
Realizability Semantics of
Parametric Polymorphism, General References,

and Recursive Types

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

IT University of Copenhagen?

Abstract. We present a realizability model for a call-by-value, higher-
order programming language with parametric polymorphism, general
first-class references, and recursive types. The main novelty is a relational
interpretation of open types (as needed for parametricity reasoning) that
include general reference types. The interpretation uses a new approach
to modeling references.
The universe of semantic types consists of world-indexed families of logi-
cal relations over a universal predomain. In order to model general refer-
ence types, worlds are finite maps from locations to semantic types: this
introduces a circularity between semantic types and worlds that pre-
cludes a direct definition of either. Our solution is to solve a recursive
equation in an appropriate category of metric spaces. In effect, types are
interpreted using a Kripke logical relation over a recursively defined set
of worlds.
We illustrate how the model can be used to prove simple equivalences
between different implementations of imperative abstract data types.

1 Introduction

In this article we develop a semantic model of a call-by-value programming
language with impredicative and parametric polymorphism, general first-class
references, and recursive types. Motivations for conducting this study include:

– Extending the approach to reasoning about abstract data types via relational
parametricity from pure languages to more realistic languages with effects,
here general references. We discussed this point of view extensively earlier [8].

– Investigating what semantic structures are needed in general models for ef-
fects. Indeed, we see the present work as a pilot study for studying general
type theories and models of effects (e.g., [12, 19]), in which we identify key
ingredients needed for semantic modeling of general first-class references.

– Paving the way for developing models of separation logic for ML-like lan-
guages with reference types. Earlier such models of separation logic [16] only
treat so-called strong references, where the type on the contents of a refer-
ence cell can vary: therefore proof rules cannot take advantage of the strong
invariants provided by ML-style reference types.

? Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

2 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

We now give an overview of the conceptual development of the paper. The
development is centered around three recursively defined structures, defined in
three stages. In slogan form, there is one recursively defined structure for each
of the type constructors ∀, ref, and µ alluded to in the title.

First, since the language involves impredicative polymorphism, the semantic
model is based on a realizability interpretation [4] over a certain recursively de-
fined predomain V . Using this predomain we can give a denotational semantics
of an untyped version of the language. This part is mostly standard, except for
the fact that we model locations as pairs (l, n), with l a natural number corre-
sponding to a standard location and n ∈ N∪{∞} indicating the “approximation
stage” of the location [8]. These pairs, called semantic locations, are needed for
modeling reference types in stage three.1

Second, to account for dynamic allocation of typed reference cells, we follow
earlier work on modeling simple integer references [7] and use a Kripke-style
possible worlds model. Here, however, the set of worlds needs to be recursively
defined since we treat general references. Semantically, a world maps locations
to semantic types, which, following the general realizability idea, are certain
world-indexed families of relations on V : this introduces a circularity between
semantic types and worlds that precludes a direct definition of either. Thus we
need to solve recursive equations of approximately the following form

W = N0 ⇀fin T
T =W → CURel(V)

even in order to define the space in which types will be modeled. We formally
define the recursive equations in certain ultrametric spaces and show how to solve
them using known results from metric-space based semantics. The employed
metric on relations on V is well-known from work on interpreting recursive types
and impredicative polymorphism [1, 4, 5, 10, 13]; here we extend its use to
reference types (combined with these two other features).

Third, having now defined the space in which types should be modeled, the
actual semantics of types can be defined. For recursive types, that also involves
a recursive definition. Since the space T of semantic types is a metric space
we can employ Banach’s fixed point theorem to find a solution as the fixed
point of a contractive operator on T .2 This involves interpreting the various
type constructors of the language as non-expansive operators. For most type
constructors doing so is straightforward, but for the reference-type constructor

1 Intuitively, the problem with modeling locations using a flat cpo of natural numbers
is that such “flat” locations contain no approximation information that can be used
to define relations by induction. (See page 12.)

2 We remark that the fixed point could also be found using the technique of Pitts [18];
the proof techniques are very similar because of the particular way the requisite met-
rics are defined. In this article we do in any case need the metric-space formulation,
but not the extra separation of positive and negative arguments in recursive defini-
tions of relations, and hence we define the meaning of recursive types via Banach’s
fixed point theorem.

Parametric Polymorphism, General References, and Recursive Types 3

it is not. That is the reason for introducing the semantic locations mentioned
above: using these, we can define a semantic reference-type operator (and show
that it is non-expansive).

Finally, having now defined semantics of types using a family of world-indexed
logical relations, we define the typed meaning of terms by proving the funda-
mental theorem of logical relations wrt. the untyped semantics of terms.

In this article we do not consider operational semantics but focus on present-
ing the model outlined above. We have earlier shown a computational-adequacy
result for a semantics similar to the untyped semantics defined in stage one [8]: we
expect that result to carry over to the present setup. Also, the model does not val-
idate standard equivalences involving local state,3 although we expect that it can
be extended to do so (see Section 6). Here we rather aim to present the fundamen-
tal ideas behind Kripke logical relations over recursively defined sets of worlds.

The remainder of the article is organized as follows. Section 2 sketches the
language we consider. In Section 3 we present the untyped semantics, corre-
sponding to stage one in the outline above. In Section 4 we present the typed
semantics, corresponding to the last two stages. In Section 5 we present a few
examples of reasoning using the model. Related work is discussed in Section 6.

Because of space limitations, some definitions and most proofs have been
omitted from this article. They can be found in the long version, available from
the authors’ web pages.4

2 Language

We consider a standard call-by-value language with universal types, iso-recursive
types, ML-style reference types, and a ground type of integers. The language is
sketched in Figure 1. Terms are not intrinsically typed; this allows us to give a
denotational semantics of untyped terms. The typing rules are standard [17]. In
the figure, Ξ and Γ range over contexts of type variables and term variables,
respectively. As we do not consider operational semantics in this article, there is
no need for location constants, and hence no need for store typings.

3 Untyped Semantics

We now give a denotational semantics for the untyped term language above. As
usual for models of untyped languages, the semantics is given by means of a
“universal” complete partial order (cpo) in which one can inject integers, pairs,
functions, etc. This universal cpo is obtained by solving a recursive predomain
equation. The only non-standard aspect of the semantics is the treatment of
store locations: locations are modeled as elements of the cpo Loc = N0 × ω
where ω is the “vertical natural numbers” cpo: 1 @ 2 @ · · · @ n @ · · · @∞. (For
notational reasons it is convenient to call the least element 1 rather than 0.) The

3 The model can only equate computations that allocate references “in lockstep”.
4 Currently: http://www.itu.dk/people/kss/papers/poly-ref-rec.pdf

4 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

Types: τ ::= int | 1 | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | µα.τ | ∀α.τ | α | ref τ

Terms: t ::= x | n | ifz t0 t1 t2 | t1 + t2 | t1 − t2 | () | (t1, t2) | fst t | snd t

| inl t | inr t | case t0 x1.t1 x2.t2 | λx.t | fix f.λx.t | t1 t2
| fold t | unfold t | Λα.t | t [τ] | ref t | !t | t1 := t2

Sample typing rules:

Ξ | Γ ` t : τ [µα.τ/α]

Ξ | Γ ` fold t : µα.τ

Ξ | Γ ` t : µα.τ

Ξ | Γ ` unfold t : τ [µα.τ/α]

Ξ,α | Γ ` t : τ

Ξ | Γ ` Λα.t : ∀α.τ
(Ξ ` Γ)

Ξ | Γ ` t : ∀α.τ0
Ξ | Γ ` t [τ1] : τ0[τ1/α]

(Ξ ` τ1)

Ξ | Γ ` t : τ

Ξ | Γ ` ref t : ref τ

Ξ | Γ ` t : ref τ

Ξ | Γ ` !t : τ

Ξ | Γ ` t1 : ref τ Ξ | Γ ` t2 : τ

Ξ | Γ ` t1 := t2 : 1

Fig. 1. Programming language

intuitive idea is that locations can be approximated: the element (l,∞) ∈ Loc is
the “ideal” location numbered l, while the elements of the form (l, n) for n 6=∞
are its approximations. It is essential for the construction of the typed semantics
(in the next section) that these “approximate locations” (l, n) are included.

Let in the following Cpo be the category of ω-cpos and ω-continuous func-
tions. We use the standard notation for products, sums, lifting, and function
spaces in Cpo. Injections into binary sums are written ι1 and ι2. For any set M
and any cpo A, the cpo M ⇀fin A has maps from finite subsets of M to A as
elements, and is ordered as follows: f v f ′ if and only if f and f ′ has the same
domain M0 and f(m) v f ′(m) for all m ∈M0. The Kleisli composition g ◦ f of
two continuous functions f : A→ B⊥ and g : B → C⊥ is given by (g◦f)(a) = g b
if f a = bbc for some b, and (g ◦ f)(a) = ⊥ otherwise. A complete, pointed par-
tial order (cppo) is a cpo containing a least element. The least fixed-point of a
continuous function f : D → D from a cppo D to itself is written fix f .

The semantics below is presented in monadic style [15], i.e., structured using
a monad that models the effects of the language. It is most convenient to define
this monad by means of a Kleisli triple: for every cpo S and every cppo Ans, the
continuation-and-state monad TS,Ans : Cpo → Cpo over S and Ans is given by
TS,Ans A = (A → S → Ans) → S → Ans, ηA a = λk.λs. k a s, and c ?A,B f =
λk.λs. c (λa.λs′.f a k s′) s (with ηA : A→ TS,AnsA and ?A,B : TS,AnsA→ (A→
TS,AnsB)→ TS,AnsB.) In the following we omit the type subscripts on η and ?.5

5 Continuations are included for a technical reason, namely to ensure chain-
completeness of the relations that will be used to model computations.

Parametric Polymorphism, General References, and Recursive Types 5

The standard methods for solving recursive (pre)domain equations give so-
lutions that satisfy certain induction principles [18, 21]. One aspect of these
induction principles is that, loosely speaking, one obtains as a solution not only
a cpo A, but also a family of “projection” functions $n on A (one function for
each n ∈ ω) such that each element a of A is the limit of its projections $0(a),
$1(a), etc. These functions therefore provide a handle for proving properties
about A by induction on n.

Definition 1. A uniform cpo (A, ($n)n∈ω) is a cpo A together with a family
($n)n∈ω of continuous functions from A to A⊥, satisfying

$0 = λe.⊥
$0 v $1 v · · · v $n v . . .⊔

n∈ω
$n = λa.bac

$m ◦ $n = $n ◦ $m = $min(m,n) .

We are now ready to construct a uniform cpo (V, (πn)n∈ω) such that V is
a suitable “universal” cpo. The functions πn will be used in the definition of
the untyped semantics. Intuitively, if one for example looks up the approximate
location (l, n+1) in a store s, one only obtains the approximate element πn(s(l))
as a result.

Proposition 2. There exists a uniform cpo (V, (πn)n∈ω) satisfying the following
two properties:

1. The following isomorphism holds in Cpo:

V ∼= Z + Loc + 1 + (V × V) + (V + V) + (V → TS,AnsV)
+ V + TS,AnsV (1)

where TS,AnsV = (V → S → Ans) → S → Ans, S = N0 ⇀fin V , Ans =
(Z + Err)⊥, Loc = N0 × ω, and Err = 1.

2. Abbreviate TV = TS,AnsV and K = V → S → Ans. Define the following
injection functions corresponding to the summands on the right-hand side of
the isomorphism (1):

inZ : Z→ V in+ : V + V → V

inLoc : Loc → V in→ : (V → TV)→ V

in1 : 1→ V inµ : V → V

in× : V × V → V in∀ : TV → V

With that notation, the functions πn : V → V⊥ satisfy (and are determined
by) the equations shown in Figure 2.

These two properties determine V uniquely, up to isomorphism in Cpo.

6 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

π0 = λv.⊥
πn+1(inZ(m)) = binZ(m)c
πn+1(in1(∗)) = bin1(∗)c

πn+1(inLoc(l,∞)) = binLoc(l, n+ 1)c
πn+1(inLoc(l,m)) = binLoc(l,min(n+ 1,m))c

πn+1(in×(v1, v2)) =

{
bin×(v′1, v

′
2)c if πn v1 = bv′1c and πn v2 = bv′2c

⊥ otherwise

πn+1(in+(ιi v)) =

{
bin+(ιi v

′)c if πn v = bv′c
⊥ otherwise

(i = 1, 2)

πn+1(inµ v) =

{
binµ v′c if πnv = bv′c
⊥ otherwise

πn+1(in∀ c) = bin∀(πTn+1 c)c

πn+1(in→ f) =

⌊
in→

(
λv.

{
πTn+1 (f v′) if πn v = bv′c
⊥ otherwise

)⌋
Here the functions πSn : S → S⊥ and πKn : K → K and πTn : TV → TV are defined as
follows:

πS0 = λs.⊥ πK0 = λk.⊥ πT0 = λc.⊥

πSn+1(s) =

{
bs′c if πn ◦ s = λl.bs′(l)c
⊥ otherwise

πKn+1(k) = λv.λs.

{
k v′ s′ if πn v = bv′c and πSn+1 s = bs′c
⊥ otherwise

πTn+1(c) = λk.λs.

{
c (πKn+1 k) s′ if πSn+1 s = bs′c
⊥ otherwise .

Fig. 2. Characterization of the projection functions πn : V → V⊥.

Proof (sketch). By modifying the usual projection functions, obtained from a
minimal-invariant solution of (1), on arguments corresponding to locations. ut

From here on, let V and (πn)n∈ω be as in the proposition above. We fur-
thermore use the abbreviations, notation for injections, etc. introduced in the
proposition; in particular, TV = (V → S → Ans) → S → Ans. Additionally,
abbreviate λl = inLoc(l,∞) and λnl = inLoc(l, n). Let errorAns = bι2∗c ∈ Ans
be the “error answer” and let error = λk.λs. errorAns ∈ TV be the “error com-
putation”.

In order to model the three operations of the untyped language that involve
references, we define the three functions alloc : V → TV , lookup : V → TV ,
and assign : V → V → TV . The first two of these functions are shown in
the lower part of Figure 3. The third function, assign, is similar to lookup:
the idea is that when one assigns a value to an approximate location, only an
approximate value is inserted in the store. Notice that it would not suffice to

Parametric Polymorphism, General References, and Recursive Types 7

For every t with FV(t) ⊆ X, define the continuous JtKX : V X → TV by induction on t:

JxKX ρ = η(ρ(x))

Jλx.tKX ρ = η(in→(λv. JtKX,x (ρ[x 7→ v])))

Jt1 t2KX ρ = Jt1KX ρ ? λv1. Jt2KX ρ ? λv2.
{
f v2 if v1 = in→ f
error otherwise

JΛα.tKX ρ = η(in∀ (JtKX ρ))

Jt [τ]KX ρ = JtKX ρ ? λv.
{
c if v = in∀ c
error otherwise

Jref tKX ρ = JtKX ρ ? λv. alloc v

J!tKX ρ = JtKX ρ ? λv. lookup v

Jt1 := t2KX ρ = Jt1KX ρ ? λv1. Jt2KX ρ ? λv2. assign v1 v2
. . .

alloc v = λk λs. k (λfree(s)) (s[free(s) 7→ v])

(where free(s) = min{n ∈ N0 | n /∈ dom(s)})

lookup v = λk λs.


k s(l) s if v = λl and l ∈ dom(s)
k v′ s if v = λn+1

l , l ∈ dom(s), and πn(s(l)) = bv′c
⊥Ans if v = λn+1

l , l ∈ dom(s), and πn(s(l)) = ⊥
errorAns otherwise

Fig. 3. Untyped semantics of terms (sample cases).

define, e.g., lookup(λn+1
l)(k)(s) = ⊥ for l ∈ dom(s), and hence avoid mentioning

the projection functions: lookup would then not be continuous.
We are now ready to define the untyped semantics.

Definition 3. Let t be a term and let X be a set of term variables such that
FV(t) ⊆ X. The untyped semantics of t with respect to X is the continuous
function JtKX : V X → TV defined by induction on t in Figure 3.

The semantics of a complete program is defined by supplying an initial con-
tinuation and the empty store:

Definition 4. Let t be a term with no free term variables or type variables. The
program semantics of t is the element JtKp of Ans defined by JtKp = JtK∅ ∅ kinit sinit

where sinit ∈ S is the empty store and

kinit = λv.λs.

{
bι1 mc if v = inZ(m)
errorAns otherwise.

We emphasize that even though the above semantics is slightly non-standard
because of the use of the projection functions in lookup and assignment, we can
still use it to reason about operational behaviour: as mentioned in the Introduc-
tion an earlier adequacy proof [8] should carry over to the present setting.

8 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

4 Typed Semantics

In this section we present a “typed semantics”, i.e., an interpretation of types
and typed terms. As described in the introduction, types will be interpreted as
world-indexed families of binary relations on the universal cpo V . Since worlds
depend on semantic types, the space of semantic types is obtained by solving
a recursive metric-space equation, i.e., by finding a fixed-point of a functor on
metric spaces.

4.1 Ultrametric Spaces

Recall that a metric space (X, d) is 1-bounded if d(x, y) ≤ 1 for all x and y
in X. Let CBUlt be the category with complete, 1-bounded ultrametric spaces
as objects and non-expansive (i.e., non-distance-increasing) functions as mor-
phisms [6]. This category is cartesian closed [22]; here one needs the ultrametric
inequality. The exponential (X1, d1) → (X2, d2) has the set of non-expansive
functions from (X1, d1) to (X2, d2) as the underlying set, and the “sup”-metric
dX1→X2 as distance function: dX1→X2(f, g) = sup{d2(f(x), g(x)) | x ∈ X1}.

For a given non-empty, complete metric space, consider the function fix that
maps every contractive operator to its unique fixed-point (which exists by Ba-
nach’s fixed-point theorem). On complete ultrametric spaces, fix is non-expansive
in the following sense.

Proposition 5. Let (X, d) ∈ CBUlt be non-empty. For all contractive functions
f and g from (X, d) to itself, d(fix f,fix g) ≤ d(f, g).

4.2 The Space of Semantic Types

We now turn to constructing the space of semantic types. First, some standard
definitions. For every cpo A, let Rel(A) be the set of binary relations R ⊆ A×A
on A. A relation R ∈ Rel(A) is complete if for all chains (an)n∈ω and (a′n)n∈ω
such that (an, a

′
n) ∈ R for all n, also (tn∈ωan,tn∈ωa′n) ∈ R. Let CRel(A) be the

set of complete relations on A. For every cpo A and every relation R ∈ Rel(A),
define the relationR⊥ ∈ Rel(A⊥) byR⊥ = { (⊥,⊥) }∪{ (bac, ba′c) | (a, a′) ∈ R }.
For R ∈ Rel(A) and S ∈ Rel(B), let R → S be the set of continuous functions
f from A to B satisfying that for all (a, a′) ∈ R, (f a, f a′) ∈ S.

On uniform cpos, we furthermore define uniform binary relations [1, 4]:

Definition 6. Let (A, ($n)n∈ω) be a uniform cpo. A relation R ∈ Rel(A) is uni-
form with respect to ($n)n∈ω if $n ∈ R→ R⊥ for all n. Let CURel(A, ($n)n∈ω)
be the set of binary relations on A that are complete and uniform with respect
to ($n)n∈ω.

Below we define a number of metric spaces that will be used in the interpre-
tation of types. After defining one of these metric spaces (X, d), the “distance
function” d will be fixed, so we usually omit it and call X itself a metric space.

Let in the following (A, ($n)n∈ω) be a uniform cpo and let CURel(A) =
CURel(A, ($n)n∈ω). First, as in Amadio [4], we obtain:

Parametric Polymorphism, General References, and Recursive Types 9

Proposition 7. The set CURel(A) is a complete, 1-bounded ultrametric space
with the distance function given by

d(R,S) =
{

2−max{n∈ω | $n∈R→S⊥ ∧ $n∈S→R⊥ } if R 6= S
0 if R = S.

We also need metrics on “worlds” and monotone functions from worlds:

Proposition 8. Let (X, d) ∈ CBUlt. The set N0 ⇀fin X of finite maps from
natural numbers to elements of X is a complete, 1-bounded ultrametric space
with the distance function given by

d′(∆,∆′) =
{

max {d(∆(l), ∆′(l)) | l ∈ dom(∆)} if dom(∆) = dom(∆′)
1 otherwise.

Definition 9. For every (X, d) ∈ CBUlt, define an “extension” ordering ≤ on
N0 ⇀fin X by ∆ ≤ ∆′ ⇐⇒ dom(∆) ⊆ dom(∆′) ∧ ∀l ∈ dom(∆). ∆(l) = ∆′(l).

Proposition 10. Let (X, d) ∈ CBUlt, and let (N0 ⇀fin X)→mon CURel(A) be
the set of functions ν from N0 ⇀fin X to CURel(A) that are both non-expansive
and monotone in the sense that ∆ ≤ ∆′ implies ν(∆) ⊆ ν(∆′). This set is a
complete, 1-bounded ultrametric space with the “sup”-metric, given by

d′(ν, ν′) = sup {d(ν(∆), ν′(∆)) | ∆ ∈ N0 ⇀fin X} .

Proof (sketch). It suffices to show that the set of monotone and non-expansive
functions is a closed subset of the (complete) metric space of all non-expansive
functions. To that end, one needs the following property: if R,S ∈ CURel(A)
satisfy that $n ∈ R→ S⊥ for all n, then R ⊆ S. ut

In the rest of this section we do not need the extra generality of uniform cpos:
recall that V is the cpo obtained from Proposition 2 and abbreviate CURel(V) =
CURel(V, (πn)n∈ω).

Proposition 11. The operation mapping each (X, d) ∈ CBUlt to the metric
space (N0 ⇀fin X) →mon CURel(V) (as given by the previous proposition) can
be extended to a functor F : CBUltop → CBUlt in the natural way.

Given (X, d) ∈ CBUlt and 0 < δ < 1 one defines δ · (X, d) ∈ CBUlt with the
same underlying set X but with all distances multiplied by δ.

Theorem 12. There exists a unique (up to isomorphism) complete, 1-bounded
ultrametric space T̂ such that the following isomorphism holds in CBUlt:

T̂ ∼= 1
2 ((N0 ⇀fin T̂)→mon CURel(V)) . (2)

Proof (sketch). By a well-known adaptation of the inverse-limit method [6, 20,
22] one can show that so-called locally contractive mixed-variance functors on
CBUlt have unique fixed-points up to isomorphism. The functor F defined in
the previous proposition is only locally non-expansive (i.e., non-expansive as a
function on each hom-set) so we use the standard method of multiplying F with
the “shrinking factor” δ = 1/2, thus obtaining a locally contractive functor. ut

10 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

4.3 Interpretation of Types

Let in the following T̂ be a complete, 1-bounded ultrametric space satisfying (2),
and let App : T̂ → 1

2 ((N0 ⇀fin T̂) →mon CURel(V)) be an isomorphism. For
convenience, we use the following abbreviations (where the names W and T are
intended to indicate “worlds” and “types”, respectively):

W = N0 ⇀fin T̂
T =W →mon CURel(V) .

With that notation, (2) expresses that T̂ is isomorphic to 1
2T . We choose T as

our space of semantic types.
We additionally define families of relations on “states” (elements of S),

“continuations” (elements of K = V → S → Ans), and “computations” (el-
ements of TV). First, (S, (πSn)n∈ω) is a uniform cpo; abbreviate CURel(S) =
CURel(S, (πSn)n∈ω). We then define

TS =W → CURel(S)

as the element of CBUlt obtained from Proposition 7 and the exponential in
CBUlt. (The elements of TS are non-expansive but not necessarily monotone func-
tions.) As for continuations and computations, one observes that (K, (πKn)n∈ω)
and (TV, (πTn)n∈ω) are “uniform cppos”, i.e., satisfy conditions similar to those
in Definition 1, but in the category of cppos and strict continuous functions (see
the long version of this article for the details). Using analogues of Definition 6
and Propositions 7 and 10 we obtain CURel(K) = CURel(K, (πKn)n∈ω) and
CURel(TV) = CURel(TV, (πTn)n∈ω) in CBUlt and define

TK =W →mon CURel(K)
TT =W →mon CURel(TV) .

In all the ultrametric spaces we consider here, all non-zero distances have the
form 2−m for some m. For such ultrametric spaces, there is a useful notion of
n-approximated equality of elements: the notation x =n y means that d(x, y) ≤
2−n. The ultrametric inequality then amounts to the fact that each relation =n

is transitive, and therefore an equivalence relation. The factor 1/2 in (2) implies
that worlds that are “(n+ 1)-equal” only contain “n-equal” semantic types.

To interpret types of the language as elements of T , it remains to define a
number of operators on T (and TT and TK) that will be used to interpret the
various type constructors of the language; these operators are shown in Figure 4.
Notice that the operator ref is defined in terms of n-approximated equality =n on
CURel(V). In order to interpret the fragment of the language without recursive
types, it suffices to verify that these operators are well-defined (e.g., ref actually
maps elements of T into T .) In order to interpret recursive types, however, we
furthermore need to verify that the operators are non-expansive.

Lemma 13. The operators ×, +, ref , →, cont, and comp shown in the lower
part of Figure 4 are well-defined and non-expansive.

Parametric Polymorphism, General References, and Recursive Types 11

For every Ξ ` τ , define the non-expansive JτKΞ : T Ξ → T by induction on τ :

JαKΞ ϕ = ϕ(α)

JintKΞ ϕ = λ∆. { (inZ m, inZ m) | m ∈ Z }
J1KΞ ϕ = λ∆. { (in1 ∗, in1 ∗) }

Jτ1 × τ2KΞ ϕ = Jτ1KΞ ϕ× Jτ2KΞ ϕ
Jτ1 + τ2KΞ ϕ = Jτ1KΞ ϕ+ Jτ2KΞ ϕ

Jref τKΞ ϕ = ref (JτKΞ ϕ)

J∀α.τKΞ ϕ = λ∆. { (in∀ c, in∀ c
′) | ∀ν ∈ T . (c, c′) ∈ comp(JτKΞ,α ϕ[α 7→ ν])(∆) }

Jµα.τKΞ ϕ = fix
(
λν. λ∆. { (inµ v, inµ v

′) | (v, v′) ∈ JτKΞ,α ϕ[α 7→ ν](∆) }
)

(see Def. 14)

Jτ1 → τ2KΞ ϕ = (Jτ1KΞ ϕ)→ (comp(Jτ2KΞ ϕ))

The following operators and elements are used above:

× : T × T → T comp : T → TT
+ : T × T → T cont : T → TK

ref : T → T states ∈ TS
→ : T × TT → T RAns ∈ CRel(Ans)

(ν1 × ν2)(∆) = { (in×(v1, v2), in×(v′1, v
′
2)) | (v1, v′1) ∈ ν1(∆) ∧ (v2, v

′
2) ∈ ν2(∆) }

(ν1 + ν2)(∆) = { (in+(ι1 v1), in+(ι1 v
′
1)) | (v1, v′1) ∈ ν1(∆) }

∪ { (in+(ι2 v2), in+(ι2 v
′
2)) | (v2, v′2) ∈ ν2(∆) }

ref (ν)(∆) = { (λl, λl) | l ∈ dom(∆) ∧ ∀∆1 ≥ ∆. App (∆(l)) (∆1) = ν(∆1) }

∪ { (λn+1
l , λn+1

l) | l ∈ dom(∆) ∧ ∀∆1 ≥ ∆. App (∆(l)) (∆1) =n ν(∆1) }

(ν → ξ)(∆) = { (in→ f, in→ f ′) | ∀∆1 ≥ ∆.∀(v, v′) ∈ ν(∆1) .(f v, f ′ v′) ∈ ξ(∆1) }

cont(ν)(∆) = { (k, k′) | ∀∆1 ≥ ∆.∀(v, v′) ∈ ν(∆1). ∀(s, s′) ∈ states(∆1). (k v s, k′ v′ s′) ∈ RAns }

comp(ν)(∆) = { (c, c′) | ∀∆1 ≥ ∆.∀(k, k′) ∈ cont(ν)(∆1).
∀(s, s′) ∈ states(∆1). (c k s, c′ k′ s′) ∈ RAns }

states(∆) = { (s, s′) | dom(s) = dom(s′) = dom(∆)
∧ ∀l ∈ dom(∆). (s(l), s′(l)) ∈ App (∆(l)) (∆) }

RAns = { (⊥,⊥) } ∪ { (bι1 mc, bι1 mc) | m ∈ Z }

Fig. 4. Interpretation of types.

12 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

It is here, in order to show that ref is well-defined (and non-expansive), that
we need the approximate locations λnl . Suppose for the sake of argument that
locations were modeled simply using a flat cpo of natural numbers, i.e., suppose
that Loc = N0 and that π1(inLoc l) = binLoc lc for all l ∈ N0. The definition of ref
would then have the form ref (ν)(∆) = {(inLoc l, inLoc l) | l ∈ dom(∆)∧ . . . }. The
function ref (ν) from worlds to relations must be non-expansive. But assume then
that ∆ =1 ∆

′; then ref (ν)(∆) =1 ref (ν)(∆′) by non-expansiveness, and hence
ref (ν)(∆) = ref (ν)(∆′) since π1 is the (lifted) identity on locations. In other
words, ref (ν) would only depend on the “first approximation” of its argument
world ∆: this can never be right, no matter what the particular definition of
ref is.6 This observation generalizes to variants where πn(inLoc l) = binLoc lc)
for some arbitrary finite n.

For any finite set Ξ of type variables, the set T Ξ of functions from Ξ to T is a
metric space with the product metric: d′(ϕ,ϕ′) = max{ d(ϕ(α), ϕ′(α)) | α ∈ Ξ }.
Definition 14. Let τ be a type and let Ξ be a type environment such that Ξ ` τ .
The relational interpretation of τ with respect to Ξ is the non-expansive function
JτKΞ : T Ξ → T defined by induction on τ in Figure 4. The interpretation of
recursive types is by appeal to Banach’s fixed-point theorem (see below).

In more detail, the use of Banach’s fixed point theorem in the interpretation
of recursive types means that well-definedness of JτKΞ must be argued together
with non-expansiveness, by induction on τ .7 This is similar to the more familiar
situation with the untyped semantics of terms presented in Section 3: there,
well-definedness must be argued together with continuity because of the use of
Kleene’s fixed-point theorem in the interpretation of fix f.λx.t. The proof that
Jµα.τKΞ is non-expansive uses Proposition 5.

We need the following substitution lemma, easily proved by induction on τ :

Lemma 15. Let τ and τ ′ be types such that Ξ,α ` τ and Ξ ` τ ′. For all
ϕ ∈ T Ξ , Jτ [τ ′/α]KΞ ϕ =

q
τ
y
Ξ,α

(ϕ[α 7→ Jτ ′KΞ ϕ]) .

Corollary 16. Jµα.τKΞ ϕ = λ∆. { (inµ v, inµ v′) | (v, v′) ∈ Jτ [µα.τ/α]KΞ ϕ∆ }.

4.4 Interpretation of Terms

As for the interpretation of terms, we must show that the untyped meaning of a
typed term is related to itself at the appropriate type. We first show that comp
respects the operations of the monad T .

Definition 17. For ν ∈ T and ξ ∈ TT and ∆ ∈ W, let ν ∆→ ξ be the binary
relation on functions V → TV defined by

ν
∆→ ξ = { (f, f ′) | ∀∆1 ≥ ∆.∀(v, v′) ∈ ν(∆1). (f v, f ′ v′) ∈ ξ(∆1) } .

6 In particular, the obvious definition of ref as ref (ν)(∆) = {(inLoc l, inLoc l) | l ∈
dom(∆) ∧ ∀∆1 ≥ ∆. App (∆(l)) (∆1) = ν(∆1)} would not be well-defined, since it
would not be non-expansive in ∆.

7 Non-expansiveness of JτKΞ,α implies contractiveness of λν. λ∆. { (inµ v, inµ v
′) |

(v, v′) ∈ JτKΞ,α ϕ[α 7→ ν] (∆) }, as needed in the definition of Jµα.τKΞ ϕ.

Parametric Polymorphism, General References, and Recursive Types 13

Proposition 18. Let ν, ν1, ν2 ∈ T and ∆ ∈ W. (1) If (v, v′) ∈ ν(∆), then
(η v, η v′) ∈ comp(ν)(∆). (2) If (c, c′) ∈ comp(ν1)(∆) and (f, f ′) ∈ ν1

∆→
comp(ν2), then (c ? f, c′ ? f ′) ∈ comp(ν2)(∆).

Definition 19. For every term environment Ξ ` Γ , every ϕ ∈ T Ξ , and every
∆ ∈ W, let JΓ KΞ ϕ∆ be the binary relation on V dom(Γ) defined by

JΓ KΞ ϕ∆ = { (ρ, ρ′) | ∀x ∈ dom(Γ). (ρ(x), ρ′(x)) ∈ JΓ (x)KΞ ϕ∆ } .

Definition 20. Two typed terms Ξ | Γ ` t : τ and Ξ | Γ ` t′ : τ of the same
type are semantically related, written Ξ | Γ |= t ∼ t′ : τ , if for all ϕ ∈ T Ξ , all
∆ ∈ W, and all (ρ, ρ′) ∈ JΓ KΞ ϕ∆,(q

t
y
dom(Γ)

ρ, Jt′Kdom(Γ) ρ
′
)
∈ comp(

q
τ
y
Ξ
ϕ)(∆) .

Theorem 21 (Fundamental Theorem). Every typed term is semantically
related to itself: if Ξ | Γ ` t : τ , then Ξ | Γ |= t ∼ t : τ .

Proof (sketch). By showing the stronger property that semantic relatedness is
preserved by all the term constructs. The proof uses Proposition 18. ut

Corollary 22 (Type soundness).

1. If ∅ | ∅ ` t : τ is a closed term of type τ , then JtK∅ ∅ 6= error.
2. If ∅ | ∅ ` t : int is a closed term of type int, then JtKp 6= errorAns .

5 Examples

The model can be used to prove the equivalences in Section 5 of our earlier
work [8]. More specifically, one can use the model to prove that some equivalences
between different functional implementations of abstract data types are still valid
in the presence of general references, and also prove some simple equivalences
involving imperative abstract data types. (See Section 6 for more about extending
the model to account properly for local state.) Here we only sketch one of these
examples, as well as a “non-example”: an equivalence that cannot be shown
because of the existence of approximated locations in the model.

Example 23. We use the usual encoding of existential types by means of uni-
versal types [11]: ∃α.τ = ∀β.(∀α. τ → β) → β. The type τm = ∃α. (1 → α) ×
(α → 1) × (α → int) can then be used to model imperative counter modules:
the idea as that a value of type τm consists of some hidden type α, used to repre-
sent imperative counters, as well as three operations for creating a new counter,
incrementing a counter, and reading the value of a counter, respectively.

Consider the following two module implementations, i.e., closed terms of
type τm: J = Λβ.λc. c[ref int]I and J ′ = Λβ.λc. c[ref int]I ′ where

I = (λx. ref(0), λx. x := !x+ 1, λx. !x)
I ′ = (λx. ref(0), λx. x := !x− 1, λx. −(!x)) .

By parametricity reasoning, i.e., by exploiting the universal quantification in the
interpretation of universal types, one can show that ∅ | ∅ |= J ∼ J ′ : τm.

14 Lars Birkedal, Kristian Støvring, and Jacob Thamsborg

Example 24. Abbreviate 0 = µα.α. One can show that 0 is an empty type: there
are no closed values of type 0 and furthermore J0KΞ ϕ = λ∆.∅. Consider now
the two terms K = λx.2 and K ′ = λx.3 of type ref 0 → int. Given a standard
operational semantics for the language, a simple bisimulation-style argument
should suffice to show that K and K ′ are contextually equivalent: no reference
cell can ever contain a value of type 0, and therefore neither function can ever
be applied. However, the equivalence ∅ | ∅ |= K ∼ K ′ : ref 0→ int does not hold.
Briefly, the reason is the existence of approximated locations in the model.

6 Related Work

As already mentioned, the metric-space structure on uniform relations over uni-
versal domains is well-known [1, 4, 5, 10, 13]. The inverse-limit method for solv-
ing recursive domain equations was first adapted to metric spaces by America
and Rutten [6]; see also Rutten [20]. For a unified account covering both do-
mains and metric spaces, see Wagner [22]. Kripke logical relations are covered
in Mitchell [14, Section 8.6] and in the references there.

Semantic (or “approximated”) locations were first introduced in our earlier
work [8]. That work contains an adequacy proof with respect to an operational
semantics and an entirely different, quasi-syntactic interpretation of open types.
Here we instead present an in some ways more natural interpretation that results
from solving a recursive metric-space equation, thus obtaining a proper universe
of semantic types. Open types are then interpreted in the expected way, i.e., as
maps from environments of semantic types to semantic types.

The fundamental circularity between worlds and types in realizability-style
possible-worlds models of polymorphism and general references was observed by
Ahmed [2, p. 62] in the setting of operational semantics (and for unary relations).
Rather than solve a recursive equation, her solution is to stratify worlds and types
into different levels, represented by natural numbers. So-called step-indexing is
used in the definition to ensure that a stratified variant of the fundamental
theorem holds. These stratified worlds and types are somewhat analogous to the
approximants of recursive-equation solutions that are employed in the inverse-
limit method. The main advantage in “going to the limit” of the approximations
and working with an actual solution (as we do here) is that approximation
information is then not ubiquitous in definitions and proofs; by analogy, the only
“approximation information” in our model is in the interpretation of references
and in the requirement that user-supplied relations are uniform.8

Ahmed et al. [3] have recently (and independently) proposed a step-indexed
model of a language very similar to ours, but in which worlds are defined in a
more complicated way: this allows for proofs of much more advanced equivalences
involving local state. We believe that our approach extends to this style of worlds
and plan to investigate this further in future work: one potential advantage would
be the removal of “approximation information” in definitions and equivalence

8 In future work we plan to perform a more formal comparison.

Parametric Polymorphism, General References, and Recursive Types 15

proofs. We also plan to investigate local-state parameters [9]. In this article,
we instead hope to have presented the fundamental ideas behind Kripke logical
relations over recursively defined sets of worlds as needed for semantic modeling
of parametric polymorphism, recursive types, and general references.

References

[1] M. Abadi and G. D. Plotkin. A per model of polymorphism and recursive types.
In Proceedings of LICS, pages 355–365, 1990.

[2] A. Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton Univer-
sity, 2004.

[3] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation indepen-
dence. In Proceedings of POPL, 2009. To appear.

[4] R. M. Amadio. Recursion over realizability structures. Information and Compu-
tation, 91(1):55–85, 1991.

[5] R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge Uni-
versity Press, 1998.

[6] P. America and J. J. M. M. Rutten. Solving reflexive domain equations in a
category of complete metric spaces. J. Comput. Syst. Sci., 39(3):343–375, 1989.

[7] N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proceedings of TLCA, number 3461 in LNCS, pages 86–101, 2005.

[8] L. Birkedal, K. Støvring, and J. Thamsborg. Relational parametricity for refer-
ences and recursive types. In Proceedings of TLDI, 2009. To appear.

[9] N. Bohr and L. Birkedal. Relational reasoning for recursive types and references.
In Proceedings of APLAS, number 4279 in LNCS, pages 79–96, 2006.

[10] F. Cardone. Relational semantics for recursive types and bounded quantification.
In Proceedings of ICALP, number 372 in LNCS, pages 164–178, 1989.

[11] K. Crary and R. Harper. Syntactic logical relations for polymorphic and recursive
types. Electronic Notes in Theoretical Computer Science, 172:259–299, 2007.

[12] P. B. Levy. Call-by-push-value: Decomposing call-by-value and call-by-name.
Higher-Order and Symbolic Computation, 19(4):377–414, 2006.

[13] D. B. MacQueen, G. D. Plotkin, and R. Sethi. An ideal model for recursive
polymorphic types. Information and Control, 71(1/2):95–130, 1986.

[14] J. C. Mitchell. Foundations for Programming Languages. The MIT Press, 1996.
[15] E. Moggi. Notions of computation and monads. Information and Computation,

93:55–92, 1991.
[16] R. L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A realizability model

for impredicative Hoare type theory. In Proceedings of ESOP, number 4960 in
LNCS, pages 337–352, 2008.

[17] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
[18] A. M. Pitts. Relational properties of domains. Information and Computation,

127:66–90, 1996.
[19] G. D. Plotkin and J. Power. Computational effects and operations: An overview.

Electronic Notes in Theoretical Computer Science, 73:149–163, 2004.
[20] J. J. M. M. Rutten. Elements of generalized ultrametric domain theory. Theoret-

ical Computer Science, 170(1-2):349–381, 1996.
[21] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive

domain equations. SIAM Journal on Computing, 11(4):761–783, 1982.
[22] K. R. Wagner. Solving Recursive Domain Equations with Enriched Categories.

PhD thesis, Carnegie Mellon University, 1994.

