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Abstract

Object capabilities are a technique for fine-grained privilege sep-
aration in programming languages and systems, with important ap-
plications in security. However, current formal characterisations do
not fully capture capability-safety of a programming language and
are not sufficient for verifying typical applications. Using state-of-
the-art techniques from programming languages research, we define
a logical relation for a core calculus of JavaScript that better charac-
terises capability-safety. The relation is powerful enough to reason
about typical capability patterns and supports evolvable invariants
on shared data structures, capabilities with restricted authority over
them and isolated components with restricted communication chan-
nels. We use a novel notion of effect parametricity for deriving prop-
erties about effects. Our results imply memory access bounds that
have previously been used to characterise capability-safety. This is
a technical report accompanying a paper by the same title and au-
thors, which contains an additional section about a binary version
of our results, as well as proofs and details for our results.
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Abstract—Object capabilities are a technique for fine-grained
privilege separation in programming languages and systems,
with important applications in security. However, current for-
mal characterisations do not fully capture capability-safety of
a programming language and are not sufficient for verifying
typical applications. Using state-of-the-art techniques from
programming languages research, we define a logical relation
for a core calculus of JavaScript that better characterises
capability-safety. The relation is powerful enough to reason
about typical capability patterns and supports evolvable in-
variants on shared data structures, capabilities with restricted
authority over them and isolated components with restricted
communication channels. We use a novel notion of effect
parametricity for deriving properties about effects. Our results
imply memory access bounds that have previously been used
to characterise capability-safety. This is a technical report
accompanying a paper by the same title and authors [1], which
contains an additional section about a binary version of our
results, as well as proofs and details for our results.

1. Introduction

Privilege separation between components and the Prin-
ciple Of Least Authority (POLA) are key ingredients for
constructing secure systems. Since decades, systems with
object capabilities [2], [3] have supported a very fine-
grained separation of privileges. Lately, a renewed research
interest in the technique has produced implementations at
the level of the OS [4], the processor [5] and the program-
ming language [3], [6]–[9]. Applications of the technique
include sandboxing untrusted code [7], [10], efficient secu-
rity auditing [6], fault isolation [4]. The technique also has
potential applications outside security (e.g. enabling testing
in simulated environments, enforcing architectural choices),
but these have not drawn as much attention so far.

In the object capabilities model, effects can only be
produced by sending messages to objects. These can be
objects in the sense of object-oriented programming, but
not necessarily so. Device objects are primitive objects that
model resources in the outside world and produce effects
in the outside world when receiving a message. Instance

objects are programmer-defined objects that may hold pri-
vate state (data or references to other objects). They execute
programmer-defined code upon receipt of a message and this
may include sending messages to other objects. References
to objects are called capabilities, as they represent the
authority to invoke methods on those objects.

A capability-safe programming language implements
certain restrictions to enforce the object-capability model.
Such a language guarantees that sending messages to ob-
jects is indeed the only way to produce effects and that
capabilities cannot be forged. Additionally, the language
excludes globally accessible mutable state to provide control
over the capabilities that a component starts out with. These
restrictions enable low-cost fine-grained privilege separa-
tion; a programmer defines the authority of a component
by controlling the capabilities it holds.

To make this more concrete, consider a web page em-
bedding an untrusted advertisement. The advertisement’s
initialisation requires access to the DOM for at least the
ad’s designated location on the page. However, it should
be prevented from accessing or modifying other parts of the
DOM. In a capability-safe JavaScript-like language, the web
page could use the following function rnode to construct a
restricted capability for accessing a subtree of the DOM:

rnode
def
= func(node, d)

getChild = func(id)
{

rnode(node.getChild(id), d + 1)
}

parent = func()

{
if (d ≤ 0) {error} else

{rnode(node.parent(), d− 1)}

}
getProp = func(id){node.getProp(id)}

setProp = func(id , v){node.setProp(id , v)}

addChild = func(id)
{

rnode(node.addChild(id), d+ 1)
}

delChild = func(id){node.delChild(id)}


The function wraps a DOM node and forwards invocations
to hypothetical getChild , parent. . . methods, but prevents
access to nodes more than d levels higher in the tree.

Now assume the next web page initialisation function:

initWebPage
def
= func(document , ad)





document .setProp(“someProperty”, 42)

let (adNode = document .addChild(“ad div”))

let (rAdNode = rnode(adNode, 0))

ad .initialize(rAdNode)

document .getProp(“someProperty”) == 42


A capability-safe language enforces the encapsulation of the
rAdNode object, prevents direct access to document through
other channels and rules out mutable global state which
could (have been made to) contain a reference to document.
If we assume sane behaviour of document and that ad has
no capabilities besides rAdNode to begin with, then we can
convince ourselves that if initWebPage terminates, it must
return true. But can we make this reasoning precise?

Formal reasoning about code in object capability lan-
guages requires a good understanding of the model. What
exactly does it mean that a language is capability-safe?
What guarantees can we provide about code written in it
and how can we formally prove properties for maximum
assurance? Several researchers have worked on this [3], [10],
[11], but to this day, our understanding of the model is not
satisfactory.

The problem is that previous research (except
Spiessens [11], [12], but see Section 7) focuses on reference
graph dynamics. For a state in a program’s execution, the
reference graph is the graph with the allocated objects
as nodes, and the references they hold to each other as
edges. Properties like No Authority Amplification and Only
Connectivity Begets Connectivity [3], [10] restrict how the
reference graph can evolve, depending on the references
held by the executing code.

Unfortunately, these properties offer only a conservative
bound on components’ authority: the topology-only bound.
It is based on syntactic structure of objects (whether or not
they contain a reference to each other) and ignores their be-
haviour. This limitation is important, because a key quality
of the model is the ability to define custom capabilities as
instance objects. Such capabilities (like our rAdNode) restrict
other capabilities, make them conditional or revocable or
otherwise modify and combine them. The object capabilities
community has studied many patterns for defining custom
capabilities, but their soundness typically does not follow
from topology-only bounds on memory access.

Contributions and Outline In this paper, we propose a
novel, more semantic approach for reasoning about object
capability languages. The key contribution is a step-indexed
Kripke logical relation [13], [14] with two key features: sup-
port for reasoning about custom effect properties using effect
parametricity (EP) and support for reasoning about shared
data structures with evolvable invariants and authority using
a novel form of possible worlds. Because we use many con-
cepts that may be new to a security audience, we provide a
gradual introduction in Section 2, where we introduce (first)
logical relations and effect parametricity and (second) step-
indexed logical relations for two simple languages without
a shared mutable store. Section 3 repeats the definition of
λJS , a pre-existing core calculus for JavaScript [15] and
presents the logical relation capturing its capability-safety.

It uses ideas and techniques from previous work [16]–[18]
but also novel ideas, in particular a variation on Dreyer et
al.’s public/private transitions [17] for modelling authority
over shared data and our notion of effect parametricity to
support custom properties about effects. We demonstrate in
Section 4 that the logical relation can be used to verify non-
trivial examples involving evolvable invariants on shared
data structures, restricted authority over them (like the web-
page-with-an-ad example above) and isolating components
with restricted communication channels. These examples
show that, contrary to previous work on capability-safety,
our results capture more than just the topology-only bound
on authority. To demonstrate that our results encompass
previous results, Section 6 derives such standard syntactical
bounds after first repeating a formulation of the properties
by Maffeis et al. in Section 5. Section 7 discusses related
work and Section 8 concludes. In Appendix A of this Tech-
nical Report, we provide more details about the relational
generalisation of our results. Appendices B, C, D, E, F, G
and H contain technical details and proofs of the results in
the paper.

2. A Simpler Setting

In order to explain our work to a wide audience, this
section gradually introduces concepts and techniques for
two very simple languages, as preparation for the subset
of λJS that we work with later on. The first is λout,FO ,
a simple first-order calculus (no lambdas) which we then
extend to the higher-order λout,HO . Both contain only a
single primitive capability, for producing textual output.

Contrary to λJS , neither calculus has a mutable store.
This reduces the technicalities for reasoning, but makes the
results less interesting. Without shared mutable data, there
is no point in defining invariants on it or authority over it
and less ways to pass capabilities around. What remains is
effect parametricity: a general property that allows proving
custom properties about untrusted expressions’ effects.

Although λout,FO allows introducing our techniques in
a very simple setting, it lacks the ability to define custom
capabilities, limiting the value of effect parametricity. This
limitation is removed in λout,HO , where we define and prove
correct a simple custom capability that restricts output to
upper-case. This simple custom capability models practical
scenarios where untrusted code in the browser might receive
a capability for injecting only valid HTML in the web page
or evaluating a safe subset of JavaScript.

The definitions in this section are an instance of a general
technique for reasoning about higher-order programming
languages known as logical relations (LRs; see e.g. [13],
[14], [16], [17]). Our LRs are unary, because we use pred-
icates rather than relations. We do not assume prior knowl-
edge about LRs and motivate and introduce the techniques
gradually throughout the text.



Syntax:

e ∈ Expr ::= x | v | let(x = e)e | if(e){e} else {e}

| e; e | while(e){e} | e. print(e)

v ∈ Val ::= num | str | bool | undef | null | out

E ::= · | let(x = E) e | if(E){e} else {e}

| E; e | E. print(e) | v. print(E)

Pure evaluations:
if(true){e1} else {e2} ↪→ e1 (E-IFTRUE)

if (false){e1} else {e2} ↪→ e2 (E-IFFALSE)

v; e ↪→ e (E-BEGIN-DISCARD) let (x = v) e ↪→ e[x/v] (E-LET)

while (e1){e2} ↪→
if (e1){e2; while(e1){e2}} else {undef}

(E-WHILE)

e1 ↪→ e2
E〈e1〉 → E〈e2〉

(E-CXT)

Impure evaluations:
e1 → e2
e1 →[] e2

(E-PURE)

E〈out. print(str)〉 →[str ] E〈undef〉 (E-OUT)

Figure 1. λout,FO , a first-order calculus with an output capability.

2.1. An output capability in a first-order calculus

We define λout,FO in Figure 1. It is a simple impera-
tive untyped programming language with expressions e and
values v. The (small-step) operational semantics is split in
two parts: pure evaluations e → e′ and impure evaluations
e→o e′. The latter may produce textual output in the list of
strings o. Multi-step impure evaluations e→∗o e′, concatenate
the outputs of the individual steps. The pure evaluation
is defined in terms of primitive pure evaluations e ↪→ e′

and evaluation contexts E that produce a strict evaluation
order. There are standard if, while, let and sequence (e; e′)
expressions. Output is produced by invoking a print method
on the primitive capability out. Note that out is an internal
value; similar to an object reference (0x1234) in a language
like Java, programmers cannot write it but the language
runtime may give access to it during execution, for example
as an argument to a program’s main. Note also that λout,FO
provides plenty of opportunity for stuck terms, e.g. an if

branching on a non-boolean or invoking print on true.
We could also throw exceptions in such cases, but stuck
expressions are simpler.

Let us now formulate our Fundamental Theorem, guar-
anteeing effect parametricity. Intuitively, the theorem states
that if an acceptability property (e.g. only producing upper-
case output) holds for the possible effects of the values
that an expression has access to (e.g. the mentioned custom
capability), then it must also hold for the expression as a
whole. These acceptability properties can be chosen freely,
as long as they are admissible. To understand the condi-
tions for admissibility, one should understand that not every
property is enforcable using the general approach of taking

arbitrary untrusted code and controlling the capabilities that
it has access to. For example, no matter what capabilities
a piece of code has access to, it cannot be forced to return
a specific value, so admissible effect properties should not
distinguish expressions by their return values.

To formalise this, we need to put in place some technical
machinery: we (a) define the properties on expressions that
we work with, (b) define when such a property is “admis-
sible” and (c) formulate the actual theorem, in terms of an
expression’s scope. Let us consider each of the steps.

Semantic properties First, we limit the properties we
work with to semantic properties, which only consider the
meaning of an expression and not syntactic artefacts. We
do this by treating as equivalent all expressions that purely
evaluate to the same expression and we only consider prop-
erties on commands: a syntactic class of expressions that are
the intended end result of pure evaluations (like values are
the intended end result of impure evaluations). In addition
to values, this also includes expressions like out.print(“abc”)

which are normal w.r.t. pure but not w.r.t. impure evaluation.
Formally, we define a command as either a value or an
expression E〈cmd0〉, blocked on a print call cmd0:

cmd0 ::= v. print(v) cmd ∈ Cmd ::= E〈cmd0〉 | v

We will work with command predicates, i.e. subsets
of commands P ∈ P(Cmd). The expression extension E[P ]

of such a P accepts an expression e if commands that it
evaluates to are in P .

E[P ]
def
=
{
e
∣∣ If e→∗ cmd , then cmd ∈ P

}
A first command predicate is PureVal , containing only pure
values, i.e. numbers, strings, booleans, undef or null:

PureVal
def
= Num ∪ Str ∪ Bool ∪ {undef, null}.

Properties about effects As explained above, effect
parametricity is concerned with admissible effect properties
that are in principle enforceable using the object capability
approach. We formalise this in a very general way by taking
inspiration from monads (used to model effectful computa-
tions in pure functional languages like Haskell [19], [20]).
We define an effect interpretation as a couple (µ, ρ), where
µ ∈ P(Val) → P(Cmd) and ρ ∈ P(Cap) with Cap = {out}
the set of primitive capabilities. Intuitively, for a given
value predicate P of acceptable result values, the command
predicate µ P defines a set of expressions that impurely
evaluate to values in P . Typically, µ P will not contain
all such expressions, but only those that produce effects
deemed (in some way) acceptable. ρ defines a set of accept-
able primitive capabilities. Defined in terms of the effect
interpretation (µ, ρ), the value predicate Valµ,ρ defines the
full set of acceptable λJS values: pure values and primitive
capabilities in ρ. Valµ,ρ

def
= PureVal ∪ ρ.1

The couple (µ, ρ) is admissible or valid if it satisfies three
conditions or axioms. We list them and explain below:2

1. Note that Valµ,ρ does not depend on µ, but that will change later.
2. Readers familiar with monads may recognise a correspondence be-

tween A-PURE and A-BIND and the monad operations return and bind .



Γ ::= ∅ | Γ, x
v 6= out

Γ ` v
Γ ` e1 Γ, x ` e2
Γ ` let(x = e1) e2

x ∈ Γ

Γ ` x
Γ ` e1 Γ ` e2 Γ ` e3
Γ ` if(e1){e2} else {e3}

Γ ` e1 Γ ` e2
Γ ` e1; e2

Γ ` e1 Γ ` e2
Γ ` while(e1){e2}

Γ ` e1 Γ ` e2
Γ ` e1. print(e2)

Figure 2. Well-scopedness of expressions in λout,FO .

• A-PURE: For a value v ∈ P , v must also be in µ P .
• A-BIND: If cmd ∈ µ P and E〈v〉 ∈ E[µ P ′] for all values
v ∈ P , then E〈cmd〉 ∈ E[µ P ′].

• A-PRINT: If v ∈ Valµ,ρ then v. print(v′) ∈ µ Valµ,ρ.
Axiom A-PURE states that it must be acceptable to produce
no effects: a value in P must also be in µ P . For the second
axiom, we consider a command cmd in µ P (i.e. producing
acceptable effects and a result in P ) and an execution context
E such that E〈v〉 is in µ P ′ (i.e. produces acceptable effects
and a result in P ′) for any v in P (i.e. any possible result
of cmd). Then Axiom A-BIND requires that the composed
expression E〈cmd〉 should be in E[µ P ′]. In other words,
producing the acceptable effects of cmd , next the acceptable
effects of E〈v〉 (with v the result value of cmd) and a
result in P ′ should be acceptable in µ P ′. The third and
final axiom A-PRINT makes the link between µ and ρ by
requiring that an effect produced using acceptable values
(including primitive capabilities in ρ) should be acceptable:
if v ∈ Valµ,ρ, then v. print(v′) is in µ Valµ,ρ for any value v′.

These admissibility axioms impose natural conditions
for properties to be (in principle) enforceable on untrusted
code using the object capability approach. Axiom A-PURE
models the fact that we cannot prevent untrusted code from
returning any valid result value that it chooses. Similarly,
Axiom A-BIND means that we cannot prevent untrusted
code from composing two expressions that we deem ac-
ceptable individually. Finally, Axiom A-PRINT means that
we cannot prevent the code from exercising the primitive
capabilities that we allow it to access.

We point out that Axiom A-BIND should not be inter-
preted to mean that we cannot enforce policies that are state-
ful. For example, when we add mutable state in Section 3.1,
a policy that only one output may happen can be modelled
by using a flag heap variable and requiring that output can
only happen when the flag is 0 and after outputting anything,
it should be set to 1.

Scope Our third and final step towards formulating effect
parametricity, requires formalising the values that an expres-
sion has access to. We use a notion of well-scopedness of
expressions. Figure 2 defines contexts Γ as lists of variables
and a judgement Γ ` e expressing that e only uses variables
in Γ. We define JΓKµ,ρ as the set of substitutions γ that map
the variables in Γ to acceptable values in Valµ,ρ:

JΓKµ,ρ
def
= {γ | γ(x) ∈ Valµ,ρ for all x ∈ Γ}.

We can now formulate our Fundamental Theorem.

e ::= · · · | λx.e | e e v ::= · · · | λx.e E ::= · · · | E e | v E

(λx.e1)v2 ↪→ e1[x/v2] (E-APP)

Figure 3. λout,HO , a higher-order calculus with an output capability.

Theorem 1 (Fundamental Theorem for λout,FO ). For a valid
effect interpretation (µ, ρ), Γ ` e implies that for any γ ∈
JΓKµ,ρ, γ(e) is in E[µ Valµ,ρ].

The theorem states that for an arbitrary expression e with
access to variables in Γ only (i.e. Γ ` e), instantiating those
variables with acceptable values (i.e. γ ∈ JΓKµ,ρ) produces
an expression γ(e) with acceptable effects and result value:
γ(e) ∈ E[µ Valµ,ρ]. A proof is in the TR, by structural
induction on the well-scopedness judgement Γ ` e.

Unfortunately, λout,FO is too simple for the theorem to
imply many useful results. Without function values or ob-
jects, there is nothing to play the role of an instance object: a
value that reacts in a programmer-defined way to some form
of (method) invocation. This rules out custom capabilities,
and the only result to prove is that code without a reference
to primitive capability out cannot produce output. It is still
instructive to see how that follows.

Example 1. If Γ ` e, γ(x) 6= out for all x in Γ and γ(e)→∗o v.
Then o must be empty.

Proof. Instantiate Theorem 1 with effect interpretation
(µ, ρ) = (IOtriv ,Ref triv ), where Ref triv

def
= ∅ and

IOtriv P
def
=
{

cmd
∣∣ If cmd →∗o v then o = [] ∧ v ∈ P

}
Ref triv defines that there are no acceptable primitive ca-
pabilities and IOtriv P declares a command acceptable if
evaluating it produces no output and a result satisfying
P . In the TR, we show that (IOtriv ,Ref triv ) is a valid
effect interpretation. With Γ ` e and γ ∈ JΓKIOtriv ,Ref triv

,
Theorem 1 implies that γ(e) ∈ E[IOtriv ValIOtriv ,Ref triv

].
γ(e)→∗o v then implies (by a simple lemma) that o = [].

This result is not useless, but probably easier to prove
without our machinery. In a higher-order calculus, custom
capabilities make the Fundamental Theorem more useful.

2.2. An output capability in a higher-order calculus

To obtain a higher-order calculus, we add standard first-
class functions in Figure 3, producing calculus λout,HO .

The definition of commands does not change and we
reuse command predicates and E[P ] as defined before. An
effect interpretation is still a couple (µ, ρ), with µ ∈ P(Val)→
P(Cmd) and ρ ∈ P(Cap). However, the set of acceptable
values w.r.t. effect interpretation (µ, ρ) becomes more com-
plicated, since lambdas are values too. We define a command
predicate P1 → P2 containing lambdas that map values in
predicate P1 to expressions in E[P2].

P1 → P2
def
=
{
λx.e

∣∣ For all v ∈ P1, e[x/v] is in E[P2]
}



It is natural to extend Valµ,ρ with those lambdas that produce
acceptable effects and acceptable results when invoked with
an acceptable argument, i.e. lambdas in Valµ,ρ → µ Valµ,ρ:

Valµ,ρ
def
= PureVal ∪ ρ ∪

(
Valµ,ρ → µ Valµ,ρ

)
(Oops!)

Unfortunately, the resulting definition is recursive in an
unacceptable way. It defines Valµ,ρ recursively in terms of
itself and this is mathematically unsound3. Formally, the
recursive equation may not have a solution (a value predicate
that satisfies the equation). Luckily, we are not the first
to encounter this problem. A well-studied technique called
step-indexing can be used to solve it [13].

The idea is to no longer work with command predicates
but use step-indexed command predicates instead. These are
predicates on couples of natural numbers and commands:
P ∈ P(N × Cmd). The fact that a couple (n, cmd) is in a
step-indexed predicate P can be understood as saying that
cmd will satisfy P when we inspect it for a maximum of n
steps. We say that cmd is n-acceptable in P . For example, for
noticing that the expression e = let(y = 3) let (z = 4) true

produces a boolean, we need to perform 2 computational
steps. Therefore, (0, e) and (1, e) could be in E[P ] regardless
of P but (2, e) only if true is considered acceptable by P .
Typically, we require for step-indexed predicates that they
are uniform; inspecting expressions for more steps should
only make more expressions unacceptable. More formally,
we define UPred(A), the set of uniform step-indexed pred-
icates over a set A as follows. For technical reasons, we
sometimes also use normal predicates in Pred(A).

Pred(A)
def
= P(N×A)

UPred(A)
def
=

{
p ∈ P(N×A) |

(n, e) ∈ p and k ≤ n implies that (k, e) ∈ p

}
We adapt our definitions to follow suit:

E[P ]
def
=

{
(k, e)

∣∣∣∣∣ For all cmd and i ≤ k s.t. e→i cmd ,

we have that (k − i, cmd) ∈ P

}
That is: an expression is k-acceptable in the expression
extension of command predicate P if a command that it
evaluates to in i ≤ k steps is (k − i)-acceptable in P .

Effect interpretations become couples (µ, ρ) with µ ∈
UPred(Val) → Pred(Cmd) and ρ ∈ UPred(Cap) and we can
now correct the failed definition of Valµ,ρ:

P1 → P2
def
=

{
(n, λx.e)

∣∣∣∣∣ For all i < n, and (i, v) ∈ P1,
we have that (i, e[x/v]) ∈ E[P2]

}
Valµ,ρ

def
= (N× PureVal) ∪ ρ ∪

(
Valµ,ρ → µ Valµ,ρ

)
The predicate of functions P1 → P2 defines as n-acceptable
those lambdas that, for i < n, can be given an i-acceptable
argument to obtain an i-acceptable result.

Thanks to step-indexing, this definition of Valµ,ρ is
mathematically valid. Intuitively, this is because deciding
whether or not λx.e is n-accepted by P1 → P2, only requires
knowing P1 and P2 up to n − 1 steps. Hence, whether an
expression is n-acceptable in Valµ,ρ only depends on the

3. The contravariant occurrence of Valµ,ρ precludes induction.

(n − 1)-acceptable expressions in Valµ,ρ. The more mathe-
matical story is that with a certain metric (a function that
defines a “distance” between two predicates), UPred(A) can
be seen as a complete metric space and the Banach fixpoint
theorem guarantees that unique fixpoints exist for contrac-
tive functions (i.e. applying the function to two predicates
produces new predicates that are strictly closer together than
the original two). The TR explains this more formally.

Valid effect interpretations (µ, ρ) must satisfy natural
adaptations of the axioms we saw before.
• A-PURE: For (n, v) ∈ P , (n, v) must be in µ P .
• A-BIND: If (n, cmd) ∈ µ P and (i, E〈v〉) ∈ E[µ P ′] for all
i ≤ n and values (i, v) ∈ P , then (n,E〈cmd〉) ∈ E[µ P ′].

• A-PRINT: If (n, v) ∈ Valµ,ρ, then (n, v. print(v′)) ∈
µ Valµ,ρ.

Context interpretations now become step-indexed as
well: (n, γ) ∈ JΓKµ,ρ iff (n, γ(x)) ∈ Valµ,ρ for all x ∈ Γ. Well-
scopedness is easily extended to lambdas and applications:

Γ, x ` e
Γ ` λx.e

Γ ` e1 Γ ` e2
Γ ` e1 e2

We can now state the Fundamental Theorem for λout,HO .

Theorem 2 (Fundamental Theorem for λout,HO ). For a
valid effect interpretation (µ, ρ), Γ ` e implies for any n and
(n, γ) ∈ JΓKµ,ρ that (n, γ(e)) is in E[µ Valµ,ρ].

This theorem naturally adapts the previous theorem to
step-indexing and as before, it formalises our intuitive notion
of effect parametricity; if an expression e only has access
to variables in Γ and these are instantiated by values that
produce acceptable effects by effect interpretation (µ, ρ), then
the resulting expression γ(e) produces effects acceptable by
(µ, ρ) and a result that can only produce acceptable effects.

The lambdas in λout,HO can be used as custom capabil-
ities. Assume a primitive function toUpperCase that converts
strings to uppercase and consider the following expression:

upp
def
= λs. out. print(toUpperCase(s))

The function upp converts a string to upper case and prints
it using primitive capability out. The expression is a custom
capability, restricting out to allow printing only uppercase
text. But can we prove that this restriction actually holds?

Example 2. For expression e and variable u, if ∅, u ` e and
e[u 7→ upp]→∗o v, then the output o is in uppercase.

Proof. Define effect interpretation (IOupp ,Ref upp):

Ref upp
def
= ∅

IOupp P
def
=

{
(n, cmd)

∣∣∣∣∣ For i ≤ n, if cmd →io v then o is
in upper case and (n− i, v) ∈ P

}

Ref upp defines that out is not an acceptable primitive ca-
pability (upp is only useful when no direct access to out is
available). IOupp defines as n-acceptable those expressions
that, when evaluated to a value in i ≤ n steps, produce only
uppercase output and an n− i-acceptable result. In the TR,
we show that (IOupp ,Ref upp) is a valid effect interpretation.



Although out is not in ρ, (n, upp) is in ValIOupp ,Ref upp
for any n, so that (n, [u 7→ upp]) is in Ju, ∅KIOupp ,Ref upp

. This
follows because (n, upp) is in

(
ValIOupp ,Ref upp

→ IOupp ValIOupp ,Ref upp

)
⊆ ValIOupp ,Ref upp

.

For i < n and (i, v) ∈ ValIOupp ,Ref upp
, we show

(i, out. print(toUpperCase(v))) ∈ E[IOupp ValIOupp ,Ref upp
]

So, take i′ ≤ i and out. print(toUpperCase(v))→i
′

cmd . Then
i′ must be 1 and cmd must be out. print(v′) for v′ the
uppercased version of v. We show that out. print(v′) is i−1-
acceptable in IOupp ValIOupp ,Ref upp

, so take i′′ ≤ i − 1 and
out. print(v′) →i

′′
o v′′. Then i′′ = 1, v′′ = undef and o = [v′].

(i− 2, undef) is in ValIOupp ,Ref upp
and o is in upper case.

The Fundamental Theorem then implies the safety of
upp. For arbitrary n, (n, upp) is in ValIOupp ,Ref upp

and thus
(n, [u 7→ upp]) is in J∅, uKIOupp ,Ref upp

. (IOupp ,Ref upp) is a
valid effect interpretation, so effect parametricity implies
that (n, e[u 7→ upp]) is in E[IOupp ValIOupp ,Ref upp

]. By a
simple lemma in the TR, this gives the required result.

2.3. Dealing with ambient authority

To understand effect parametricity, it is instructive to
consider how our proofs would fail for non-capability-safe
languages. Remember, for example, that out is internal syn-
tax, not surface syntax, i.e. the programmer is not allowed
to write it. Formally, our well-scopedness judgement Γ ` e
does not permit e to mention out, so that our Fundamental
Theorem does not apply to expressions that do mention out.

If we drop this restriction, i.e. make out part of the
surface syntax, all programs gain implicit or ambient au-
thority to produce arbitrary output. The custom capability
upp no longer works: programs can just use the stronger
capability out instead of upp to produce arbitrary output.
Formally, if we make out part of the surface syntax by
adding the rule Γ ` out to the well-scopedness judgement,
then the Fundamental Theorem should additionally require
(as an axiom) that the effect interpretation considers out

acceptable, i.e. (n, out) ∈ ρ for any n. This excludes the
interpretation used to prove safety of upp, but since upp is
no longer safe, this makes sense.

We emphasise however, that the additional ambient au-
thority can be accommodated with some changes to our
Fundamental Theorem. The benefit is small for λout,HO ,
since an effect interpretation allowing out cannot impose
any restriction on effects at all, but imagine that there
were primitive capabilities beside out. With a non-globally
accessible net capability for accessing the network, for
example, the modified Fundamental Theorem still implies
properties about how the network can be accessed and
custom capabilities restricting network access can still work,
despite the ambient authority of the globally accessible out.

3. Capability-safety in λJS

In this paper, we present our results for λJS (although
we believe they can be adapted to other object capability
languages, both typed and untyped, both low-level and high-
level). The higher-order store in λJS adds significant com-
plexity but makes the results more realistic and interesting.

3.1. LambdaJS

Figure 4 shows the syntax and operational semantics of
λJS , as defined by Guha et al. [15], but omitting exceptions
and object prototypes. The calculus is a fairly standard
untyped lambda calculus with numbers, strings, booleans,
undef and null values. There are n-ary lambdas as func

expressions and string-indexed records with field projection
e[e], field update e[e] = e, field deletion delete e[e] and
record literals {str : e}. The record operations are pure;
for example, a field update r[“fld”] = 5 does not modify r,
but returns a modified copy. Furthermore, λJS has mutable
references with update (e1 = e2), allocation (ref e; allocates
a memory cell with initial value e) and dereference (deref e)
expressions. Finally, there are normal if, sequencing (e; e)
and while expressions and unspecified primitive operators
opn.

The operational semantics of λJS is defined in two parts.
The primitive pure evaluation judgement e1 ↪→ e2 defines
the evaluation of func expressions, field projections, field
updates, field deletions, in addition to rules for let, if,
sequencing expressions and while expressions in Figure 1.
Primitive operations opn evaluate in terms of an unspecified
δn function. The actual small-step pure evaluation judgement
e1 → e2 is defined in terms of e1 ↪→ e2 and evaluation
contexts, obtaining a strict, left-to-right evaluation order.
Finally, the impure evaluation judgement (σ1, e1) → (σ2, e2)

for stores σ embeds pure evaluations, leaving the store
unmodified, and defines the behaviour of allocation (ref e),
dereference (deref e) and assignment (e = e) expressions.

Like λout,FO and λout,HO , our subset of λJS has many
stuck terms, e.g., an if branching on a non-boolean or
invoking a non-func as a function. The original λJS produced
exceptions in those cases, but we omit those for simplicity.

3.2. The logical relation

Let us now extend our previous results to λJS . As
for λout,HO , we use step-indexing to construct them in a
mathematically sound way. However, the higher-order store
that is present in λJS adds significant complexity. It adds
new types of authority (accessing and modifying heap data
structures, respecting certain invariants or protocols, in arbi-
trary or restricted ways) but also new ways for components
to communicate and pass capabilities to each other.

To support all of this, we construct additional machinery
to track assumptions that components have about shared data
structures and the authority they have to modify them. We
construct a relatively rich type of Kripke worlds to model
arbitrary invariants and protocols on shared state [14], [17].



l ∈ Loc c ∈ Const ::= num | str | bool | undef | null σ ∈ Store ::= (l, v) · · · δn : opn × v1 · · · vn → c

v ∈ Val ::= c | func(x · · · ){return e} | {str : v} | l
e ∈ Expr ::= x | v | let(x = e) e | e(e · · · ) | e[e] | e[e] = e | delete e[e] | {str : e} | e = e | ref e | deref e

| if(e){e} else {e} | e; e | while(e){e} | opn(e1 · · · en)

E ::= · | let(x = E) e | E(e · · · ) | v(v · · ·E, e · · · ) | {str : v · · · , str : E, str : e · · · } | E[e] | v[E] | E[e] = e | v[E] = e | v[v] = E

| delete E[e] | delete v[E] | E = e | v = E | ref E | deref E | if(E){e} else {e} | E; e | opn(v · · ·E e · · · )

func(x1 · · · xn){return e}(v1 · · · vn) ↪→ e[x1/v1 · · · xn/vn] (E-APP)
strx 6∈ (str1 · · · )

{str1 : v1 · · · }[strx] = vx ↪→ {strx : vx, str1 : v1 · · · }
(E-CREATEFIELD)

strx 6∈ (str1 · · · )
delete {str1 : v1 · · · }[strx] ↪→ {str1 : v1 · · · }

(E-DELETEFIELD-NOTFND)
strx 6∈ (str1 · · · strn)

{str1 : v1 · · · strn : vn}[strx] ↪→ undef
(E-GETFIELD-NOTFND)

{· · · str : v · · · }[str ] ↪→ v (E-GETFIELD) opn(v1 · · · vn) ↪→ δn(opn, v1 · · · vn) (E-PRIM)

{str1 : v1 · · · stri : vi · · · strn : vn}[stri] = v ↪→ {str1 : v1 · · · stri : v · · · strn : vn} (E-UPDATEFIELD)
delete {str1 : v1 · · · strx : vx · · · strn : vn}[strx] ↪→ {str1 : v1 · · · strn : vn} (E-DELETEFIELD)

Define e1 → e2 if e1 = E〈e′1〉, e2 = E〈e′2〉 and e′1 ↪→ e′2.

e1 ↪→ e2

(σ,E〈e1〉)→ (σ,E〈e2〉)
(E-PURE) l 6∈ dom(σ)

(σ,E〈ref v〉)→ (σ[l 7→ v], E〈l〉)
(E-REF)

(σ,E〈deref l〉)→ (σ,E〈σ(l)〉) (E-DEREF)

(σ,E〈l = v〉)→ (σ[l 7→ v], E〈v〉) (E-SETREF)

Figure 4. Syntax and operational semantics of λJS , following Guha et al. [15], but omitting exceptions and object prototypes. For brevity, we write
undef instead of undefined and sometimes omit brackets and the return in funcs and we write (σ, e) instead of σe for clarity. The figure defines
values v, expressions e and evaluation contexts E and the primitive pure evaluation judgement e ↪→ e (not repeating rules E-WHILE, E-LET, E-IFTRUE,
E-IFFALSE and E-BEGINDISCARD from Figure 1), the pure evaluation judgement e→ e and the impure evaluation judgement (σ, e)→ (σ, e).

Our notations loosely follow Birkedal et al. [16] and we use
their recipe for constructing recursive worlds (see below).

Kripke possible worlds
λJS features a higher-order mutable store, i.e., one can

use references into heap memory that may contain higher-
order data such as functions or objects. It is important that
our logical relations are powerful enough to support typical
usage of such references, and this is quite a challenge. Often,
references into the store are shared between multiple compo-
nents and correctness of a program relies upon invariants on
their contents. For example, rnode in the introduction needs
to know that the DOM is a tree, not a graph. Sometimes
invariants evolve during execution, e.g., an auction object
may contain a list of bids that is modifiable, but not after the
auction is marked final. Components may also have partial
authority over a shared data structure. For example, the ad
in the example from the introduction only has the authority
to modify its part of the DOM, while other components may
modify the whole DOM. Similarly, Section 4.3 studies two
isolated components, one of which can only push values on
a stack while the other can only pop.

To support such patterns, we use another well-
established solution: Kripke logical relations. The idea is
to index our predicates by possible worlds w ∈ W , which
model a set of assumptions about (a) the current state of
data structures in the store, (b) invariants and protocols
that will be respected over them in the future and (c) the
authority that is available to modify those data structures.
Intuitively, a value v is n-accepted by an indexed predicate
P ∈ W → UPred(Val) in a world w (i.e. (n, v) ∈ P w) when
inspecting v for n operational steps in stores satisfying w

cannot make it break invariants in w or return an invalid
result. For values (which can be stored and used later), we
will require that they are valid not only in w, but in any
possible future evolution of w′ w w (to be defined later).

We define our Kripke worlds as follows:

IslandName
def
= N

W
def
=
{
w ∈ IslandName ↪→ Island

∣∣ dom(w) finite
}

Island
def
=


ι = (s, φ, φpub, H) | s ∈ State ∧ φ ⊆ State2∧

H ∈ State→ StorePred ∧ φpub ⊆ φ ∧

φ, φpub reflexive and transitive


StorePred

def
= {ψ ∈ Ŵ →mon,ne UPred(Store)}

roll :
1

2
·W ∼= Ŵ

Worlds w ∈W contain a finite set of components or islands
describing disjoint parts of the store. Islands are identified
by IslandNames which are in fact just natural numbers. An
island ι represents an evolvable invariant about a heap data
structure, as well as a lower bound on the available authority
to modify the data structure. Concretely, ι = (s, φ, φpub, H)

represents a state machine with current state s and transition
relation φ ∈ State2. We assume a fixed set State of possible
states, assumed to contain all the states used in this paper.

Every island contains a function H ∈ State → StorePred

that defines when a store satisfies the requirements for a
state. These store requirements are modelled as StorePreds:
predicates on stores that are themselves again world-
indexed. The arrow →mon,ne means that H must be mono-
tone (to be explained later) as well as non-expansive (a
sanity requirement w.r.t. step-indexing, see the TR).

Finally, φpub represents an assumption about the avail-
able authority to modify the data structure. It is a sub-
relation of φ, and it represents a subset of state machine
transitions for which authority is available to make. For ex-
ample, in Section 4.2, the ad example from the introduction
will be verified using an island whose states are trees of
values that represent the current state of the DOM. We will
prove that the ad .initialize call is valid w.r.t. a world in which



φpub only allows modifications in the ad’s part of the tree
(since the ad may not modify the DOM outside of its node),
while φ allows arbitrary modifications to the DOM (since
the DOM may be modified arbitrarily by other code).

The careful reader may notice that the above definition
of worlds is again recursive: worlds contain store predicates,
which are themselves indexed by worlds. This kind of
recursive worlds is needed to deal with the higher-order
nature of λJS and we use a general method by Birkedal
et al. [16] for constructing them. The factor 1

2 , the set
Ŵ and the isomorphism roll play a technical role in this
construction, but we recommend the casual reader to ignore
them here and elsewhere in the paper.

Future worlds Kripke worlds represent assumptions that
a piece of code holds on the rest of the system. However,
because values may be stored and used later, any assump-
tions that they rely on must not be invalidated by legitimate
future evolutions of the system. There are essentially three
legitimate ways for a system to evolve. (a) Fresh data
structures may be allocated, and invariants or protocols may
be established for them. Additionally, (b) existing invariants
may evolve according to their established protocols and
finally (c) additional authority over data structures may be-
come available. These three types of evolutions are modelled
by the future world relation; a world w2 is a future world
of w1 (w2 w w1) if w2 contains at least the islands of w1,
but potentially more (a). For existing islands, the state in
w2 must be reachable from the state in w1 using the state
machine transitions in φ, i.e. according to the data structure’s
established protocol (b). Finally, the state machine’s set of
public transitions φpub is allowed to grow (but not beyond
its complete set of transitions φ), representing an increase
in available authority (c).

w2 w w1 iff dom(w2) ⊇ dom(w1) ∧ ∀j ∈ dom(w1). w2(j) w w1(j)

(s2, φ2, φ
pub
2 , H2) w (s1, φ1, φ

pub
1 , H1) iff

(φ2, H2) = (φ1, H1) and φ1 ⊇ φ
pub
2 ⊇ φpub

1 and (s1, s2) ∈ φ1

The requirement that values that are valid in a predicate
remain valid in legitimate future evolutions of a system
is captured by the required monotonicity of predicates in
W →mon,ne UPred(A) (in addition to non-expansiveness,
a sanity requirement w.r.t. step-indexing). Formally, mono-
tonicity requires that P w2 ⊇ P w1 whenever w2 w w1, i.e.
values/stores/... that are valid in a world w1 must remain
valid in future worlds w2 w w1. In what follows, predicates
on values and stores will typically need to be monotone
(because they contain values that may be stored and used
later) while predicates on commands and expressions typi-
cally need not be, as they cannot be stored (except as part
of a func value).

The future world relation w2 w w1 represents future
evolutions of a world that a piece of code should be able to
cope with. However, it is not necessarily allowed to make
those changes itself. A more restricted public future-world
relation w2 wpub w1 defines the set of future worlds that one

has the authority to transition to:

w2 wpub w1 iff
{

dom(w2) ⊇ dom(w1)∧
∀j ∈ dom(w1). w2(j) wpub w1(j)

(s2, φ2, φ
pub
2 , H2) wpub (s1, φ1, φ

pub
1 , H1) iff

(φ2, φ
pub
2 , H2) = (φ1, φ

pub
1 , H1) and (s1, s2) ∈ φpub

1

A public future world w2 wpub w1 must also contain at least
the islands of w1 and may contain additional ones. However,
the new state of islands in w2 must now be reachable through
the state machine’s public transitions in φ

pub
1 , i.e. transitions

that can be made using the available authority. Finally, φpub

is not allowed to grow in public future worlds, i.e. one does
not have the authority to increase one’s own authority. Note
that the latter precludes capabilities appearing out of thin air,
somewhat similar to the No Authority Amplification property
that we will discuss in Section 5.

Disjoint worlds (with assumptions about disjoint data
structures in the heap) can be combined with the ⊕ operator:

w ⊕ w′ = w′′ iff dom(w′′) = dom(w) ] dom(w′) ∧ ∀j ∈ dom(w).

w′′(j) = w(j) ∧ ∀j ∈ dom(w′). w′′(j) = w′(j)

Finally, a store σ n-satisfies a world w if it can be
partitioned into parts that n-satisfy the store predicate for
the current state of all islands (we write ι.H for projecting
out the store predicate of an island):

σ :n w iff
{
∃σj .σ = ]j∈dom(w)σj and ∀j ∈ dom(w),

∀n′ < n. (n′, σj) ∈ w(j).H(w(j).s) (roll w)

It is worthwhile at this point to take a step back and build
an intuitive understanding for our worlds. Generally, they
should be interpreted as a set of assumptions with respect
to which a value or expression is valid. An expression e

that holds capabilities for making certain modifications to a
shared data structure, will only be valid w.r.t. a Kripke world
with an island governing the data structure. Private transi-
tions for the island would include all possible modifications
to the data structure that any subject in the system has the
authority to make, so that e will be required to tolerate such
modifications. Public transitions for the island will include
at least the modifications that e itself has the authority to
make. Using security terminology, this perspective means
that any expression may be seen as a subject and the world in
which it is valid as an upper bound on its required authority.
Entities in our approach are simply represented by code
executing on their behalf.

Command predicates As for λout,FO and λout,HO , we
define a syntactic class of commands: either values or ex-
pressions blocked on an impure operation.

cmd0 ::= deref v | v = v | ref v cmd ∈ Cmd ::= E〈cmd0〉 | v

Predicates on commands P are again extended to expres-
sions as E[P ], which closes P under pure evaluation:

E[P ] : W →ne Pred(Expr)

E[P ] w
def
=

{
(n, e)

∣∣∣∣∣ for all i ≤ n, e′. if e→i cmd ,
then (n− i, cmd) ∈ P w

}



A few predicates are used as building blocks further on:

Cnst : W →mon,ne UPred(Val)

Cnst w
def
= N× Const

{P} : W →mon,ne UPred(Val)

{P} w def
=
{

(n, {str : v}) | for all i < n, (i, v) ∈ P w
}

P ∪ P ′ : W →mon,ne UPred(Val)

(P ∪ P ′) w def
= P w ∪ P ′ w

([P ]→ P ′′) : W →mon,ne UPred(Val)

([P ]→ P ′′) w def
= {(n, func(x1 · · ·xk){return e}) |

for all v1 · · · vk, w′ w w, i < n. (i, vj) ∈ P w′ ⇒
(i, e[x1/v1, · · · , xn/vk]) ∈ E[P ′′] w′

}

Cnst n-accepts all constant values. For value predicates P

and P ′ and command predicate P ′′, {P} accepts records with
P -acceptable fields and P ∪P ′ accepts values from P or P ′.
[P ]→ P ′′ n-accepts func expressions producing i-acceptable
results in P ′′ when applied to i-acceptable arguments in P ,
in any future world w′ w w and for any i < n. As a technical
detail, the quantification over w′ w w and i < n makes [P ]→
P ′′ monotone and uniform even when P ′′ is not.

Effect interpretations and acceptable values Like for
λout,FO and λout,HO , we parameterise our LR over an
effect interpretation (µ, ρ) with ρ : W →mon,ne UPred(Loc)

a predicate of references that are valid in a given world and
µ a function that maps a predicate on values to a predicate
on commands:

µ : (W →mon,ne UPred(Val))→ne (W →ne Pred(Cmd)).

As before, µ P accepts commands producing acceptable
effects and results acceptable by a value predicate P .

Given an effect interpretation (µ, ρ) that defines accept-
able references and effectful expressions in a given world,
we define a predicate JSValµ,ρ of all acceptable λJS values4:

JSValµ,ρ : W →mon,ne UPred(Val)

JSValµ,ρ
def
= Cnst ∪ ρ ∪ {JSValµ,ρ} ∪ ([JSValµ,ρ]→ µ JSValµ,ρ)

The predicate accepts constants, references in ρ, records of
acceptable values and functions mapping acceptable values
to expressions with acceptable effects and results.

The following axioms are required to hold for a valid
effect interpretation.
• A-PURE: If (n, v) ∈ P w then (n, v) ∈ µ P w

• A-BIND: If (n, cmd) ∈ µ P w and (n′, E〈v〉) ∈ E[µ P ′] w′

for all n′ ≤ n, w′ w w and (n′, v) ∈ P w′, then
(n,E〈cmd〉) ∈ E[µ P ′] w.

• A-ASSIGN: If (n, v1) ∈ JSValµ,ρ w and (n, v2) ∈
JSValµ,ρ w, then (n, v1 = v2) ∈ µ JSValµ,ρ w.

• A-DEREF: If (n, v) ∈ JSValµ,ρ w, (n, deref v) must be
in µ JSValµ,ρ w.

• A-REF: If (n, v) ∈ JSValµ,ρ w, then (n, ref v) ∈
µ JSValµ,ρ w.

4. Readers with a background in logical relations can see this as the
semantic interpretation of the unitype of λJS values.

Axioms A-PURE and A-BIND are as before (except for
the quantification over Kripke worlds) and we don’t re-
explain them for brevity. Axioms A-ASSIGN and A-DEREF
essentially require a compatibility between µ and ρ. They
require that if a value is accepted by JSValµ,ρ (e.g. references
in ρ), then dereferencing it or assigning an acceptable value
must be accepted by µ. Finally, Axiom A-REF requires that
allocating a new mutable reference (a primitive effect left
unrestricted by the language) with an acceptable initial value
must be accepted by the effect interpretation.

Fundamental Theorem We conclude this section with
the Fundamental Theorem for λJS : the formal statement of
its capability-safety. As before, it informally states that well-
formed λJS terms respect the restrictions on effects imposed
by a valid effect interpretation, and now additionally that
they respect the invariants and protocols of a Kripke world.

The well-scopedness judgement Γ; Σ ` e states that e

is syntactically well-formed in context Γ (a list of free
variables) and store shape Σ (a list of allocated references).
Its definition is unsurprising and relegated to the TR. The
predicate JΣKµ,ρ accepts worlds in which the references in
Σ are accepted by ρ, and the predicate JΓKµ,ρ w accepts
substitutions for Γ with acceptable values:

JΣKµ,ρ : UPred(W )

JΣKµ,ρ
def
=
{

(n,w) | for all l ∈ Σ.(n, l) ∈ ρ w
}

JΓKµ,ρ w : UPred(ValΓ)

JΓKµ,ρ w
def
= {(n, γ) | ∀x ∈ Γ.(n, γ(x)) ∈ JSValµ,ρ w}

Theorem 3 (Fundamental Theorem for λJS ). If Γ,Σ ` e then
for a valid effect interpretation (µ, ρ) and for all n, γ and
w with (n,w) ∈ JΣKµ,ρ and (n, γ) ∈ JΓKµ,ρ w, we have that
(n, γ(e)) must be in E[µ JSValµ,ρ] w.

The theorem states that substituting acceptable values for
an expression’s free variables and considering it in a world
where its references are acceptable by effect interpretation
(µ, ρ), produces a µ-acceptable expression with a result in
JSValµ,ρ. The TR contains a proof by induction on the well-
scopedness judgement.

Note that our Fundamental Theorem does not offer
termination guarantees about untrusted code. This limitation
follows from the higher-order untyped language, in which
untrusted code cannot be prevented from diverging.

4. Local state abstraction

A special feature of our logical relation is the quantifica-
tion over effect interpretations. It allows proving properties
about primitive effects, as we saw in Section 2 and we
will use it again in Section 6. However, in many cases,
standard encapsulation of local state (e.g. instance variables
of objects) is all we need. In this section, we define an effect
interpretation (IOstd ,Ref std ) for such “standard” reasoning
about local state abstraction.

By the definition in Figure 5, an expression is n-accepted
by IOstd P w if (1) it is n-accepted by P w if it is already
a value and (2) evaluating it to a value in 0 < i ≤ n steps



IOstd : (W →mon,ne UPred(Val))→ne (W →ne Pred(Cmd))

IOstd P w
def
=(n, cmd)

∣∣∣∣∣∣∣∣∣∣
(n, cmd) ∈ P w if cmd ∈ Val and,
for all σr , σf , σ′, 0 < i ≤ n, v. σr :n w∧

(σr ] σf , cmd)→i (σ′, v)⇒ ∃σ′r , w′ wpub w.

σ′ = σ′r ] σf ∧ σ′r :n−i w
′ ∧ (n− i, v) ∈ P w′


ιstdl

def
= (l,=,=, Hstd )

Hstd l w
def
=

{
(n, {l 7→ v})

∣∣∣∣∣ n = 0 or (n− 1, v) ∈
JSVal

IOstd ,Ref std
(roll−1 w)

}
Ref std : W →mon,ne UPred(Loc)

Ref std w
def
= {(n, l) | ∃j. w(j) =n+1 ι

std
l }

Figure 5. An effect interpretation capturing standard local state abstraction.

in a store σr that is n-accepted by world w implies that
the resulting store σ′r is n − i-accepted by a public future
world w′ wpub w and the resulting value is n− i accepted by
P w′′. The original store is in fact allowed to additionally
contain a frame part σf which must not be modified by
the evaluation. This definition corresponds roughly to what
one would typically find in the E relation of a Kripke
logical relation, except that it only provides guarantees after
reduction to a value, i.e. the evaluation is allowed to get
stuck, and when it does, nothing is guaranteed about σ′ and
the resulting expression.5

We instantiate ρ to Ref std , defined in Figure 5 w.r.t. an
island ιstdl . The island ιstdl takes ownership of a location l

and requires that its value satisfies JSVal
IOstd ,Ref std

. Ref std

defines as n-acceptable all locations l that are owned by such
an island ιstdl , or at least one that n+1-approximates it. The
TR shows that effect interpretation (IOstd ,Ref std ) is valid.

Instantiating our Fundamental Theorem with the effect
interpretation (IOstd ,Ref std ) produces a logical relation that
captures the encapsulation of local state in λJS and can
be used to reason about non-trivial capability patterns. The
next sections demonstrate interesting examples of this: (1)
a ticket dispenser function featuring a non-trivial protocol
on private state, (2) the ad example from the introduction
featuring a capability with restricted authority on shared data
(the DOM) and (3) two isolated components with different
authority on a shared LIFO communication channel.

4.1. Invariants and Protocols

Consider the following expression:

ticketDispenser
def
= func(attacker)

let(o = ref 0)

let(dispTkt = func(){let(v = deref o){o := v + 2; v}})

attacker(dispTkt); deref o


5. This is appropriate for our untyped setting with stuck terms, but

unusual as Kripke logical relations are most often used for static type
systems that rule out stuck terms.

The expression takes an (untrusted) function argument
attacker . The code allocates a new mutable reference o,
initially 0 and constructs a function dispTkt. When called, the
function increases o’s value by 2 and returns the old value.
If we assume for simplicity an infinite range of primitive
integers, dispTkt respects a protocol in its usage of o: its
value will always remain even and will only ever increase.
The attacker code is invoked and receives access to dispTkt.
After the attacker code returns, the value of o is returned.
Since the attacker has access to dispTkt but not o and by
inspecting dispTkt, we can expect the following to hold:

Lemma 1. Take a store σ, Σ = dom(σ) and a value ∅; Σ `
attacker . If (σ, ticketDispenser attacker) → (σ′, v), then v is
even and ≥ 0.

With our Fundamental Theorem and effect interpretation
(IOstd ,Ref std ), we can prove that this holds.

Proof sketch. If the evaluation terminates, then for some l 6∈
Σ, it must factor as follows (omitting the body of dispTkt

for brevity) with v = σ′(l):

(σ, ticketDispenser attacker)→∗

(σ[l 7→ 0], attacker (func(){· · · }); deref l)→∗

(σ′, (v′; deref l)) →∗ (σ′, σ′(l))

Define a world w with one island ιstdl for every l ∈ Σ.
Then for any n and w′ w w, we have (n,w′) ∈ JΣK

IOstd ,Ref std
.

The next island ιtkt,l,k captures l’s intended protocol:

ιtkt,l,k
def
= ((l, k),vtkt ,vtkt , Htkt ) for k even

(l, k) vtkt (l′, k′) iff l = l′ ∧ k′ ≥ k ∧ k′, k even

Htkt (l, k) w
def
= {(n, {l 7→ k}) | n ∈ N}

Define w′ = w[j 7→ ιtkt,l,0] for j 6∈ dom(w). Clearly, w′ w w.
We show in the TR that for any n:

(n, func(){return (let(v = deref l){l := v + 2; v})}) ∈

([JSVal
IOstd ,Ref std

]→ IOstd JSVal
IOstd ,Ref std

) w′ ⊆

JSVal
IOstd ,Ref std

w′

The proof takes about two paragraphs. Essentially, it shows
that executing the function in a store satisfying a world w′′ w
w′ produces a new store satisfying a world w′′′ wpub w′′.
Specifically, the island w′′(j) = ιtkt,l,k will take a public
transition to w′′′(j) = ιtkt,l,k+2 . The function’s result value
in such a store is a number, so satisfies JSVal

IOstd ,Ref std
.

By the Fundamental Theorem, attacker n-satisfies
E[IOstd JSVal

IOstd ,Ref std
] w′. Then, attacker (func(){· · · })

must also n-satisfy E[IOstd JSVal
IOstd ,Ref std

] w′ (by a stan-
dard lemma) and we can deduce that σ′ must n-satisfy some
w′′ wpub w′, so that σ′(l) must be even and ≥ 0.

4.2. Restricted capabilities

Another important object capability pattern is to give a
component restricted access to a resource, while other code
keeps full authority over it. This can be implemented by



giving the component access to a trusted object that has
full access to the resource, but whose methods allow only
restricted interaction with it. For reasoning about such a
component with restricted authority, we use a world that
carries two separate protocols for how the shared state
can evolve. A first protocol dictates changes to the shared
resource that the component itself has the authority to
make while the second specifies changes that other code
(with potentially greater authority) may make, and which
the component under scrutiny should be able to deal with.
These two protocols are given by, respectively, the public
and private transitions in an island: a component is itself
allowed to make public transitions, but must be able to cope
with private transitions made by other code. In this section,
we demonstrate this for the example from the introduction
which restricts the authority of an untrusted advertisement
in a client-side web page.

We repeat the example web page initialisation function:

initWebPage
def
= func(document , ad)

document .setProp(“someProperty”, 42)

let (adNode = document .addChild(“ad div”))

let (rAdNode = rnode(adNode, 0))

ad .initialize(rAdNode)

document .getProp(“someProperty”) == 42


The idea is that initWebPage receives access to a document

object that represents the entire web page and carries the
authority to modify it. It uses a function rnode to construct
a restricted capability rAdNode for accessing and modifying
only the ad’s part of the page and passes that to the untrusted
ad’s initialisation code. We do not repeat the definition of
rnode, which constructs an object that forwards method invo-
cations to the underlying DOM node but returns null when
asked for a node outside the ad’s turf. If everything works
correctly, we should be able to prove that if initWebPage

terminates, it must return true.
To formalise our assumptions about the behaviour of

document and its child nodes, we use a form of trees defined
by the following grammar:

tree ::= v | (id 7→ tree)∗ id ∈ String

We define a notion of plugging a subtree in a tree at a certain
path (a list of ids) as follows:

t ′[[] 7→ t]
def
= t

(id1 7→ c1, · · · , idn 7→ cn)[[p, p] 7→ t]
def
=

(id1 7→ c1 · · · idj−1 7→ cj−1,

idj 7→ t′, idj+1 7→ cj+1 · · · idn 7→ cn)

if p = idj∧
t′ = cj [p 7→ t]

undefined otherwise

We define an island ιdom
l,tree,P to govern the state of the DOM.

It is parameterised by a function P ∈ String∗ →W →mon,ne

UPred(Val), which defines, for every path in the DOM, a
predicate that the DOM property at that path should satisfy.

ιdom
l,tree,P

def
= ((l, tree),vdom,vdom, Hdom

P )

(l′, tree′) wdom (l, tree) iff l = l′

The store predicate Hdom
P is defined in the TR such that

Hdom
P (l, t) w accepts stores containing a representation of

DOM tree t and for every property in the tree at path p,
the value satisfies P p w. Note that the island’s transition
relation wdom does not restrict the evolution of the tree.

For our ad example, we define a restricted transition
relation wr−dom

p expressing the restricted authority of the
ad, i.e. only allowing changes to the DOM under path p:

(l1, t1) wr−dom
p (l2, t2) iff

l1 = l2 ∧ (∀t′1, tf . t1 = tf [p 7→ t′1]⇒ ∃t′2. t2 = tf [p 7→ t′2])

Lemma 2. Assume that document’s methods getChild , parent ,
getProp, setProp, addChild and delChild behave in the “ob-
vious” way (to be defined formally in the TR) in stores
that contain the representation of a state of the DOM. If
w(j) = ιdom

l,t,P for some j, t and P , σ :n w, and ad is a closed
expression and (σ, initWebPage(document , ad)) →i (σ′, v) for
i ≤ n, then v = true.

The proof of this lemma is essentially based on the
restricted transition relation wr−dom mentioned above. How-
ever, it is complicated by the fact that DOM properties can
be higher-order, i.e. functions that carry and use capabilities
themselves. In the proof, we have to express that DOM
properties under “ad div” have the same authority restriction
as the ad. But what about the authority of trusted code
(including DOM properties outside “ad div”)? Naturally,
this other code may modify the rest of the DOM, but can
it modify the tree under “ad div”? Crucially, the code must
not (by accident or malice) store capabilities with authority
greater than the ad’s (e.g. document itself) inside the ad’s
reach. The most general solution is to require that they do
not do this, i.e. that they preserve the authority bound of
the ad. However, because initWebPage terminates after the
ad .initialize call, and no trusted code gets a chance to run,
this requirement is not in fact necessary for the lemma
above. The proof in the TR relies on this simplification
and does not restrict the DOM properties outside the ad’s
territory. However, we think it can be generalised if needed.

4.3. Isolated but communicating components

Another interesting pattern is similar to the previous
example, but features multiple untrusted components that
have restricted and different authority to a shared resource.
In such a scenario, it is necessary to prevent the resource
from being used as a communication channel for passing
capabilities to the other component that it does not hold.

Consider a mashup page that embeds two disjoint pieces
of untrusted code: attacker1 and attacker2. The mashup
sets up a restricted communication channel: a stack that
attacker1 and attacker2 can respectively push to and pop
from. Figure 6 shows what the mashup’s code could look
like. If we suppose that attacker1 and attacker2 do not share
a communication channel to begin with, then evaluating
mashup in an arbitrary heap should always produce a non-
negative number. Note that this example only works if the
stack rejects non-constant values: if not, attacker1 could push



mashup
def
= func(attacker1, attacker2)

let (stk = ref null)

let (push = func(v){
if ¬isConstant(v) then undef else

stk = ref({val = v, rest = deref stk}); undef

}
)

let (pop = func()
let (top = deref stk)

if (top == null){undef}

else {stk = (deref top).rest ; (deref top).val}}

)

let (size = func()

let (c = ref 0)

let (top = ref (deref stk))

while ((deref top) ! = null){

c = deref c+ 1; top = (deref top).rest}

deref c


)

attacker1(push)

let (s1 = size())

attacker2(pop)

s1 − size()


Figure 6. A mashup application embedding two untrusted components,
isolated from each other but with a restricted communication channel.

the push function itself on the stack, for attacker2 to retrieve
and use for stepping outside its pop-only authority.

Formally, the expected result is as follows:

Lemma 3. If (n, attacker i) are in JSVal
IOstd ,Ref std

wi for
i = 1, 2 and disjoint worlds w1 and w2 and if a store σ

n-satisfies w1 ⊕ w2 for n sufficiently large, then executing
mashup(attacker1, attacker2) in σ, produces a result ≥ 0.

The premise that the attackeri are in JSVal
IOstd ,Ref std

for disjoint worlds expresses the informal requirement that
they do not share a communication channel to begin with.
If they did, then attacker1 could pass the push capability to
attacker2 and break our result. In practice, the requirement
should be easily provable thanks to the absence of global
mutable state in our capability-safe language. According
to the Fundamental Theorem, the premise is satisfied, for
example, if we know that the two pieces of code are well-
formed in an empty context and empty store typing.

Proof sketch. In this proof sketch, all statements should be
interpreted with respect to a sufficiently large step-index n.

We first define an island ιstack
(s,v̄)

capturing the stack’s
invariant; its states are the list of values in the stack and
its private transition relation wstack allows arbitrary modi-
fications. We also define two restricted transition relations
wstack↑ and wstack↓ that allow the stack to only grow or
shrink respectively:

ιstack(s,v̄)
def
= ((s, v̄),wstack ,wstack , Hstack )

(l′, v̄′) wstack (l, v̄) iff l = l′

(l′, v̄′) wstack↑ (l, v̄) iff l = l′ ∧ ∃v̄′′. v̄′ = v̄′′v̄

(l′, v̄′) wstack↓ (l, v̄) iff l = l′ ∧ ∃v̄′′. v̄ = v̄′′v̄′

Hstack (l, (v1 · · · vn)) w
def
=

(n, σ)

∣∣∣∣∣∣∣
∃l1, · · · , ln, ln+1, v1 · · · vn ∈ Const . σ(l) = l1∧

dom(σ) = {l, l1, · · · , ln} ∧ ln+1 = null∧

∀i ∈ 1..n. σ(li) = {val = vi, rest = li+1}


After allocating a location l for stk , we define a world

w3, with dom(w3) = {j}, w3(j) = ιstack
(l,·) for some j and the

empty list ·. Next, we show that push is in JSVal
IOstd ,Ref std

for world w3[j.φpub 7→wstack↑] and pop in JSVal
IOstd ,Ref std

for world w3[j.φpub 7→wstack↓]. We can derive that
attacker1(push) is accepted by E[IOstd JSVal

IOstd ,Ref std
]

in world w4
def
= w1 ⊕ (w3[j.φpub 7→wstack↑]) and we get

that the resulting store is valid in a world w′1 ⊕ w′3 with
dom(w′3) = {j} and dom(w′1) ⊇ dom(w1). From the fact
that w′1 ⊕ w′3 w

pub w4, we know that the stack can only
have grown. We can also derive that attacker2(pop) is
accepted by E[IOstd JSVal

IOstd ,Ref std
] in a world w5

def
=

w2 ⊕ (w′3[j.φpub 7→wstack↓]) and notice that the part of the
store satisfying Hstack (w′3(j).s) (w′1 ⊕ w′3) will also sat-
isfy Hstack (w′3(j).s) w5 because (crucially) the definition of
Hstack ignores its world argument, which it can because the
content of the stack is restricted to first-order values. We
then obtain a resulting world w′2 ⊕ w

′′
3 with dom(w′′3 ) = {j}

and dom(w′2) ⊇ dom(w2). We conclude from the fact that
w′2⊕w

′′
3 w

pub w5, that the stack can only have shrunk. Since
size is called in a store satisfying w′1 ⊕ w

′
2 ⊕ w

′′
3 , s1 − size()

must give a non-negative result.

5. Reference graph dynamics

The previous section shows how the effect interpretation
(IOstd ,Ref std ) can be used to verify results that rely on local
state abstraction. However, it does not suffice for proving a
set of reference graph properties that have previously been
proposed as characteristic for object-capability languages.
What is lacking is a way to restrict the primitive effects
that an expression is allowed to produce. In this section,
we introduce those properties, and in the next section, we
discuss how they follow from effect parametricity.

The intended properties are standard in the object ca-
pability literature and have previously been formalised and
proposed as a characterisation of capability-safety by Maf-
feis et al. [10]. For a programming language with a certain
type of operational semantics, they characterise capability-
safety through a formalisation of properties about the evo-
lution of the reference graph. Here, we instantiate their
formalism for λJS and explain that their properties are not
sufficient to characterise capability-safety. Sometimes, Maf-
feis et al.’s definitions are more general than our instantiation
of it, but not fundamentally stronger.

5.1. Capability safety as reference graph dynamics

We first introduce some notations used by Maffeis et
al.: e v e′ if e is a syntactic subterm of e′. Sets D def

= {r, w}
and A def

= Loc × D represent read and write permissions and
actions on references. For example, (l, r) denotes reading
location l. Allocating and initialising a new memory location



is considered a combined reading (r) and writing (w) action.
The can influence-relation on actions (l, d).(l′, d′) holds when
l = l′, d = w and d′ = r. A set of actions A1 can influence
another A2 (A1 .A2) when a1 .a2 for some a1 ∈ A1, a2 ∈ A2.

We define a labeled version of λJS ’s impure evaluation
judgement in Figure 7: (σ, e) →A (σ, e) with A ⊆ A. We
further instantiate Maffeis et al.’s framework by defining
tCap(e)

def
= {l | l v e}, i.e. the capabilities of an expression are

the references that it syntactically contains, priv(l)
def
= {r, w}

(i.e. a primitive reference provides reading and writing
authority) and cAuth(σ, l) is the least set of actions A such
that {(l, r), (l, w)} ⊆ A and

(
∪(l,r)∈A tCap(σ(l))× D

)
⊆ A. In

other words, a reference l in store σ carries the authority
to read and write values at location l and, recursively, the
authority of those values.

Maffeis et al. characterise capability-safety by the fol-
lowing reference graph dynamics properties. For brevity, we
define nauth(σ′, σ)

def
= (dom(σ′) \ dom(σ)) × {r, w}. The map

auth(σ, e)
def
=
⋃
c∈tCap(e) cAuth(σ, c) must be a valid author-

ity map for the language. This is by definition true iff
(σ, e)→A (σ′, e′) implies that
• RG-AUTH1: A ⊆ auth(σ, e) ∪ nauth(σ′, σ)

• RG-AUTH2: auth(σ′, e′) ⊆ auth(σ, e) ∪ nauth(σ′, σ)

Additionally, if (σ, e)→∗A (σ′, v) 6→ and v ∈ Val , then for any
location l, we must have:
• RG-CONN: A 6 . cAuth(σ, l) implies that cAuth(σ′, l) =

cAuth(σ, l) ∪ {(l, r), (l, w)}
• RG-NOAMPL: A . cAuth(σ, l) implies that

cAuth(σ′, l) ⊆ cAuth(σ, l)∪{(l, r), (l, w)}∪auth(σ, e)∪nauth(σ′, σ)

Property RG-CONN is known as “Only Connectivity Begets
Connectivity” and RG-NOAMPL as “No Authority Ampli-
fication”.

5.2. Reference graph dynamics are not enough

The above properties are necessary but not sufficient to
characterise object-capability languages. They constitute an
over-approximation of the authority of a term, known as
the topology-only bound on authority. The approximation is
imprecise because it considers indirect references equivalent
to direct references and as such ignores objects’ behaviour.

Consider, for example, the ticket dispenser example from
Section 4.1, where attacker code was given access to a func-
tion dispTkt = func(){let(v = deref o){o := v + 2; v}} but no
direct access to reference o. The topology-only bound does
not distinguish an expression with a reference to dispTkt or
a direct reference to o, so the safety of our ticket dispenser
cannot follow. In fact, none of the results from Section 4 can
be proven using just the topology-only bound on authority.

To be clear, the problem is not just that the soundness
of those examples is hard to prove using the topology-only
bound. Rather, their soundness does not follow because the
bound is not strong enough. One can prove this by con-
structing a language that satisfies the bound but invalidates
the examples, for example by adding a deepInspect primitive
that returns the set of references held by an arbitrary value,

i.e. deepInspect(dispTkt) evaluates to the singleton list [o].
More details about this argument are deferred to the TR.

6. Reference Graph Dynamics from Effect
Parametricity

Although the reference graph dynamics properties from
the previous section are not sufficient to reason about ex-
amples like those in Section 4 or to characterise capability
safety, they may still be of interest in some applications.
In this section, we explain how our Fundamental Theorem
implies results that are analogous but a bit more semantic.

First, we need to explain that we cannot derive the
properties themselves because of the more semantic nature
of our logical relations. Consider, for example, an expression
e and a location l that e does not mention (i.e. l 6v e). Now
take x fresh and consider e′ def

= let(x = l) e. Syntactically, e′
holds a reference to capability l and Maffeis et al. would
consider it to have greater authority, despite the semantic
fact that e′ never uses l. However, e′ purely evaluates to
e, so they are equivalent for our logical relations and any
results we prove will not distinguish them. Nevertheless, we
can prove properties that are analogous but more semantic.

6.1. An Effect Interpretation for Memory Regions

We start from an effect interpretation that formulates
a region memory discipline, defined in Figure 8. It uses
a special-purpose island ι

rgn
j,L to define the current set of

addresses in a memory region. This set may grow over
time (as expressed by the island’s transition relation), with
newly allocated references or with existing references whose
ownership is passed to the region. j is the index of the island
in the world. We require that regions are isolated from one
another and the rest of the world, i.e. values stored in region
j must themselves never access memory outside the region.
Formally, the heap invariant Hrgn

j enforces this by requiring
that values in the region are accepted by JSValIOrgn

j ,Ref
rgn
j

.
We instantiate ρ as Ref

rgn
j , accepting only region j’s

current addresses, and µ as IO
rgn
j , which essentially accepts

expressions that only access memory within region j and
otherwise respect the world invariants and authority bounds.
More formally, IO

rgn
j P w n-accepts expressions e that are

n-accepted by P if they are values and such that executing
them in i steps in a w-acceptable store σr will only access
memory locations inside region j. The resulting expression
must n − i-satisfy E[IO

rgn
j P ] in a publicly accessible ex-

tension w′ of world w. The resulting world must extend the
region with all freshly allocated references. Additionally, the
store is allowed to contain an additional frame part σf not
governed by w which must be left unmodified.

Contrary to IOstd , the definition of IO
rgn
j does not

assume that the evaluation (σr ] σf , cmd) →iA (σ′, e′) pro-
duces an e′ that is a value. This means that IO

rgn
j provides

guarantees about arbitrary computations, not just those that
terminate successfully. Such definitions are typically only



e1 ↪→ e2

(σ,E〈e1〉)→∅ (σ,E〈e2〉)
(E-PURE) l 6∈ dom(σ) A = {(l, r), (l,w)}

(σ,E〈ref v〉)→A (σ[l 7→ v], E〈l〉)
(E-REF)

(σ,E〈deref l〉)→{(l,r)} (σ,E〈σ(l)〉) (E-DEREF)

(σ,E〈l = v〉)→{(l,w)} (σ[l 7→ v], E〈v〉) (E-SETREF)

Figure 7. Action-labeled version →A of the impure λJS evaluation judgement. Multi-step versions →i
A and →∗A accumulate labels of substeps.

ι
rgn
j,L

def
= (L,⊆,⊆, Hrgn

j )

Ref
rgn
j : W →mon,ne UPred(Loc)

Ref
rgn
j w

def
=
{

(n, l)
∣∣∣ w(j) = (L,⊆,⊆, H), l ∈ L ∧H =n+1 H

rgn
j

}
IO

rgn
j : (W →mon,ne UPred(Val))→W →ne Pred(Cmd)

IO
rgn
j P w

def
=

(n, cmd)|

(cmd ∈ Val ⇒ (n, cmd) ∈ P w)∧

∀L,H. if w(j) = (L,⊆,⊆, H) ∧H =n+1 H
rgn
j then

∀0 < i ≤ n, σr :n w, σf . (σr ] σf , cmd)→iA (σ′, e′)⇒

∃σ′r , w′ wpub w, for L′ = L ∪ (dom(σ′r) \ dom(σr)).

w′(j) = (L′,⊆,⊆, H) ∧ σ′ = σ′r ] σf ∧A ⊆ (L′ × D)∧

(n− i, e′) ∈ E[IO
rgn
j P ] w′ ∧ σ′r :n−i w

′


H

rgn
j : P(Loc)→ Ŵ →mon,ne UPred(Store)

H
rgn
j L w

def
={

(n, σ)

∣∣∣∣∣ dom(σ) = L and for all l ∈ L. n = 0 or
(n− 1, σ(l)) ∈ JSValIOrgn

j ,Ref
rgn
j

(roll−1 w)

}

Figure 8. Region-based effect interpretation for memory access bounds.

found in logical relations for concurrent programming lan-
guages, but in our case we want memory access bounds even
for evaluations that do not terminate or end up in a stuck
state. Formally, it does complicate the definition of IOrgn

because if e′ is potentially not a value, it makes no sense to
require that it is accepted by P w′. The solution is to require
recursively that it is accepted by E[IO

rgn
j P ].

6.2. Memory access bounds

With this effect interpretation, our Fundamental Theo-
rem implies memory access bounds similar to the reference
graph dynamics properties. To emphasise the correspon-
dence, we define memBound(σ, e, L) as a judgement analogous
to (but more semantic than) the statement auth(σ, e) = L×D.

Definition 1. We define memBound(σ, e, L) for a store σ and
L ⊆ dom(σ) iff for j = 1, w = [j 7→ ι

rgn
j,L ] and any n, we have:

• (n, e) ∈ E[IO
rgn
j JSValIOrgn

j ,Ref
rgn
j

] w

• ∃σf , σr .σ = σr ] σf and σr :n w

The Fundamental Theorem implies that memBound(σ, e, L)

holds whenever auth(σ, e) = L× D (proof in TR):

Lemma 4. If auth(σ, e) = L× D, then memBound(σ, e, L).

Furthermore, the memBound judgement satisfies properties
akin to the reference graph dynamics properties. The fol-

lowing property corresponds to properties RG-AUTH1 and
RG-AUTH2 in the previous section. It specifies that memBound
bounds an expression’s memory access and that the property
is preserved by evaluation.

Lemma 5. If memBound(σ1, e1, L) and (σ1, e1) →iA (σ2, e2),
then for L′ = L ∪ (dom(σ2) \ dom(σ1))

• A ⊆ L′ × D and σ2|dom(σ1)\L = σ1|dom(σ1)\L.
• memBound(σ2, e2, L

′).

The next two properties correspond to RG-CONN
and RG-NOAMPL. The first states that evaluating an expres-
sion whose authority cannot influence another expression’s,
leaves that other expression’s memBound unaffected. The lat-
ter specifies that evaluating an expression whose authority
can influence another expression’s, may increase that other
expression’s memBound, but not beyond the union of the two
expressions’ original bounds and newly allocated locations.

Lemma 6. If (σ, e) →∗A (σ′, v), A 6 . L × D and
memBound(σ, e′, L), then still memBound(σ′, e′, L).

Lemma 7. If memBound(σ, e1, L1), memBound(σ, e2, L2),
(σ, e1) →∗A (σ′, v) and A . L2 × D, then we have
memBound(σ′, e2, L′) for L′ = L1 ∪ L2 ∪ (dom(σ′) \ dom(σ)).

7. Related Work

Object capability research has a long history, possibly
starting with Dennis and Van Horn’s proposed hardware
protection primitives [2]. Later work on operating systems
and processor hardware with capability security primitives
is surveyed by Levy [21]. More recent work includes Cap-
sicum (primitive capabilities offered by FreeBSD kernel
primitives) [4] and CHERI (processor-level object capa-
bilities combined with virtual memory) [5]. A thorough
overview of the object capability model and the capability-
safe programming language E is in Miller’s PhD thesis [3].
Other capability-safe languages include Joe-E [6], Emily [8],
W7 [22], Newspeak [9] and Google Caja [7].

Two papers formalise reference graph properties for
capability systems using an operational semantics. The first
is Maffeis et al.’s paper, presented in Section 5. The sec-
ond is Shapiro and Weber’s verification of the confinement
properties of EROS [23]. They prove a property related to
one of the properties in Section 5, which also ignores the
behaviour of processes/objects.

Dimoulas et al. formalise capability safety in terms of a
notion of component boundaries and the ownership of code
by security principals [24], in a simple language without
mutable state. The formalisation of capability-safety does
not seem intended for reasoning about code. Instead, they
propose to extend the object capability language with alter-
native security mechanisms, that enable specific types of rea-



soning: built-in dynamic access control and an information
flow type system. Similarly, Drossopoulou and Noble argue
to extend object capability languages with a kind of declar-
ative policies [25]. Generally, we are not convinced that
modular enforcement of typical policies requires additional
security mechanisms in the language. Rather, they can be
implemented cleanly and modularly using standard patterns.
Proving that such implementations enforce a declarative
policy can be done using techniques as developed here.

Spiessens studied the safety of capability patterns us-
ing Knowledge Behaviour Models and a logic called
SCOLL [11], [12]. His goal of validating the safety of
capability patterns is the same as ours, but he reasons at
a higher level of abstraction, viewing executable code as
interacting abstract entities with a behaviour specification.
As a result, his results do not directly apply to concrete
code in a concrete language, but both the implementations
and the language must be separately verified to satisfy their
specification. Spiessens’ automatic approximation of future
behaviour imposes some restrictions in the logic, like the
absence of non-monotonic authority changes.

Taly et al. automatically analyse security-critical APIs
in a secure subset of JavaScript to guarantee that API
implementations do not leak references to objects marked
as internal [26]. A limitation is that they only deal with
leaking of direct references. Establishing security requires
separate verification of objects not marked as internal.

Garg et al. [27] and Jia et al. [28] have proposed and
studied powerful program logics for interface-confined code
in, respectively, a first-order and higher-order setting. Like
us, they prove properties of arbitrary, untyped attacker code
and can reason about memory as well as other effects. They
do this for interface-confined code, a syntactic requirement
that appears similar to the restrictions in an object-capability
language. However, the work does not intend to cover
object-capability languages, does not look into previous
notions of capability-safety (see Section 5), and the authors
state that they cannot model object-capability languages in
general. Specifically, there is no direct way to reason about
untrusted code that gets access to some primitive pointers,
but not all, although this can be modeled using additional
indirection. It is not clear to what extent the work supports
patterns with separate authority over shared data structures
as discussed in Section 4.

A second category of related work is on logical rela-
tions for proving encapsulation properties in higher-order
languages. The logical relations we use are (unary) step-
indexed Kripke logical relations [13], [29]. We have gen-
erally followed the notations used by Birkedal et al. [16]
and we used their recipe for defining recursive worlds using
ultrametric space theory. Our worlds are inspired by Dreyer
et al.’s [17]. The region-based effect interpretation used in
Section 6 produces a logical relation related to one used
by Thamsborg et al. for proving relational results about a
region-based type-and-effect system [18].

There is a long line of work on using logical relations
for proving local state abstraction results [17], [30]–[35].
The work covers increasingly complex languages (e.g. stack

variables vs. first-order heap vs. higher-order heap) and uses
increasingly complex Kripke worlds for specifying invari-
ants and protocols on the evolution of acceptable/related
stores. Recursive types and higher-order heaps are dealt with
using either step-indexing like us or more complex (but
perhaps more elegant) solutions based on domain theory.

Our work is closely related to this line of work, but
there are some differentiating aspects. First, we work for an
untyped language. Although it is known that step-indexing
enables logical relations for untyped languages [36], we
are (to our knowledge) the first to demonstrate this for
a language with a mutable store. Our Kripke worlds are
based on and similar to those of Dreyer et al. [17], but
some points are novel. Our use of public/private transitions
to model restricted authority over a shared resource, and
the fact that the public transition relation in our islands can
grow are both (to the best of our knowledge) novel. The idea
enables a kind of rely-guarantee reasoning, as demonstrated
in Section 4.3 and the approach bears a resemblance to
permission assertions on a shared region, as in, for example,
Dinsdale-Young et al.’s Concurrent Abstract Predicates [37].
Also novel is our notion of effect interpretations as a way
to define custom world-indexed restrictions on primitive
effects, as well as the axioms prescribing compatibility of
the effect interpretation to the publicly accessible effects
of the language. Finally, perhaps most importantly, the link
to object capabilities and our characterisation of capability-
safety are novel.

8. Conclusion

In summary, this paper presents a novel approach for
formal reasoning about a capability-safe programming lan-
guage. We use state-of-the-art techniques from program-
ming language research for capturing the encapsulation of
the language, supplemented with some additional ideas for
capturing specificities of the model. Our demonstration of
three typical but non-trivial patterns in Section 4 and our
derivation of reference graph dynamics results in Section 6
shows that our approach is significantly more powerful than
previous approaches and sufficiently powerful for realistic
examples. We have presented our technique for a subset of
λJS , a relatively simple core calculus for JavaScript, but
we expect that it generalises to other settings including
assembly languages with primitive capabilities [5], [38],
capability-safe subsets of JavaScript and typed capability-
safe languages [6], [8], [9]. In the TR, we discuss how
our techniques generalise to relational rather than unary
properties.

Our work also offers new insight into the nature
of capability-safe programming languages. Summarily, the
property groups three characteristics, all captured by our
model: (a) encapsulation of local state: a quite common
feature in programming languages like Java, ML, JavaScript
etc. (b) absence of global mutable state: a less common
feature which is nevertheless crucial for isolating compo-
nents from each other (like the example in Section 4.3) and,
finally, (c) primitive effects only available through primitive



capabilities, so authority to produce primitive effects can be
controlled by giving components access to the capability or
not.

With the better understanding of capability-safety, this
work creates the potential for a program logic (perhaps with
automated tool support) that can be used to conveniently
reason about code in a capability-safe language. Specif-
ically, our Fundamental Theorem tells us what semantic
properties such a logic or tool can soundly offer as axioms
over untrusted code. As such, this paper contributes a key
semantic understanding, but the design of a program logic
or automated tool remains future work.
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This appendix contains two things: a supplementary, less mature section about the generalisation of our results to
relational properties and proofs and details about the results in the paper. For clarity, we repeat theorems and lemmas from
the paper (with the same numbering) and then additionally provide proofs.

Appendix A.
From Predicates to Relations

A.1. Binary effect parametricity

In a binary setting, we use uniform step-indexed relations, over sets A: URel(A)
def
= UPred(A×A). For a relation P ∈ URel(A),

we say that a1, a2 ∈ A are n-related by P if (n, a1, a2) ∈ P . The definition of our Kripke worlds changes only slightly in that
the heap predicate H ∈ State→ StorePred of an island becomes a heap relation H ∈ State→ StoreRel with

StoreRel
def
= {ψ ∈ Ŵ →mon,ne URel(Store)}

Rather than defining when a store is acceptable in the current state of the island, the heap relation now defines when two
stores are related in the current state of the island. For example, it may relate stores when they contain (potentially different)
representations of the same abstract data structure.

The judgement σ :n w is generalised to a judgement (σ1, σ2) :n w

(σ1, σ2) :n w iff ∃σ1,1 · · ·σm,1, σ1,2 · · ·σm,2. σk = σ1,k ] · · · ] σm,k for k = 1..2

and ∀j ∈ dom(w). (n, σj,1, σj,2) ∈ w(j).H(w(j).s) (roll w)

In order to construct a binary version of our JSValµ,ρ predicate of acceptable values, we first need binary versions of our
Cnst, {P}, (P ∪P ′), E[P ] and [P ]→ P ′ predicates. The most interesting of these is E[P ], because it is interestingly asymmetric.

E[P ′′] : W →ne Rel(Expr)

E[P ′′] w def
=

{
(n, e1, e2)

∣∣∣∣∣ for all i ≤ n, e′1. (e1 →i e′1 and
e′1 ∈ Cmd)⇒ ∃e′2 ∈ Cmd . e2 →∗ e′2 ∧ (n− i, e′1, e

′
2) ∈ P ′′ w

}

For a command relation P ′′, the relation E[P ′′] n-relates an expression e1 to e2 if evaluating it for i ≤ n steps to a command
e′1 implies that e2 must also evaluate to a command e′2 such that e′1 is n− i-related to e′2 by P ′′. This definition is asymmetric:
we only learn something if e′1 evaluates to a command. One sometimes speaks of logical approximation rather than logical
similarity to express this asymmetricity. These asymmetric definitions are often used, because they tend to work much better
than symmetric ones (if the latter work at all). One can always define symmetric relations later as approximation in two
directions.

Cnst : W →mon,ne URel(Val)

Cnst w
def
= {(n, c, c) | n ∈ N, c ∈ Const}

{P} : W →mon,ne URel(Val)

{P} w def
=
{

(n, {str : v1}, {str : v2}) | for all i < n, (i, v1, v2) ∈ P w
}

P ∪ P ′ : W →mon,ne URel(Val)

(P ∪ P ′) w def
= P w ∪ P ′ w

([P ]→ P ′′) : W →mon,ne URel(Val)

([P ]→ P ′′) w def
= {(n, func(x1 · · ·xk){return e1}, func(x1 · · ·xk){return e2}) |

for all v1,1 · · · vk,1, v1,2 · · · vk,2, w′ w w, i < n. (i, vj,1, vj,2) ∈ P w′ ⇒
(i, e1[x1/v1,1, · · · , xn/vk,1], e2[x1/v1,2, · · · , xn/vk,2]) ∈ E[P ′′] w′

}

The relation Cnst relates constants only to itself for arbitrary n. For value relations P and P ′, the relations {P} and P ∪ P ′

relate record literals with related fields and values that are related by either P or P ′. For a command predicate P ′′, [P ]→ P ′′

relates functions that map P -related argument values to P ′′-related results in future worlds and step-indices i < n.
Effect interpretations become pairs (µ, ρ) with ρ : W →mon,ne URel(Loc) and

µ : (W →mon,ne URel(Val))→ne (W →ne Rel(Cmd)).



The binary version of JSValµ,ρ is then not much different:

JSValµ,ρ : W →mon,ne URel(Val)

JSValµ,ρ
def
= Cnst ∪ ρ ∪ {JSValµ,ρ} ∪ ([JSValµ,ρ]→ µ JSValµ,ρ)

The axioms for a valid effect interpretation also generalise easily:
• A-PURE: If (n, v1, v2) ∈ P w then (n, v1, v2) ∈ µ P w.
• A-BIND: If (n, e1, e2) ∈ µ P w and (n′, E1〈v1〉, E2〈v2〉) ∈ E[µ P ′] w′ for all n′ ≤ n, w′ w w and (n′, v1, v2) ∈ P w′, then

(n,E1〈e1〉, E2〈e2〉) ∈ E[µ P ′] w.
• A-ASSIGN: If (n, e1,1, e1,2) ∈ JSValµ,ρ w and (n, e2,1, e2,2) ∈ JSValµ,ρ w, then (n, e1,1 = e2,1, e1,2 = e2,2) ∈ µ JSValµ,ρ w.
• A-DEREF: If (n, e1, e2) ∈ JSValµ,ρ w, then (n, deref e1, deref e2) ∈ µ JSValµ,ρ w.
• A-REF: If (n, e1, e2) ∈ JSValµ,ρ w, then (n, ref e1, ref e2) ∈ µ JSValµ,ρ w.
Finally, the Fundamental Theorem now relates any well-formed term to itself. First, we generalise the semantic

interpretations of the reference and value contexts Σ and Γ of the well-formedness judgement:

JΣKµ,ρ : UPred(W )

JΣKµ,ρ
def
=
{

(n,w) | for all l ∈ Σ.(n, l, l) ∈ ρ w
}

JΓKµ,ρ w : URel(ValΓ)

JΓKµ,ρ w
def
= {(n, γ1, γ2) | ∀x ∈ Γ.(n, γ1(x), γ2(x)) ∈ JSValµ,ρ w}

And we can now formulate a binary version of our Fundamental Theorem:

Theorem 4 (Fundamental Theorem, Binary Version). If Γ,Σ ` e then for a valid effect interpretation (µ, ρ) and for all n,
γ1, γ2 and w with (n,w) ∈ JΣKµ,ρ and (n, γ1, γ2) ∈ JΓKµ,ρ w, (n, γ1(e), γ2(e)) must be in E[µ JSValµ,ρ] w.

A.2. Relational Applications

Examples of interesting relational properties are not hard to think of. Consider, for example, again the example of a
web page embedding an untrusted ad. The idea of that example was to give the ad access to an object rnode(adNode,nil)

where adNode is the DOM node representing the ad’s reserved space on the web page. The function rnode was constructed
so that this did not allow the ad to access the rest of the web page, and in Section 4.2, we have shown that, effectively, the
ad can indeed not modify the web page outside adNode.

However, we have not proven other security-relevant correctness properties of rnode. Specifically, we also want to be
sure that the ad cannot read the contents of the web page outside of its reserved space. Formally, this can be expressed using
a non-interference property: differences in the web page outside of the ad’s reserved space may not influence its behaviour.
Additionally, we would also like to be sure that the rnode function does not hinder well-behaving ads, i.e. ads that do not
try to escape from their sandbox should behave the same with access to the restricted object as with direct access to the
original.

Both of these properties are naturally relational. Without making everything fully formal for space concerns, let us
sketch, for example, how we might prove the former property about the ad not reading outside its space. Recall the abstract
trees that we used to abstractly specify a state of the DOM. Assume that we have two such trees t1 and t2, two paths p1

and p2 and an abstract tree t representing the state of the ad’s turf. Then we can construct an appropriate island ιt1,p1,t2,p2,t
that considers two stores related if one contains a representation of tree t1[p1 7→ t] and the other t2[p2 7→ t]. Then, if adNode1

and adNode2 are DOM nodes representing the node at path pi in DOM ti, then we can show that rnode(adNode1,nil) and
rnode(adNode2,nil) are related at a binary generalisation of JSVal

IOstd ,Ref std
in any world containing island ιt1,p1,t2,p2,t, to

express that they will behave identically. Applying the binary Fundamental Theorem to the untrusted ad’s code will also
tell us that it is related to itself in JSVal

IOstd ,Ref std
. From this, we can show that ad .initialize(rnode(adNodei, 0)) for i = 1..2

will evaluate to related values in stores representing the different DOMs and leave the stores in a related state.

IOstd : (W →mon,ne URel(Val))→ne (W →ne Rel(Cmd))

IOstd P w
def
=

(n, e1, e2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e2 ∈ Val ∧ (n, e1, e2) ∈ P w if e1 ∈ Val and,
for all σr,1, σr,2, σf,1, σf,2, σ′1, 0 < i ≤ n, e′.(
(σr,1, σr,2) :n w, (σr,1 ] σf,1, e1)→i (σ′1, e

′
1) and e′1 ∈ Val

)
⇒

∃σ′r,1, σ
′
r,2, w

′ wpub w, e′2 ∈ Val . σ′1 = σ′r,1 ] σf,1 and
(σr,2 ] σf,2, e2)→∗ (σ′r,2 ] σf,2, e

′
2)∧

(σ′r,1, σ
′
r,2) :n−i w

′ and (n− i, e′1, e
′
2) ∈ P w′





A.3. Relational Effect Interpretations

Finally, we want to mention the role that effect interpretations can play in a binary setting. In the unary setting, they
allow us to require/enforce restrictions on the use of primitive effects, such as accessing only one region of memory (see
Section 5). In the binary setting, this generalises to requiring/enforcing relations between different interpretations of primitive
effects.

This is especially powerful when code accesses these primitive effects in a way that can be overridden, as is often
the case in capability-safe programming languages. Consider, for example, a version of λJS extended with console output,
invoked through the print method of a primitive object out that is not publicly accessible, but only provided as an argument
to the main method.

v ::= · · · | out

(σ,E〈out.print(str)〈)→str (σ,E〈undef〉)

Suppose now that we want to give a piece of code access to a simulated output channel that simply keeps a log of all
output. Because actual output is generated through the out object’s print method, we can simply construct an object with
the same interface as out to achieve this. First, we construct an object that offers a print method as well as a method getLog

to inspect the current log.

loggingOut
def
= func()

let log = ref nil in{
getLog = func(){deref log}

print = func(v) {log = cons(v, deref log)}

}
Now consider what happens if we provide an expression e with a reference to an object with only such an alternative print

function:

e′ def
= let log = loggingOut()

e({print = log.print});

log.getLog()

We then expect that providing such a reference instead of out itself to e achieves our goal of logging all output, but does not
otherwise modify the execution. In other words, e′ should evaluate as (σ, e′)→∗ (σ′′, strs) for some σ′′ if (σ, e(out))→∗strs (σ′, v)

for some v.
For proving this property, we could proceed by constructing an island governing the state of the output log:

ι
log
l, ¯str

def
= ((l, ¯str),wlog ,wlog , Hlog )

(l, ¯str′) w (l′, ¯str) iff l = l′ ∧ ¯str is prefix of ¯str′

Hlog (l, ¯str) w
def
= {(n, ∅, {l 7→ ¯str})}

The island keeps a location l and a list of strings that represent the current location and content of the log. Note how the
heap relation relates an empty store on the left (i.e. the log is not stored in memory) but only on the right.

We could now use the following effect interpretation:

IO
log
j P w

def
=

(n, e1, e2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(n, e1, e2) ∈ P if e1 ∈ Val∧

for all σ1, σ2, σ
′
1, i ≤ n, e

′
1, str.(

w(j) = ι
log

l,str
∧ (σ1, σ2) :n w ∧ (σ1, e1)→i

str
′ (σ′1, e

′
1) ∧ e′1 ∈ Val

)
⇒

∃σ′2, w
′ wpub w.(σ′1, σ

′
2) :n−i w

′∧

(σ2, e2)→∗∅ (σ′2, e
′
2) ∧ (n− i, e′1, e

′
2) ∈ P w′∧

w′(j) = ι
log

l,(rev(str ′)++str)


In other words, IO

log
j n-relates e1 and e2 if termination of e1 with output str ′ implies termination of e2 with no output,

related result values and stores, and an accurate update of the log.
If we now prove that, together with Ref std , this constitutes a valid effect interpretation, prove that out and {print =

log.print} are n-related by JSVal
IO

log
j ,Ref std

, we can prove the desired property.



This example is interesting because it demonstrates how our effect interpretations allows specifying custom restric-
tions/relations on primitive effects, rather than just on the state of the store.

The remainder of this appendix provides details and proofs for the results in the paper.

Appendix B.
Proofs and details for Section 2

Lemma 8. For all v, v 6→ and v 6→o.

Proof. Simple case analysis.

Lemma 9. If E〈e〉 is a value, then E = · and e is a value.

Proof. Easy case analysis on E.

Lemma 10. If cmd = E〈e〉, then e is also a command.

Proof. We know that a cmd is either a value or E0〈cmd0〉 for some cmd0 = v. print (v′). If cmd is a value, then E = · and
e = cmd is a command. If cmd = E0〈cmd0〉, then we prove by induction on E that e is a command.

1) E = ·: Then e = cmd is a command.
2) E = let(x = E′) e′. Because cmd = E0〈cmd0〉 and cmd = E〈e〉 = let(x = E′〈e〉) e′, there must be a E′0 such that

E0 = let(x = E′0) e′. This means that E′〈e〉 = E′0〈cmd0〉 is also a command. By induction, we have that e must be a
command.

3) E = if(E′){e} else {e}. Similar to case 2.
4) E = E′; e. Similar to case 2.
5) E = E′. print (e′). Because cmd = E0〈cmd0〉 and cmd = E〈e〉 = (E′〈e〉). print (e′), there must either be an E′0 such that

E0 = E′0. print (e′). In which case, we continue as before. Or, E0 = · and cmd0 = e. print (e′) and e and e′ are values.
But values are commands, so we’re good.

6) E = v. print (E′). Similar to case 5.

Lemma 11. For all cmd , cmd 6→.

Proof. Suppose that cmd → e′. By definition, this means that cmd = E〈e1〉, e′ = E〈e2〉 and e1 ↪→ e2. By Lemma 10, this
means that e1 is a command. But case analysis on e1 ↪→ e2 tells us that this is not possible.

Lemma 12. If E〈e〉 = E′〈e′〉, then one of the following holds:
• e is a value.
• e′ is a value.
• E = E′〈E′′〉 with E′′ 6= ·.
• E′ = E〈E′′〉.

Proof. Simple induction on the syntax of E.

Lemma 13. If E〈e〉 → e′, then either e is a value or e′ = E〈e′′〉 for some e′′ and e→ e′′.

Proof. E〈e〉 → e′ implies by definition that E〈e〉 = E′〈e1〉, e′ = E′〈e2〉 and e1 ↪→ e2. By Lemma 12, this implies that e is a
value (in which case we’re done), or e1 is a value (but then e1 ↪→ e2 is impossible) or one of the two following cases holds:
• E = E′〈E′′〉 with E′′ 6= ·. But then E′〈e1〉 = E〈e〉 = E′〈E′′〈e〉〉, so that e1 = E′′〈e〉. A simple case analysis on e1 ↪→ e2 and
E′′ then implies that e must be a value, so we’re done.

• E′ = E〈E′′〉. Then E〈e〉 = E′〈e1〉 = E〈E′′〈e1〉〉, so that e = E′′〈e1〉. Then e′ = E′〈e2〉 = E〈E′′〈e2〉〉, and e = E′′〈e1〉 → E′′〈e2〉,
so we’re done.

Lemma 14. If E〈e〉 →o e′, then either e is a value or e′ = E〈e′′〉 for some e′′ and e→o e′′.

Proof. We know that the evaluation must either be pure, in which case Lemma 13 tells us what we need, or E〈e〉 =

E′〈out. print (str)〉, o = [str ] and e′ = E′〈undef〉. By Lemma 12, then either e is a value (in which case we’re done), or
out. print (str) is a value (but this is not possible) or one of the following cases holds:
• E = E′〈E′′〉 with E′′ 6= ·. This means that E〈e〉 = E′〈E′′〈e〉〉 = E′〈out. print (str)〉, so that E′′〈e〉 = out. print (str). This

implies that e = out or e = str , so in both cases, e is a value.



• E′ = E〈E′′〉. In this case, E〈e〉 = E′〈out. print (str)〉 = E〈E′′〈out. print (str)〉〉, so that e = E′′〈out. print (str)〉. Also,
e′ = E′〈undef〉 = E〈E′′〈undef〉〉 and e = E′′〈out. print (str)〉 →o E′′〈undef〉.

Lemma 15. E[P ] ⊇ P for all P .

Proof. Take cmd ∈ P and we prove that cmd ∈ E[P ]. Suppose that cmd →∗ cmd ′. Then by Lemma 11, the evaluation must
be trivial and cmd ′ = cmd . Then clearly, cmd ∈ P .

Lemma 16. If e→∗ e′, then e ∈ E[P ] iff e′ ∈ E[P ].

Proof. Suppose e →∗ e′ and e′ ∈ E[P ]. Suppose that e →∗ cmd . Because evaluation is deterministic, it’s easy to prove that
e′ →∗ cmd , so that cmd ∈ P .

Conversely, suppose e→∗ e′ and e ∈ E[P ]. Suppose e′ →∗ cmd . Then we can concatenate the evaluations to get e→∗ cmd ,
which implies that cmd ∈ P .

Theorem 1 (Fundamental Theorem for λout,FO ). For a valid effect interpretation (µ, ρ), Γ ` e implies that for any γ ∈ JΓKµ,ρ,
γ(e) is in E[µ Valµ,ρ].

Proof. By induction on the Γ ` e well-scopedness judgement. We have not named the rules in Figure 2, but it should be clear
which ones we mean. By Lemma 15, it is sufficient (though not necessary) to prove that γ(e) ∈ µ Valµ,ρ and because Valµ,ρ

contains only values, Axiom A-PURE implies that it is sufficient (though again not necessary) to prove that γ(e) ∈ Valµ,ρ.
1) Γ ` x if x ∈ Γ. Because γ ∈ JΓKµ,ρ, we know by definition that γ(x) ∈ Valµ,ρ.
2) Γ ` v with v 6= out. By definition, this implies v ∈ PureVal ⊆ Valµ,ρ and we know that γ(v) = v.
3) Γ ` let(x = e1) e2 with Γ ` e1 and Γ, x ` e2. We have that γ(let(x = e1) e2) = let(x = γ(e1)) γ(e2). We will show that

this expression is in E[µ Valµ,ρ], so assume that let(x = γ(e1)) γ(e2)→∗ cmd . Take the largest prefix of this judgement
such that let(x = γ(e1)) γ(e2)→∗ let(x = e′1) γ(e2).
If the evaluation ends there, then let(x = e′1) γ(e2) = cmd is a command and by Lemma 10, so is e′1. If the evaluation
does not end after reducing γ(e1) to a command, then e′1 must be a value by Lemma 13, so also a command.
The induction hypothesis for e1 and the sub-evaluation γ(e1)→∗ e′1 now gives us that e′1 ∈ µ Valµ,ρ. We also have that
let(x = e′1) γ(e2) = (let(x = ·) γ(e2))〈e′1〉. Furthermore, if v ∈ Valµ,ρ then let(x = v) γ(e2) → γ′(e2) with γ′ = γ[x 7→ v].
It easily follows that γ′ ∈ JΓ, xKµ,ρ and by the induction hypothesis, we have that γ′(e2) ∈ E[µ Valµ,ρ]. By Lemma 16,
this implies that let(x = v) γ(e2) ∈ E[µ Valµ,ρ]. We can now apply Axiom A-BIND to obtain that let(x = e′1) γ(e2) ∈
E[µ Valµ,ρ].
Now take the further evaluation (if any) let(x = e′1) γ(e2)→∗ cmd . It follows directly that cmd ∈ µ Valµ,ρ as required.

4) Γ ` if(e1){e2} else {e3} with Γ ` e1, Γ ` e2, Γ ` e3. Similar to case 3.
5) Γ ` e1; e2 with Γ ` e1, Γ ` e2. Similar to case 3.
6) Γ ` while(e1){e2} with Γ ` e1, Γ ` e2. We have that γ(while(e1){e2}) = while(γ(e1)){γ(e2)}. We will show that this

expression is in E[µ Valµ,ρ], so assume that while(γ(e1)){γ(e2)} →∗ cmd . This evaluation must factor as follows:

while (γ(e1)){γ(e2)} →

if (e1){e2; while(e1){e2}} else {undef}

→∗ cmd .

Now take the largest prefix of this evaluation such that it is of the form

if (e1){e2; while(e1){e2}} else {undef} →∗

if (e1){e2; while(e1){e2}} else {undef}.

The rest of this case proceeds like case 3.
7) Γ ` e1.print(e2) with Γ ` e1, Γ ` e2. We have that γ(e1.print(e2)) = γ(e1).print(γ(e2)). We will show that this expression

is in E[µ Valµ,ρ], so assume that γ(e1). print (γ(e2)) →∗ cmd . Take the longest prefix such that γ(e1). print (γ(e2)) →∗

e′1. print (γ(e2)). If the evaluation stops there, then e′1 has to be a command because of Lemma 10. If not, e′1 must be
a value, so also a command. The sub-evaluation γ(e1) →∗ e′1 together with the induction hypothesis then give us that
e′1 ∈ µ Valµ,ρ. By Lemma 16 and Axiom A-BIND, it now suffices to prove that for v ∈ Valµ,ρ, v.print(γ(e2)) ∈ E[µ Valµ,ρ].
So, assume that v.print(γ(e2))→∗ cmd . Take the longest prefix such that v.print(γ(e2))→∗ v.print(e′2). If the evaluation
stops there, then e′2 has to be a command because of Lemma 10. If not, e′2 must be a value, so also a command. The
sub-evaluation γ(e2) →∗ e′2 together with the induction hypothesis then give us that e′2 ∈ µ Valµ,ρ. By Lemma 16 and
Axiom A-BIND, it now suffices to prove that for v′ ∈ Valµ,ρ, v. print (v′) ∈ E[µ Valµ,ρ].
By Lemma 15, it suffices to prove that v. print (v′) ∈ µ Valµ,ρ. Axiom A-PRINT tells us immediately that this is true.



Lemma 17. If e→∗o cmd then the evaluation factors as e→∗ e′ →∗o cmd with e′ ∈ Cmd .

Proof. Easy induction on the length of the evaluation and the derivation of the impure evaluation.

Lemma 18. If e ∈ E[IOtriv P ] and e→∗o v, then o = [] and v ∈ P .

Proof. By Lemma 17, we can factor the evaluation as e →∗ e′ →∗o v with e′ ∈ Cmd . We then easily get that e′ ∈ IOtriv P

and from that o = [] and v ∈ P .

The following Lemma was used in the proof of Example 1.

Lemma 19. (IOtriv ,Ref triv ) is a valid effect interpretation.

Proof. We prove that the four axioms hold:
• A-RHO-OUT: Ref triv ⊆ {out}. Direct.
• A-PURE: For a value v ∈ P , v must also be in IOtriv P . Assume that v →∗o v′. Lemma 8 tells us that the evaluation is

trivial, v = v′ and o = [].
• A-BIND: If e ∈ IOtriv P and E〈v〉 ∈ E[IOtriv P ′] for all values v ∈ P , then E〈e〉 ∈ E[IOtriv P ′]. Assume that E〈e〉 →∗ cmd .

We know that e is a command, so by Lemmas 13 and 11, either the evaluation is trivial (zero steps, cmd = E〈e〉) or e is
a value. In the latter case, our assumption about E directly gives us the result we need. In the former case, E〈e〉 = cmd

and we prove that it is in IOtriv P ′. So, assume that E〈e〉 →∗o v. Take the longest prefix such that the evaluation is
of the form E〈e〉 →∗

o′ E〈e
′〉. If the evaluation ends there, then E〈e′〉 is a value, so by Lemma 9, e′ is a value. If the

evaluation continues, then by Lemma 14, e′ must also be a value.
The sub-evaluation e →∗

o′ e
′ now gives us that o′ = [] and e′ ∈ P . It follows that E〈e′〉 ∈ E[IOtriv P ′]. The remaining

execution then gives us by Lemma 18 that o = [] and v ∈ P ′.
• A-PRINT: If v ∈ ValIOtriv ,Ref triv

then v. print (v′) ∈ IOtriv ValIOtriv ,Ref triv
. Assume that v. print (v′) →∗o v. It follows

directly that the evaluation must be a single evaluation step, derived using evaluation rule E-OUT. However, this implies
that v = out, but ValIOtriv ,Ref triv

does not contain out, so this is a contradiction.

Now, we move to the extended calculus λout,HO .
From here on, we will need some theory about metric spaces. We refer to Birkedal et al. for a short review of metric

space theory [16, §2.1].

Lemma 20. UPred(A) is a complete bounded ultrametric space when the distance function is defined as follows. For
P ∈ UPred(A), define P[k]

def
= {(m, cmd) ∈ P | m < k}. Then, for P,Q ∈ UPred(A), define the following metric (i.e. distance

function between two predicates):

d(P,Q)
def
=

2
−max{k|P[k]=Q[k]} if P 6= Q

0 otherwise

Proof. This lemma is already mentioned in Birkedal et al. [16]. It can be proven using standard techniques from metric
space theory.

Note that the lemma above does not depend on any properties of the set A, but works for arbitrary sets.
We will use some simple lemmas about UPred(X):

Lemma 21. For P,Q ∈ UPred(X), we have that d(P,Q) ≤ 2−n iff P[n] = Q[n].

Proof. If P = Q, there is nothing to prove. If not, then we call m = max{k | P[k] = Q[k]} and observe that d(P,Q) = 2−m. We
have that d(P,Q) ≤ 2−n iff m ≥ n and m ≥ n iff P[n] = Q[n].

Note that in Section 2, we have left it implicit that the function µ ∈ UPred(Val) → UPred(Cmd) should be an arrow in
the category of complete bounded ultrametric spaces CBUltne , i.e. a non-expansive function.

Lemma 22. d(E[P ], E[Q]) ≤ d(P,Q).

Proof. Because UPred(X) is bisected, it suffices to prove that if d(P,Q) ≤ 2−n then d(E[P ], E[Q]) ≤ 2−n, so by Lemma 39, it
suffices to prove that if P[n] = Q[n], then E[P ][n] = E[Q][n] or by symmetry E[P ][n] ⊆ E[Q][n]. So, take (k, e) ∈ E[P ][n], i.e. k < n.
We will show that also (k, e) ∈ E[Q][n], or (sufficiently) that (k, e) ∈ E[Q]. So, take i ≤ k and e→i cmd . Then (k − i, cmd) ∈ P
and because k − i ≤ k < n, also (k − i, cmd) ∈ Q.

Lemma 23. E[P ], P1 → P2 and Valµ,ρ are uniform and well-defined if P , P1, P2 are uniform and (µ, ρ) is a valid effect
interpretation.



Proof. We need to prove a number of things:
• E[P ] is uniform if P is uniform. Take (n, e) ∈ E[P ] and k ≤ n. Then we prove that (k, e) is also in E[P ]. Take i ≤ k and

assume that e→i cmd . Then i ≤ k ≤ n, so (n− i, cmd) ∈ P and by uniformity of P and n− i ≥ k− i also (k− i, cmd) ∈ P .
• P1 → P2 are uniform if P1 and P2 are uniform. For (n, λx.e) ∈ P1 → P2 and k ≤ n, we prove that (k, λx.e) ∈ P1 → P2.

So, take i ≤ k and (i, v) ∈ P1. Then obviously i ≤ k ≤ n and (i, e[x/v]) ∈ E[P2].
• We prove that Valµ,ρ is well-defined (i.e. a solution to its defining equation exists and is unique) using the standard

Banach fixpoint lemma. This means that we need to prove that the functor which maps a complete bounded predicate
P to the predicate f(P ) = (N × PureVal) ∪ ρ ∪ (P → µ P ) actually produces a uniform predicate and is contractive. The
first is quite clear because (N × PureVal) is easily shown to be uniform, ρ is assumed to be and so is µ P when P is
uniform and P → µ P when P and µ P are uniform. Finally, it’s easy to see that taking the union of uniform predicates
produces a uniform predicate.
For proving that f is contractive, take P,Q ∈ UPred(Val), we need to prove that d(f(P ), f(q)) ≤ 1

2d(P,Q). If P and
Q are equal, then so are f(P ) and f(Q) and there is nothing to prove. If not, it suffices to prove that if P[k] = Q[k]
then (f(P ))[k+1] = (f(Q))[k+1] or by symmetry (f(P ))[k+1] ⊆ (f(Q))[k+1]. So, take (n, e) ∈ (f(P ))[k+1]. Note that this
implies that n < k + 1, i.e. n ≤ k. By definition of f , we have that either (n, e) ∈ (N × PureVal) or (n, e) ∈ ρ, in which
case also (n, e) ∈ f(Q), or (n, e) ∈ P → µ P . This implies that e = λx.e′ for some e′. We will prove that then also
(n, e) ∈ Q → µ Q. So, take i < n and (i, v) ∈ Q, then it suffices to prove that (i, e′[x/v]) ∈ E[µ Q]. Because i < n ≤ k and
P[k] = Q[k], we have that (i, v) is also in P and so (i, e′[x/v]) must be in E[µ P ], because (n, e) ∈ P → µ P . By Lemma 39,
we know that d(P,Q) ≤ 2−k. Because µ is non-expansive, we know that d(µ P, µ Q) ≤ 2−k and by Lemma 22 also
d(E[µ P ], E[µ Q]) ≤ 2−k. Again, by Lemma 39 and the fact that i < n ≤ k, this means that (i, e′[x/v]) is also in E[µ Q],
concluding our proof that f is contractive.

Lemma 24. P ⊆ E[P ].

Proof. Take (k, e) ∈ P , i ≤ k and e →i cmd . Because of Lemma 11, i must be zero and e = cmd . It is then clear that
(k − i, cmd) = (k, e) ∈ P .

Lemma 25. If e→i e′, then (n, e) ∈ E[P ] iff (n− i, e′) ∈ E[P ].

Proof. Suppose e →i e′ and (n − i, e′) ∈ E[P ]. Suppose that i′ ≤ n and e →i
′

cmd . Because evaluation is deterministic, it’s
easy to prove that e′ →i′−i cmd , so that (n− i− (i′ − i), cmd) = (n− i′, cmd) ∈ P .

Conversely, suppose e→i e′ and (n, e) ∈ E[P ]. Suppose i′ ≤ n− i and e′ →i
′

cmd . Then we can concatenate the evaluations
to get e→i+i′ cmd , which implies that (n− i− i′, cmd) ∈ P .

Theorem 2 (Fundamental Theorem for λout,HO ). For a valid effect interpretation (µ, ρ), Γ ` e implies for any n and
(n, γ) ∈ JΓKµ,ρ that (n, γ(e)) is in E[µ Valµ,ρ].

Proof. By induction on the judgement Γ ` e. As before, we have not named the rules in Figure 2 and the additional one for
lambdas, but it should be clear which ones we mean. By Lemma 24, it is sufficient (though not necessary) to prove that
(n, γ(e)) ∈ µ Valµ,ρ and because Valµ,ρ contains only values, Axiom A-PURE implies that it is sufficient (though again not
necessary) to prove that (n, γ(e)) ∈ Valµ,ρ.
• Γ ` x if x ∈ Γ. Because (n, γ) ∈ JΓKµ,ρ, we know by definition that (n, γ(x)) ∈ Valµ,ρ.
• Γ ` v with v 6= out. By definition, this implies (n, v) ∈ (N× PureVal) ⊆ Valµ,ρ and we know that γ(v) = v.
• Γ ` let(x = e1) e2 with Γ ` e1 and Γ, x ` e2. We have that γ(let(x = e1) e2) = let(x = γ(e1)) γ(e2). We will show that

this expression is n-acceptable in E[µ Valµ,ρ], so assume that i ≤ n and let(x = γ(e1)) γ(e2) →i cmd . Take the largest
prefix of this judgement such that let(x = γ(e1)) γ(e2)→i

′
let(x = e′1) γ(e2).

If the evaluation ends there, then let(x = e′1) γ(e2) = cmd is a command and by Lemma 10, so is e′1. If the evaluation
does not end after reducing γ(e1) to e′1, then e′1 must be a value by Lemma 13, so also a command.
The induction hypothesis for e1 and the sub-evaluation γ(e1)→i

′
e′1 now gives us that (n−i′, e′1) ∈ µ Valµ,ρ. We also have

that let(x = e′1) γ(e2) = (let(x = ·) γ(e2))〈e′1〉. Furthermore, if i′′ ≤ n − i′, (i′′, v ∈ Valµ,ρ) then let(x = v) γ(e2) → γ′(e2)

with γ′ = γ[x 7→ v]. It follows from uniformity that (i′′ − 1, γ′) ∈ JΓ, xKµ,ρ and by the induction hypothesis, we have that
(i′′ − 1, γ′(e2)) ∈ E[µ Valµ,ρ]. By Lemma 25, this implies that (i′′, let(x = v) γ(e2)) ∈ E[µ Valµ,ρ]. We can now apply
Axiom A-BIND to obtain that (n− i′, let(x = e′1) γ(e2)) ∈ E[µ Valµ,ρ].
Now take the further evaluation (if any) let(x = e′1) γ(e2)→i−i

′
cmd . It follows directly that cmd ∈ µ Valµ,ρ as required.

• Γ ` if(e1){e2} else {e3} with Γ ` e1, Γ ` e2, Γ ` e3. Similar to case 3.
• Γ ` e1; e2 with Γ ` e1, Γ ` e2. Similar to case 3.



• Γ ` while(e1){e2} with Γ ` e1, Γ ` e2. We have that γ(while(e1){e2}) = while(γ(e1)){γ(e2)}. We will show that this
expression is n-acceptable in E[µ Valµ,ρ], so assume that i ≤ n and while(γ(e1)){γ(e2)} →i cmd . This evaluation must
factor as follows:

while (γ(e1)){γ(e2)} →

if (e1){e2; while(e1){e2}} else {undef}

→i−1 cmd .

Now take the largest prefix of this evaluation such that it is of the form

if (e1){e2; while(e1){e2}} else {undef} →i
′

if (e1){e2; while(e1){e2}} else {undef}.

The rest of this case proceeds like case 3.
• Γ ` e1.print(e2) with Γ ` e1, Γ ` e2. We have that γ(e1.print(e2)) = γ(e1).print(γ(e2)). We will show that this expression

is n-acceptable in E[µ Valµ,ρ], so assume that i ≤ n and γ(e1). print (γ(e2)) →i cmd . Take the longest prefix such that
γ(e1). print (γ(e2)) →i

′
e′1. print (γ(e2)). Clearly, i′ ≤ i. If the evaluation stops there, then e′1 has to be a command

because of Lemma 10. If not, e′1 must be a value by Lemma 13, so also a command. The sub-evaluation γ(e1)→i
′
e′1

together with the induction hypothesis then give us that (n − i′, e′1) ∈ µ Valµ,ρ. By Lemma 25 and Axiom A-BIND, it
now suffices to prove that for i′′ ≤ n− i′, (i′′, v) ∈ Valµ,ρ, (i′′, v. print (γ(e2))) ∈ E[µ Valµ,ρ].
So, assume that j ≤ i′′, v.print (γ(e2))→j cmd . Take the longest prefix such that v.print (γ(e2))→j

′
v.print (e′2). Clearly,

j′ ≤ j. If the evaluation stops there, then e′2 has to be a command because of Lemma 10. If not, e′2 must be a value by
Lemma 13, so also a command. The sub-evaluation γ(e2)→j

′
e′2 together with the induction hypothesis and uniformity

then give us that (i′′ − j′, e′2) ∈ µ Valµ,ρ. By Axiom A-BIND and the remaining execution, it now suffices to prove that
for j′′ ≤ i′′ − j′, (j′′, v′) ∈ Valµ,ρ, (j′′, v. print (v′)) ∈ E[µ Valµ,ρ].
By Lemma 24, it suffices to prove that v. print (v′) ∈ µ Valµ,ρ. Axiom A-PRINT tells us immediately that this is true.

• Γ ` λx.e with Γ, x ` e. We have that γ(λx.e) = λx.γ(e). We will show that this expression is n-acceptable in Valµ,ρ. More
specifically, we will show that it is in

(
Valµ,ρ → µ Valµ,ρ

)
⊆ Valµ,ρ. To do that, we assume i < n and (i, v) ∈ Valµ,ρ and we

prove that (i, γ(e)[x/v]) ∈ E[µ Valµ,ρ]. We now have that γ(e)[x/v] = γ′(e) with γ′ = γ[x/v]. Our remaining proof obligation
then follows directly from the induction hypothesis, since from uniformity, we directly get that (i, γ) ∈ JΓ, xKµ,ρ.

• Γ ` e1 e2 with Γ ` e1 and Γ ` e2. We have that γ(e1 e2) = γ(e1) γ(e2). We will show that this expression is n-acceptable
in E[µ Valµ,ρ], so assume that i ≤ n and γ(e1) γ(e2)→i cmd . Take the longest prefix such that γ(e1) γ(e2)→i

′
e′1 γ(e2).

Clearly, i′ ≤ i. If the evaluation stops there, then e′1 has to be a command because of Lemma 10. If not, e′1 must be a
value by Lemma 13, so also a command. The sub-evaluation γ(e1)→i

′
e′1 together with the induction hypothesis then

give us that (n − i′, e′1) ∈ µ Valµ,ρ. By Lemma 25 and Axiom A-BIND, it now suffices to prove that for i′′ ≤ n − i′,
(i′′, v) ∈ Valµ,ρ, (i′′, v γ(e2)) ∈ E[µ Valµ,ρ].
So, assume that j ≤ i′′, v γ(e2) →j cmd . Take the longest prefix such that v γ(e2) →j

′
v e′2. Clearly, j′ ≤ j. If the

evaluation stops there, then e′2 has to be a command because of Lemma 10. If not, e′2 must be a value by Lemma 13,
so also a command. The sub-evaluation γ(e2)→j

′
e′2 together with the induction hypothesis and uniformity then give us

that (i′′−j′, e′2) ∈ µ Valµ,ρ. By Axiom A-BIND and the remaining execution, it now suffices to prove that for j′′ ≤ i′′−j′,
(j′′, v′) ∈ Valµ,ρ, (j′′, v v′) ∈ E[µ Valµ,ρ].
So, assume that k ≤ j′′ and v v′ →k cmd . Since v v′ is not a command, k must be non-zero and the evaluation must
start with an application of evaluation rule E-APP, which implies that v = λx.e3: (λx.e3) v′ → e3[x/v′] →k−1 cmd . The
fact that (i′′, v) ∈ Valµ,ρ together with uniformity, the definition of Valµ,ρ and Axiom A-RHO-OUT now implies that
(j′′, λx.e3) ∈ Valµ,ρ → µ Valµ,ρ. Applying the definition of Valµ,ρ → µ Valµ,ρ with the fact that (j′′, v′) ∈ Valµ,ρ and
uniformity gives us that (j′′ − 1, e3[x/v′]) ∈ E[µ Valµ,ρ]. The remaining execution e3[x/v′] →k−1 cmd then gives us that
(j′′ − 1, cmd) ∈ µ Valµ,ρ as required.

Lemma 26. If (n, e) ∈ E[IOupp P ], i ≤ n and e→io v, then o is in upper case and (n− i, v) ∈ P .

Proof. Take the longest prefix of the evaluation consisting of pure steps: e→i′ e′ →i′′o v with i′ + i′′ = i. Then either
• i′′ = 0, i′ = i, e′ = v and o = []. Then v is also a command, so we get that (n− i, v) ∈ IOupp P and by definition of IOupp

(with i = 0), we get that (n− i, v) ∈ P .
• i′′ > 0, in which case e′ must be a command. Therefore, (n− i′, e′) ∈ IOupp P and the remaining impure execution gives

us that o is in upper case and (n− i′ − i′′, v) = (n− i, v) ∈ P .

The following Lemma was used in the proof of Example 2.



Lemma 27. (IOupp ,Ref upp) defined in Example 2 is a valid effect interpretation.

Proof. For reference, we repeat the definition of IOupp and Ref upp :

Ref upp
def
= ∅

IOupp P
def
=

{
(n, e)

∣∣∣∣∣ For i ≤ n, if e→io v then o is
in upper case and (n− i, v) ∈ P

}

Ref upp is clearly uniform. If P is uniform, then so is IOupp P : Take (n, e) ∈ IOupp P and assume that k ≤ n. We show
that (k, e) ∈ IOupp P . Take i ≤ k and assume that e →io v. Clearly, i ≤ k ≤ n, so that we get that o is in upper case and
(n− i, v) ∈ P . But n− i ≤ k − i, so uniformity of P gives us that (k − i, v) ∈ P .

IOupp is also non-expansive: Take P,Q ∈ UPred(Val) and we prove that d(IOupp P, IOupp Q) ≤ d(P,Q). Because UPred(A)

is bisected, it suffices to show that if d(P,Q) ≤ 2−n for some n, then also d(IOupp P, IOupp Q) ≤ 2−n. By Lemma 39, it
suffices to show (IOupp P )[n] = (IOupp Q)[n] or by symmetry (IOupp P )[n] ⊆ (IOupp Q)[n]. So, take (k, e) ∈ (IOupp P )[n].
Then clearly k < n. We prove that (k, e) ∈ IOupp Q: Assume i ≤ k and e →io v. Then we know that o is in uppercase and
(k − i, v) ∈ P . But Lemma 39 implies for d(P,Q) ≤ 2−n that P[n] = Q[n] and k − i ≤ k < n, so (k − i, v) is also in Q.

Now it only remains to prove the axioms:
• A-RHO-OUT: Ref upp ⊆ (N× {out}). Direct.
• A-PURE: For (n, v) ∈ P , (n, v) must be in IOupp P . Take i ≤ n and v →io v′. By Lemma 8, i = 0, v′ = v and o = []. Then

clearly, o is in upper case and (n− i, v′) = (n, v) ∈ P .
• A-BIND: If (n, e) ∈ IOupp P and (i, E〈v〉) ∈ E[IOupp P ′] for all i ≤ n and values (i, v) ∈ P , then (n,E〈e〉) ∈ E[IOupp P ′].

Assume i ≤ n and E〈e〉 →i cmd . Then we need to show that (n − i, cmd) ∈ IOupp P ′. We know that e is a command,
and Lemmas 13 and 11 then imply that either e is a value or i = 0 and cmd = E〈e〉.
If e is a value, then the definition of IOupp implies (with i = 0 that (n, e) ∈ P . The assumption about E for i = n and
v = e then gives us that (n,E〈e〉) ∈ E[IOupp P ′].
Otherwise, i = 0 and E〈e〉 is a command. We then prove that (n,E〈e〉) ∈ IOupp P ′. So, take i′ ≤ n and E〈e〉 →i

′
o v.

Take the longest prefix of this evaluation of the form E〈e〉 →i
′′
o′ E〈e

′〉 →i
′′′
o′′ v. If the evaluation ends there (i′′′ = 0), then

E〈e′〉 can only be a value if E = · and e′ is a value. If not, then by Lemma 14, e′ must be a value. In both cases, the
sub-evaluation e→i

′
o′ e
′ and the assumption about e tells us that o′ is in upper case and (n− i′, e′) ∈ P .

The assumption about E then tells us that (n − i′, E〈e′〉) ∈ E[IOupp P ′]. The remaining execution E〈e′〉 →i
′′′
o′′ v with

i′′+ i′′′ = i′ and o′++ o′′ = o then tells us by Lemma 26 that o′′ is also in upper case and (n− i′′− i′′′, v) = (n− i, v) ∈ P ′.
• A-PRINT: If (n, v) ∈ ValIOupp ,Ref upp

, then (n, v. print (v′)) ∈ IOupp ValIOupp ,Ref upp
. Take i ≤ n and v. print (v′)→io v′′.

Then clearly, i = 1, v = out, v′ = str , v′′ = undef, and o = [str ]. However, (n, out) cannot possibly be in ValIOupp ,Ref upp
because

ValIOupp ,Ref upp
= (N× PureVal) ∪ Ref upp∪ (

ValIOupp ,Ref upp
→ IOupp ValIOupp ,Ref upp

)
and Ref upp = ∅ and out is clearly not a lambda or element of PureVal .

Note: the simple lemma mentioned in the proof of Example 2 is Lemma 26.

Appendix C.
Well-scopedness judgement definition

The λJS well-scopedness judgement referred to in Section 3.2, is defined in Figure 9.

Appendix D.
Lemmas about operational semantics of λJS

This section contains some lemmas about the operational semantics of λJS , that we will need further on.

Lemma 28. If v ∈ Val then v 6→ and (σ, v) 6→ for all σ.

Proof. Case analysis.

Lemma 29. If E〈e〉 ∈ Val , then e ∈ Val .



Γ; Σ ` e1 Γ; Σ ` e2 Γ; Σ ` e3
Γ; Σ ` e1[e2] = e3

(WF-UPDATEFIELD)
Γ, x1 · · · xn; Σ ` e

Γ; Σ ` func(x1 · · · xn){return e}
(WF-FUNC)

Γ; Σ ` e1 Γ; Σ ` e2
Γ; Σ ` delete e1[e2]

(WF-DELETEFIELD)

Γ; Σ ` e1 Γ; Σ ` e2
Γ; Σ ` e1 = e2

(WF-ASSIGN)

Γ; Σ ` e1 Γ; Σ ` e2 Γ; Σ ` e3
Γ; Σ ` if(e1){e2} else {e3}

(WF-IF)

Γ; Σ ` e1 Γ; Σ ` e2
Γ; Σ ` while(e1){e2}

(WF-WHILE)

Γ; Σ ` e1 · · · Γ; Σ ` en
Γ; Σ ` opn(e1 · · · en)

(WF-OP)

Γ; Σ ` e1 Γ; Σ ` e2
Γ; Σ ` e1[e2]

(WF-GETFIELD)

Γ; Σ ` e Γ; Σ ` earg
Γ; Σ ` e (earg)

(WF-APP)

Γ; Σ ` e1 Γ, x; Σ ` e2
Γ; Σ ` let(x = e1)e2

(WF-LET)

Γ; Σ ` e1 Γ; Σ ` e2
Γ; Σ ` e1; e2

(WF-SEQ)

Γ; Σ ` e
Γ; Σ ` deref e

(WF-DEREF)

Γ; Σ ` c (WF-CONSTANT)

x ∈ Γ

Γ; Σ ` x
(WF-VAR)

Γ; Σ ` e
Γ; Σ `

{
str : e

} (WF-REC)

Γ; Σ ` e
Γ; Σ ` ref e

(WF-REF)

l ∈ Σ

Γ; Σ ` l
(WF-LOC)

Figure 9. Well-formedness judgement Γ; Σ ` e for λJS .

Proof. Induction on E: the only possible case for E is that E = ·, E = {str : v, · · · , str : ·}, or a composition of such E’s. In
all cases, e must be in Val .

Lemma 30. If E〈e〉 = E′〈e′〉, then one of the following must hold:
• e ∈ Val .
• e′ ∈ Val .
• E = E′〈E′′〉 with E′′ 6= ·.
• E′ = E〈E′′〉.

Proof. Induction on E.

Lemma 31. If E〈e〉 ∈ Cmd , then e ∈ cmd .

Proof. By definition, we have that either
• E〈e〉 is a value, but then Lemma 29 says that e ∈ Val ⊆ Cmd .
• E〈e〉 = E′〈cmd0〉. By Lemma 30, we then have one of the following cases:

– e ∈ Val ⊆ Cmd .
– cmd0 ∈ Val , but this is not possible.
– E = E′〈E′′〉 with E′′ 6= ·. Then E〈e〉 = E′〈E′′〈e〉〉 = E′〈cmd0〉, so that E′′〈e〉 = cmd0, but by simple case analysis on

cmd0, it’s clear that e ∈ Val .
– E′ = E〈E′′〉. Then E〈e〉 = E′〈cmd0〉 = E〈E′′〈cmd0〉〉, so that e = E′′〈cmd0〉, so that e is directly a command.

Lemma 32. If E〈e1〉 → e′, then either e1 ∈ Val or e′ = E〈e2〉 and e1 → e2.

Proof. Consider the judgement E〈e1〉 → e′. By definition, there must be E′, e′1 and e′2 such that E〈e1〉 = E′〈e′1〉, e′ = E′〈e′2〉,
e′1 ↪→ e′2. We know that e′1 6∈ Val because e′1 ↪→ e′2. By lemma 30, E〈e1〉 = E′〈e′1〉 implies that one of the following cases must
hold:
• e1 ∈ Val .
• e′1 ∈ Val . Not possible because e′1 ↪→ e′2 (simple case analysis).
• E = E′〈E′′〉 with E′′ 6= ·: We then have that E′〈E′′〈e1〉〉 = E〈e1〉 = E′〈e′1〉, which implies that e′1 = E′′〈e1〉. By case

analysis on the judgement e′1 ↪→ e′2, we can then show that e1 ∈ Val .
• E′ = E〈E′′〉: In this case, we have that E〈e1〉 = E′〈e′1〉 = E〈E′′〈e′1〉〉, which implies that e1 = E′′〈e′1〉. We can take
e2 = E′′〈e′2〉 and we have that e1 = E′′〈e′1〉 → E′′〈e′2〉 = e2 and e′ = E′〈e′2〉 = E〈E′′〈e′2〉〉 = E〈e2〉.

Lemma 33. If (σ,E〈e1〉)→ (σ′, e′), then either e1 ∈ Val or e′ = E〈e2〉 and (σ, e1)→ (σ′, e2).

Proof. From the shape of the impure evaluation rules, we know that there is a E′ such that E〈e1〉 = E′〈e′1〉, e′ = E′〈e′2〉 and
either
• e′1 ↪→ e′2, σ′ = σ

• e′1 = ref v, σ′ = σ[l 7→ v], l 6∈ dom(σ), e′2 = l

• e′1 = deref l, σ′ = σ, e′2 = h(l)

• e′1 = (l = v), σ′ = σ[l 7→ v], e′2 = v.
From Lemma 30, we then know from E〈e1〉 = E′〈e′1〉 that one of the following cases must hold:



• e1 ∈ Val .
• e′1 ∈ Val , but this is not possible.
• E = E′〈E′′〉 with E′′ 6= ·: We then have that E′〈E′′〈e1〉〉 = E〈e1〉 = E′〈e′1〉, which implies that e′1 = E′′〈e1〉. By case

analysis on the impure and pure (in the case of E-PURE) evaluation rules, we then get that e1 ∈ Val .
• E′ = E〈E′′〉: In this case, we have that E〈e1〉 = E′〈e′1〉 = E〈E′′〈e′1〉〉, which implies that e1 = E′′〈e′1〉. We can take
e2 = E′′〈e′2〉 and we have that (σ, e1) = (σ,E′′〈e′1〉)→ (σ′, E′′〈e′2〉) = (σ′, e2) and e′ = E′〈e′2〉 = E〈E′′〈e′2〉〉 = E〈e2〉.

Lemma 34. If e ∈ Cmd then e 6→.

Proof. Case analysis.

Lemma 35. If (σ, e)→ (σ′, e′) then either
• e ∈ (Cmd \Val).
• e ∈ (Expr \ Cmd) and σ = σ′ and e→ e′.

Proof. Suppose that e ∈ (Expr \ Cmd). We need to prove that h = h′ and e → e′. We do a case analysis on the judgement
(σ, e) → (σ′, e′). Case E-PURE is okay: h = h′ and e → e′. In the three other cases, e = E〈cmd0〉 with cmd0 = deref l,
cmd0 = (l = v) or cmd0 = ref v, so e ∈ Cmd , contradicting the assumption. If e ∈ Cmd , then we know by Lemma 28 that
e 6∈ Val .

Lemma 36. If (σ, e)→i (σ′, e′). Then we can factor the evaluation judgement into either
• e→i e′ and σ = σ′.
• e→i

′
e′′ and (σ, e′′)→i

′′
(σ′, e′) with e′′ ∈ Cmd , i′ + i′′ = i and i′′ > 0.

Proof. By induction on i. If e ∈ Cmd , then either
• i > 0 and we’re in the second case with i′ = 0, i′′ = i and e′′ = e.
• i = 0 and we’re in the first case.

So suppose that e 6∈ Cmd . If i = 0, then we’re easily in the first case. If i > 0 then the evaluation factors as (σ, e) →
(σ′′, e′′)→i−1 (σ′, e′). Lemma 35 tells us that σ′′ = σ and e→ e′′. We can apply induction to the second part of the judgement
to get that either
• e′′ →i−1 e′ and σ′′ = σ′, in which case we conclude that e→i e′ and σ = σ′.
• e′′ →i

′
e′′ and (σ, e′′) →i

′′
(σ′, e′) with e′′ ∈ Cmd , i′ + i′′ = i − 1 and i′′ > 0. Therefore, we can conclude this case with

e→i
′+1 e′′ and (σ, e′′)→i

′′
(σ′, e′), e′′ ∈ Cmd and (i′ + 1) + i′′ = i.

Appendix E.
Proofs and Details for Section 3.2

We will need some theory about metric spaces. We refer to Birkedal et al. for a short review of metric space theory [16,
§2.1].

Lemma 37. UPred(A) is a complete bounded ultrametric space when the distance function is defined as follows. For
P ∈ UPred(A), define P[k]

def
= {(m, cmd) ∈ P | m < k}. Then, for P,Q ∈ UPred(A), define the following metric (i.e. distance

function between two predicates):

d(P,Q)
def
=

2
−max{k|P[k]=Q[k]} if P 6= Q

0 otherwise

Proof. This lemma is already mentioned in Birkedal et al. [16]. It can be proven using standard techniques from metric
space theory.

Note that the lemma above does not depend on any properties of the set A, but works for arbitrary sets.
We will also need the same result for the set of all (not necessarily uniform) step-indexed predicates.

Lemma 38. Pred(A) is a complete bounded ultrametric space when the distance function is defined in the same way as in
Lemma 37 for uniform predicates.

Proof. This lemma can also be proven using standard techniques from metric space theory.

Lemma 39. For P,Q ∈ UPred(X), we have that d(P,Q) ≤ 2−n iff P =n Q iff P[n] = Q[n].



Proof. The equivalence between d(P,Q) ≤ 2−n and P =n Q is simply by definition. The last equivalence is only slightly
harder.

If P = Q, there is nothing to prove. If not, then we call m = max{k | P[k] = Q[k]} and observe that d(P,Q) = 2−m. We
have that d(P,Q) ≤ 2−n iff m ≥ n and m ≥ n iff P[n] = Q[n].

Lemma 40. W , Island and StorePred are well-defined.

Proof. For reference, we repeat the definitions:

IslandName
def
= N

W
def
=
{
w ∈ IslandName ↪→ Island

∣∣ dom(w) finite
}

Island
def
= {ι = (s, φ, φpub, H) | s ∈ State ∧ φ ⊆ State2∧

φpub ⊆ φ ∧ φ, φpub reflexive and transitive ∧
H ∈ State→ StorePred}

StorePred
def
= {ψ ∈ Ŵ →mon,ne UPred(Store)}

roll :
1

2
·W ∼= Ŵ

We solve this set of (recursive) equations according to the general recipe by Birkedal et al. [16]. This means that we read
the equation 1

2 ·W ≈ Ŵ for Ŵ as a functor F on the category CBUltne of ultrametric spaces and non-expansive functions,
mapping ultrametric spaces Ŵ to other ultrametric spaces 1

2 ·W , where W is defined as above in terms of Ŵ . In this case,
because Ŵ occurs (only) contravariantly in the equations, F will actually be a functor from CBUltne

op to CBUltne. If we
can show that this functor F is locally contractive, then the America-Rutten theorem (see Birkedal et al. [16]) tells us that
there exists a unique (up to isomorphism) solution for the equation and this solution is the ultrametric space that we will
refer to as Ŵ . The witness isomorphism is what we call roll .

Note first that we actually need to define how the above definition of W should be seen as an ultrametric space, i.e.
what the metric is. For w,w′ ∈W , we define

d(w,w′) =

1 if dom(w) 6= dom(w′)

maxj(d(w(j), w′(j))) otherwise

For (s1, φ1, φ
pub
1 , H1), (s2, φ2, φ

pub
2 , H2) ∈ Island, we define

d((s1, φ1, φ
pub
1 , H1), (s2, φ2, φ

pub
2 , H2)) =

1 if s1 6= s2 or φ1 6= φ2 or φpub
1 6= φ

pub
2

d(H1, H2) otherwise

The distance between functions H1, H2 ∈ State→ StorePred is defined using the uniform metric as usual.
Our F is a locally contractive functor if, for ultrametric spaces Ŵ , Ŵ ′ and non-expansive functions f, f ′ : Ŵ ′ → Ŵ , we

have that d(F (f), F (f ′)) ≤ φ ·d(f, f ′) for some φ < 1. Note that the contravariance of F means that F (f), F (f ′) : F (Ŵ )→ F (Ŵ ′).
We know that d(F (f), F (f ′)) = 1

2 ·supwd(F (f) w,F (f ′) w). So, take w ∈ F (Ŵ ), then it suffices to prove that d(F (f) w,F (f ′) w) ≤
d(f, f ′) for φ = 1

2 . Take w, an arbitrary j, w(j) = (s, φ, φpub, H), an arbitrary t ∈ State, then it suffices to prove that d(H t ◦
f,H t ◦ f ′) ≤ d(f, f ′). This follows from the non-expansiveness of H t.

Lemma 41. If σ :n w then for all n′ ≤ n also σ :n′ w.

Proof. Follows from the definition and the uniformity of StorePreds.

Lemma 42. Cnst, {P}, P ∪ P ′ are monotone and uniform Kripke step-indexed command predicates if P and P ′ are.
[P ]→ P ′ is monotone and uniform even if P and P ′ are not.

Proof. For Cnst, {P} and P ∪ P ′: easy by direct application of the definition.
For E, monotonicity follows from monotonicity of P and uniformity follows from the quantification over i ≤ n and the

uniformity of P .
For [P ] → P ′, monotonicity follows from the quantification over future worlds w′ w w and uniformity follows from the

quantification over i < n.

Lemma 43. d(E[P1], E[P2]) ≤ d(P1, P2).

Proof. Follows (informally) from the fact that the definition of E[P ] defines when (n, e) is in E[P ] by only looking at (n′, e′)
in P for n′ ≤ n. The proof is an easy exercise using Lemma 39.

Lemma 44. { } is contractive: d({P}, {Q}) ≤ 1
2 · d(P,Q) for all P,Q ∈ T .



Proof. Follows (informally) from the fact that the definition of {P} defines when (n, e) is in {P} by only looking at (n′, e′)
in P for n′ < n. The proof is an easy exercise using Lemma 39.

Lemma 45. d(P1 ∪ · · · ∪ Pn, P ′1 ∪ · · · ∪ P
′
n) ≤ maxi(d(Pi, P

′
i )).

Note: this result may seem weird, as the order of Pi and P ′i can be chosen arbitrarily. Nevertheless, the lemma holds
for any possible order and badly chosen orders just make the result uninteresting.

Proof. It suffices to show for an arbitrary w that if (Pi w)[k] = (P ′i w)[k], then ((P1 ∪ · · · ∪ Pn) w)[k] = ((P ′1 ∪ · · ·P
′
n) w)[k]. By

symmetry, it suffices to show that ((P1 ∪ · · · ∪ Pn) w)[k] ⊆ ((P ′1 ∪ · · ·P
′
n) w)[k]. So take (n, v) ∈ ((P1 ∪ · · · ∪ Pn) w)[k], then n < k

and (n, v) ∈ Pj w for some j. Because (Pj w)[k] = (P ′j w)[k], we have that (n, v) ∈ P ′j w ⊆ ((P ′1 ∪ · · · ∪ P
′
n) w). Finally, because

n < k, we get (n, v) ∈ ((P ′1 ∪ · · · ∪ P
′
n) w)[k].

Lemma 46. [ ]→ is contractive in both inputs:

d([P1]→ P ′1, [P2]→ P ′2) ≤
1

2
max(d(P1, P2), d(P ′1, P

′
2))

for all P1, P
′
1, P2, P

′
2 ∈ T .

Proof. Because all metric spaces involved are bisected and by Lemma 39, it suffices to prove that if (P1 w)[k] = (P2 w)[k]
and (P ′1 w)[k] = (P ′2 w)[k], then (([P1] → P ′1) w)[k+1] = (([P2] → P ′2) w)[k+1]. By symmetry, it suffices to prove (([P1] →
P ′1) w)[k+1] ⊆ (([P2] → P ′2) w)[k+1]. So, take (n, func(x1 · · ·xk){e}) ∈ (([P1] → P ′1) w)[k+1]. Then we know that n ≤ k and for
all v′1 · · · v′k ∈ Val , w′ w w, i < n with (i, v′j) ∈ P1 w′ that (i, e[x1/v

′
1, · · · , xn/v

′
k]) ∈ E[P ′1] w′. Now take v′1 · · · v

′
k ∈ Val , w′ w w,

i < n with (i, v′j) ∈ P2 w′. We have i < n ≤ k, so that i < k. We need to prove that (i, e[x1/v
′
1, · · · , xn/v

′
k]) ∈ E[P ′2] w′. Because

i < k and (P1 w)[k] = (P2 w)[k], we have that (i, v′j) ∈ P1 w′. Therefore, (i, e[x1/v
′
1, · · · , xn/v

′
k]) ∈ E[P ′1] w′. By Lemmas 43 and

our assumptions, we have that d(E[P ′1], E[P ′2]) ≤ d(P ′1, P
′
2) ≤ 2−k, so that (using Lemma 39) (E[P ′1] w′)[k] = (E[P ′2] w′)[k] and

thus (i, e[x1/v
′
1, · · · , xn/v

′
k]) ∈ E[P ′2] w′. So we can conclude that (n, func(x1 · · ·xk){e}) ∈ (([P2]→ P ′2) w)k+1.

Lemma 47. If e→i e′ then (k − i, e′) ∈ E[P ] w iff (k, e) ∈ E[P ] w.

Proof. Suppose that e→i e′. We prove the two directions:
• left to right: Suppose that (k − i, e′) ∈ E[P ] w. j ≤ k, e→j e′′ and e′′ ∈ Cmd . Because the evaluation is deterministic and

because of Lemma 34, we have that j ≥ i and that the evaluation judgement e→j e′′ is an extension of the judgement
e →i e′. The extension forms a judgement e′ →j−i e′′. We have that j ≤ k, so j − i ≤ k − i. So we can apply the
assumption (k− i, e′) ∈ E[P ] w to get that ((k− i)− (j − i), e′′) ∈ P w and (k− i)− (j − i) = k− j so this is what we need.

• right to left: Suppose that (k, e) ∈ E[P ] w. Now suppose that j ≤ k − i and e′ →j e′′ with e′′ ∈ Cmd . We can concatenate
the evaluation judgements to get e→i+j e′′ and i+ j ≤ k, so we get from (k, e) ∈ E[P ] w that (k− i− j, e′′) ∈ P w, which
is what we need.

Lemma 48. P w ⊆ E[P ] w.

Proof. (k, e) ∈ P w implies that e ∈ Cmd and by Lemma 34, it does not (purely) reduce. The result then follows from the
definition of E[P ] w.

Lemma 49. If P w ⊆ P ′ w for all w, then E[P ] w ⊆ E[P ′] w for all w.

Proof. Direct from the definition of E[P ] w.

Lemma 50. If A and B are complete bounded ultrametric spaces, f1, f2 : A →ne B, v1, v2 : A then d(f1 v1, f2 v2) ≤
max(d(f1, f2), d(v1, v2)).

Proof. For the uniform distance function, it is direct that d(f1 v1, f2 v1) ≤ d(f1, f2) and the non-expansiveness of
f2 implies that d(f2 v1, f2 v2) ≤ d(v1, v2). The result then follows from the ultrametric inequality: d(f1 v1, f2 v2) ≤
max(d(f1 v1, f2 v1), d(f2 v1, f2 v2)).

Lemma 51. For an effect interpretation (µ, ρ), JSValµ,ρ is well-defined, uniform and monotone.
Note: this construction works independent of whether (µ, ρ) is a valid effect interpretation, i.e. whether it satisfies the

axioms from Section 3.2.

Proof. We prove that JSValµ,ρ can be defined as the unique Banach fixpoint of a contractive function in T , with T =

W →mon,ne UPred(Val).



We define:

jsvalRecµ,ρ : T → T

jsvalRecµ,ρ s
def
= Cnst ∪ ρ ∪ ([s]→ µ s) ∪ {s}

• jsvalRecµ,ρ s is in T if s is in T , i.e. uniform + monotone: follows from the properties of Cnst, { }, ∪ and [ ] →
proved in Lemma 42 and the assumptions on ρ and µ.

• jsvalRecµ,ρ is contractive. We temporarily abbreviate jsvalRecµ,ρ to f . Suppose that s, t ∈ T . Then because of Lemma 45,
we have that

d(f(s), f(t)) ≤ max
(
d([s]→ µ s, [t]→ µ t), d({s}, {t})

)
Now, { } and [ ]→ are contractive (by Lemma 44 and Lemma 46) and µ is non-expansive. As a result of all this,
we get that d(f(s), f(t)) ≤ 1

2d(s, t).

Lemma 52. If (n, e) ∈ JSValµ,ρ w then we have the following facts:
• If e = func(x̄){return e} then (n, e) ∈ ([JSValµ,ρ]→ µ JSValµ,ρ) w.
• If e = {str : v} then (n, e) ∈ {JSValµ,ρ} w.
• If e ∈ Loc, then (n, e) ∈ ρ w.

Proof. This follows from the definition of JSValµ,ρ, the definitions of [ ]→ , { } and Cnst.

Lemma 53. In a complete bounded ultrametric space U , suppose we have contractive f1, f2 : U → U and suppose that
d(s1, s2) ≤ m implies that d(f1(s1), f2(s2)) ≤ m. Then for the respective unique fixpoints fp1 and fp2 of f1 and f2, we have
that d(fp1, fp2) ≤ m.

Proof. Take an arbitrary p ∈ U and define x1,0 = x2,0 = p. Then define for j > 0: xi,j = fi(xi,j−1). We now have that
d(fp1, fp2) = d(limj x1,j , limj x2,j). Now take N such that for all n ≥ N , d(fp1, x1,n) ≤ m and d(fp2, x2,n) ≤ m. Now, because U

is ultrametric, we have that

d(fp1, fp2) ≤ max(d(fp1, x1,n), d(x1,n, x2,n), d(fp2, x2,n))

= max(m, d(x1,n, x2,n))

But by induction, we have that d(x1,n, x2,n) ≤ m: it is clearly true for x1,0 = x2,0 and if d(x1,j−1, x2,j−1) ≤ m, then
d(x1,j , x2,j) = d(f1(x1,j), f2(x2,j)) ≤ m. Therefore, d(fp1, fp2) ≤ m.

Lemma 54.

d(JSValµ1,ρ1 , JSValµ2,ρ2 ) ≤ max(
1

2
d(µ1, µ2), d(ρ1, ρ2))

Proof. Following Lemma 53, we take s1, s2 : T and assume that d(s1, s2) ≤ max( 1
2 d(µ1, µ2), d(ρ1, ρ2)). Then we need to show

that

d(jsvalRecµ1,ρ1 s1, jsvalRecµ2,ρ2 s2) ≤ max

(
1

2
d(µ1, µ2), d(ρ1, ρ2)

)
.

We know that

jsvalRecµ,ρ s = Cnst ∪ ρ ∪ ([s]→ µ s) ∪ {s}

By Lemma 45, this implies

d(jsvalRecµ1,ρ1 s1, jsvalRecµ2,ρ2 s2) ≤ max (d(ρ1, ρ2), d (([s1]→ µ1 s1) , ([s2]→ µ2 s2)) , d({s1}, {s2}))

By Lemma 44 { } is contractive, so that d({s1}, {s2}) ≤ 1
2 d(s1, s2). Lemma 46 says that

d([s1]→ µ1 s1, [s2]→ µ2 s2) ≤
1

2
max(d(s1, s2), d(µ1, µ2))

Taken together, the above implies, as required, that

d(jsvalRecµ1,ρ1 s1, jsvalRecµ2,ρ2 s2) ≤ max( 1
2 d(µ1, µ2), d(ρ1, ρ2)).

Lemma 55. The Axiom A-BIND is implied by a combination of two alternative axioms that can be easier to prove:



• A-BINDPRIME: If (k, e) ∈ µ P w and e 6∈ Val and if (j, E〈v〉) ∈ E[µ P ′] w′ for all j ≤ k, w′ w w, (j, v) ∈ P w′ and v ∈ Val ,
then (k,E〈e〉) ∈ µ P ′ w.

• A-INVPURE: (k, e) ∈ µ P w and e ∈ Val implies that (k, e) ∈ P w.

Proof. Assume that (j, E〈v〉) ∈ E[µ P ′] w′ for all j ≤ k, w′ w w, (j, v) ∈ P w′, v ∈ Val and (k, e) ∈ µ P w. We need to prove
that (k,E〈e〉) ∈ E[µ P ′] w. We distinguish two cases:
• e ∈ Val: by axiom A-INVPURE, we get that (k, e) ∈ P w. Then the assumption implies that (k,E〈e〉) ∈ E[µ P ′] w as

required.
• e 6∈ Val . Then the axiom A-BINDPRIME implies that (k,E〈e〉) ∈ µ P ′ w. By Lemma 48, this implies that (k,E〈e〉) ∈
E[µ P ′] w as required.

Lemma 56. The axiom A-BIND implies a somewhat more directly useful bind property (applicable to all expressions rather
than just commands):

(j, E〈v〉) ∈ E[µ P ′] w′ for all j ≤ k, w′ w w, (j, v) ∈ P w′ and v ∈ Val and (k, e) ∈ E[µ P ] w, implies that (k,E〈e〉) ∈ E[µ P ′] w.

Proof. Suppose i ≤ k and E〈e〉 →i e′ with e′ ∈ Cmd . We need to prove that (k, e′) ∈ µ P ′ w. Take the largest i′ such that this
pure evaluation starts with E〈e〉 →i

′
E〈e′′〉. Then the sub-evaluation e→i

′
e′′ and Lemma 47 implies that (k−i′, e′′) ∈ E[µ P ] w.

We now have that either
• i′ = i, e′ = E〈e′′〉. It is then easy to show that e′ ∈ Cmd implies that e′′ ∈ Cmd , so that (k − i′, e′′) ∈ µ P w. This implies

that e′′ ∈ Cmd and we can apply Axiom A-BIND to obtain that (k− i′, E〈e′′〉) ∈ µ P ′ w. By Lemma 48 and Lemma 47,
this implies that (k,E〈e〉) ∈ E[µ P ′] w as required.

• i′ > i, in which case Lemma 32 together with the first step of the remaining evaluation E〈e′′〉 →i−i
′
e′ and the fact that

the next reduct of this evaluation cannot be of the form E〈 〉, implies that e′′ ∈ Val . The definition of E[ ] then implies
that (k − i′, e′′) ∈ µ P w. The Axiom A-BIND then implies that (k − i′, E〈e′′〉) ∈ E[µ P ′] w. The remaining evaluation
E〈e′′〉 →i−i

′
e′ then implies by Lemma 47 that (k − i, e′) ∈ µ P ′ w.

Definition 2 (Semantic typing judgement). Assume a valid effect interpretation (µ, ρ).
Define JΣKµ,ρ:

JΣKµ,ρ : UPred(W )

JΣKµ,ρ
def
=
{

(k,w) | for all l ∈ Σ.(k, l) ∈ ρ w
}

Define JΓKµ,ρ:

JΓKµ,ρ : W →mon,ne UPred(ValΓ)

JΓKµ,ρ w
def
= {(k, γ) | ∀x ∈ Γ.(k, γ(x)) ∈ JSValµ,ρ w}

Define µ, ρ; Γ; Σ � e iff for all k ≥ 0, γ,w, (k,w) ∈ JΣKµ,ρ and (k, γ) ∈ JΓKµ,ρ w implies that (k, γ(e)) ∈ E[µ JSValµ,ρ] w.

Lemma 57. If (k,w) ∈ JΣKµ,ρ, j ≤ k, w v w′ then (j, w′) ∈ JΣKµ,ρ.

Proof. Suppose w v w′, j ≤ k and (k,w) ∈ JΣKµ,ρ. Take l ∈ Σ. We need to show that (j, l) ∈ ρ w′. This follows from (k, l) ∈ ρ w
and the monotonicity and uniformity of ρ.

Lemma 58. • If (k, γ) ∈ JΓKµ,ρ w, w v w′, j ≤ k, then (j, γ) ∈ JΓKµ,ρ w′.
• If (k, γ) ∈ JΓKµ,ρ w, (k, v) ∈ JSValµ,ρ w and γ′ = γ[x 7→ v], then (k, γ′) ∈ JΓ, xKµ,ρ w.

Proof. • This follows from the definition of JΓKµ,ρ and the monotonicity and uniformity of JSValµ,ρ.
• Direct from the definition.

Lemma 59 (Compatibility for function application). Take (µ, ρ) a valid effect interpretation. If (k, e) ∈ E[µ JSValµ,ρ] w and
(i, earg ) ∈ E[µ JSValµ,ρ] w′ for all i ≤ k, w′ w w. Then (k, e(earg ) ∈ E[µ JSValµ,ρ] w.

Proof. By Lemma 56, it suffices to prove that (k, e) ∈ E[µ JSValµ,ρ] w (but this is given) and that for all j0 ≤ k, w0 w w and
(j0, v) ∈ JSValµ,ρ w0, we have that (j0, v(earg )) ∈ E[µ JSValµ,ρ] w0. Note that by monotonicity and uniformity, we still have that
(j0, earg ) ∈ E[µ JSValµ,ρ] w0. Again by Lemma 56, it suffices to prove that (j0, earg,1) ∈ E[µ JSValµ,ρ] w0 (but we know this
already) and that for all j1 ≤ j0, w1 w w0 and (j1, v1) ∈ JSValµ,ρ w1, we have that (j1, v(v1, earg,2, · · · earg,n)) ∈ E[µ JSValµ,ρ] w1.
Again by monotonicity and uniformity, we retain that (j1, earg ) ∈ E[µ JSValµ,ρ] w1 and (j1, v) ∈ JSValµ,ρ w1. We can iterate this
argument so that finally, it remains to be proven that for jn ≤ · · · ≤ j1 ≤ j0 ≤ k, wn w · · · w w1 w w0 w w, (jn, vi) ∈ JSValµ,ρ wn

and (jn, v) ∈ JSValµ,ρ wn, we have that (jn, v(v1, · · · , vn)) ∈ E[µ JSValµ,ρ] wn.



Now suppose that i ≤ jn and v(v1, · · · , vn) →i e′ with e′ ∈ Cmd . Then the evaluation must start with an application
of E-APP, i.e. v = func(x1, · · · , xn){return ebody} and v(v1, · · · , vn) → ebody [x1/v1, · · ·xn/vn] →i−1 e′. By Lemma 52 and
(jn, v) ∈ JSValµ,ρ wn, we know that (jn, v) ∈ ([JSValµ,ρ]→ µ JSValµ,ρ) wn. Uniformity tells us that (jn − 1, vi) ∈ JSValµ,ρ wn,
so we can apply the definition of ([ ] → ) to obtain that (jn − 1, ebody [x1/v1, · · ·xn/vn]) ∈ E[µ JSValµ,ρ] wn. The remaining
evaluation ebody [x1/v1, · · ·xn/vn]→i−1 e′ then allows us to conclude that (jn − i, e′) ∈ µ JSValµ,ρ wn as required.

Using the semantic typing judgement µ, ρ; Γ; Σ � e, we can reformulate the Fundamental Theorem as follows:

Theorem 3. If Γ,Σ ` e then µ, ρ; Γ; Σ � e for any µ and ρ that satisfy the axioms in Section 3.2.
We prove this theorem by induction on the Γ; Σ ` e well-formedness judgement.

Proof. Take k ≥ 0, γ, w such that (k,w) ∈ JΣKµ,ρ and (k, γ) ∈ JΓKµ,ρ w.
We need to prove that (k, γ(e)) ∈ E[µ JSValµ,ρ] w. It is also sufficient to prove that (k, γ(e)) ∈ µ JSValµ,ρ w (by Lemma 48)

or even (k, γ(e)) ∈ JSValµ,ρ w if γ(e) ∈ Val (by Axiom A-PURE).
• Case WF-CONSTANT: γ(c) = c ∈ Val and (k, c) ∈ Cnst w ⊆ JSValµ,ρ w.
• Case WF-FUNC: γ(func(x̄){return e}) is func(x̄){return γ(e)} ∈ Val . It suffices to show that

(k, func(x̄){return γ(e)}) ∈ ([JSValµ,ρ]→ µ JSValµ,ρ) w ⊆ JSValµ,ρ w.

To prove this, take arbitrary w′ w w, varg , i < k such that (i, varg ) ∈ JSValµ,ρ w′. It suffices to show that (i, γ(e)[x/varg ])

is in E[µ JSValµ,ρ] w′. This follows from the induction hypothesis because
– (i, w′) ∈ JΣKµ,ρ: by the fact that (k,w) ∈ JΣKµ,ρ and Lemma 57.
– γ(e)[x/varg ] = γ′(e) with γ′ = γ[x 7→ varg ]

– (i, γ′) ∈ JΓ, x̄Kµ,ρ w′: we know by Lemma 58 that (i, γ) ∈ JΓKµ,ρ w′. The fact that (i, varg ) ∈ JSValµ,ρ w′ gives us the
rest.

• Case WF-LOC: We know that l ∈ Σ. γ(l) = l ∈ Val . The definition of JΣKµ,ρ gives us that (k, l) ∈ ρ w, which is contained
in JSValµ,ρ w.

• Case WF-VAR: we know that (k, γ(x)) ∈ JSValµ,ρ w by the definition of JΓKµ,ρ w and γ(x) is a value.
• Case WF-LET: γ(let(x = e1) e2) = let(x = γ(e1)) γ(e2). By Lemma 56, it suffices to prove that

– (k, γ(e1)) ∈ E[µ JSValµ,ρ] w

– (j, let(x = v) γ(e2)) ∈ E[µ JSValµ,ρ] w′ for all j ≤ k, w′ w w, v ∈ Val and (j, v) ∈ JSValµ,ρ w′.
The first follows directly from the induction hypothesis. For the second, we have that let(x = v) γ(e2) → γ(e2)[x/v].
Observe that γ(e2)[x/v] = γ′(e2) with γ′ = γ[x 7→ v]. We know by Lemma 57 that (j − 1, γ′) ∈ JΓ, xKµ,ρ w′ and by
Lemma 58 that (j − 1, w′) ∈ JΣKµ,ρ. The induction hypothesis then gives us that (j − 1, γ′(e2)) ∈ E[µ JSValµ,ρ] w′ and by
Lemma 47 also (j, let(x = v) γ(e2)) ∈ E[µ JSValµ,ρ] w′ as required.

• Case WF-APP: γ(e(earg )) = γ(e)(γ(earg )). The induction hypotheses together with Lemma 59 and Lemmas 57 and 58
tell us that (k, γ(e)(γ(earg ))) ∈ E[µ JSValµ,ρ] w, as required.

• Case WF-GETFIELD: γ(e1[e2]) = γ(e1)[γ(e2)]. By Lemma 56, it suffices to prove that (k, γ(e1)) ∈ E[µ JSValµ,ρ] w

(but this follows from the induction hypothesis for e1) and that for any j ≤ k, w′ w w and (j, v) ∈ JSValµ,ρ w′, we
have that (j, v[γ(e2)]) ∈ E[µ JSValµ,ρ] w′. By Lemma 57, we have that (j, w′) ∈ JΣKµ,ρ and by Lemma 58, we have that
(j, γ) ∈ JΓKµ,ρ w′. Again by Lemma 56, it suffices to prove that (j, γ(e2)) ∈ E[µ JSValµ,ρ] w′ (but this follows again from the
induction hypothesis) and that for all j′ ≤ j, w′′ w w′ and (j′, v′) ∈ JSValµ,ρ w′′, we have that (j′, v[v′]) ∈ E[µ JSValµ,ρ] w′′.
Uniformity and monotonicity of JSValµ,ρ gives us that also (j′, v) ∈ JSValµ,ρ w′′. So, assume that j′′ ≤ j′ and v[v′]→j

′′
e′

with e′ ∈ Cmd . Then we must have that the first step of the evaluation is an application of either E-GETFIELD or
E-GETFIELD-NOTFOUND, which implies that v = {str : v′′}, v[v′]→ e′′ →j

′′−1 e′ and either
– v′ = str i and e′′ = v′′i : it follows from Lemma 52 that (j′, v) ∈ {JSValµ,ρ} w′′, which implies that (j′ − 1, v′′i ) ∈

JSValµ,ρ w′′. By Lemma 34, j′′ − 1 = 0 and e′ = v′′i . From Axiom A-PURE, we can now conclude that (j′ − j′′, e′) =

(j′ − 1, v′′i ) ∈ µ JSValµ,ρ w′′.
– v′ 6∈ {str} and e′′ = undef: in this case, j′′ − 1 = 0 and e′ = e′′ = undef. We directly have that (j′ − j′′, e′) ∈ Cnst ⊆

JSValµ,ρ w′′ and by Axiom A-PURE, this implies that (j′ − j′′, e′) ∈ µ JSValµ,ρ w′′.
• Case WF-UPDATEFIELD: (γ(e1[e2] = e3)) = (γ(e1)[γ(e2)] = γ(e3)). Similar to case WF-GETFIELD.
• Case WF-DELETEFIELD: Similar to case WF-GETFIELD.
• Case WF-REC: γ({str : e}) = {str : γ(e)}. Similar to case WF-GETFIELD.
• Case WF-ASSIGN: (γ(e1 = e1)) = (γ(e1) = γ(e2)). By Lemma 56, it suffices to prove that (k, γ(e1)) ∈ E[µ JSValµ,ρ] w

(but this follows from the induction hypothesis for e1) and that for all j1 ≤ k, w1 w w, (j1, v1) ∈ JSValµ,ρ w1, we have
that (j1, v1 = γ(e2)) ∈ E[µ JSValµ,ρ] w1. By Lemmas 57 and 58, we still have that (j1, w1) ∈ JΣKµ,ρ and (j1, γ) ∈ JΓKµ,ρ w1.
Again by Lemma 56, it suffices to prove that (j1, γ(e2)) ∈ E[µ JSValµ,ρ] w1 (but this follows from the induction hypothesis
for e2) and that for all j2 ≤ j1, w2 w w1, (j2, v2) ∈ JSValµ,ρ w2, we have that (j2, v1 = v2) ∈ E[µ JSValµ,ρ] w2. Note that by



uniformity and monotonicity, we have that (j2, v1) ∈ JSValµ,ρ w2. It suffices to show that (j2, v1 = v2) ∈ µ JSValµ,ρ w2,
and this follows directly from Axiom A-ASSIGN.

• Case WF-REF: γ(ref e) = ref γ(e). By Lemma 56, it suffices to prove that (k, γ(e)) ∈ E[µ JSValµ,ρ] w (but this follows from
the induction hypothesis for e) and that for all j ≤ k, w′ w w, (j, v) ∈ JSValµ,ρ w′, we have that (j, ref v) ∈ E[µ JSValµ,ρ] w′.
This follows from Axiom A-REF which gives us that (j, ref v) ∈ µ JSValµ,ρ w′ and Lemma 48.

• Case WF-DEREF: γ(deref e) = deref γ(e). By Lemma 56, it suffices to show that (k, γ(e)) ∈ E[µ JSValµ,ρ] w (but this
follows directly from the induction hypothesis for e) and that for all j ≤ k, w′ w w, (j, v) ∈ JSValµ,ρ w′, we have that
(j, deref v) ∈ E[µ JSValµ,ρ] w′. By Lemma 48, it suffices to show that (j, deref v) ∈ µ JSValµ,ρ w′, which follows directly
from Axiom A-DEREF.

• Case WF-IF: γ(if(e1){e2} else {e3}) = if(γ(e1)){γ(e2)} else {γ(e3)}. By Lemma 56, it suffices to show that (k, γ(e1)) ∈
E[µ JSValµ,ρ] w (but this follows directly from the induction hypothesis for e1), and that for all j ≤ k, w′ w w, (j, v) ∈
JSValµ,ρ w′, we have that (j, if(v){γ(e2)}else{γ(e3)}) ∈ E[µ JSValµ,ρ] w′. So, assume i ≤ j and if(v){γ(e2)}else{γ(e3)} →i

e′ with e′ ∈ Cmd . The first step of the evaluation must be an application of evaluation rule E-IFTRUE or E-IFFALSE,
so that v = true or v = false and respectively if(v){γ(e2)} else {γ(e3)} → γ(e2) →i−1 e′ or if(v){γ(e2)} else {γ(e3)} →
γ(e3) →i−1 e′. By Lemmas 57 and 58, we have that (j − 1, w′) ∈ JΣKµ,ρ and (j − 1, γ) ∈ JΓKµ,ρ w′. By induction, we
then have that (j − 1, γ(e2)) and (j − 1, γ(e3)) are both in E[µ JSValµ,ρ] w′ and the remaining evaluations give us that
(j − i, e′) ∈ µ JSValµ,ρ w′, as required.

• Case WF-SEQ: γ(e1; e2) = γ(e1); γ(e2). Similar to case WF-IF.
• Case WF-WHILE: γ(while(e1){e2}) = while(γ(e1)){γ(e2)}. We proceed by complete induction on k. Suppose that i ≤ k,

while(γ(e1)){γ(e2)} →i e′, e′ ∈ Cmd . We need to prove that (k− i, e′) ∈ µ JSValµ,ρ w. The first step in the evaluation must
be an application of evaluation rule E-WHILE, i.e.

while(γ(e1)){γ(e2)} → if(γ(e1)){γ(e2); while(γ(e1)){γ(e2)}} else {undef} →i−1 e′

It is then sufficient to show that

(k − 1, if(γ(e1)){γ(e2); while(γ(e1)){γ(e2)}} else {undef}) ∈ E[µ JSValµ,ρ] w

By Lemma 56, it is sufficient to show that (k−1, γ(e1)) ∈ E[µ JSValµ,ρ] w (but this follows from the induction hypothesis
for e1) and that for all j ≤ k−1, w′ w w, (j, v) ∈ JSValµ,ρ w′, we have that (j, if(v){γ(e2); while(γ(e1)){γ(e2)}}else{undef}) ∈
E[µ JSValµ,ρ] w′. So suppose that i′ ≤ j, if(v){γ(e2); while(γ(e1)){γ(e2)}}else{undef} →i

′
e′′ with e′′ ∈ Cmd . The first step

of the evaluation must be an application of evaluation rule E-IFTRUE or E-IFFALSE. In the second case, we have that
i′ = 1, e′′ = undef and by the defining equation of JSValµ,ρ, we have that (j − i′, e′′) ∈ Cnst ⊆ JSValµ,ρ w′, as required.
In the case that rule E-IFTRUE is used, it suffices to prove that (j − 1, γ(e2); while(γ(e1)){γ(e2)}) ∈ E[µ JSValµ,ρ] w′. By
Lemma 56, it suffices to prove that (j − 1, γ(e2)) ∈ E[µ JSValµ,ρ] w′ (but this follows from the induction hypothesis for
e2) and that for all j′ ≤ j − 1, w′′ w w′, (j′, v′) ∈ JSValµ,ρ w′′, we have that (j′, v′; while(γ(e1)){γ(e2)}) ∈ E[µ JSValµ,ρ] w′′.
So, suppose that i′′ ≤ j′ and v′; while(γ(e1)){γ(e2)} →i

′′
e′′′ with e′′′ ∈ Cmd . The first step of the evaluation must be

an application of evaluation rule E-DISCARD-BEGIN, and it is sufficient to prove that (j′ − 1, while(γ(e1)){γ(e2)}) ∈
E[µ JSValµ,ρ] w′′. By Lemmas 57 and 58, we still have that (j′ − 1, w′′) ∈ JΣKµ,ρ and (j′ − 1, γ) ∈ JΓKµ,ρ w′′. Finally, this
now follows from the induction hypothesis for the k that we started with.

• Case WF-OP: γ(opn(ei)) = opn

(
γ(ei)

)
. By repeatedly applying Lemma 56 and the induction hypotheses for the ei (as

we did above for the case WF-APP) we can show that it is sufficient to prove that for j ≤ k, w′ w w, (j, vi) ∈ JSValµ,ρ w′,
that (j, opn(vi)) ∈ E[µ JSValµ,ρ] w′. Now suppose that j′ ≤ j and opn(vi) →j

′
e′ with e′ ∈ Cmd . The first step in this

evaluation must be an application of rule E-PRIM. This implies that j′ = 1 and e′ = δn(opn, v1, · · · vn) and we easily
find that (j′, e′) ∈ Cnst w′ ⊆ JSValµ,ρ w′ and by Axiom A-PURE also (j′, e′) ∈ µ JSValµ,ρ w′, as required.

Appendix F.
Proofs and details for Section 4

Lemma 60. If w =n w′ then σ :n w iff σ :n w′.

Proof. By symmetry, it suffice to prove the left-to-right implication. We get σ = ]j∈dom(w)σj and for all j ∈ dom(w) and
k < n (k, σj) ∈ w(j).H(w(j).s) (roll w). By definition of the distance function on worlds, we know that dom(w′) = dom(w). We
choose σ′j = σj and it suffices to prove that also (k, σj) ∈ w′(j).H(w′(j).s) (roll w′). But by definition of the distance function
on worlds, w′(j).s = w(j).s and we define for brevity s = w(j).s. Furthermore, . We have that

d(w′(j).H(s) (roll w′), w(j).H(s) (roll w)) ≤ max(d(w′(j).H(s) (roll w′), w′(j).H(s) (roll w)),

d(w′(j).H(s) (roll w), w(j).H(s) (roll w)))



Since w′(j).H(s) is non-expansive and roll w =n+1 roll w′, we get that

d(w′(j).H(s) (roll w′), w′(j).H(s) (roll w)) ≤ 2−n−1.

Furthermore, since w′(j).H =n w′(j).H, we also get that

d(w′(j).H(s) (roll w), w(j).H(s) (roll w)) ≤ 2−n

So by the ultrametric inequality,

d(w′(j).H(s) (roll w′), w(j).H(s) (roll w)) ≤ 2−n

This in turn means that (k, σj) ∈ w′(j).H(s) (roll w′) iff (k, σj) ∈ w(j).H(s) (roll w) (by Lemma 39) for all j, so we’re done.

Lemma 61. If w1 =n w2 and w′1 w w1 then there exists a w′2 such that w′2 w w2 and w′2 =n w′1.

Proof. Take w′2 such that dom(w′2) = dom(w′1) and

w′2(j)
def
=


w2(j) if n = 0 ∧ j ∈ dom(w2)

(s′1, φ1, φ
pub′

1 , H2) if n > 0 ∧ j ∈ dom(w2) ∧ w′1(j) = (s′1, φ
′
1, φ

pub′

1 , H′1) ∧ w2(j) = (s2, φ2, φ
pub
2 , H2)

w′1(j) otherwise

If n = 0, it is clear that w′2 w w2 and w′2 =n w′1, so assume that n > 0, so we know that d(w1, w2) ≤ 2−n < 1. We know
that d(w′2, w

′
1) = maxj d(w′2(j), w′1(j)). For j 6∈ dom(w2), d(w′2(j), w′1(j)) is clearly zero. For j ∈ dom(w2), assume that w1(j) =

(s1, φ1, φ
pub
1 , H1), w′1(j) = (s′1, φ

′
1, φ

pub′

1 , H′1) and w2(j) = (s2, φ2, φ
pub
2 , H2). We know from w′1 w w1 that φ′1 = φ1, H′1 = H1,

φ′1 ⊃ φ
pub′

1 ⊇ φ
pub
1 and (s1, s

′
1) ∈ φ1. We know from d(w1, w2) < 1 that s1 = s2, φ1 = φ2, φpub

1 = φ
pub
2 . Therefore, it is clear

that w′2(j) w w2(j), so we can conclude that w′2 w w2. Furthermore, we have that d(w′2(j), w′1(j)) = d(H2(j), H1(j)) ≤ 2−n.

Lemma 62. If w1 =n w2 and w′1 w
pub w1 then there exists a w′2 such that w′2 wpub w2 and w′2 =n w′1.

Proof. Take w′2 such that dom(w′2) = dom(w′1) and

w′2(j)
def
=


w2(j) if n = 0 ∧ j ∈ dom(w2)

(s′1, φ1, φ
pub′

1 , H2) if n > 0 ∧ j ∈ dom(w2) ∧ w′1(j) = (s′1, φ
′
1, φ

pub′

1 , H′1) ∧ w2(j) = (s2, φ2, φ
pub
2 , H2)

w′1(j) otherwise

If n = 0, it is clear that w′2 wpub w2 and w′2 =n w′1, so assume that n > 0, so we know that d(w1, w2) ≤ 2−n < 1. We know
that d(w′2, w

′
1) = maxj d(w′2(j), w′1(j)). For j 6∈ dom(w2), d(w′2(j), w′1(j)) is clearly zero. For j ∈ dom(w2), assume that w1(j) =

(s1, φ1, φ
pub
1 , H1), w′1(j) = (s′1, φ

′
1, φ

pub′

1 , H′1) and w2(j) = (s2, φ2, φ
pub
2 , H2). We know from w′1 w

pub w1 that φ′1 = φ1, H′1 = H1,
φ

pub′

1 = φ
pub
1 and (s1, s

′
1) ∈ φpub

1 . We know from d(w1, w2) < 1 that s1 = s2, φ1 = φ2, φpub
1 = φ

pub
2 . Therefore, it is clear that

w′2(j) wpub w2(j), so we can conclude that w′2 w w2. Furthermore, we have that d(w′2(j), w′1(j)) = d(H2(j), H1(j)) ≤ 2−n.

Lemma 63. IOstd P w is non-expansive in P and w.

Proof. From the definition of IOstd , it follows easily that P =n P ′ implies IOstd P =n IOstd P ′. Similarly, if w =n w′ then
we can conclude from Lemmas 60, 61 and 62 and the non-expansiveness of P that IOstd P w =n IOstd P w′.

Lemma 64. Ref std is well-defined, non-expansive and monotone in w.

Proof. We define Ref std as the fixpoint of a contractive function Ref std,rec :

ι
std,rec
l

: (W →mon,ne UPred(Loc))→ Island

ι
std,rec
l

ρ
def
= (l,=,=, Hstd,rec ρ)

Hstd,rec : (W →mon,ne UPred(Loc))→ Loc → StorePred

Hstd,rec ρ l w
def
=
{

(n, {l 7→ v}) | n = 0 or (n− 1, v) ∈ JSVal
IOstd ,ρ

(roll−1

Ŵ
w)
}

Ref std,rec : (W →mon,ne UPred(Loc))→ (W →mon,ne UPred(Loc))

Ref std,rec ρ w
def
=
{

(n, l) | ∃j. w(j) =n+1 ι
std,rec
l

ρ
}

We need to prove that
• If ρ ∈ (W →mon,ne UPred(Loc)), then Hstd,recρ l is in StorePred. Take w1 =n+1 w2 in Ŵ . Then roll−1

Ŵ
w1 =n roll−1

Ŵ
w2 in

W . JSVal
IOstd ,ρ

is non-expansive, so JSVal
IOstd ,ρ

(roll−1

Ŵ
w1) =n JSVal

IOstd ,ρ
(roll−1

Ŵ
w2). From this, it follows easily

(with Lemma 39) that Hstd,recρ l w1 =n+1 H
std,recρ l w2 as required.



• If ρ ∈ (W →mon,ne UPred(Loc)), then so is Ref std,rec ρ: If w =n w′ then Ref std,rec ρ w =n Ref std,rec ρ w′: follows from
Lemma 39 and the definitions. If w′ w w, then it follows from the definition that Ref std,rec ρ w′ ⊇ Ref std,rec ρ w.

• Ref std,rec is contractive in ρ: take ρ1, ρ2 ∈W →mon,ne UPred(Loc) with ρ1 =n ρ2. We know by Lemma 54 that JSValµ,ρ

is non-expansive in ρ, so JSVal
IOstd ,ρ1

=n JSVal
IOstd ,ρ2

. From that, it follows easily that Hstd,rec ρ1 =n+1 H
std,rec ρ2.

From that, it follows again easily that Ref std,rec ρ1 =n+1 Ref std,rec ρ2 as required.
We then get Ref std as the unique Banach fixpoint of Ref std,rec .

Lemma 65. If (k, e) ∈ E[IOstd P ] w, then for all i ≤ k, σr :k w, σf with (σr ] σf , e)→i (σ′, e′) and e′ ∈ Val implies that there
exists a σ′r such that σ′ = σ′r ] σf and there exists a w′ wpub w such that σ′r :k−i w

′ and (k − i, e′) ∈ P w′.

Proof. By Lemma 36, the evaluation (σr ] σf , e)→i (σ′, e′) factors in one of the following ways:
• e →i e′, σr ] σf = σ′. In this case, we can conclude with σ′r = σr, w′ = w, since σr :k−i w because of Lemma 41,

(k − i, e′) ∈ IOstd P w by definition of E[ ] and then (k − i, e′) ∈ P w by definition of IOstd since e′ is a value.
• e→i

′
e′′ and (σr]σf , e′′)→i

′′
(σ′, e′) with e′′ ∈ Cmd , i′+ i′′ = i and i′′ > 0. In this case, we get that (k− i′, e′′) ∈ IOstd P w

by definition of E[ ]. By Lemma 41, we get that σr :k−i′ w. Because i′′ > 0 and i′′ = i − i′ ≤ k − i′, the definition of
IOstd gives us a σ′r with σ′ = σ′r ] σf and a w′ wpub w such that σ′r :k−i w

′ and (k − i, e′) ∈ P w′.

Lemma 66. (IOstd ,Ref std ) is a valid effect interpretation, i.e. it satisfies the axioms from Section 3.2.

Proof. We look at all the axioms in turn. For easy reference, we will always first re-state them with IOstd and Ref std filled
in for µ and ρ.

We use Lemma 55 and prove alternative axioms A-BINDPRIME and A-INVPURE instead of A-BIND.
• A-BINDPRIME: We need to show that if (k, e) ∈ IOstd P w, e 6∈ Val and (i, E〈v〉) ∈ E[IOstd P ′] w′ for all i ≤ k, w′ w w,

(i, v) ∈ P w′ then (k,E〈e〉) ∈ IOstd P ′ w.
By the definition of IOstd , we need to show first that (k,E〈e〉) ∈ P ′ w if E〈e〉 ∈ Val , but this is vacuously true because
E〈e〉 ∈ (Cmd \Val) by Lemma 29. Secondly, take 0 < i ≤ k and assume that σr :k w, (σr]σf , E〈e〉)→i (σ′, e′) and e′ ∈ Val .
Then we need to produce a σ′r with σ′ = σ′r ] σf and a w′ wpub w such that σ′r :k−i w

′ and (k − i, e′) ∈ P ′ w′.
Take i′ the largest number such that the evaluation (σr ]σf , E〈e〉)→i (σ′, e′) starts with (σr ]σf , E〈e〉)→i

′
(σ′′, E〈e′′〉) for

some e′′. By Lemmas 33 and 29, we know that e′′ must be a value. The sub-evaluation (σr ]σf , e)→i
′

(σ′′, e′′) together
with (k, e) ∈ IOstd P w and the other assumptions above gives us a σ′′r with σ′′ = σ′′r ] σf and a w′′ wpub w such that
σ′′r :k−i′ w

′′ and (k − i′, e′′) ∈ P w′′.
We can now apply the assumption about E to e′′ to conclude that (k− i′, E〈e′′〉) ∈ E[IOstd P ′] w′′, since e′′ ∈ Val , w′′ w w
and k − i′ ≤ k. We can then apply Lemma 65 to the remaining evaluation (σ′′, E〈e′′〉)→i−i

′
(σ′, e′) since σ′′ = σ′′r ] σf ,

i− i′ ≤ k− i′ and σ′′r :k−i′ w
′′ and e′ ∈ Val . We obtain a σ′r such that σ′ = σ′r ] σf and a w′ wpub w′′ such that σ′r :k−i w

′

and (k − i, e′) ∈ P w′ as required.
• A-INVPURE: (k, e) ∈ IOstd P w and e ∈ Val implies that (k, e) ∈ P w. By definition.
• A-PURE: If v ∈ Val , then (n, v) ∈ P w implies (n, v) ∈ IOstd P w. By definition of IOstd , we first need to prove that if
v ∈ Val , then (n, v) ∈ P w, which is obviously fine. Second, assume 0 < i ≤ n, σr :n w, σf , (σr ] σf , v) →i (σ′, e′) and
e′ ∈ Val . By Lemma 28, the latter is not possible with i > 0, so this requirement is also OK.

• A-ASSIGN: Suppose (n, e1) ∈ JSVal
IOstd ,Ref std

w, (n, e2) ∈ JSVal
IOstd ,Ref std

w. Then (n, e1 = e2) ∈
IOstd JSVal

IOstd ,Ref std
w. First, it’s clear that e1 = e2 6∈ Val . Second, take 0 < i ≤ n, σr :n w, σf and

(σr ] σf , e1 = e2) →i (σ′, e′) and e′ ∈ Val . Because e1 and e2 are values, we have that the impure evaluation must
start with an application of rule E-SETREF. This further implies that e1 = l, i = 1, e′ = e2 and σ′ = σ[l 7→ e2]. By
Lemma 52 and monotonicity, we obtain that (n, e1) = (n, l) ∈ Ref std w, which gives us a j such that w(j) =n+1 ι

std
l .

From σr :n w, we then know that l ∈ dom(σr). We can take w′ = w, σ′r = σr [l 7→ e2] and it is clear that w′ wpub w,
σ′ = σ′r ] σf . From uniformity, we directly have that (n − i, e2) ∈ JSVal

IOstd ,Ref std
w′. Finally, since w(j) =n+1 ιstdl ,

(n− i, e2) ∈ JSVal
IOstd ,Ref std

w′ by uniformity, and σr :n−i w′ by Lemma 41, we can conclude that σ′r :n−i w′.
• A-REF: Suppose (n, e) ∈ JSVal

IOstd ,Ref std
w. (n, ref e) ∈ IOstd JSVal

IOstd ,Ref std
w. First, it’s clear that ref e 6∈ Val .

Second, take 0 < i ≤ n, σr :n w, σf such that (σr ] σf , ref e)→i (σ′, e′) with e′ ∈ Val . Because e is a value, we have that
the impure evaluation must start with an application of rule E-REF. This further implies that e′ = l for some l 6∈ dom(σ),
i = 1, σ′ = σ[l 7→ e]. We have that l ∈ dom(σ′) \ dom(σ), so we can take σ′r = σr [l 7→ e], and it is clear that σ′ = σ′r ] σf .
Furthermore we take w′ = w[j 7→ ιstdl ] for some j 6∈ dom(w) and it remains to show that σ′r :n−1 w′ and (n − 1, l) ∈
JSVal

IOstd ,Ref std
w′. The latter follows because (n− 1, l) ∈ Ref std w′ by definition and Ref std w′ ⊆ JSVal

IOstd ,Ref std
w′

by the definition of JSValµ,ρ. The former follows by definition of σ′r :n−1 w
′, by the fact that σ′r = σr [l 7→ e], l 6∈ dom(σr),

σr :n−i w (by Lemma 41) and (n− i, e) ∈ JSVal
IOstd ,Ref std

w′ (by monotonicity and uniformity).
• A-DEREF: Suppose (n, e) ∈ JSVal

IOstd ,Ref std
w. Then (n, deref e) ∈ IOstd JSVal

IOstd ,Ref std
w. First, it’s clear that

deref e 6∈ Val . Second, take 0 < i ≤ n, σr :n w, σf and (σr ] σf , deref e) →i (σ′, e′) with e′ ∈ Val . Because e is a value,



the impure evaluation must start with an application of rule E-DEREF. This further implies that e = l, i = 1, e′ = σ(l)

and σ′ = σr ] σf . By Lemma 52 and monotonicity, we obtain that (n, l) ∈ Ref std w, which implies that w(j) =n+1 ι
std
l

for some j. Together with σr :n w, this in turn implies that l ∈ dom(σr) and (n− 1, σr(l)) ∈ JSVal
IOstd ,Ref std

w. We can
then take σ′r = σr, w′ = w and it is clear that σ′ = σ′r ] σf . It follows from σ :n w and Lemma 41 that σ′r :n−1 w

′ and
we already know the fact that (n− 1, σ(l)) ∈ JSVal

IOstd ,Ref std
w′.

Lemma 1. Take an arbitrary store σ, Σ = dom(σ) and a value ∅; Σ ` attacker . If (σ, ticketDispenserTest attacker)→ (σ′, v), then
v is even and ≥ 0.

Proof. If the evaluation terminates, then for some l 6∈ Σ and for some σ′, it must factor as follows (omitting the body of
dispTkt for brevity):

(σ, ticketDispenser attacker)→∗

(σ[l 7→ 0], attacker (func(){· · · }); deref l)→∗

(σ′, (v′; deref l)) →∗ (σ′, σ′(l))

Then v = σ′(l). Now define a world w that has one island ιstdl for every location l ∈ Σ:

dom(w) = {1..|Σ|} ∧ w({1..|Σ|}) = {ιstdl | l ∈ Σ}

Take i the number of steps in the middle part of the above evaluation and n > i. It is easy to check that (n,w′) ∈ JΣK
IOstd ,Ref std

for all w′ w w and effect parametricity then gives us that (n, attacker) ∈ E[IOstd JSVal
IOstd ,Ref std

] w′ .
The following island captures the intended usage protocol on l:

ιtkt,l,k
def
= ((l, k),vtkt ,vtkt , Htkt ) for k even

(l, k) vtkt (l′, k′) iff l = l′ ∧ k′ ≥ k ∧ k′, k even

Htkt (l, k) w
def
= {(n, {l 7→ k}) | n ∈ N}

Take j 6∈ dom(w) and call w′ = w[j 7→ ιtkt,l,0]. Then clearly w′ w w.
We will show that

(n, func(){return (let(v = deref l){l := v + 2; v})}) ∈

([JSVal
IOstd ,Ref std

]→ IOstd JSVal
IOstd ,Ref std

) w′ ⊆

JSVal
IOstd ,Ref std

w′

So, for w′′ w w′ and i < n, we need to show that (i, let(v = deref l){l := v + 2; v}) is in E[IOstd JSVal
IOstd ,Ref std

] w′′ or,
sufficiently, in IOstd JSVal

IOstd ,Ref std
w′′. The expression is clearly not a value so it remains to prove for 0 < i′ ≤ i and

σ′′ :i w
′′ that (σ′′, let(v = deref l){l := v + 2; v}) →i

′
(σ′′′, e′), with e′ ∈ Val implies that there exists a w′′′ wpub w′′ with

σ′′′ :i−i′ w
′′′ and (i− i′, e′) ∈ JSVal

IOstd ,Ref std
w′′′. But the evaluation and σ′′ :i w

′′ together imply that σ′′′ = σ′′[l 7→ σ′′(l) + 2],
e′ = σ′′(l) and σ′′(l) is an even number value. Then clearly (i − i′, e′) ∈ Cnst ⊆ JSVal

IOstd ,Ref std
w′′′. Finally, σ′′′ :i−i′ w

′′′

follows by monotonicity and uniformity for w′′′ = w′′[j 7→ ιtkt,l,σ(l)+2] wpub w′′.
We then have σ[l 7→ 0] :n w′ and we can combine Lemma 65, the sub-evaluation (σ[l 7→ 0], attacker (func(){· · · }))→∗ (σ′, v′),

the fact that

(n, attacker) ∈ E[IOstd JSVal
IOstd ,Ref std

] w′,

the compatibility lemma for applications (Lemma 59) and

(n, func(){return (let(v = deref l){l := v + 2; v})}) ∈

JSVal
IOstd ,Ref std

w′

to obtain a w′′ wpub w′ such that σ′ :n−i w′′ and (n− i, v′) ∈ JSVal
IOstd ,Ref std

w′′. From the former, it is easy to deduce that
σ′(l) is an even number value ≥ 0.



ιdom
l,tree,P

def
= ((l, tree),vdom,vdom, Hdom

P )

Hdom
P (l, tree) w

def
=

(n, h)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h = (l 7→ v) ∧ n = 0 or (n− 1, v) ∈
P · (roll−1

Ŵ
w) if tree = v∧

h = h1 ] · · · ] hn ] h′∧
h′ represents list ((id1, l1), · · · , (idn, ln)) at l∧

(n− 1, hi) ∈ Hdom
P ′i

(li, ti) w for all i = 1..n and P ′i id
′

= P (idi : id
′
)

if tree = (id1 7→ t1, · · · , idn 7→ tn)


(l′, tree′) wdom (l, tree) iff l = l′

(l1, t1) wr−dom
p (l2, t2) iff

l1 = l2 ∧ (∀t′1, tf . t1 = tf [p 7→ t′1]⇒ ∃t′2. t2 = tf [p 7→ t′2])

ιr−dom
l,t,p,P

def
= ((l, t),vdom,vr−dom

p , Hdom
P )

Lemma 2. Assume that document’s methods getChild , parent, getProp, setProp, addChild and delChild behave in the
“obvious” way (to be defined formally in the TR) in stores that contain the representation of a state of the the DOM.
If w(j) = ιdom

l,t,P for some j, t and P , and for n arbitrarily large, we have that σ :n w, and ad is a closed expression and
(σ, initWebPage(document , ad))→i (σ′, v) for i ≤ n, then v = true.

Proof. For reference, we repeat the definitions of rnode and initWebPage:

rnode
def
= func(node, d)

getChild = func(id)
{

rnode(node.getChild(id), d + 1)
}

parent = func()

{
if (d ≤ 0) {error} else

{rnode(node.parent(), d− 1)

}
getProp = func(id){node.getProp(id)}

setProp = func(id , v){node.setProp(id , v)}

addChild = func(id)
{

rnode(node.addChild(id), d+ 1)
}

delChild = func(id){node.delChild(id)}


initWebPage

def
= func(document , ad)

document .setProp(“someProperty”, 42)

let (adNode = document .addChild(“ad div”))

let (rAdNode = rnode(adNode, 0))

ad .initialize(rAdNode)

document .getProp(“someProperty”) == 42


First, we list the precise assumptions on document, i.e. we specify what we mean with document’s methods behaving in

the “obvious” way. We define a predicate (not necessarily uniform or monotonous) for specifying the behaviour of a DOM
operation. Given a reference l (identifying the DOM root node) and a function

Post ∈ Tree → (Tree × (W →ne Pred(Val))

we define DOMOpl,P,Post as follows:

DOMOpl,P,Post : W →ne Pred(Cmd))

DOMOpl,P,Post w
def
=

(n, e)

∣∣∣∣∣∣∣∣∣∣∣∣∣

e 6∈ Val ∧ for all σr , σf , σ′, t, 0 < i ≤ n, e′.
(n, σr) ∈ Hdom

P (l, t) w ∧ Post(t) = (t′, R)∧

(σr ] σf , e)→i (σ′, e′) ∧ e′ ∈ Val ⇒

∃σ′r . σ′ = σ′r ] σf ∧ (n− i, σ′r) ∈ Hdom
P (l, t′) w∧

(n− i, e′) ∈ R w





The postcondition Post specifies, given an input state of the DOM tree, the output tree of the DOM and a predicate
identifying valid result values in terms of the predicate P identifying valid values for DOM properties at certain paths
and a current world. Note that when Post(t) = ( ,Empty), this implies that the expression must not evaluate to a value,
i.e. it must get stuck or its step-index must run out. The predicate DOMOpl,P,Post n-accepts expressions e which behave
according to the postcondition Post: when e is evaluated to a value in a store with a part σr that satisfies the Hdom

P predicate
for reference l, a DOM state t and a properties predicate P , the resulting store should satisfy the Hdom

P predicate for the
postcondition-specified new state of the heap and the result value should satisfy the appropriate predicate.

We also define

Undef : W →mon,ne UPred(Val)

Undef w
def
= N× {undef}

Empty : W →mon,ne UPred(Val)

Empty w
def
= ∅

For simplicity, we let erroneous calls to DOM methods get stuck: using child or property id’s that are not strings,
invoking parent() on the root node, reading a property that does not exist, adding a child under a name that is already taken,
deleting or getting a child that doesn’t exist or generally working with a node that represents a node that is no longer part
of the DOM tree. This avoids having to do a lot of checking of result values of DOM functions in our examples.

We say that (n,node) ∈ NodeSpecl,p if node ∈ Val and for any P ∈ Path →W →mon,ne UPred(Val), we have that:
• For any w, i ≤ n and id ∈ Val , we have that

(i,node.getChild(id)) ∈ E[DOMOpl,P,PostGetChildp,id
] w

with

PostGetChildp,id (t)
def
=

(t,NodeSpecl,(id:p)) if id is a string constant ∧ ∃t′′, t′′′. t = t′′[(id : p) 7→ t′′′] ∧ t′′′ not a leaf
(t,Empty) otherwise

• For any w, i ≤ n, we have that

(i,node.parent()) ∈ E[DOMOpl,P,PostParentp ] w

with

PostParentp(t)
def
= iff t = t′ ∧

(t,NodeSpecl;p′ ) if p = (p′, )

(t,Empty) otherwise

• For any w, i ≤ n, id ∈ Val , we have that

(i,node.getProp(id)) ∈ E[DOMOpl,P,PostGetPropp,id
] w

with

PostGetPropp,id (t)
def
=

(t, P (p, id)) if id is a string constant ∧
∃t′′, t′′′, v′. t = t′′[(p, id) 7→ v′]

(t,Empty) otherwise

• For any w, i ≤ n, value id , (i, v) ∈ P (p, id) w, we have that

(i,node.setProp(id , v)) ∈ E[DOMOpl,P,PostSetPropp,id,v
] w

with

PostSetPropp,id,v(t)
def
=



(t′′, λw. N× {v}) with t′′ = t′[(p : id) 7→ v′] if id is a string constant ∧
∃t′, v′′. t = t′[(p : id) 7→ v′′]

(t′′, λw. N× {v}) with t′′ = t′[p 7→ (id ′ 7→ tree′, id 7→ v′)] if


id is a string constant ∧
∃t′, id ′, tree′. id 6∈ {id}∧

t = t′[p 7→ (id ′ 7→ tree′)]

(t,Empty) otherwise

• For any w, i ≤ n, value id , we have that

(i,node.addChild(id)) ∈ E[DOMOpl,P,PostAddChildp,id
] w



with

PostAddChildp,id (t)
def
=


(t′′, λw. NodeSpecl,(id:p)) with
t′′ = t′[p 7→ (id ′ 7→ tree′, id 7→ ())]

if
id is a string constant ∧
∃t′, id ′, tree′. id 6∈ {id ′}∧

t = t′[p 7→ (id ′ 7→ tree′)]

(t,Empty) otherwise

• For any w, i ≤ n, string constant id , we have that

(i,node.delChild(id)) ∈ DOMOpl,P,PostDelChildp,id
w

with

PostDelChildp,id (t)
def
=


(t′′,Undef ) with t′′ = t′[p 7→ (id ′ 7→ tree′)] if

id is a string constant ∧
∃t′, id ′, tree′, child . id 6∈ {id ′}∧

t = t′[p 7→ (id ′ 7→ tree′, id 7→ child)]

(t,Empty) otherwise

The definition of NodeSpec is recursive, so we need to define it as another fixpoint of a contractive function. We omit details
but this can be done correctly, because DOMOp is contractive in its Post argument.

We require that for some reference l, and for some w, P ∈ W →mon,ne UPred(Val) and t, we have that (n, document) ∈
NodeSpecl,· with · the empty path and l the reference for which we assumed w(j) = ιdom

l,t,P .
So now take the evaluation (σ, initWebPage(document , ad))→i (σ′, v). It must factor as

(σ, initWebPage(document , ad))→i1

(σ1, e1)→i2 (σ2, ad .initialize(rAdNode′); document .getProp(“someProperty”) == 42)→i3

(σ3, document .getProp(“someProperty”) == 42) →i4 (σ′, v′ == 42) → (σ′, v)

with

e1
def
=

let (rAdNode = rnode(adNode′, 0))

ad .initialize(rAdNode)

document .getProp(“someProperty”) == 42

for some value adNode′ and (σ1, rnode(adNode, 0))→i2 (σ2, rAdNode′).
We know that σ = σr ] σf with (n, σr) ∈ Hdom

P (l, t) w, and so the contract of document tells us that σ1 = σr,1 ] σf with
(n − i1, σr,1) ∈ Hdom

P (l, t1) w, (n1, adNode′) ∈ NodeSpecj,“ad div” and t1 = t′[“ad div” 7→ ()][“someProperty” 7→ 42] for some t′.
Define n1 = n− i1 and w1

def
= w[j 7→ ιdom

l,t1,P
]. Then w1 w w and σ1 :n1 w1.

Now define path p = “ad div” and define P r−dom
p as follows:

P r−dom
p p′ w′′ def

=

JSVal
IOstd ,Ref std

w′′ if p is a prefix of p′

P w1 otherwise

and define w′1 as the single island world j 7→ ιr−dom

l,t1,p,P
r−dom
p

. The intuition here is that P r−dom
p defines a new invariant on

properties of the DOM, which requires that properties under path p must be valid in a world with the limited authority
modelled by public transition relation wr−dom

p but properties at other paths must only be valid in the world w1 with full
authority on the DOM. Those other properties must not even preserve the invariant on properties under p. Note that w′1 is
not a future world of w1.

We now prove that (n1, rnode(adNode′, 0)) is in E[JSVal
IOstd ,Ref std

] w′1.

Proof. First, we generalise and prove that if (n′1, elt) ∈ NodeSpecl,p′ with p′ = p p′′ and len(p′′) = d then (n′1, rnode(elt , d)) ∈
E[JSVal

IOstd ,Ref std
] w′′1 in any w′′1 w w

′
1 and for any n′1 ≤ n1 and we prove this by induction on n′1.

We easily have that rnode(elt , d) purely evaluates to a record value in one step, so it suffices to prove that this value
n′1 − 1-satisfies JSVal

IOstd ,Ref std
w′′1 . For this, it suffices to prove that all fields of the resulting record value n′1 − 2-satisfy

([JSVal
IOstd ,Ref std

]→ IOstd JSVal
IOstd ,Ref std

) w′′1 . So, take an arbitrary w′′ w w′′1 and i < n′1 − 2, then we need to prove that
• getChild: for (i, id) ∈ JSVal

IOstd ,Ref std
w′′, we need to show that (i, rnode(elt .getChild(id), d + 1)) is in

E[IOstd JSVal
IOstd ,Ref std

] w′′. So, assume that i′ ≤ i and rnode(elt .getChild(id), d + 1) →i
′
e′ and e′ is a command

and for 0 < i′′ < i − i′, σr :i−i′ w
′′, (σr ] σf , e′) →i

′′
(σ′, e′′) and e′′ ∈ Val . We know that (i, elt .getChild(id)) ∈

E[DOMOpl,P,PostGetChildp,id
] w′′ from the fact that (n′1, elt) ∈ NodeSpecl,p′ . By Lemma 32, and the fact that



DOMOp excludes values, we know that elt .getChild(id) →i
′
e′′′ and e′ = rnode(e′′′, d + 1) and (i − i′, e′′′) ∈

DOMOpl,P,PostGetChildp,id
w′′. By Lemmas 33 and 29, we get a sub-evaluation (σr ] σf , e′′′) →i

′′′
(σ′′, e′′′′) with

e′′′′ ∈ Val . From w′′ w w′′1 w w′1, we get that w′′(j) = ((l, t′),vdom,v′, Hdom

P r−dom
p

) for some t′ and for v′⊆vr−dom
p .

From σr :i−i′ w
′′, there must then be a σ′r such that σr = σ′r ] σ′f and (i − i′, σ′r) ∈ Hdom

P r−dom
p

(l, t′) w′′, so that we can

apply the definition of DOMOp to obtain that σ′′ = σ′′r ] σ′f ] σf and (i− i′ − i′′′, σ′′r ) ∈ Hdom

P r−dom
p

(l, t′′) w′′ for t′′ = t′ and

(i− i′− i′′′, e′′′′) ∈ NodeSpecl,id:p. The remaining evaluation (σ′′, rnode(e′′′′, d+ 1)→i
′′−i′′′ (σ′, e′′) is easily seen to be pure

(so that σ′ = σ′′) and together with the induction hypothesis, we get that (i− i′ − i′′, e′′) ∈ JSVal
IOstd ,Ref std

w′′1 . We can
also deduce that σ′ = (σ′′r ] σ′f ) ] σf with σ′′r ] σ′f :i−i′−i′′ w

′′ by uniformity.
• The other cases are similar.

We also have that (n1, σr,1) ∈ Hdom

P r−dom
p

(l, t1) w′1. This follows from the fact that (n1, σr,1) ∈ Hdom
P (l, t1) w, and the fact

that Hdom

P r−dom
p

(l, t1) w′1 is equal to Hdom
P (l, t1) w1 because we know that t1 = t′[“ad div” 7→ ()][“someProperty” 7→ 42] for some

t′. This is equivalent to σr,1 :n1 w
′
1.

The above result about rnode tells us that (n1, rnode(adNode′, 0)) ∈ E[JSVal
IOstd ,Ref std

] w′1. By the evaluation
(σ1, rnode(adNode, 0)) →i2 (σ2, rAdNode′) and by inspection of rnode we get that the evaluation must be pure, σ2 = σ1

and by definition of E, (n1 − 1, rAdNode′) ∈ JSVal
IOstd ,Ref std

w′1. We call n2
def
= n1 − 1.

Since ad is closed, the Fundamental Theorem tells us that (n2, ad .initialize) ∈ E[IOstd JSVal
IOstd ,Ref std

] w′1, so by
Lemma 59, we have that (n2, ad .initialize(rAdNode)) ∈ E[IOstd JSVal

IOstd ,Ref std
] w′1.

The evaluation

(σ2, ad .initialize(rAdNode′); document .getProp(“someProperty”) == 42)→i3

(σ3, document .getProp(“someProperty”) == 42)

must have a sub-evaluation

(σ2, ad .initialize(rAdNode′))→i3−1 (σ3, v
′′)

for which Lemma 65 now produces a w3 wpub w′1 such that σ3 = σr,3 ] σf with σr,3 :n2−i3+1 w3.
From w3 wpub w′1, it follows that w3(j) = ιr−dom

l,t′,p,P r−dom
p

with (l, t′) wr−dom
p (l, t1). From this, we can deduce that t′ =

t′′[“someProperty” 7→ 42] for some t′′. We also have that σr,3 :n3 w3 for n3
def
= n2 − i3 + 1 which implies that (n3, σ3,r) ∈

Hdom

P r−dom
p

(l, t′) w3. The evaluation (σ3, document .getProp(“someProperty”) == 42)→i4 (σ′, v′ == 42) must have a sub-evaluation

(σ3, document .getProp(“someProperty”)) →i4 (σ′, v′) so that the spec of document implies that v′ = 42 and we can conclude
from the remaining evaluation that v = true.

Appendix G.
Proofs and details for Section 5

First some further definitions. Given a store σ and expression e, Maffeis et al. define the trace τ((σ, e)) as the possibly
infinite sequence of states (σ′i, e

′
i) such that (σ, e) → (σ′1, e

′
1) → (σ′2, e

′
2) → · · · . The set of store-affecting actions act(σ) is

dom(σ)×D. We also note that our use of action-labeled evaluation judgement is an alternative to Maffeis et al.’s acc function:
acc(σ, e)

def
= A iff (σ, e)→A (σ′, e′) for some σ′ and e′.

Lemma 67. λJS satisfies the properties RG-AUTH1, RG-AUTH2, RG-CONN and RG-NOAMPL, formulated in Section 5.
We list them here again for reference:

(σ, e)→A (σ′, e′) implies that
• RG-AUTH1: A ⊆ auth(σ, e) ∪ nauth(σ′, σ)

• RG-AUTH2: auth(σ′, e′) ⊆ auth(σ, e) ∪ nauth(σ′, σ)

Furthermore, if (σ, e)→∗A (σ′, v) 6→ and v ∈ Val , then for any location l, we must have:
• RG-CONN: A 6 . cAuth(σ, l) implies that cAuth(σ′, l) = cAuth(σ, l) ∪ {(l, r), (l, w)}
• RG-NOAMPL: A . cAuth(σ, l) implies that

cAuth(σ′, l) ⊆ cAuth(σ, l)∪

{(l, r), (l, w)} ∪ auth(σ, e) ∪ nauth(σ′, σ)



Proof. Remember that cAuth(σ, l) is defined as the least set of actions CA such that {(l, r), (l, w)} ⊆ CA and( ⋃
(l,r)∈A

tCap(h(l))× D
)
⊆ CA

and that auth(σ, e) is defined as ⋃c∈tCap(e) cAuth(σ, c).
Assume that (σ, e) →A (σ′, e′). RG-AUTH1 easily follows by case analysis of the impure evaluation judgement. RG-

AUTH2 follows using an easy lemma that e1 → e2 implies tCap(e1) ⊇ tCap(e2).
Then assume that (σ, e) →∗ (σ′, v) 6→ and v ∈ Val . If A 6 . cAuth(σ, l), then it easily follows that for all l with (l, r) ∈

cAuth(σ, l), σ′(l) = h(l). The set CA = cAuth(σ, l) then still satisfies the defining requirements for cAuth(σ′, l): {(l, r), (l, w)} ⊆ CA

and( ⋃
(l,r)∈CA

tCap(σ′(l))× D
)
⊆ CA

This is because for every (l, r) ∈ CA, we know that σ′(l) = h(l), and that tCap(σ′(l))× D = tCap(h(l))× D ⊆ CA.
If A. cAuth(σ, l), then we define CA′ def

= cAuth(σ, l)∪ auth(σ, e)∪ nauth(σ′, σ) and we prove that it satisfies the requirements
for cAuth(σ′, l). Clearly, {(l, r), (l, w)} ⊆ cAuth(σ, l) ⊆ CA′. We prove that( ⋃

(l,r)∈CA′
tCap(σ′(l))× D

)
⊆ CA′

for an arbitrary expression e′ (not necessarily a value) by induction on the length of the evaluation (σ, e) →∗A (σ′, v). For a
zero-length evaluation, h = σ′ and if (l′, r) ∈ CA′, then either
• (l′, r) ∈ cAuth(σ, l), in which case tCap(h(l′))× D ⊆ cAuth(σ, l) ⊆ CA′.
• (l′, r) ∈ auth(σ, e). Then, (l′, r) ∈ cAuth(σ, l′′) for some l′′ ∈ tCap(e). But then also tCap(h(l′)) × D ⊆ cAuth(σ, l′′) ⊆

auth(σ, e) ⊆ CA′.
• (l′, r) ∈ nauth(σ′, σ) = ∅: not possible.
Now suppose that (σ, e) →∗ (σ′, e′) → (σ′′, e′′). Then if we know that CA′ = cAuth(σ, l) ∪ auth(σ, e) ∪ nauth(σ′, σ) satisfies

the defining conditions for cAuth(σ′, l), we prove that CA′′ = cAuth(σ, l) ∪ auth(σ, e) ∪ nauth(σ′, σ) satisfies the requirements
for cAuth(σ′′, l). It then follows that it must be an upper bound for cAuth(σ′′, l), because that set was defined as the least
set satisfying the requirements. It’s clear that {(l, r), (l, w)} ⊆ cAuth(σ, l) ⊆ CA′′. So, take (l′, r) ∈ CA′′. We need to prove that
tCap(σ′′(l′))× D ⊆ CA′′. Now either
• l′ ∈ nauth(σ′′, σ′). Then the step (σ′, e′) → (σ′′, e′′) must be an application of evaluation rule E-REF, i.e. e′ = E〈ref v〉,
e′′ = E〈l′〉, σ′′ = σ′[l′ 7→ v]. Then σ′′(l′) = v and tCap(v) × D ⊆ tCap(e′) × D ⊆ auth(σ′, e′). A repeated application of
property RG-AUTH2 above tells us that auth(σ′, e′) ⊆ auth(σ, e) ∪ nauth(σ′, σ) ⊆ A′ ⊆ A′′.

• l′ ∈ dom(σ′′) ∩ dom(σ′) and σ′′(l′) 6= σ′(l′). Then the step (σ′, e′) → (σ′′, e′′) must be an application of evaluation rule
E-SETREF with e′ = E〈l′ = v〉, e′′ = E〈v〉 and σ′′ = σ′[l′ 7→ v]. Then σ′′(l′) = v and tCap(v)×D ⊆ tCap(e′)×D ⊆ auth(σ′, e′).
Again by a repeated application of property RG-AUTH2 above, we get auth(σ′, e′) ⊆ auth(σ, e)∪ nauth(σ′, σ) ⊆ A′ ⊆ A′′.

• l′ ∈ dom(σ′′) ∩ dom(σ′) and σ′′(l′) = σ′(l′). Then (l′, r) is also in A′ and tCap(σ′′(l′))× D = tCap(σ′(l))× D ⊆ A′ ⊆ A′′.

G.1. More details about deepInspect

Here are a bit more details about the argument involving the deepInspect primitive mentioned in Section 5.2.
Consider a hypothetical language λdiJS where indirect references can be converted into direct references using a deepInspect

primitive, making the private instance state of objects public. The formal semantics could look like this with internals(v)
def
=

{l | l v v}:

internals(v) = {l1 · · · ln} 1 ≤ k ≤ n
deepInspectk(v) ↪→ lk

(E-INSPECT)

Such a primitive contradicts basic principles of the object capability model, and breaks most examples relying on the
model (particularly all examples in Section 4). For example, we could use deepInspect on the function dispTkt to obtain a
direct reference to o. Nevertheless, λdiJS still satisfies the reference graph dynamics properties and the topology-only bound
on authority. Clearly, our Fundamental Theorem is strictly stronger than the standard reference graph dynamics properties.

It is easy to check that the above proof of the reference graph properties is unaffected by the addition of deepInspect

and E-DEEPINSPECT.



Appendix H.
Proofs and details for Section 6

Lemma 68. The effect interpretation (IO
rgn
j ,Ref

rgn
j ) is well-defined and the island ι

rgn
j,L is well-defined.

Proof. IO
rgn
j , Ref

rgn
j and H

rgn
j are well-defined. We construct them jointly as the Banach fixpoint of contractive function

RefIO
rgn
j,rec . In this proof, we write EffInt for the set

(W →mon,ne UPred(Loc))× ((W →mon,ne UPred(Val))→ne (W →ne Pred(Cmd)))

Ref
rgn
j,rec : EffInt →ne W →mon,ne UPred(Loc)

Ref
rgn
j,rec (ρ, µ) w

def
=

{
(n, l)

∣∣∣∣∣ ∃L 3 l. w(j) = (L,⊆,⊆, H)∧
H =n+1 (H

rgn
rec (ρ, µ))

}
IO

rgn
j,rec : EffInt →ne (W →mon,ne UPred(Val))→ne (W →ne Pred(Cmd))

IO
rgn
j,rec (ρ, µ) P w

def
=


(n, e)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(e ∈ Val ⇒ (n, e) ∈ P w)∧
∀L,H. if w(j) = (L,⊆,⊆, H) ∧H =n+1 (H

rgn
rec (ρ, µ))

then ∀0 < i ≤ n, σr :n w, σf .(σr ] σf , e)→iA (σ′, e′)⇒

∃σ′r , w′ wpub w. σ′ = σ′r ] σf∧

A ⊆ ((L ∪ (dom(σ′r) \ dom(σr)))×D)∧

w′(j) = (L ∪ (dom(σ′r) \ dom(σr)),⊆,⊆, H)∧

(n− i, e′) ∈ E[µ P ] w′ ∧ σ′r :n−i w
′


H

rgn
rec : EffInt →ne P(Loc)→ Ŵ →mon,ne UPred(Store)

H
rgn
rec (ρ, µ) L w

def
=

{
(n, σ)

∣∣∣∣∣ dom(σ) = L ∧ for all l ∈ L.
n = 0 or (n− 1, σ(l)) ∈ JSValµ,ρ (roll−1

Ŵ
w)

}
RefIO

rgn
j,rec : EffInt →ne EffInt

RefIO
rgn
j,rec(ρ, µ)

def
= (Ref

rgn
j,rec (ρ, µ), IO

rgn
j,rec (ρ, µ))

Lemma 69. RefIO
rgn
j,rec is well-defined, i.e. it produces a result in EffInt for correct input arguments (ρ, µ) ∈ EffInt. Also,

H
rgn
rec (ρ, µ) L is effectively in StorePred for (ρ, µ) ∈ EffInt.

Proof. Uniformity and monotonicity of Ref
rgn
j,rec follow easily from the definition. Non-expansiveness of Ref

rgn
j,rec in w and

IO
rgn
j,rec in P and w follow from the definitions and Lemma 60, non-expansiveness of µ in P and w, Lemma 43 and Lemma 62.
Non-expansiveness and monotonicity of Hrgn

rec follow from non-expansiveness and monotonicity of JSValµ,ρ and proper
use of step-indices.

Lemma 70. RefIO
rgn
j,rec is contractive in (ρ, µ).

Proof. Take (ρ1, µ1), (ρ2, µ2) : (T × (T → T )). Suppose that (ρ1, µ1) =n (ρ2, µ2), equivalent to (µ1 P w)[n] = (µ2 P w)[n] and
(ρ1 w)[n] = (ρ2 w)[n] for all P,w (by Lemma 39). Then we need to show that RefIO

rgn
j,rec (ρ1, µ1) =n+1 RefIO

rgn
j,rec(ρ2, µ2), which

is equivalent to (IO
rgn
j,rec (ρ1, µ1) P w)[n+1] = (IO

rgn
j,rec (ρ2, µ2) P w)[n+1] and (Ref

rgn
j,rec (ρ1, µ1) w)[n+1] = (Ref

rgn
j,rec (ρ2, µ2) w)[n+1]

for all P,w. By symmetry, it suffices to prove the inclusion of the left sets in the right sets.
First, we know from Lemma 54 that JSValµ,ρ is contractive in µ and non-expansive in ρ, so that JSValµ1,ρ1 w =n

JSValµ2,ρ2 w for all w. From this, it follows easily that Hrgn
j,rec (ρ1, µ1) =n+1 H

rgn
j,rec (ρ2, µ2).

Now take (k, e) ∈ (Ref
rgn
j,rec (ρ1, µ1) w)[n+1]. That means that k ≤ n. We need to prove that also (k, e) ∈ (Ref

rgn
j,rec (ρ2, µ2) w).

That means that we know that H =k+1 (H
rgn
rec (ρ1, µ1)) and we need to show that also H =k+1 (H

rgn
rec (ρ2, µ2)). But

H
rgn
rec (ρ1, µ1) =n+1 H

rgn
rec (ρ2, µ2), so this is okay.

Now take (k, e) ∈ (IO
rgn
j,rec (ρ1, µ1) P w)[n]. That means that k ≤ n. We need to prove that also (k, e) ∈ (IO

rgn
j,rec (ρ2, µ2) P w).

If e ∈ Val , then we directly get that (k, e) ∈ P w. Now take a L and H so that w(j) = (L,⊆,⊆, H) and H =k+1 (H
rgn
rec (ρ1, µ1)).

Since H
rgn
rec (ρ1, µ1) =n+1 H

rgn
rec (ρ2, µ2), we also have that H =k+1 (H

rgn
rec (ρ2, µ2)). Take 0 < i ≤ k, σr :k w and σf with

(σr ] σf , e) →iA (σ′, e′). We get a σ′r and w′ wpub w such that σ′ = σ′r ] σf , A ⊆ ((L ∪ (dom(σ′r) \ dom(σr))) × D), w′(j) =

(L ∪ (dom(σ′r) \ dom(σr)),⊆,⊆, H), (k − i, e′) ∈ E[µ1 P ] w′ and σ′r :k−i w
′. We know that k − i < k ≤ n, µ1 =n µ2 and E

non-expansive (by Lemma 43), so that E[µ1 P ] w′ =n E[µ2 P ] w′ and (k − i, e′) ∈ E[µ2 P ] w′.

With RefIO
rgn
j,rec contractive, we know it has a fixpoint satisfying the definition equation of Ref rgn and IOrgn .



Lemma 71. If (k, e) ∈ E[IO
rgn
j P ] w, then for all L and H with w(j) = (L,⊆,⊆, H), H =k+1 H

rgn
j and for all i ≤ k, σr :k w,

σf with (σr ] σf , e)→iA (σ′, e′), there exists a σ′r such that σ′ = σ′r ] σf , A ⊆ (L ∪ (dom(σ′r) \ dom(σr)))× D, and there exists a
w′ wpub w with w′(j) = (L ∪ (dom(σ′r) \ dom(σr)),⊆,⊆, H), σ′r :k−i w

′ and (k − i, e′) ∈ E[IO
rgn
j P ] w′.

Proof. By Lemma 36 (easily adapted to the labeled operational semantics), the evaluation (σ, e) →iA (σ′, e′) factors in one
of the following ways:
• e→i e′, A = ∅, σr ] σf = σ′. In this case, we can conclude with σ′r = σr, w′ = w, since σr :k−i w because of Lemma 41

and (k − i, e′) ∈ E[IO
rgn
j P ] w because of Lemma 47.

• e→i
′
e′′ and (σr]σf , e′′)→i

′′
A (σ′, e′) with e′′ ∈ Cmd , i′+i′′ = i and i′′ > 0. In this case, we get that (k−i′, e′′) ∈ IO

rgn
j P w

by definition of E[ ]. By Lemma 41, we get that σr :k−i′ w. Because i′′ > 0 and i′′ ≤ i ≤ n, we can apply the definition
of IO

rgn
j (using w(j) = (L,⊆,⊆, H) and H =k+1 H

rgn
j ) to get a σ′r with σ′ = σ′r ] σf , A ⊆ (L ∪ (dom(σ′r) \ dom(σr))) × D

and a w′ wpub w such that w′(j) = (L ∪ (dom(σ′r) \ dom(σr)),⊆,⊆, H), σ′r :k−i w
′ and (k − i, e′) ∈ E[IO

rgn
j P ] w′.

Lemma 72. For any j, IO
rgn
j and Ref

rgn
j satisfy the remaining axioms for a valid effect interpretation.

Proof. Again, we look at all the axioms. For easy reference, we will always first re-state them with IO
rgn
j and Ref

rgn
j filled

in for µ and ρ.
We use Lemma 55 and prove alternative axioms A-BINDPRIME and A-INVPURE instead of A-BIND.
• A-BINDPRIME: We need to show that if (k, e) ∈ IO

rgn
j P w, e 6∈ Val and (i, E〈v〉) ∈ E[IO

rgn
j P ′] w′ for all i ≤ k, w′ w w,

(i, v) ∈ P w′ then (k,E〈e〉) ∈ IO
rgn
j P ′ w. We will do this by complete induction on k.

By the definition of IO
rgn
j , we need to show first that (k,E〈e〉) ∈ P ′ w if E〈e〉 ∈ Val , but this is vacuously true

because E〈e〉 ∈ (Cmd \ Val) by Lemma 29. Secondly, take L,H and assume that w(j) = (L,⊆,⊆, H) and H =k+1 H
rgn
j .

Take 0 < i ≤ k, σr :k w, σf and (σr ] σf , E〈e〉) →iA (σ′, e′). Then we need to produce a σ′r with σ′ = σ′r ] σf ,
A ⊆ ((L ∪ (dom(σ′r) \ dom(σr))) × D) and a w′ wpub w such that w′(j) = (L ∪ (dom(σ′r) \ dom(σr)),⊆,⊆, H), σ′r :k−i w

′

and (k − i, e′) ∈ E[IO
rgn
j P ′] w′.

Take i′ the largest number such that the evaluation (σr ] σf , E〈e〉)→iA (σ′, e′) starts with (σr ] σf , E〈e〉)→i
′
A′ (σ′′, E〈e′′〉).

The sub-evaluation (σr ]σf , e)→i
′
A′ (σ′′, e′′) together with (k, e) ∈ IO

rgn
j P w and the other assumptions above gives us a

σ′′r with σ′′ = σ′′r ]σf , A′ ⊆ ((L∪(dom(σ′′r )\dom(σr)))×D) and a w′′ wpub w with w′′(j) = (L∪(dom(σ′′r )\dom(σr)),⊆,⊆, H),
σ′′r :k−i′ w

′′ and (k − i′, e′′) ∈ E[IO
rgn
j P ] w′′.

If the impure evaluation stops there, then i′ = i, A = A′, σ′ = σ′′ = σ′′r ] σf and e′ = E〈e′′〉. We can take σ′r = σ′′r ,
w′ = w′′ and it only remains to show that (k− i, e′) ∈ E[IO

rgn
j P ′] w′. To show this, take i′′ ≤ k− i and e′ = E〈e′′〉 →i

′′
e′′′

with e′′′ ∈ Cmd . Take the largest i′′′ such that this pure evaluation starts with E〈e′′〉 →i
′′′
E〈e′′′′〉. e′′′′ must be in Cmd

because i′′′ is as large as possible and because of Lemmas 31 and 32. The sub-evaluation e′′ →i
′′′
e′′′′ and the fact

that (k − i, e′′) ∈ E[IO
rgn
j P ] w′ tells us that (k − i− i′′′, e′′′′) ∈ IO

rgn
j P w′. If e′′′′ ∈ (Cmd \Val), then the pure evaluation

must stop there (by Lemma 32), so i′′′ = i′′ and e′′′ = E〈e′′′′〉. We can then apply the induction hypothesis to conclude
that (k − i − i′′, e′′′) = (k − i − i′′, E〈e′′′′〉) ∈ IO

rgn
j P ′ w′. If e′′′′ ∈ Val , then (k − i − i′′′, e′′′′) ∈ IO

rgn
j P w′ implies that

(k − i− i′′′, e′′′′) ∈ P w′. We can then apply the assumption about E to obtain that (k − i− i′′′, E〈e′′′′〉) ∈ E[IO
rgn
j P ′] w′.

With the remaining pure evaluation and the fact that e′′′ ∈ Cmd , we get that (k − i− i′′, e′′′) ∈ IO
rgn
j P ′ w′.

If the impure evaluation continues after evaluating e to e′′, then e′′ must be a value by Lemma 33. With (k − i′, e′′) ∈
E[IO

rgn
j P ] w′′ established, this implies that (k − i′, e′′) ∈ P w′′. We can now apply the assumption about E to obtain

that (k − i′, E〈e′′〉) ∈ E[IO
rgn
j P ′] w′′. We call L′′ = L ∪ (dom(σ′′r ) \ dom(σr)) and we apply Lemma 71 to the remaining

evaluation (σ′′r ] σf , E〈e′′〉) →
i−i′
A′′ (σ′, e′), using the fact that σ′′r :k−i′ w

′′, to obtain a σ′r such that σ′ = σ′r ] σf , A′′ ⊆
(L′′ ∪ (dom(σ′r) \ dom(σ′′r ))) × D, and a w′ wpub w′′ such that w′(j) = (L′′ ∪ (dom(σ′r) \ dom(σ′′r )),⊆,⊆, H), σ′r :k−i w

′ and
(k − i, e′) ∈ E[IO

rgn
j P ′] w′. If we note that

(L′′ ∪ (dom(σ′r) \ dom(σ′′r ))) =

(L ∪ (dom(σ′′r ) \ dom(σr)) ∪ (dom(σ′r) \ dom(σ′′r ))) =

(L ∪ (dom(σ′r) \ dom(σr))

and (L ∪ (dom(σ′′r ) \ dom(σr))) ⊆ (L ∪ (dom(σ′r) \ dom(σr))) then we now have also in this case that A = A′ ∪ A′′ ⊆
(L ∪ (dom(σ′r) \ dom(σr)))× D, σ′r :k−i w

′ and (k − i, e′) ∈ E[IO
rgn
j P ′] w′ for

w′(j) = (L′′ ∪ (dom(σ′) \ dom(σ′′)),⊆,⊆, H)

= (L ∪ (dom(σ′) \ dom(σ)),⊆,⊆, H).

• A-INVPURE: (k, e) ∈ IO
rgn
j P w and e ∈ Val implies that (k, e) ∈ P w. By definition.



• A-PURE: If v ∈ Val , then (n, v) ∈ P w implies (n, v) ∈ IO
rgn
j P w. By definition of IO

rgn
j , we first need to prove

that if v ∈ Val , then (n, v) ∈ P w, which is obviously fine here. Second, take L,H and assume w′(j) = (L,⊆,⊆, H) and
H =n+1 H

rgn
j . Furthermore, take 0 < i ≤ n, σr :n w, σf , (σr ] σf , v)→iA (σ′, e′). By Lemma 28, the latter is not possible,

so this requirement is also OK.
• A-ASSIGN: Suppose (n, e1) ∈ JSValIOrgn

j ,Ref
rgn
j

w, (n, e2) ∈ JSValIOrgn
j ,Ref

rgn
j

w. Then (n, e1 = e2) ∈

IO
rgn
j JSValIOrgn

j ,Ref
rgn
j

w. First, it’s clear that e1 = e2 6∈ Val . Second, take L and H such that w(j) = (L,⊆,⊆, H).
Furthermore take 0 < i ≤ n, σr :n w, σf and (σr ] σf , e1 = e2) →iA (σ′, e′). Because e1 and e2 are values, we have
that the impure evaluation must start with an application of rule E-SETREF. This further implies that e1 = l, i = 1,
A = {(l, w)}, e′ = e2 and σ′ = σ[l 7→ e2]. By Lemma 52 and monotonicity, we obtain that (n, e1) = (n, l) ∈ Ref

rgn
j w,

which implies that l ∈ L and H =n+1 H
rgn
j . It is then clear that for σ′r = σr [l 7→ e2], we have that σ′ = σ′r ] σf

and A ⊆ (L ∪ (dom(σ′r) \ dom(σr))) × D. Furthermore we can take w′ = w and it remains to be proven that σ′r :n−1 w

and (n − 1, e2) ∈ E[IO
rgn
j JSValIOrgn

j ,Ref
rgn
j

] w. The latter follows directly from the uniformity of JSValIOrgn
j ,Ref

rgn
j

,
the already proven Axiom A-PURE and Lemma 48. The former follows because σr :n w, σ′r = σr [l 7→ e2] and
(n− 1, e2) ∈ JSValIOrgn

j ,Ref
rgn
j

w (by uniformity) and from the fact that H =n+1 H
rgn
j .

• A-REF: Suppose (n, e) ∈ JSValIOrgn
j ,Ref

rgn
j

w. (n, ref e) ∈ IO
rgn
j JSValIOrgn

j ,Ref
rgn
j

w. First, it’s clear that ref e 6∈ Val .
Second, take L and H such that w(j) = (L,⊆,⊆, H) and H =n+1 H

rgn
j . Furthermore, take 0 < i ≤ n, σr :n w, σf

such that (σr ] σf , ref e) →iA (σ′, e′). Because e is a value, we have that the impure evaluation must start with an
application of rule E-REF. This further implies that e′ = l for some l 6∈ dom(σ), i = 1, A = {(l, r), (l, w)}, σ′ = σ[l 7→ e].
We have that l ∈ dom(σ′) \ dom(σ), so we can take σ′r = σr [l 7→ e], and it is clear that σ′ = σ′r ] σf and A ⊆ (L ∪
(dom(σ′r) \ dom(σr))) × D. Furthermore we take L′ = L ∪ {l} and w′ = w[j 7→ (L′,⊆,⊆, H)] and it remains to show that
σ′r :n−1 w′ and (n − 1, l) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w′. The latter follows because H =n+1 H
rgn
j , so that definitely

(n − 1, l) ∈ Ref
rgn
j w′, and because Ref

rgn
j w′ ⊆ JSValIOrgn

j ,Ref
rgn
j

w′ by the definition of JSValµ,ρ, because of already
proven Axiom A-PURE and Lemma 49. The former follows by definition of σ′r :n−1 w

′, by the fact that σ′r = σr [l 7→ e],
σr :n w and (n, e) ∈ JSValIOrgn

j ,Ref
rgn
j

w, by monotonicity and uniformity and by the fact that H =n+1 H
rgn
j .

• A-DEREF: Suppose (n, e) ∈ JSValIOrgn
j ,Ref

rgn
j

w. Then (n, deref e) ∈ IO
rgn
j JSValIOrgn

j ,Ref
rgn
j

w. First, it’s clear that
deref e 6∈ Val . Second, take L and H such that w(j) = (L,⊆,⊆, H) and H =n+1 H

rgn
j . Furthermore, take 0 < i ≤ n,

σr :n w, σf and (σr ]σf , deref e)→iA (σ′, e′). Because e is a value, we have that the impure evaluation must start with an
application of rule E-DEREF. This further implies that e = l, i = 1, A = {(l, r)}, e′ = h(l) and σ′ = σr ]σf . By Lemma 52
and monotonicity, we obtain that (n, e) = (n, l) ∈ Ref

rgn
j w, which implies that l ∈ L ⊆ dom(σr). So we can take σ′r = σr

and it is then clear that σ′ = σ′r ] σf and A ⊆ (L ∪ (dom(σ′r) \ dom(σr))) × D. We can take w′ = w and it remains to be
proven that σ′r :n−1 w and (n − 1, σ(l)) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w. The former follows from the fact that σr :n w,
and Lemma 41. The latter follows from σr :n w which implies that (n− 1, σr(l)) ∈ JSValIOrgn

j ,Ref
rgn
j

w, Axiom A-PURE

and Lemma 48.

The next lemma connects Maffeis et al.’s tCap function to our notion of well-scopedness.

Lemma 73. Σ ⊇ tCap(e) for a closed expression e iff ∅; Σ ` e.

Proof. Induction on e.

Next, we need to prove some things about worlds in JΣKIOrgn
j ,Ref

rgn
j

.

Lemma 74. • (k,w) ∈ JΣKIOrgn
j ,Ref

rgn
j

iff w(j) = (L,⊆,⊆, H), H =k+1 H
rgn
j and Σ ⊆ L.

• If tCap(σ(l)) ⊆ Σ for all l ∈ Σ, then there are σr and σ′, w and j such that σ = σr ] σ′, σr :k w for all k and
w(j) = (Σ,⊆,⊆, Hrgn

j ).

Proof. • (k,w) ∈ JΣKIOrgn
j ,Ref

rgn
j

iff for all l ∈ Σ, we have that (k, l) ∈ Ref
rgn
j w. The latter is true iff w(j) = (L,⊆,⊆, H),

H =k+1 H
rgn
j and l ∈ L.

• Take j = 1, w = (1, ι
rgn
j ). We take σr = σ|Σ and σ′ such that σ = σr ]σ′. Take k arbitrary. To prove that σr :k w, we need

to show that (k, σr) ∈ Hrgn
j Σ (roll w), i.e. that for an arbitrary l ∈ Σ k = 0 or (k−1, σ(l)) ∈ JSValIOrgn

j ,Ref
rgn
j

w. We know
that tCap(σ(l)) ⊆ Σ, so Lemma 73 tells us that ∅; Σ ` σ(l). The Fundamental Theorem (Theorem 3) with Lemma 72 then
tells us that this implies (k− 1, σ(l)) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w because (k− 1, w) ∈ JΣKIOrgn
j ,Ref

rgn
j

(see above). But
we know that σ(l) ∈ Val for all l, so the definitions of E[t] and IO

rgn
j give us that (k, σ(l)) ∈ JSValIOrgn

j ,Ref
rgn
j

w.



Lemma 4. If auth(σ, e) = L× D, then memBound(σ, e, L).

Proof. By definition of auth, we have that for all l ∈ L, tCap(σ(l)) ⊆ L. Lemma 74 then gives us σr, σ′, w and
j such that σ = σr ] σ′, σr :n w for all n and w(j) = (L,⊆,⊆, Hrgn

j ). It remains to prove that for an arbitrary n,
(n, e) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w. By definition of auth, we have that tCap(e) × D ⊆ L × D = auth(σ, e). Now combine
Lemma 73, the Fundamental Theorem of logical relations (Theorem 3), Lemma 74 and Lemma 72.

Lemma 5. If memBound(σ1, e1, L) and (σ1, e1)→iA (σ2, e2), then for L′ def
= L ∪ (dom(σ2) \ dom(σ1)), we have that

• A ⊆ L′ × D and σ2|dom(σ1)\L = σ1|dom(σ1)\L.
• memBound(σ2, e2, L

′) with

Proof. We prove the two statements together. Take an arbitrary n. We apply the definition of memBound for n + i, to obtain
for w = (1, ι

rgn
j,L ) and j = 1 that (n + i, e1) ∈ E[IOmem

j JSValIOmem
j ,Refmem

j
] w and a σf and σ1,r such that σ1 = σ1,r ] σf and

σ1,r :n+i w and . Lemma 71 for w′ = w gives us a σ2,r such that σ2 = σ2,r ]σf , A ⊆ L′×D and gives us a w′ wpub w such that
w′(j) = (L′,⊆,⊆, Hrgn

j ), σ2,r :k w
′ and (n, e2) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w′. Note that it’s clear that dom(σ2,r) \ dom(σ1,r) =

dom(σ2) \dom(σ1) from the equations for σ1 and σ2 above. Also, the facts that σ2,r :k w
′, w′(j) = (L′,⊆,⊆, Hrgn

j ), σ1,r :n+i w,
w = (1, ι

rgn
j,L ) and w′ wpub w imply that L = dom(σ1,r), L′ = dom(σ2,r) and w′ = (1, ι

rgn
j,L′ ). Because we started with an arbitrary

n, we can conclude that memBound(σ2, e2, L
′).

Lemma 6. If (σ, e)→∗A (σ′, v), A 6 . L× D and memBound(σ, e′, L), then still memBound(σ′, e′, L).

Proof. Take an arbitrary n. memBound(σ, e′, L) gives us for j = 1 and w = (1, ι
rgn
j,L ) that (n, e′) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w

and σf , σr such that σr :n w.
We prove that memBound(σ′, e′, L). We directly have that (n, e′) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w. It remains to produce σ′f
and σ′r such that σ′ = σ′r ] σ′f and σ′r :n w.

It follows from A 6 . L×D, that {l | (l,w) ∈ acc(τ(σ, e))}∩L = ∅ and as a consequence σ|L = σ′|L and (dom(σ′)\dom(σ))∩L = ∅.
From σr :n w, we get that dom(σr) = L, so that we can take σ′r = σr and some σ′f such that σ′ = σ′r ] σ′f . We then already
have that σ′r :n w.

Lemma 7. Suppose memBound(σ, e1, L1) and memBound(σ, e2, L2). Suppose that (σ, e1) →∗A (σ′, v) and A . L2 × D. Define L′ def
=

L1 ∪ L2 ∪ (dom(σ′) \ dom(σ)). Then memBound(σ′, e2, L′).

Proof. From memBound(σ, e1, L1), we get for j = 1, w1 = (1, ι
rgn
j,L1

) and i the number of steps in the evaluation (σ, e1)→∗ (σ′, v),
that (n+ i, e1) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w1 and some σ1,f and σ1,r such that σ = σ1,r ] σ1,f and σ1,r :n+i w1.

Lemma 71 then tells us for w′ = w1 and L = L1 that there exist σ′1,r and w′1 w
pub w1 such that σ′ = σ′1,r]σ1,f , w′1(j) = (L1∪

(dom(σ′r) \dom(σr)),⊆,⊆, Hrgn
j ), σ′1,r :n w′1 and (n, v) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w′1. Write L′1 = L1 ∪ (dom(σ′1,r) \dom(σ1,r)).
Because σ1,r :n+i w1, we have that dom(σ1,r) = L1. From w′1(j) = (L′1,⊆,⊆, H

rgn
j ) and σ′1,r :n w′1, we can then deduce that

w′1 = (1, ι
rgn
j,L′1

).
From memBound(σ, e2, L2), we get for j = 1, w2 = (1, ι

rgn
j,L2

) that (n, e2) ∈ E[IO
rgn
j JSValIOrgn

j ,Ref
rgn
j

] w2 and some σ2,f and
σ2,r such that σ = σ2,r ] σ2,f and σ2,r :n w2. Note that it follows that dom(σ2,r) = L2.

Now take w = (1, ι
rgn
j,L′ ). It’s clear that w w w2, so we get from uniformity that (n, e2) ∈ E[IO

rgn
j JSValIOrgn

j ,Ref
rgn
j

] w. Now
take L′2 = L2 \ L′1, σr = σ′1,r ∪ σ1,f |L′2

and σf = σ|dom(σ)\L. It follows from σ′ = σ′1,r ] σ1,f , σ = σ1,r ] σ1,f , the definition of
L and the domains of σ1,r and σ1,f that σ′ = σr ] σf . It remains to prove that σr :n w.

This means that we have to show that σr ∈ Hrgn
j L′ (roll w), i.e. that for all l ∈ L′, (n, σr(l)) ∈ JSValIOrgn

j ,Ref
rgn
j

w. So
take l ∈ L′, and distinguish the following two cases:
• l ∈ L′1: then we know that σr(l) = σ′1,r(l), σ′1,r :n w′1 and w w w′1, so that (n, σr(l)) ∈ JSValIOrgn

j ,Ref
rgn
j

w follows by
monotonicity.

• l ∈ L′2: here we know that σr(l) = σ1,f (l) = σ(l) = σ2,r(l), σ2,r :n w2 and w w w2, so that (n, σr(l)) ∈ JSValIOrgn
j ,Ref

rgn
j

w

follows by monotonicity.
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