 1)) (λq : 1.
30 if(i < k, read a, read b)))) in
31 out]

32 loop : ∀α, β, γ : ?. α→ ST(α× β, α× γ)→ ST(β, γ)
33 loop α β γ a0 p input =
34 [letv r = newα(a0) in
35 letv ab = newcell (bind (read input) (λb : β.
36 bind (getref r) (λa : α.
37 return 〈a, b〉))) in
38 letv ac = p ab in
39 letv c = newcell (bind (read ac) (λv : α× γ.
40 bind (setref r (fst v)) (λq : 1.
41 return (snd v)))) in
42 c]

Figure 12. Imperative Stream Transducers

local reference r, initialized to 0. Then, we build networks corre-
sponding to p and to q (with outputs a and b, respectively). Finally,
we build a cell out, whose code reads and increments r, and which
will read a or b depending on whether the reference’s contents are
less than or equal to k. The demand-driven nature of evaluation
means that we never redundantly evaluate p or q’s networks — we
only ever execute one of them.

The operation loop a0 p builds a feedback network by explicitly
creating a reference to hold an accumulator parameter. It constructs
a local reference initialized to a0, and then constructs a cell ab
which reads the input and the local reference to produce a pair
of type A × B. This cell is given to p, to construct a network
with an output cell ac, yielding pairs of type A × C. Finally, we
construct the overall output cell c, which reads ac and updates the
local reference with a new value of type A, and returns a value of
type C. The use of a local reference (rather than a cell) to store
the current state of A is essential, because we need to maintain the
acyclicity of the dataflow graph.

With these ideas in mind, we come to the definition of what it
means for a dataflow network to realize a stream transducer. This
property is quite large, but despite its size is pleasant to work with.

1 Realize(i,Φ, o, f) ,

2 ∀v : stream(A). ∃φ : stream(formula), u : stream(Pfin(ecell)).

3 {∀n : N. closed(φn, dom(φn) ∪ {i}) ∧
4 dom(φn) = dom(φn+1) ∧
5 ∀ψ. unready(ψ, i) ⊃ unready(ψ ⊗ φn, o)}
6 and {Φ = φ0}
7 and Transduce(i, φ, o, u, f, v)

8 Transduce(ri, φ, o, u, f, v) ,
9 ∀n : N, φin, φ′in, uin.
10 〈φin; read i〉 ⇓

˙
φ′in; vn

¸
[{i}|uin] ∧

11 {dom(φin) = dom(φ′in) ∧
12 closed(φin, dom(φin)) ∧ closed(φin, dom(φ′in))∧
13 unready(φin, i) ∧ i ∈ uin}
14 implies

15 〈φin ⊗ φn; read o〉 ⇓
˙
φ′in ⊗ φn+1; (f v)n

¸
[{o}|uin ∪ un]

16 and {u ⊆ dom(φn) ∧ o ∈ u}
17

We read Realize(i,Φ, o, f) as saying “the dataflow network Φ
realizes the stream transducer f , when the event loop writes inputs
into i and reads outputs from o”.

We have highlighted the key pieces of this definition with boxes.
On line 2, for each input stream v, we existentially assert the ex-
istence of a stream of abstract heap formulas φ. This stream rep-
resents the evolving state of the network over time — because our
notification networks contain local state, that state can potentially
have a different value at each time step.

Then, in the unboxed formulas, we assert some well-formedness
properties. On lines 3 to 5, we assert that (1) the only external
cell the network may read is i, (2) that the domain of the network
(i.e., the cells whose atomic formulas are in that formula) remains
constant over time, and (3) that if the input cell is ever unready, so is
the output (i.e, the output genuinely depends on the input). Then, on
line 6, we assert that the initial state of the evolution of the network
is Φ. (All of these conditions could be relaxed, but in this paper
there is no need. It would be necessary if we added combinators
that dynamically created new transducers as the program ran, since
we could then create new cells at each time step.)

Finally, we assert the network implements the stream transducer
property on line 7, using the Transduce sub-predicate. On line 9,
we first quantify over all times n, and then over φin, φ′in, and uin.
These extra parameters exist because reading i to get the input, may
require evaluating some auxiliary network state.

We read φin as the network state needed to read i, and φ′in is
that state after i has been read, with uin being the cells in φin
updated during that execution. And indeed, on the next line in
the boxed formula, we give an abstract triple making exactly this
assumption – that reading i will give us the vn, the n-th element of
the stream v, and that doing so requires the state φin, which will
become φ′in during the execution. (The unboxed formulas are more
syntactic conditions we push along.)

The conclusion of this implication over triples, the second
boxed formula, says that reading o will give us the (fv)n, the n-th
output of the stream transducer, and that in doing so it will also
update the input state φin to φ′in, in addition to sending the trans-
ducer state from φn to φn+1. With this definition, we can prove the
following specifications:

PROPOSITION 6. (FRP Correctness) We define the Relate predi-
cate:

RelateA,B(p, f) ,
∀ψ : formula, i : cell A.
{G(ψ)} p i {o : cell B. ∃Φ. G(Φ⊗ ψ) ∧

Realize(i,Φ, o, f) valid}

Then, the following specifications are provable:

∀f : A→ B. Relate(lift f, lift f)

∀p, f, q, g. Relate(p, f) and Relate(q, g)
implies Relate(seq p q, seq f g)

∀p, f, q, g. Relate(p, f) and Relate(q, g)
implies Relate(par p q, par f g)

∀k, p, f, q, g. Relate(p, f) and Relate(q, g)
implies Relate(switch k p q, switch k f g)

∀a0, p, f. Relate(p, f) implies Relate(loop a0 p, loop a0 f)

These lemmas permit us to reason about our transducer imple-
mentation as if it is a pure implementation — for each combinator
in the interface, we have a proof that shows the corresponding im-
plementation combinator lifts related arguments to related results.
As a result, we can show that, for example, seq (lift f) (lift g) and
lift (g ◦ f) both realize the same pure lift (g ◦ f).

6. Future Work
We foresee many further applications of the idea of ramifications.

First, there are numerous algorithms — such as unification, the
union-find algorithm, and the chaotic iteration constraint propaga-
tion algorithm used in dataflow analysis — which rely on using
mutation and assignment as a way of globally broadcasting infor-
mation to the rest of the program state. These algorithms have all
been resistant to modular proof, because of the apparent need to
know “the rest of the world” in the program invariant. It would be
interesting to see if ramifications can help.

Second, we would like to investigate the relationship between
ramification operators and methods based on rely-guarantee (Jones
1983). Rely-guarantee imposes a mutual contract between a piece
of code and the rest of the world. This is conceptually similar to the
idea of a ramification, though we see no obvious direct relationship.

Third, we introduced ramifications as a style of specification
useful for verifying a particular library. Might it be useful to make
ramification operators part of the basic logical framework? If so,
what are their logical properties? R(u, φ) looks like a family of
modal operators on the formula φ, but we needed a number of
auxiliary interaction lemmas to make them truly useful.

7. Related Work
Versions of separation logic (Reynolds 2002) supporting higher-
order languages and quantification over predicates have been pro-
posed by Nanevski et al. (2006) with Hoare Type Theory, and by
Parkinson and Bierman (2008). It would be interesting to adapt the
proof techniques in this paper to their settings.

Prior work on verifying the observer pattern using separation
logic includes work by Krishnaswami et al. (2009, 2007) and work
by Parkinson (2007). Similar techniques have also been applied in
the setting of regional logic by Banerjee et al. (2008).

In all of these works, the program invariant explicitly tracks
the observers listening to a particular subject, and the invariants
for each observer. Thus there is an invariant for a cluster of ob-
jects (subjects and observers). For a chain of observers only one
level deep, this works reasonably well, but it breaks down when
there are chains of dependencies — when we have an object which
both observes and is observed by yet other objects. Roughly speak-
ing, it is difficult to locally add an observer to a subject, since we
then need to touch the invariants of everything the subject itself ob-
serves, forcing us to know the transitive closure of the reachability
graph of object clusters from the subject.

Even though all of these methods are modular in the sense that
subjects and observers can be verified independently, they are non-
modular in the sense that clients will have have to track entire

dependency graphs when verifying nested uses of the observer
pattern. In fact, our present work began when we realized that this
style of observer invariant made it difficult to verify the model-
view-controller pattern.

Shaner et al. (2007) studied using gray-box model programs
to model higher-order method calls (which can be understood as
a variant of techniques from refinement calculus) in JML, and
Barnett and Naumann (2004) added a friendship system to the
Boogie system, with which it is possible to describe some forms
of clusters of collaborating objects, including the subject-observer
pattern. These works are also non-modular in the above sense, since
they require knowing what all of the observers are.

Leino and Schulte (2007) have applied the idea of history in-
variants (Liskov and Wing 2001) to model observers. The use of
monotonic predicates does give rise to a modular proof technique,
but it sharply restricts the kinds of invariants that can be used, in
ways that make it very difficult to model the code-update-based
protocol seen in our FRP example.

Acar et al. (2006) have proposed self-adjusting computation
as a technique for using change propagation to write programs
that incrementally recompute answers as the inputs are adjusted.
? showed how to build a monadic combinator library for self-
adjusting computation using techniques strikingly similar to the
monadic library described in this paper. This gives us confidence
that this is a natural implementation style, and makes us hope
that ramifications can help in verifying implementations of this
technique.

FRP was proposed by Elliott and Hudak (1997) as a declarative
formalism for interactive programming. The API in our paper dif-
fers from theirs in two ways. First, our interface is a variation of
the arrowized FRP interface proposed in Hudak et al. (2002), and
secondly, we use a discrete rather than continuous model of time
— though we found the idea of using a declarative semantics as
a specification for the interface an inspiring one. Our work could
also serve as a bridge between the work on purely functional and
imperative implementations, such as the work done by McDirmid
and Hsieh (2006) on SuperGlue and by Cooper and Krishnamurthi
(2006) on the FrTime system.

Acknowledgments
We would like to thank Peter O’Hearn for pointing out the connec-
tion of our work with the ramification problem of AI. This work
was partially supported by the US NSF grants CCF-0916808 and
CCF-0546550, and US DARPA grant HR00110710019.

References
U.A. Acar, G.E. Blelloch, and R. Harper. Adaptive functional program-

ming. ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(6):990–1034, 2006.

Anindya Banerjee, David A. Naumann 2, and Stan Rosenberg. Regional
logic for local reasoning about global invariants. In ECOOP, pages 387–
411, 2008.

Mike Barnett and David A. Naumann. Friends need a little bit more:
Maintaining invariants over shared state. In MPC, pages 54–64, 2004.

Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-
hyperdoctrines, higher-order separation logic, and abstrac-
tion. ACM TOPLAS, 29(5):24, 2007. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/1275497.1275499.

R. Bird and P. Wadler. An introduction to functional programming. Prentice
Hall International (UK) Ltd. Hertfordshire, UK, UK, 1988.

L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic
typing and higher-order frame rules. In Proc. of LICS’05, pages 260–
269, 2005.

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. Realizability se-
mantics of parametric polymorphism, general references, and recursive
types. In Luca de Alfaro, editor, FOSSACS, volume 5504 of LNCS, pages
456–470. Springer, 2009. ISBN 978-3-642-00595-4.

Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Peter Sestoft, editor, ESOP,
volume 3924 of LNCS, pages 294–308. Springer, 2006. ISBN 3-540-
33095-X.

C. Elliott and P. Hudak. Functional reactive animation. In Proceedings of
ICFP’97, pages 263–273. ACM New York, NY, USA, 1997.

J. J. Finger. Exploiting constraints in design synthesis. PhD thesis, Stanford
University, Stanford, CA, USA, 1987.

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows,
robots, and functional reactive programming. In Johan Jeuring and
Simon L. Peyton Jones, editors, Advanced Functional Programming,
volume 2638 of LNCS, pages 159–187. Springer, 2002. ISBN 3-540-
40132-6.

Cliff B. Jones. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 5(4):596–619, 1983.

N. Krishnaswami, J. Aldrich, and L. Birkedal. Modular verification of the
subject-observer pattern via higher-order separation logic. In Proceed-
ings of FTfJP: Formal Techniques for Java-like Programs, 2007.

N. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and A. Buisse.
Design patterns in separation logic. In Proceedings of TLDI’09, pages
105–116. ACM New York, NY, USA, 2009.

Neelakantan R. Krishnaswami. Verifying Higher-Order Programming Lan-
guages with Higher-Order Separation Logic. PhD thesis, forthcoming.
Carnegie Mellon University, Pittsburgh, PA, USA, 2009.

K. Rustan M. Leino and Wolfram Schulte. Using history invariants to verify
observers. In Rocco De Nicola, editor, ESOP, volume 4421 of LNCS,
pages 80–94. Springer, 2007. ISBN 978-3-540-71314-2.

Barbara H. Liskov and Jeannette M. Wing. Behavioural subtyping using in-
variants and constraints. In Formal Methods for Distributed Processing:
a Survey of Object-Oriented Approaches, pages 254–280. Cambridge
University Press, New York, NY, USA, 2001. ISBN 0-521-77184-6.

John McCarthy and Patrick J. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4, pages 463–502. Edinburgh University
Press, 1969.

Sean McDirmid and Wilson C. Hsieh. Superglue: Component programming
with object-oriented signals. In Dave Thomas, editor, ECOOP, volume
4067 of LNCS, pages 206–229. Springer, 2006. ISBN 3-540-35726-2.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism
and separation in hoare type theory. In Proceedings ICFP, pages 62–
73, New York, NY, USA, 2006. ACM. ISBN 1-59593-309-3. doi:
http://doi.acm.org/10.1145/1159803.1159812.

M. Parkinson. Class invariants: The end of the road. Proceedings IWACO,
2007.

Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction
and inheritance. In George C. Necula and Philip Wadler, editors, POPL,
pages 75–86. ACM, 2008. ISBN 978-1-59593-689-9.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11(4):511–540,
2001. ISSN 0960-1295.

John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science (LICS 2002), pages 55–74.
IEEE Computer Society, 2002. ISBN 0-7695-1483-9.

Steve M. Shaner, Gary T. Leavens, and David A. Naumann. Modular
verification of higher-order methods with mandatory calls specified by
model programs. In OOPSLA, pages 351–368, 2007.

A. Appendix: The cellset Interface
In this section we describe the interface to the cellset type, repre-
senting pure collections of existentially quantified cells (terms of

type ∃α : ?. cell α). Specifying this interface is not entirely trivial,
because of the way equality works for this type.

Ordinarily, we give a two-place predicate set(v, elts) relating
a value v, and the mathematical set of elements elts it represents.
However, this approach is not sufficient in our case. In order to
manage dependencies, we need to be able to test cells of different
concrete type for equality, and the natural equality for references
only permits testing references of the same type. As a result, we
cannot unpack an existentially-quantified cell and compare the
elements in its tuple, because we do not know that the two cells
are of the same type (and indeed, they might not be).

To deal with this problem, we assign a unique integer identifier
to each cell we create, and compare those identifiers to establish
equality. Since these identifiers are generated dynamically along
with the cells, the precise partial equivalence relation we need to
use is determined dynamically as well. So we add an additional
index to the set predicate set(W, v, elts). The extra parameter W
is the world, the set of all the cells allocated so far, whose elements
must be equal if and only if their identifier fields match.

The usual set operations are supported: the expression emptyset
represents an empty set of cells; addset v x adds the element x
to the set v represents; and removeset v x removes x from the
set v represents. We also have iterset f v, which iterates over
the elements of v’s set and applies f to each element in some
sequential order. (The specification makes use of two auxiliary
predicates: matches , which assert that a set and a list have the same
elements; and iterseq , which constructs a command representing
the sequential execution over those elements.)

We have three axioms any implementation must satisfy. First,
if a cellset value v represents a set elts in a world W , it must
also represent a set in any larger world W ′ — i.e., allocating new
cells cannot disturb already-existing cells. Second, the values in
a set are always a subset of the world W . Third, we require that
set(W, v, elts) is a pure predicate (i.e., is not heap-dependent).
That is, we ask that cellset have a purely functional implementation
(for example, as a binary tree). This is not necessary, but does
simplify the other invariants in this paper.

1 World =
2 {D ∈ Pfin(ecell) | ∀c, d ∈ D. unique(c) = unique(d)
3 ⇐⇒ c = d}
4 ∃cellset : ?.
5 ∃set : World⇒ cellset⇒ Pfin(ecell)⇒ prop.
6 ∃emptyset : cellset.
7 ∃addset : cellset→ ecell→ cellset.
8 ∃removeset : cellset→ ecell→ cellset.
9 ∃iterset : cellset→ (ecell→©1)→ 1.

10 {∀W ∈World. set(W, emptyset, ∅)} and

11 {∀W ∈World, v : cellset, x : ecell, elts ∈ Pfin(ecell).
12 set(W, v, elts) ∧ x ∈W ⊃ set(W, addset v x, elts ∪ {x})} and

13 {∀W ∈World, v : cellset, x : ecell, elts ∈ Pfin(ecell).
14 set(W, v, elts) ∧ x ∈W ⊃ set(W, removeset v x, elts− {x})} and

15 {∀W ∈World, v : cellset, elts ∈ Pfin(ecell), f : (ecell→©1).
16 set(W, v, elts) ⊃ ∃L : seq ecell. matches elts L ∧
17 iterset f v = iterseq f L} and

18 {∀W,W ′ ∈World, v, elts.
19 set(W, v, elts) ∧W ⊆W ′ ⊃ set(W ′, v, elts)} and

20 {∀W,W ′ ∈World, v, elts.
21 set(W, v, elts) ⊃ elts ⊆W} and

22 {∀W, v, elts. Pure(set(W, v, elts))}
23 matches elts [] = elts = ∅
24 matches elts (v :: vs) = v ∈ elts ∧matches (elts− {v}) vs
25 iterseq f [] = [〈〉]
26 iterseq f (v :: vs) = [letv 〈〉 = f v in run iterseq f vs]

