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Abstract

It is well known that one can use an adaptation of the inverse-limit con-
struction to solve recursive equations in the category of complete ultrametric
spaces. We show that this construction generalizes to a large class of categories
with metric-space structure on each set of morphisms: the exact nature of the
objects is less important. In particular, the construction immediately applies
to categories where the objects are ultrametric spaces with ‘extra structure’,
and where the morphisms preserve this extra structure. The generalization is
inspired by classical domain-theoretic work by Smyth and Plotkin.

For many of the categories we consider, there is a natural subcategory in
which each set of morphisms is required to be a compact metric space. Our
setting allows for a proof that such a subcategory always inherits solutions of
recursive equations from the full category.

As another application, we present a construction that relates solutions of
generalized domain equations in the sense of Smyth and Plotkin to solutions
of equations in our class of categories.

Our primary motivation for solving generalized recursive metric-space equa-
tions comes from recent and ongoing work on Kripke-style models in which
the sets of worlds must be recursively defined. We show a series of examples
motivated by this line of work.

Keywords: Metric space, fixed point, recursive equation.

1 Introduction

Smyth and Plotkin [23] showed that in the classical inverse-limit construction of
solutions to recursive domain equations, what matters is not that the objects of the
category under consideration are domains, but that the sets of morphisms between
objects are domains. In this article we show that, in the case of ultrametric spaces,
the standard construction of solutions to recursive metric-space equations [6, 11] can
be similarly generalized to a large class of categories with metric-space structure on
each set of morphisms. The generalization in particular allows one to solve recursive
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equations in categories where the objects are ultrametric spaces with some form of
additional structure, and where the morphisms preserve this additional structure.
Some applications from recent and ongoing work in semantics are shown in Section 7.

For many of the categories we consider, there is a natural variant, indeed a
subcategory, in which each set of morphisms is required to be a compact metric
space [3, 10]. Our setting allows for a general proof that such a subcategory inherits
solutions of recursive equations from the full category. Otherwise put, the problem
of solving recursive equations in such a ‘locally compact’ subcategory is, in a certain
sense, reduced to the similar problem for the full category. The fact that one can
solve recursive equations in a category of compact ultrametric spaces [10] arises as a
particular instance. (For various applications of compact metric spaces in semantics,
see the references in the introduction to van Breugel and Warmerdam [10].)

As another application, we present a construction that relates solutions of gener-
alized domain equations in the sense of Smyth and Plotkin to solutions of equations
in our class of categories. This construction generalizes and improves an earlier one
due to Baier and Majster-Cederbaum [7].

The key to achieving the right level of generality in the results lies in inspiration
from enriched category theory. We shall not refer to general enriched category
theory below, but rather present the necessary definitions in terms of metric spaces.
The basic idea is, however, that given a cartesian category V (or more generally,
a monoidal category), one considers so-called V -categories, in which the ‘hom-sets’
are in fact objects of V instead of sets, and where the ‘composition functions’ are
morphisms in V .

Other related work. The idea of considering categories with metric spaces as
hom-sets has been used in earlier work [10, 20]. Rutten and Turi [20] show ex-
istence and uniqueness of fixed points in a particular category of (not necessarily
ultrametric) spaces, but with a proof where parts are more general: some aspects
of our Lemma 3.2 are covered. In other work, van Breugel and Warmerdam [10]
show uniqueness for a more general notion of categories than ours, again not re-
quiring ultrametricity. Neither of these articles contain a theorem about existence
of fixed points for a general class of ‘metric-enriched’ categories (as in our Theo-
rem 3.1), nor a general theorem about fixed points in locally compact subcategories
(Theorem 4.1).

Alessi et al. [4] consider solutions to non-functorial recursive equations in cer-
tain categories of metric spaces, i.e., recursive equations whose solutions cannot
necessarily be described as fixed-points of functors. In contrast, we only consider
functorial recursive equations in this article.

Wagner [27] gives a comprehensive account of a generalized inverse limit con-
struction that in particular works for categories of metric spaces and categories of
domains. Our generalization is in a different direction, namely to categories where
the hom-sets are metric spaces. We do not know whether there is a common gener-
alization of our work and Wagner’s work. In this article we do not aim for maximal
generality, but rather for a level of generality that seems right for applications in
the style of those in Section 7.

A more detailed discussion of the level of generality of our results, and of their
relation to results in the literature, can be found in Section 9.

2 Ultrametric spaces

We first recall some basic definitions and properties about metric spaces [22].
A metric space (X, d) is 1-bounded if d(x, y) ≤ 1 for all x and y in X. We shall

only work with 1-bounded metric spaces. One advantage of doing so is that one
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can define coproducts and general products of such spaces; alternatively, one could
have allowed infinite distances.

An ultrametric space is a metric space (X, d) that satisfies the ‘ultrametric in-
equality,’

d(x, z) ≤ max(d(x, y), d(y, z)),

and not just the weaker triangle inequality (where one has + instead of max on the
right-hand side). It might be helpful to think of the function d of an ultrametric
space (X, d) not as a measure of (euclidean) distance between elements, but rather
as a measure of the degree of similarity between elements.

A function f : X1 → X2 from a metric space (X1, d1) to a metric space (X2, d2)
is non-expansive if d2(f(x), f(y)) ≤ d1(x, y) for all x and y in X1. Stronger, such a
function f is contractive if there exists c < 1 such that d2(f(x), f(y)) ≤ c · d1(x, y)
for all x and y in X1. Notice that a non-expansive function is (uniformly) continuous
in the metric-space sense and hence preserves limits of convergent sequences.

A metric space is complete if it is Cauchy-complete in the usual sense, i.e., if
every Cauchy sequence in the metric space has a limit. By Banach’s fixed-point
theorem, every contractive function from a non-empty, complete metric space to
itself has a unique fixed point.

In the following we only consider complete, 1-bounded ultrametric spaces. As a
canonical example of such a metric space, consider the set Nω of infinite sequences
of natural numbers, with distance function d given by:

d(x, y) =

{
2−max{n∈ω|∀m≤n. x(m)=y(m)} if x 6= y
0 if x = y.

To avoid confusion, call the elements of Nω strings instead of sequences. Here the
ultrametric inequality simply states that if x and y agree on the first n ‘characters’
and y and z also agree on the first n characters, then x and z agree on the first
n characters. A Cauchy sequence in Nω is a sequence of strings (xn)n∈ω in which
the individual characters ‘stabilize’: for every m there exists N ∈ ω such that
xn1

(m) = xn2
(m) for all n1, n2 ≥ N .

Let CBUlt be the category with complete, 1-bounded ultrametric spaces as
objects and non-expansive functions as morphisms [6]. This category is carte-
sian closed [22]; here one needs the ultrametric inequality. The terminal object
is the one-point metric space. Binary products are defined in the natural way:
(X1, d1)× (X2, d2) = (X1 ×X2, dX1×X2

) where

dX1×X2
((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2)) .

The exponential (X1, d1) → (X2, d2), sometimes written (X2, d2)(X1,d1), has the
set of non-expansive functions from (X1, d1) to (X2, d2) as the underlying set, and
the ‘sup’-metric dX1→X2

as distance function: dX1→X2
(f, g) = sup{d2(f(x), g(x)) |

x ∈ X1}. For both products and exponentials, limits are pointwise. It follows from
the cartesian closed structure that the function (X3, d3)(X2,d2) × (X2, d2)(X1,d1) →
(X3, d3)(X1,d1) given by composition is non-expansive; this fact is needed in several
places below.

Moreover, the category CBUlt is complete [19]: general products are defined in
the same way as binary ones, except that the distance function on an infinite product
space is in general given by a supremum instead of a maximum. An equalizer of
two parallel arrows f, g : X −→ Y is given by the subset {x ∈ X | f(x) = g(x) } of
X, with the metric inherited from X.

CBUlt is also cocomplete. The coproduct of a family (Xj , dj)j∈J of CBUlt-
objects is (

∐
j∈J Xj , d) where

∐
j∈J Xj is the disjoint union (coproduct in Set) of
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the underlying sets Xj , and where the distance function d is given by

d(x, y) =

{
dj(x, y), if x ∈ Xj and y ∈ Xj for some j ∈ J ,

1, otherwise.

Coequalizers are more complicated to describe, and we shall not need them in this
article.

It is a trivial fact, but for our purposes a rather annoying one, that Banach’s
fixed-point theorem only holds for non-empty metric spaces. To avoid tedious spe-
cial cases below, we shall therefore not work with the category CBUlt, but rather
with the full subcategory CBUltne of non-empty, complete, 1-bounded ultrametric
spaces. This category is also cartesian closed: since it is a full subcategory of CBUlt,
it suffices to verify that CBUlt-products of non-empty metric spaces are non-empty,
and similarly for exponentials. The category CBUltne is not complete, and in fact
it does not even have all limits of ωop-chains. We return to that point in Section 5.

In some settings it is useful to work with compact metric spaces [3, 10]. Recall
that a metric space is compact in the usual topological sense if and only if is both
complete and totally bounded [22]: for every ε > 0, there exist finitely many points
x1, . . . , xn in the space such that the open balls with centers xi and radius ε cover
the space. As a canonical example of a compact, 1-bounded ultrametric space,
consider the set {0, 1}ω of infinite sequences of zeros or ones, with distance function
given as in the example with sequences of natural numbers above. (Any finite set
other than {0, 1} would also work.)

Let KBUlt be the full subcategory of CBUlt consisting of compact, 1-bounded
ultrametric spaces, and let KBUltne be the full subcategory of non-empty such
spaces. Both of these categories are cartesian closed [22] and have finite coproducts.
KBUlt has all finite limits, but neither KBUlt nor KBUltne is complete. We return
to that point in Section 4.

2.1 M-categories

Recall from the introduction that the basic idea of this article is to generalize a
theorem about a particular category of metric spaces, here CBUltne, to a theorem
about all ‘CBUltne-categories’ where the hom-sets are in fact appropriate metric
spaces. In analogy with the O-categories of Smyth and Plotkin (O for ‘order’ or
‘ordered’) we call such categories M -categories.

Definition 2.1. An M -category is a category C where each hom-set C(A,B) is
equipped with a distance function turning it into a non-empty, complete, 1-bounded
ultrametric space, and where each composition function ◦ : C(B,C) × C(A,B) →
C(A,C) is non-expansive with respect to these metrics. (Here the domain of such a
composition function is given the product metric.)

In other words, an M -category is a category where each hom-set is equipped with
a metric which turns it into an object in CBUltne; furthermore, each composition
function must be a morphism in CBUltne.

A simple example of an M -category is CBUltne itself. The distance function on
each hom-set CBUltne(A,B) is defined as for the exponential BA in CBUltne, i.e.,
d(f, g) = sup{dB(f(x), g(x)) | x ∈ A}. The fact that the composition functions
are non-expansive, as observed in Section 2, depends on the ultrametric inequality.
Since CBUltne is itself an M -category the results below can be used to solve standard
recursive equations over ultrametric spaces.

Let C be an M -category. A functor F : Cop × C → C is locally non-expansive if
d(F (f, g), F (f ′, g′)) ≤ max(d(f, f ′), d(g, g′)) for all f ,f ′, g, and g′ with appropriate
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domains and codomains. In other words, such an F is locally non-expansive if each
component

FA,A′,B,B′ : C(A′, A)× C(B,B′)→ C(F (A,B), F (A′, B′))

is a morphism in CBUltne. Stronger, F is locally contractive if there exists some
c < 1 such that d(F (f, g), F (f ′, g′)) ≤ c·max(d(f, f ′), d(g, g′)) for all f ,f ′, g, and g′.
Notice that c is global in the sense that it is a common ‘contractiveness factor’ for all
components of the functor: each component FA,A′,B,B′ is contractive with factor c.

In the particular categories we consider in the examples in Section 7, many
‘natural’ functors such as those given by binary products or coproducts are only
locally non-expansive, not locally contractive. On each of these categories C there
is, however, an appropriate functor 1

2 : C → C which multiplies all distances in
hom-sets by the factor 1/2. Composing a locally non-expansive functor with 1

2 then
yields a locally contractive functor.

3 Solving recursive equations

Let C be an M -category. We consider mixed-variance functors F : Cop × C → C on
C and recursive equations of the form

X ∼= F (X,X) .

In other words, given such an F we seek a fixed point of F up to isomorphism.
Covariant endofunctors on C are a special case of mixed-variance functors. It

would in some sense suffice to study covariant functors: if C is an M -category,
then so are Cop (with the same metric on each hom-set as in C) and Cop × C (with
the product metric on each hom-set), and it is well-known how to construct a
‘symmetric’ endofunctor on Cop × C from a functor such as F above. We explicitly
study mixed-variance functors since the proof of the existence theorem below would
in any case involve an M -category of the form Cop × C. As a benefit we directly
obtain theorems of the form useful in applications. For example, for the existence
theorem we are interested in completeness conditions on C, not on Cop × C.

3.1 Uniqueness of solutions

The results below depend on the assumption that the given functor F is locally
contractive. One easy consequence of this assumption is that, unlike in the domain-
theoretic setting [23], there is at most one fixed point of F up to isomorphism.

Theorem 3.1. Let F : Cop × C → C be a locally contractive functor on an M -
category C, and assume that i : F (A,A) → A is an isomorphism. Then the pair
(i, i−1) is a bifree algebra for F in the following sense: for all objects B of C and
all morphisms f : F (B,B) → B and g : B → F (B,B), there exists a unique
pair of morphisms (k : B → A, h : A → B) such that h ◦ i = f ◦ F (k, h) and
i−1 ◦ k = F (h, k) ◦ g:

F (A,A)
F (k,h) //

i

��

F (B,B)

f

��

F (h,k)
oo

A
h //_______

i−1

OO

B
k

oo_ _ _ _ _ _ _

g

OO

In particular, A is the unique fixed point of F up to isomorphism.
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Proof. First we observe that there is an obvious way to define a category of ‘bialge-
bras’ for F such that a bifree algebra, as defined above, is an initial object in this
category. It follows that any two bifree algebras are isomorphic as bialgebras, hence
that their underlying C-objects are isomorphic. So once we have shown that every
fixed point of F is a bifree algebra, it follows that there is at most one fixed point
of F up to isomorphism.

Let now i : F (A,A) → A be an isomorphism and assume that F is locally
contractive with factor c < 1; we show that (i, i−1) is a bifree algebra. Let
f : F (B,B) → B and g : B → F (B,B) be given. Recall that hom-sets in C
are equipped with metrics that turn them into objects of CBUltne, and let X be
the CBUltne-object C(B,A) × C(A,B). We obtain the desired pair of morphisms
(k : B → A, h : A → B) as the unique fixed point of the following contractive
operator on X:

D(k, h) = (i ◦ F (h, k) ◦ g, f ◦ F (k, h) ◦ i−1) .

First we verify that this operator is indeed contractive. Given (k1, h1) and (k2, h2)
in X,

d(D(k1, h1), D(k2, h2)) = max(d(i ◦ F (h1, k1) ◦ g, i ◦ F (h2, k2) ◦ g),

d(f ◦ F (k1, h1) ◦ i−1, f ◦ F (k2, h2) ◦ i−1) ,

by the definition of the product metric. But the composition functions of an M -
category are required to be non-expansive: therefore,

d(i ◦ F (h1, k1) ◦ g, i ◦ F (h2, k2) ◦ g) ≤ max(d(i, i), d(F (h1, k1), F (h2, k2)), d(g, g))

= d(F (h1, k1), F (h2, k2))

≤ c ·max(d(h1, h2), d(k1, k2))

= c · d((k1, h1), (k2, h2)) ,

and similarly,

d(f ◦ F (k1, h1) ◦ i−1, f ◦ F (k2, h2) ◦ i−1) ≤ d(F (k1, h1), F (k2, h2))

≤ c ·max(d(h1, h2), d(k1, k2))

= c · d((k1, h1), (k2, h2)).

Therefore, d(D(k1, h1), D(k2, h2)) ≤ c · d((k1, h1), (k2, h2)), and D is locally con-
tractive with factor c.

Since hom-sets of C are non-empty complete metric spaces, the operator D has
a unique fixed point by Banach’s theorem. It only remains to show that a pair of
morphisms (k : B → A, h : A → B) is a fixed point of D if and only if it makes
the diagram in the statement of the theorem commute. But this is easy since i is
an isomorphism: k = i ◦ F (h, k) ◦ g holds if and only if i−1 ◦ k = F (h, k) ◦ g holds,
and similarly, h = f ◦F (k, h) ◦ i−1 holds if and only if h ◦ i = f ◦F (k, h) holds. We
conclude that (i, i−1) is a bifree algebra for F .

In particular, if F is covariant and i : FA → A is an isomorphism, then i is
an initial F -algebra and i−1 is a final F -coalgebra. As an example, consider the
M -category CBUltne and take F to be the covariant functor 1

2 : CBUltne → CBUltne
which given a metric space yields the same metric space but with all distances
multiplied by 1/2, and which is the identity on morphisms. Evidently, the one-
point metric space is a fixed-point of F . By the theorem above it is also an initial
algebra of F : this fact is essentially Banach’s fixed-point theorem for functions that
are contractive with coefficient 1/2.
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3.2 Existence of solutions

In the existence theorem for fixed points of contractive functors, the M -category
C will be assumed to satisfy a certain completeness condition involving limits of
ωop-chains. Since there are different M -categories satisfying more or less general
variants of this condition, it is convenient to present the existence theorem in a form
that lists a number of successively weaker conditions.

One sufficient condition is that C has all limits of ωop-chains, i.e., all limits of
diagrams of the form

A0 A1
g0oo . . .g1oo An

gn−1oo . . . .gnoo

A weaker condition is that C has all limits of ωop-chains of split epis, i.e., all limits
of diagrams as above, but where each gn has a right inverse. This perhaps rather
odd-looking condition is the one that best matches the category CBUltne itself.

A still weaker condition is the following. An increasing Cauchy tower is a
diagram

A0

f0 //
A1

g0
oo

f1 // . . .
g1
oo

fn−1 //
An

gn−1

oo
fn // . . .
gn
oo

where gn ◦ fn = idAn
for all n (so each gn is split epi, as above), and where

limn→∞ d(fn ◦ gn, idAn+1
) = 0. Notice that this definition only makes sense for

M -categories. The M -category C has inverse limits of increasing Cauchy towers if
for every such diagram, the sub-diagram containing only the arrows gn has a limit.
We return to a more detailed treatment of general Cauchy towers and their limits
in Section 6.

Lemma 3.2. Let (An, fn, gn)n∈ω be an increasing Cauchy tower as above, and let
(A, jn)n∈ω be a cone from A to the ωop-chain (An, gn)n∈ω:

A
j0

}}||||||||
j1

��

jn

((QQQQQQQQQQQQQQQ

... ...

A0 A1g0
oo . . .

g1
oo Angn−1

oo . . . .
gn
oo

The following two conditions are equivalent: (1) The cone (An, jn)n∈ω is limiting.
(2) There exist morphisms in : An → A such that (A, in)n∈ω is a cocone from the
ω-chain (An, fn)n∈ω to A,

A==
i0

|||||||| OO

i1

hh
in

QQQQQQQQQQQQQQQ

... ...

A0
f0

// A1
f1

// . . .
fn−1

// An
fn

// . . . ,

and such that jn ◦ in = idAn
for all n and limn→∞ d(in ◦ jn, idA) = 0.

Proof. (1) implies (2): Assume that the cone above is limiting. For each m we must
define a morphism im : Am → A into the object A of the limiting cone. We do so
by defining a cone from Am to (An, gn)n∈ω,

Am
hm
0

}}{{{{{{{{
hm
1

��

hm
n

((QQQQQQQQQQQQQQQ

... ...

A0 A1g0
oo . . .

g1
oo Angn−1

oo . . . ,
gn
oo
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where

hmn =


idAm

, if n = m,

gn ◦ gn+1 ◦ · · · ◦ gm−1, if n < m,

fn−1 ◦ fn−2 ◦ · · · ◦ fm, if n > m.

It is easy to see that these morphisms indeed constitute a cone: in the case n > m
one uses that gn−1 ◦fn−1 = id . Hence there exists a unique morphism im : Am → A
such that jn ◦ im = hmn for all n. In particular, jm ◦ im = hmm = idAm

, as required
in the statement of the lemma.

We must also show that im+1◦fm = im. By the defining property of im, it suffices
to show that im+1◦fm is also a cone morphism in the sense that jn◦(im+1◦fm) = hmn
for all n. And indeed, jn ◦ im+1 ◦ fm = hm+1

n ◦ fm = hmn by the defining property
of im+1 and the definition of hm+1

n .
It remains to show that limn→∞ d(in ◦ jn, idA) = 0, or equivalently, that

limn→∞ in ◦ jn = idA in the metric space C(A,A). To do so, we first show that
(in ◦ jn)n∈ω is a Cauchy sequence. Given ε > 0, choose N large enough that
d(fn ◦ gn, idAn+1) ≤ ε for all n ≥ N . Then for all n ≥ N ,

d(in ◦ jn, in+1 ◦ jn+1) = d((in+1 ◦ fn) ◦ (gn ◦ jn+1), in+1 ◦ jn+1)

= d(in+1 ◦ (fn ◦ gn) ◦ jn+1, in+1 ◦ idAn+1 ◦ jn+1)

≤ max(d(in+1, in+1), d(fn ◦ gn, idAn+1), d(jn+1, jn+1))

= d(fn ◦ gn, idAn+1)

≤ ε ,

where we have used that the composition functions of an M -category are required
to be non-expansive. From the ultrametric inequality one now easily obtains that
d(in ◦ jn, im ◦ jm) ≤ ε for all n,m ≥ N . Hence (in ◦ jn)n∈ω is a Cauchy sequence.

Since C(A,A) is a complete metric space, the Cauchy sequence (in ◦ jn)n∈ω has
a limit limn→∞ in ◦ jn. It remains to show that this limit is in fact the identity
morphism on A. To do so, we show that limn→∞ in ◦ jn is a cone morphism from
the limiting cone (A, jm)m∈ω to itself: for all m,

jm ◦
(

lim
n→∞

in ◦ jn
)

= jm ◦
(

lim
n≥m

in ◦ jn
)

= lim
n≥m

(jm ◦ in ◦ jn) (‘◦’ non-expansive)

= lim
n≥m

(hnm ◦ jn) (defining property of in)

= lim
n≥m

jm (by definition of hnm)

= jm .

In the second line we have again used that the composition functions of an M -
category are non-expansive, hence continuous, and the fact that continuous func-
tions preserve (metric-space) limits. We conclude that limn→∞ in ◦ jn is a cone
morphism from a limiting cone to itself, and therefore that limn→∞ in ◦ jn = idA.

(2) implies (1): Now assume that we have a commuting diagram

A==
i0

|||||||| OO

i1

hh
in

QQQQQQQQQQQQQQQ

... ...

A0
f0

// A1
f1

// . . .
fn−1

// An
fn

// . . . ,

such that jn ◦ in = idAn
for all n and limn→∞ d(in ◦ jn, idA) = 0. We must show

that (A, jn)n∈ω is a limiting cone for the given ωop-chain. So let (B, bn)n∈ω be
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another cone:

B
b0

}}||||||||
b1
��

bn

((QQQQQQQQQQQQQQQ

... ...

A0 A1g0
oo . . .

g1
oo Angn−1

oo . . . .
gn
oo

We aim to define a mediating morphism q : B → A as the limit of the sequence
(in ◦ bn)n∈ω. We first show that this is a Cauchy sequence. The argument is
completely similar to the one for the sequence (in ◦ jn)n∈ω above: given ε > 0,
choose N large enough that d(fn ◦ gn, idAn+1

) ≤ ε for all n ≥ N . Then for all
n ≥ N ,

d(in ◦ bn, in+1 ◦ bn+1) = d((in+1 ◦ fn) ◦ (gn ◦ bn+1), in+1 ◦ bn+1)

≤ d(fn ◦ gn, idAn+1
)

≤ ε ,

and it follows that (in ◦ jn)n∈ω is a Cauchy sequence.
Since the metric space C(B,A) is complete, the Cauchy sequence above has a

limit: define q = limn→∞ in ◦ bn. We must show that q is the unique mediating
morphism from the cone (B, bm)m∈ω to the cone (A, jm)m∈ω. Again, the argument
is as above: first,

jm ◦ q = jm ◦
(

lim
n→∞

in ◦ bn
)

= jm ◦
(

lim
n≥m

in ◦ bn
)

= lim
n≥m

(jm ◦ in ◦ bn)

= lim
n≥m

(hnm ◦ bn)

= lim
n≥m

bm

= bm ,

so q is indeed a cone morphism. Second, given another such cone morphism r :
B → A,

r = idA ◦ r =
(

lim
n→∞

in ◦ jn
)
◦ r = lim

n→∞
(in ◦ jn ◦ r) = lim

n→∞
(in ◦ bn) = q ,

so q is unique. We conclude that (A, jn)n∈ω is a limiting cone for the ωop-chain
(An, gn)n∈ω.

Although not strictly necessary for our purposes, it is natural to ask whether
the cocone described in Condition 2 of the lemma must be colimiting. We now show
that this is the case by exploiting the generality of M -categories: the fact that Cop
is also an M -category allows for a simple proof of a limit-colimit coincidence (cf.
Smyth and Plotkin [23]).

Proposition 3.3. Let C be an M -category, let (An, fn, gn)n∈ω be an increasing
Cauchy tower in C (as above), and let A be an object of C. The following three
conditions are equivalent:

1. A is a limit of the ωop-chain (An, gn)n∈ω.

2. A is a colimit of the ω-chain (An, fn)n∈ω.

3. There exist a cone (jn)n∈ω from A to (An, gn)n∈ω and a cocone (in)n∈ω from
(An, fn)n∈ω to A satisfying that jn ◦ in = idAn

for all n and in addition that
limn→∞ d(in ◦ jn, idA) = 0.

9



Furthermore, in any pair consisting of a cone and a cocone that together satisfy the
requirements in the third condition, the cone is limiting and the cocone is colimiting.

Proof. Lemma 3.2 shows that (1) and (3) are equivalent and that any cone (jn)n∈ω
as in the third condition is limiting. The lemma also shows that these facts hold for
the increasing Cauchy tower (An, gn, fn)n∈ω in the M -category Cop. But by duality,
this means exactly that (2) and (3) are equivalent and that any cocone (in)n∈ω as
in the third condition is colimiting.

We now turn to the main result.

Theorem 3.4. Assume that the M -category C satisfies any of the following (suc-
cessively weaker) conditions:

1. C is complete.

2. C has a terminal object and limits of ωop-chains.

3. C has a terminal object and limits of ωop-chains of split epis.

4. C has a terminal object and inverse limits of increasing Cauchy towers.

Then every locally contractive functor F : Cop × C → C on C has a unique fixed
point up to isomorphism.

Proof. Uniqueness follows from the previous theorem, so it is enough to show that
there exists some A such that F (A,A) ∼= A. Assume that C satisfies Condition 4
above and let 1 be a terminal object of C. By induction on n we construct a diagram

A0

f0 //
A1

g0
oo

f1 // . . .
g1
oo

fn−1 //
An

gn−1

oo
fn // . . .
gn
oo

as follows: A0 = 1 and An+1 = F (An, An) for n > 0. We take g0 to be the unique
morphism from A1 to 1 and f0 to be an arbitrary morphism in the other direction;
recall that all hom-sets in an M -category are non-empty. Finally, fn+1 = F (gn, fn)
and gn+1 = F (fn, gn) for n > 0.

We now show by induction on n that this diagram is an increasing Cauchy tower.
More specifically, let c < 1 be a contractiveness factor of F . Then, for all n:

1. gn ◦ fn = idAn

2. d(fn ◦ gn, idAn+1
) ≤ cn.

For n = 0, Part 1 follows from the fact that g0◦f0 must be the identity morphism
on the terminal object A0. Also, all distances in the spaces we consider are at most
c0 = 1, so Part 2 holds trivially.

As for the inductive case,

gn+1 ◦ fn+1 = F (fn, gn) ◦ F (gn, fn)

= F (gn ◦ fn, gn ◦ fn)

= F (idAn
, idAn

) (ind. hyp.)

= idAn+1
,

and furthermore,

d(fn+1 ◦ gn+1, idAn+2) = d(F (gn, fn) ◦ F (fn, gn), idAn+2)

= d(F (fn ◦ gn, fn ◦ gn), idAn+2)

= d(F (fn ◦ gn, fn ◦ gn), F (idAn+1 , idAn+1))

≤ c ·max(d(fn ◦ gn, idAn+1), d(fn ◦ gn, idAn+1 , ))

≤ c · cn (ind. hyp.)

= cn+1 ,
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so both parts hold. We conclude that the diagram above is indeed an increasing
Cauchy tower.

By assumption on C there exists an inverse limit of this Cauchy tower, i.e., a
limiting cone

A
j0

}}||||||||
j1

��

jn

((QQQQQQQQQQQQQQQ

... ...

A0 A1g0
oo . . .

g1
oo Angn−1

oo . . . .
gn
oo

By Lemma 3.2 there exist morphisms in : An → A such that (A, in)n∈ω is a cocone
from the ω-chain (An, fn)n∈ω to A, and such that jn ◦ in = idAn

for all n and
limn→∞ d(in ◦ jn, idA) = 0. In particular we have a diagram

A

j0

~~}}}}}}}}}}}}}}}
>>

i0

}}}}}}}}}}}}}}}

j1

��

jn

((PPPPPPPPPPPPPPPPPPPPPPPPPP

... ...

A0

f0 //
A1

f1 //

i1

OO

g0
oo . . .

g1
oo

fn−1 //
An

gn−1

oo
fn //

in

hhPPPPPPPPPPPPPPPPPPPPPPPPPP . . .
gn

oo

which commutes in the sense that gn ◦ jn+1 = jn and in+1 ◦ fn = in for all n.
Removing the first object of the Cauchy tower (An, fn, gn)n∈ω clearly gives a new
Cauchy tower, and it is easy to see that the collection of arrows in and jn with
n > 0 satisfies Condition 2 of Lemma 3.2 with respect to that Cauchy tower. Hence
by that lemma, A is also a limit of the ωop-chain (An, gn)n>0 that starts from A1.

We now show that F (A,A) is also a limit of the ωop-chain (An, gn)n>0. From
that it follows that F (A,A) ∼= A and we are done. First we apply F to the diagram
above, obtaining a diagram

F (A,A)

j′0

||yyyyyyyyyyyyyyyy
<<

i′0

yyyyyyyyyyyyyyyy

j′1

��

j′n

((QQQQQQQQQQQQQQQQQQQQQQQQQQ

... ...

A1

f ′0 //
A2

f ′1 //

i′1

OO

g′0

oo . . .
g′1

oo
f ′n−1 //

An+1
g′n−1

oo
f ′n //

i′n

hhQQQQQQQQQQQQQQQQQQQQQQQQQQ
. . .

g′n

oo

that commutes in the same sense. Here i′n = F (jn, in) and j′n = F (in, jn), and
similarly for the f ′n and g′n. But by definition of the original Cauchy tower, the
bottom line of the above diagram is exactly that Cauchy tower starting from A1.
Now, by functoriality we have j′n ◦ i′n = F (in, jn) ◦ F (jn, in) = F (jn ◦ in, jn ◦ in) =
F (id , id) = id for each n, and furthermore,

lim
n→∞

d(i′n ◦ j′n idF(A,A)) = lim
n→∞

d(F (jn, in) ◦ F (in, jn), idF(A,A))

= lim
n→∞

d(F (in ◦ jn, in ◦ jn),F (idA, idA))

≤ lim
n→∞

c · d(in ◦ jn, idA)

= c · lim
n→∞

d(in ◦ jn, idA)

= 0 ,

since F is contractive with factor c. Hence the morphisms in the diagram above
satisfy Condition 2 of Lemma 3.2 with respect to the increasing Cauchy tower
starting from A1. By that lemma, F (A,A) is therefore a limit of the ωop-chain
(An, gn)n>0. Since A is also such a limit we conclude that F (A,A) ∼= A.
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By the fact that Cop is also an M -category we additionally obtain a dual version
of Theorem 3.4. For example, if C has an initial object and colimits of ω-chains of
split monos (‘embeddings’), then every locally contractive mixed-variance functor
on C has a unique fixed point up to isomorphism. In the applications we have
considered these dual conditions seem less useful since colimits in the categories
involved are harder to describe than limits.

4 Locally compact subcategories of M-categories

The condition in Theorem 3.4 that involves Cauchy towers is included in order to
accommodate categories where the hom-sets are compact ultrametric spaces. The
simplest example is the full subcategory KBUltne of CBUltne consisting of compact,
non-empty metric spaces. This category does not have all limits of ωop-chains,
not even of those chains where the morphisms are split epi. One can construct
a counterexample as follows: for each n ∈ ω, let An be the set {0, 1, . . . , n − 1}
equipped with the discrete metric. Let fn : An → An+1 be the inclusion and let
gn : An+1 → An be the function that maps n to n − 1 and every other number to
itself. We claim that the ωop-chain (An, gn)n∈ω in KBUltne does not have a limit.
To see this, assume that (A, jn)n∈ω is a limiting cone with jn : A → An for all n.
By the argument in the beginning of the proof of Lemma 3.2 there exist morphisms
in : An → A such that jn ◦ in = idAn

for all n. Since every An can in this way be
embedded in A, we conclude that A contains arbitrarily large discrete subspaces.
But then A cannot be totally bounded: for ε = 1/2 there is no finite set of points
such that the open balls with centers in those points and radius ε cover A. Hence
A is not compact, a contradiction. This argument also works for KBUlt instead of
KBUltne.

The subcategory KBUltne is merely the simplest example of a full, ‘locally com-
pact’ subcategory of an M -category. The setting of M -categories allows for a proof
that such a subcategory always inherits fixed points of functors from the full cate-
gory:

Theorem 4.1. Assume that C is an M -category with a terminal object and limits
of ωop-chains of split epis. Let I be an arbitrary object of C, and let D be the full
subcategory of C consisting of the objects A such that C(I, A) is a compact metric
space. D is an M -category with limits of increasing Cauchy towers, and hence
every locally contractive functor F : Dop × D → D has a unique fixed point up to
isomorphism.

Notice that the theorem refers to functors on D, not on C. There is in general
no guarantee that a functor on C restricts to one on the subcategory D, and hence
formulating a recursive equation by means of a functor on D can require additional
work [3]. In that sense, one might say that it is not exactly the problem of solving
recursive equations which has been reduced to the case for the full category C, but
rather the problem of finding fixed-points of functors.

Proof. First, D is an M -category, being a subcategory of an M -category. Second,
D contains each terminal object 1 of C since C(I, 1) is the one-point metric space
which is clearly compact.

We next show that D has limits of increasing Cauchy towers; it then follows
from Theorem 3.4 that D has fixed points of locally contractive functors. To that
end, let (An, fn, gn)n∈ω be an increasing Cauchy-tower in D (and hence also in C).
Each gn is split epi, so by assumption the ωop-chain (An, gn)n∈ω has a limiting cone
(A, (jn)n∈ω) in C. Since D is a full subcategory, it now suffices to show that the
limit object A belongs to D, i.e., that C(I, A) is compact.
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Here we use the characterization of compactness from Section 2: we already
know that C(I, A) is complete, so it remains to show that C(I, A) is totally bounded.
First, by Lemma 3.2 applied to C and the limiting cone (A, (jn)n∈ω), there exists a
family of morphisms (in : An → A)n∈ω satisfying certain conditions: in particular,
jn ◦ in = idAn

for each n and limn→∞ d(in ◦jn, idA) = 0. Now we show that C(I, A)
is totally bounded. Given ε > 0, choose n large enough that d(in ◦ jn, idA) < ε.
Since C(I, An) is compact, it is totally bounded. Hence there exists a finite set S
of elements of C(I, An) such that for every f ∈ C(I, An) there is an s ∈ S with
d(f, s) < ε. Let T be the finite subset {in ◦ s | s ∈ S} of C(I, A). Now let a
be an arbitrary element of C(I, A). We show that a has distance less than ε to
some element of T ; hence C(I,A) is totally bounded. Indeed, choose s ∈ S such
that d(jn ◦ a, s) < ε. Then by the ultrametric inequality and the assumption that
composition is non-expansive,

d(a, in ◦ s) ≤ max(d(a, in ◦ jn ◦ a), d(in ◦ jn ◦ a, in ◦ s))
≤ max(d(idA, in ◦ jn), d(jn ◦ a, s))
< ε .

Here one obtains KBUltne by taking C = CBUltne and I = 1. In general, for a
monoidal closed C, the tensor unit is an appropriate choice of I. Since we show in
the next section that CBUltne has limits of ωop-chains of split epis, the theorem in
particular gives:

Corollary 4.2 ([10]). Every locally contractive functor from KBUltne
op ×KBUltne

to KBUltne has a unique fixed point up to isomorphism.

Moreover, the proof of the theorem above essentially works by using the hom-
functor C(I,−) : D → KBUltne to reduce the general case to the special case con-
sidered in the corollary.

5 Examples of categories admitting solutions

We now turn to some examples of categories that satisfy the different completeness
requirements in Theorem 3.4. This section thereby illustrates which of the require-
ments in that theorem one might attempt to show given a particular M -category.

5.1 CBUlt∗

Consider first the category CBUlt∗ of pointed, complete, 1-bounded ultrametric
spaces. Objects are pairs (A, x) where A is a complete, 1-bounded ultrametric
space and x is an element of A (a distinguished ‘point’). Morphisms from (A1, x1)
to (A2, x2) are non-expansive maps f from A1 to A2 which ‘preserve the point’, i.e.,
satisfy that f(x1) = x2. We equip the hom-sets of CBUlt∗ with the ‘sup’-metric, as
given by the exponential in CBUlt:

d(f, g) = sup{dA2
(f(x), g(x)) | x ∈ A1} .

Proposition 5.1. CBUlt∗ is a complete M -category.

Proof. First, it is easy to see that CBUlt∗ is an M -category. Each hom-set is non-
empty since it contains the constant function whose value is the distinguished point
of the codomain. The distance functions above clearly turn each hom-set into a
1-bounded ultrametric space; indeed, a sub-space of an exponential in CBUlt. Each
such space is complete since the limit of a sequence of point-preserving functions is
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also point-preserving. The composition functions are non-expansive since they are
restrictions of composition functions from CBUlt.

To see that CBUlt∗ is complete, it is easy to construct products and equalizers
directly (as in CBUlt). More abstractly, CBUlt∗ is the comma category (1 ↓ CBUlt),
and the forgetful functor from this category to CBUlt creates limits [17, Exer-
cise V.1.1].

5.2 CBUltne

We have already observed that the category CBUltne of non-empty, complete,
1-bounded ultrametric spaces is an M -category with distance functions on hom-sets
given as for exponentials. However, unlike CBUlt∗, it is not complete and does not
even have all limits of ωop-chains. To see this, let T be a rooted tree that contains
nodes of arbitrarily large depth but contains no infinite path (by König’s Lemma
such a tree must be infinitely branching.) For each n, let An be the set of nodes of T
of depth n, equipped with the discrete metric. Let gn : An+1 → An map each node
to its parent. Then the ωop-chain (An, gn)n∈ω in CBUltne does not have a limit. In-
deed, a limit in CBUltne would also be a limit in CBUlt. But the limit of (An, gn)n∈ω
in the complete category CBUlt is the set of tuples { (an)n∈ω | ∀n. gn(an+1) = an }
with the product metric; this set is empty since T does not contain any infinite
path, and hence the limit does not belong to CBUltne.

Proposition 5.2. CBUltne is an M -category with limits of ωop-chains of split epis.

Proof. Since CBUltne is a full subcategory of the complete category CBUlt, it suffices
to show that CBUlt-limits of ωop-chains of split epis in CBUltne are non-empty. Let
(An, gn)n∈ω be such an ωop-chain, and let for each n the function fn be a right
inverse of gn. A concrete limit in CBUlt of such a chain is, as mentioned above, the
set of tuples { (an)n∈ω | ∀n. gn(an+1) = an } with the product metric. Now let a0
be an arbitrary element of A0 (which is non-empty by assumption). It is easy to
see that the limit above contains the tuple ((fn−1 ◦ ... ◦ f0)(a0))n∈ω and is therefore
also non-empty.

5.3 CBUlt

The category CBUlt is not an M -category since the set of morphisms from any non-
empty metric space to the empty metric space is empty. Nevertheless, there is an
obvious definition of ‘locally contractive’ for functors on this category, and given a
locally contractive functor F : CBUltop × CBUlt→ CBUlt that restricts to CBUltne,
one can use the main theorem with the category CBUltne to find a fixed point of F .
It is not hard to see that F restricts to CBUltne if and only if F (1, 1) is non-empty
(where 1 is the one-point metric space):

Theorem 5.3. Let F : CBUltop × CBUlt→ CBUlt be a locally contractive functor
satisfying that F (1, 1) 6= ∅. There exists a unique (up to isomorphism) non-empty
A ∈ CBUlt such that F (A,A) ∼= A.

Proof. We show that F restricts to the full subcategory CBUltne: given non-empty
A and B, we must show that F (A,B) is non-empty. Since B is non-empty there
exist morphisms f : A→ 1 and g : 1→ B in CBUlt. Then F (f, g) is a function from
F (1, 1) to F (A,B). Since F (1, 1) is non-empty by assumption, the existence of such
a function implies that F (A,B) is non-empty too. The theorem now immediately
follows from Theorem 3.4 applied to the M -category CBUltne.

Note that uniqueness is only among non-empty metric spaces: a functor F as
in the theorem might furthermore satisfy that F (∅, ∅) = ∅.

14



5.4 PreCBUltne

The examples in Section 7 use the category PreCBUltne of pre-ordered, non-empty,
complete, 1-bounded ultrametric spaces. Objects of this category are pairs (A,≤)
consisting of an object A of CBUltne and a preorder ≤ on the underlying set of
A such that the following condition holds: if (an)n∈ω and (bn)n∈ω are converging
sequences in A with an ≤ bn for all n, then also limn→∞ an ≤ limn→∞ bn. The
morphisms of the category are the non-expansive and monotone functions between
such objects. We equip the hom-sets of PreCBUltne with the usual ‘sup’-metric.

Proposition 5.4. PreCBUltne is an M -category with limits of ωop-chains of split
epis.

Proof. To see that PreCBUltne is an M -category we proceed as in the proof of
Proposition 5.2. The only new thing to show is that if (fn)n∈ω is a converging
sequence of monotone and non-expansive functions between objects (A,≤A) and
(B,≤B) of PreCBUltne, then the limit f is a monotone (as well as non-expansive)
function. But this follows immediately from the requirement above: if a ≤A a′,
then

f(a) = lim
n→∞

fn(a) ≤B lim
n→∞

fn(a′) = f(a′) .

It remains to show that PreCBUltne has limits of ωop-chains of split epis. Let
(An, gn)n∈ω be such a chain. It is easy to verify that the limit is the set of tuples
{ (an)n∈ω | ∀n. gn(an+1) = an } with the product metric and the product preorder,
and that this set is non-empty as in the proof of Proposition 5.2.

5.5 Locally compact subcategories

We have already seen, using Theorem 4.1, that the full subcategory KBUltne of
CBUltne has unique fixed points of locally contractive functors. Similarly, that the-
orem applied to the M -categories CBUlt∗ and PreCBUltne of the previous examples
gives unique fixed points of locally contractive functors on the ‘compact’ variants of
these two categories. Notice that for CBUlt∗, the choice I = 1 in Theorem 4.1 does
not work: one must instead choose I to be the metric space consisting of two points
with distance 1. (CBUlt∗ is not cartesian closed, but it is symmetric monoidal closed
with this I as tensor unit.)

6 An alternative existence theorem

We next consider an alternative existence theorem for solutions of recursive equa-
tions in M -categories. Roughly put, the overall picture is as follows. In Section 3
above we generalized the results of America and Rutten [6] to M -categories; this
was done in the style of Smyth and Plotkin [23]. In this section, we outline a simi-
lar generalization of the results of Alessi et al. [4]. The resulting existence theorem
can, at least informally, be viewed as a closer categorical analogy to Banach’s fixed-
point theorem than the existence theorem in Section 3. In particular it will not
be required that the M -category has a terminal object: any object will suffice to
start the inductive construction of the solution. On the other hand, the M -category
must satisfy a stronger completeness property. We do not know any applications
that depend on these slightly different conditions on the category.

Let C be an arbitrary M -category. In the existence proof in Section 3 we worked
extensively with pairs of morphisms (f, g) such that f : A→ B and g : B → A for
some objects A and B of C and such that g ◦ f = idA. Following Alessi et al. [3]
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we call such pairs embedding-projection pairs.1 The proof essentially takes place in
a category that has such pairs as morphisms; this is made precise in, e.g., America
and Rutten [6]. The alternative approach explored in this section does not depend
on the embedding condition g ◦ f = idA and so works with all pairs of morphisms
with opposite domain and codomain. These pairs were introduced independently
as ε-adjoint pairs in Rutten [19] and as ε-isometries in Alessi et al. [3]. In Alessi
et al. [4] it was shown that the standard existence theorem on non-empty, com-
plete, 1-bounded metric spaces from America and Rutten [6] could be obtained
using ε-adjoint pairs instead of embedding-projection pairs. Here we outline a gen-
eralization of that result to M -categories.

Definition 6.1. The category C≈ has the objects of C and morphisms ι : A → B
that are pairs of morphisms ι = 〈i, j〉 of C such that i : A → B and j : B → A.
Composition of ι1 = 〈i1, j1〉 : A→ B and ι2 = 〈i2, j2〉 : B → C is defined naturally
by ι2 ◦ ι1 = 〈i2 ◦ i1, j1 ◦ j2〉 : A → C. The identity morphism on the object A is
〈idA, idA〉.

We immediately remark that two objects are isomorphic in C if and only if they
are isomorphic in C≈ and hence we shall purposely blur the distinction. We may
’flip’ any morphism ι = 〈i, j〉 : A → B by swapping the components to obtain a
morphism ι = 〈j, i〉 : B → A.

Definition 6.2. The noise of a morphism ι = 〈i, j〉 : A→ B in C≈ is defined as

δ(ι) = max(dC(A,A)(idA, j ◦ i), dC(B,B)(i ◦ j, idB)).

Note that we rely on the M -category structure on C to define the noise but make
no attempt to make an M -category out of C≈.

Intuitively, the noise measures ’how far’ A and B are from each other by ι.
Having δ(ι) = 0 obviously implies j ◦ i = idA and i ◦ j = idB ; in particular two
objects are isomorphic if and only if there is a zero-noise morphism from one to
the other. Also by definition δ(ι) = δ(ι) for any morphism ι of C≈. These two
observations are somewhat analogous to the first and second of the defining axioms
of an (ultra)metric space; the following lemma provides a cousin to the ultrametric
inequality:

Lemma 6.3 (Noise Lemma). For ι1 : A→ B and ι2 : B → C we have δ(ι2 ◦ ι1) ≤
max(δ(ι2), δ(ι1)).

Proof. Write ι1 = 〈i1, j1〉 and ι2 = 〈i2, j2〉. Then:

δ(ι2 ◦ ι1) = δ(〈i2 ◦ i1, j1 ◦ j2〉)
= max(d(idA, j1 ◦ j2 ◦ i2 ◦ i1), d(i2 ◦ i1 ◦ j1 ◦ j2, idC))

≤ max
(
max(d(idA, j1 ◦ i1), d(j1 ◦ idB ◦ i1, j1 ◦ j2 ◦ i2 ◦ i1)),

max(d(i2 ◦ i1 ◦ j1 ◦ j2, i2 ◦ idB ◦ j2), d(i2 ◦ j2, idC))
)

≤ max
(
max(δ(ι1), δ(ι2)), max(δ(ι1), δ(ι2))

)
= max(δ(ι1), δ(ι2)).

Here we have used the ultrametric inequality as well as the ubiquitous fact that the
composition functions of an M -category are non-expansive.

In a metric space, to prove two elements equal it suffices to show that their
distance is smaller than every ε > 0. The corresponding technique in our metric-
inspired setting is the following:

1We do not, however, use any analogue of the ‘projection’ condition f ◦ g v idB from the
domain-theoretic case.
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Lemma 6.4 (Proximity Lemma). Two objects A and B of C are isomorphic if
there is a sequence of C≈-morphisms (〈in, jn〉)n∈ω with 〈in, jn〉 : A → B such that
limn→∞ δ(〈in, jn〉) = 0 and such that (in)n∈ω and (jn)n∈ω are Cauchy sequences in
C(A,B) and C(B,A), respectively.

Proof. By completeness of C(A,B) and C(B,A) we know that limn→∞ in : A→ B
and limn→∞ jn : B → A exist. We now have:

dC(A,A)

(
idA, lim

n→∞
jn ◦ lim

n→∞
in

)
= dC(A,A)

(
idA, lim

n→∞
jn ◦ in

)
= lim

n→∞
dC(A,A)(idA, jn ◦ in)

≤ lim
n→∞

δ(ιn)

= 0

Here we have used non-expansiveness of composition and the fact that, for any
ultrametric space (X, d), the distance function d : X×X → R is itself non-expansive
and hence preserves limits. We conclude that idA = limn→∞ jn ◦ limn→∞ in and by
symmetry we get the other way round.

By analogy with the standard metric argument one might try to do away with the
second demand that the component sequences be Cauchy. However, as observed in
Remark 4.4 of Alessi et al. [4], this is not possible. A consequence is that a ‘proper’
distance between two objects defined as the infimum of the noises of morphisms
from one to the other gives only a pseudo-metric; that is, the distance between two
distinct objects can be zero. This problem is explored in Section 4 of Alessi et al. [4]
and solved by restricting to compact metric spaces.

Definition 6.5. A tower in C≈ is a sequence of pairs of objects and morphisms
(An, ιn) such that ιn : An → An+1 for all n ∈ ω. It is Cauchy if limn→∞ δ(ιn) = 0,
i.e., if

∀ε > 0. ∃N ∈ N. ∀n ≥ N. δ(ιn) < ε.

Notice that a Cauchy tower (An, ιn)n∈ω where all the ιn are embedding-projection
pairs is exactly an ‘increasing Cauchy tower’ as defined in Section 3.

As in the case of standard Cauchy sequences, the objects of a Cauchy tower
intuitively get arbitrarily close, measured here by the noises of the morphisms. By
the Noise Lemma, i.e., due to our ultrametric setup, we immediately have that the
above criterion is equivalent to one that may look more familiar:

∀ε > 0. ∃N ∈ N. ∀m > n ≥ N. δ(ιm−1 ◦ · · · ιn) < ε.

Definition 6.6. A limit of a Cauchy tower (An, ιn)n∈ω is a pair (A, (γn)n∈ω) of an
object and a sequence of morphisms γn : An → A in C≈ such that

A

An

γn

DD						

ιn
// An+1

γn+1

\\9999999

commutes for all n ∈ ω and such that limn→∞ δ(γn) = 0.

(Proposition 6.8 below relates limits of Cauchy towers in the sense above to
inverse limits of the kind considered in Section 3.)

Proposition 6.7. For any two limits (A, (γn)n∈ω) and (A′, (γ′n)n∈ω) of the same
Cauchy tower (An, ιn)n∈ω the objects A and A′ are isomorphic.
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Proof. This comes down to applying the Proximity Lemma. The setup is this:

A

A0
ι0 //

γ0

==|||||||||

γ′0   BBBBBBBBB A1
ι1 //

γ1

OO

γ′1

��

· · ·
ιn−1 //

···

···

An
ιn //

γn

hhQQQQQQQQQQQQQQQQQ

γ′n
vvnnnnnnnnnnnnnnnnn · · ·

···

···

A′

We have γ′n ◦ γn : A → A′ for all n ∈ ω, and since limn δ(γn) = limn δ(γn) = 0 =
limn δ(γ

′
n) we get limn δ(γ

′
n ◦γn) = 0 by the Noise Lemma. Now write γn = 〈gn, hn〉

and γ′n = 〈g′n, h′n〉 for all n ∈ ω. It remains to show that (g′n◦hn)n∈ω and (gn◦h′n)n∈ω
are Cauchy sequences in the metric spaces C(A,A′) and C(A′, A), respectively. For
any n ∈ ω

dC(A,A′)(g
′
n ◦ hn, g′n+1 ◦ hn+1) = dC(A,A′)(g

′
n+1 ◦ in ◦ jn ◦ hn+1, g

′
n+1 ◦ hn+1)

= dC(An+1,An+1)(in ◦ jn, idAn+1
)

≤ δ(ιn)

where we write ιn = 〈in, jn〉. But then (g′n ◦ hn)n∈ω is Cauchy because (An, ιn)n∈ω
is a Cauchy tower. By symmetry (gn ◦ h′n)n∈ω is also Cauchy.

Notice how we use our ability to flip a morphism ι : A→ B to obtain ι : B → A;
in the category of embedding-projection pairs this is not possible in general.

We say that C≈ is tower-complete if all Cauchy towers have limits. Verifying
this condition directly may be an arduous task. The following criterion is sufficient:

Proposition 6.8. C≈ is tower-complete if C has inverse limits of Cauchy towers.

We omit the proof. The arguments follow those in the first part of the proof
of Lemma 3.2, but are more involved since we no longer restrict to embedding-
projection pairs. More specifically, the cone (hmn )n∈ω from Am to (An, gn)n∈ω in
that proof must now be defined as follows:

hmn =


kn, if n = m,

gn ◦ gn+1 ◦ · · · ◦ gm−1 ◦ km, if n < m,

kn ◦ fn−1 ◦ fn−2 ◦ · · · ◦ fm, if n > m.

where each kn : An → An is obtained as a limit of a Cauchy sequence:

kn = lim
p≥n

(gn ◦ gn+1 ◦ · · · ◦ gp−1 ◦ fp ◦ fp−1 ◦ · · · ◦ fn) .

For a domain-theoretic analogue of dropping the restriction to embedding-projection
pairs, see Taylor [24].

6.1 Fixed points of Functors

We now move on to apply the theory to build fixed points of functors. We say that
a functor Φ : C≈ → C≈ is contractive if there is a c < 1 such that δ(Φ(ι)) ≤ c · δ(ι)
holds for all morphisms ι of C≈. Similarly it is called non-expansive if the noises
do not increase, i.e., if δ(Φ(ι)) ≤ δ(ι) holds for all ι. We may build functors on C≈
from functors on C:
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Proposition 6.9. Let F : Cop × C → C. We define F≈ : C≈ → C≈ by

F≈(A) = F (A,A), F≈(〈i, j〉) = 〈F (j, i), F (i, j)〉

for any object A and any morphism ι = 〈i, j〉 : A → B of C≈. This constitutes a
well defined functor. Moreover, if F is locally contractive then F≈ is contractive
and if F is locally non-expansive then F≈ is non-expansive.

We saw in Theorem 3.1 that a locally contractive functor F : Cop × C → C
has at most one fixed point up to isomorphism (for arbitrary C.) One can give
an alternative proof of that fact using the Proximity Lemma and the contractive
functor F≈ derived from F . But even in the concrete case C = CBUltne it is an
open question whether every contractive endofunctor on C≈ has at most one fixed
point [3, p. 7].

Just as non-expansive maps between metric spaces are continuous and thus
preserve limits of sequences, we have the following proposition as an immediate
consequence of the above definitions:

Proposition 6.10. Non-expansive functors preserve limits of Cauchy towers. That
is, for any non-expansive functor Φ : C≈ → C≈ and any Cauchy tower (An, ιn)n∈ω
with limit (A, (γn)n∈ω) we have that (Φ(An),Φ(ιn))n∈ω is a Cauchy tower with
limit (Φ(A), (Φ(γn))n∈ω).

Theorem 6.11. If C≈ is nonempty and tower-complete then any contractive functor
Φ : C≈ → C≈ has a fixed point, i.e., an object A of C≈ with A ∼= Φ(A).

Proof. Much of the theory above targets this proof; it is quite short and analogous
to the proof of Banach’s fixed-point theorem.

Let A0 be any object of C≈ and define An+1 = Φ(An) for every n ∈ ω. Let
ι0 : A0 → A1 be any morphism of C≈ and define ιn+1 = Φ(ιn) : An+1 → An+2

for every n ∈ ω. We can always initiate this process: C≈ was assumed to have
an object, and ι0 : A0 → A1 always exists as the hom-sets of an M -category are
non-empty.

It is immediate by the contractiveness of Φ that (An, ιn)n∈ω is a Cauchy tower
and hence has a limit (A, (γn)n∈ω) as C≈ was assumed tower-complete. A con-
tractive functor is in particular non-expansive and non-expansive functors preserves
limits of Cauchy towers, so (Φ(An),Φ(ιn))n∈ω = (An+1, ιn+1)n∈ω is a Cauchy tower
too with limit (Φ(A), (Φ(γn))n∈ω). But (A, (γn+1)n∈ω) is a limit of (An+1, ιn+1)n∈ω
too and uniqueness of limits (Proposition 6.7) gives A ∼= Φ(A).

Combining Proposition 6.8, Proposition 6.9, and Theorem 6.11 we have:

Theorem 6.12. If C has an object and has inverse limits of Cauchy towers then
every locally contractive functor F : Cop × C → C has a unique fixed point up to
isomorphism.

Notice that here we require all Cauchy towers to have inverse limits, not just the
increasing ones. Therefore Theorem 6.12 does not immediately imply Theorem 3.4.

7 Applications

This section contains a series of examples of recursive equations motivated by recent
and ongoing work in semantics. In all but the first of the examples we do not
consider exactly those equations that arise from applications; for clarity we consider
simplified variants that capture the essence of the circularity issues. We conclude
the section by discussing in what sense the generality of M -categories is needed in
applications.

19



7.1 Realizability semantics of dynamically allocated store

The first two examples of recursive equations come from realizability semantics of
dynamically allocated store. In recent work [9] the authors presented a model that
allows for simple parametricity-style reasoning about imperative abstract data types
in an ML-like language with universal types, recursive types, and reference types.
As in Standard ML, references are dynamically allocated during program execution.

Here is a brief outline of the model. First, the model is based on a realizability
interpretation [5] over a certain recursively defined predomain V . In addition, we
follow earlier work on modeling simple integer references [8] and use a Kripke-style
possible worlds model. Here, however, the set of worlds needs to be recursively
defined since we treat general references. Semantically, a world maps locations to
semantic types, which, following the general realizability idea, are certain world-
indexed families of relations on V : this introduces a circularity between semantic
types and worlds that precludes a direct definition of either. Thus we are led to
solving recursive (metric-space) equations of approximately the following form

W ∼= N⇀fin T
T ∼= W →mon CURel(V )

(see below) even in order to define the space in which types will be modeled.
We now describe these equations in more detail. CURel(V ) is the set of binary

relations on V that satisfy certain technical requirements. The metric on CURel(V )
is defined essentially as in earlier work on realizability semantics [5], using the fact
that V is a canonical solution to a predomain equation. The space N⇀fin T consists
of partial functions from N to T with finite domain: the distance between two
functions with different domains is 1, while the distance between two functions with
the same domain is given as a maximum of pointwise distances. The space N⇀fin T
(and hence also W) is equipped with an extension order: for ∆,∆′ ∈ N⇀fin T we
take ∆ ≤ ∆′ to mean that dom(∆) ⊆ dom(∆′) and that ∆(n) = ∆′(n) for all n
in dom(∆). Finally, in order to ensure soundness of the interpretation, we require
the usual ‘Kripke monotonicity’: the space W →mon CURel(V ) should consist of
functions that are both non-expansive and monotone with respect to the extension
order on W and the inclusion order on CURel(V ).

In order to apply the main theorem to solve these equations, we have to express
them in terms of a mixed-variance functor on an M -category. There are two ap-
proaches. First, one can ‘solve for worlds’ by defining a contravariant functor F on
PreCBUltne such that

F (X,≤) = (N⇀fin
1
2 ((X,≤)→mon CURel(V ))), ≤′)

where ≤′ is the extension order on partial functions, as defined above. (Here the 1
2

is needed in order to ensure that F is locally contractive.) Then (W,≤) can be
defined as the unique fixed point of F .

Alternatively, one can ‘solve for types’ [9] by defining a contravariant functor G
on CBUltne (or on CBUlt as in Section 5.3) such that

G(X) = 1
2 ((N⇀fin X)→mon CURel(V )) .

Then T can be defined as the unique fixed point of G. In this case we do not use
the generality of M -categories: instead we exploit that the two mutually recursive
equations above have a form that allows one to solve them in CBUltne by combining
them into a single recursive equation in the right way. In the next example such an
approach will not be possible; there, M -categories seem to be needed.
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Remark. Even though metric spaces appear naturally in this example through ear-
lier work on realizability, one might ask whether the equations above cannot in-
stead be solved in a category of domains. Indeed they can, but the solution does
not appear to be useful for our purpose. The main reason is that the quantitative
information given by the metric-space approach appears to be needed in order to
model reference types [9].

7.2 A more advanced model of store

In the previous example, semantic types were modeled as world-indexed families of
binary relations on the predomain V of ‘untyped values’. The intuitive idea is that
worlds provide information about the currently allocated references, and that the
interpretation of a type grows as more references are allocated.

The fact that relations are binary allows one to use the model to prove equiva-
lences between programs that allocate references dynamically. However, the set of
worlds W ∼= N⇀fin T of the previous example only allows for fairly limited equiv-
alence proofs. There, a world is no more than a single ‘semantic store typing’ that
only allows one to describe situations where the two programs under consideration
allocate references in lockstep.

Ongoing work suggests that the metric-space approach allows one to solve an
equation involving more advanced Kripke worlds in the style of Ahmed et al. [2],
and thereby allows for more advanced reasoning about local state.2 Here we present
a simplified equation that illustrates the main circularity issue. Let S = N ⇀fin V
be the set of stores, i.e., partial maps with finite domain from N to V . Whereas
the simple worlds of the previous example induce a binary relation on stores that
require two related stores to have the same domain, we now seek an alternative
definition of worlds that induce a more liberal relation on stores.

The intuitive idea is that a worldW ′ consists of a finite sequence of ‘islands’ I [2],
each of which induces a local requirement on stores by describing how two specific
parts of two given stores are required to be related. Consider the metric-space
equations

W ′ ∼= I∗

I ∼=
∑

N1,N2∈Pfin(N)

1
2 (W ′ →mon CURel(S)N1,N2)

which are to be understood as follows. The space CURel(S) [9] consists of binary
relations on stores satisfying certain technical conditions; it is equipped with a
metric in the same way as CURel(V ) above. Given finite subsets N1 and N2 of
N, the sub-space CURel(S)N1,N2

of CURel(S) only contains relations with support
(N1, N2), i.e., R ∈ CURel(S)N1,N2

and (s1, s2) ∈ R implies (s′1, s
′
2) ∈ R if s1(n) =

s′1(n) for all n in N1 and s2(n) = s′2(n) for all n in N2. Intuitively, such relations are
local in the sense that they only depend on locations from N1 and N2, respectively.
The sum on the right-hand side of the second equation consists of triples (N1, N2, f);
the distance between two such triples is 1 if either of the first two components
differ, and the distance between the third components otherwise. Finally, assuming
that the second equation holds, the space I∗ consists of finite sequences of triples
(N1, N2, f) such that the first components are pairwise disjoint, and similarly for
the second components: the ‘islands’ must not overlap. The extension order on I∗,
and hence on W ′, is sequence containment; the maps of the second equation are
monotone with respect to this order and the inclusion order on CURel(S)N1,N2

.

2Ahmed et al. do not solve the recursive equation they consider, but instead work with a family
of sets that are, intuitively, approximations to a solution.
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Because of the different dependencies on finite subsets of integers, it does not
seem possible to combine the two equations above into one equation in CBUltne:
some extra structure on metric spaces is needed, no matter what one tries to ‘solve
for’. Indeed, the equations can be ‘solved for worlds’ by defining a contravariant
functor H on PreCBUltne directly from the equations,

H(X,≤) =

(( ∑
N1,N2∈Pfin(N)

1
2 ((X,≤)→mon CURelN1,N2

(S))

)∗
, ≤′

)

where ≤′ is the extension order on sequences, and then letting W ′ be the unique
fixed point of H.

7.3 Storable locks

In recent work by Gotsman et al. separation logic has been extended to reason
about storable locks and threads [15]. As observed in loc. cit. the natural model of
predicates involves a circular definition because locks protecting invariants (predi-
cates) can be stored in the heap. However, Gotsman et al. side-step this issue by
restricting the storable locks to protect only a statically determined finite set of
kinds of invariants. In ongoing work, Birkedal and Buisse are generalizing the work
by Gotsman et al. by solving a suitable recursive equation. The equation is

UPred ∼= 1
2

((
N⇀fin (N + (N×UPred))

)
→mon P↓(N)

)
.

Here P↓(N) is the complete, bounded ultrametric space consisting of downwards-
closed subsets of N; this set forms a complete Heyting algebra. The idea is that
a semantic predicate is a P↓(N)-valued predicate on heaps, which are maps from
locations (numbers) to either numbers or pairs (k, I) consisting of a thread id k and
a semantic predicate I. The latter is used if the location is a lock, held by thread k
and protecting the invariant I.

This equation can be solved in CBUltne by solving for UPred (much as in the
example in Section 7.1), or by solving for heaps by defining a contravariant functor
on PreCBUltne.

7.4 Semantics of nested Hoare triples

In recent work, Schwinghammer et al. [21] investigate the semantics of separation
logic for higher-order store. There uniform admissible subsets of heaps form the
basic building block when interpreting the assertions of the logic. Since assertions
in general depend on invariants for stored code (because of higher-order store), the
space of semantic predicates consists of functionsW → UAdm from a set of ‘worlds,’
describing the invariants, to the collection of uniform admissible subsets of heaps.
The set UAdm is an ultrametric space with metric given as for CURel(V ) above.
But, the invariants for stored code are themselves semantic predicates, and hence
the space of worlds W should be ‘the same’ as W → UAdm. Thus the following
equation is solved in CBUltne:

W ∼= 1
2 (W → UAdm) .

7.5 Discussion

As we have seen, three of the four examples above could be treated by solving
recursive equations in CBUltne, i.e., without using the generality of M -categories.
The fourth example, the advanced model of store in Section 7.2, does seem to require
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M -categories; however, a recent simplification [14] leads to an equation that can be
solved in CBUltne.

In a little more detail, the general situation is the following. Instead of directly
finding a fixed point of an endofunctor F : C → C on an M -category, one can
attempt to express the functor as F = G ◦ H for functors H : C → CBUltne and
G : CBUltne → C, and then find a fixed point of H ◦G : CBUltne → CBUltne instead
of F . In this way, only the classical existence theorem is needed. (It could of course
also be that one came up with H ◦ G instead of F in the first place.) In the first
example above, this is the approach that could be used to ‘solve for types’ instead
of ‘solving for worlds.’

Despite of this possibility of rewriting a recursive equation to an equation in
CBUltne, we find M -categories genuinely useful in applications for the following
reasons. First, there is no guarantee that one can rewrite a given recursive equation;
as already noted, we cannot see how to treat the example in Section 7.2 by solving
an equation in CBUltne. Second, and more subtly: in the first and third examples
above, the ‘rewriting’ approach still depends on the fact that PreCBUltne is an M -
category. More specifically, to obtain a well-defined endofunctor on CBUltne in these
examples, one implicitly uses the defining property of objects of PreCBUltne that
guarantees that hom-sets of PreCBUltne are complete metric spaces. Without having
identified PreCBUltne as an M -category, this leads to some ad-hoc calculations and
results about monotone function spaces, as can be seen in Birkedal et al. [9].

8 Domain equations:
from O-categories to M-categories

As another illustration of M -categories, we present a general construction that
gives for every O-category C (see below) a derived M -category D. In addition,
the construction gives for every locally continuous mixed-variance functor F on C
a locally contractive mixed-variance functor G on D such that a fixed point of G,
necessarily unique by Theorem 3.1, is the same as a fixed point of F that furthermore
satisfies the ‘minimal invariance’ condition of Pitts [18].3 Thus, generalized domain
equations can be solved in M -categories.

The construction generalizes and improves an earlier one due to Baier and
Majster-Cederbaum (BM) [7] which is for the particular category Cppo⊥ of pointed
cpos and strict, continuous functions (or full subcategories thereof.) More precisely,
taking C to be a full subcategory of Cppo⊥ in our Proposition 8.2 below gives a
result that strengthens Lemma 4.18 of BM. In general, the goal of that earlier work
is to relate recursive domain equations over full subcategories of Cppo⊥ to recursive
equations over full subcategories of a particular category CMS of complete metric
spaces. Working with those particular categories instead of arbitrary O-categories
and M -categories complicates the relations one can obtain: for example, Theorem 3
of BM only applies to a restricted class of domain equations that does not include
general function spaces. The reason is that the construction of BM, which must be
applied to a full subcategory of Cppo⊥, does not yield a category that is (in any
obvious way) a full subcategory of CMS. It is, however, an M -category in which
every locally contractive functor has a unique fixed point. We hence believe to have
at least partially answered the question left open in the conclusion of BM whether
a suitable notion of correspondence exists for general domain equations.

Rank-ordered cpos [7], recently re-discovered under the name ‘uniform cpos’ [9],
arise from a particular instance of an M -category obtained from the construction

3The latter is in turn the same as a bifree algebra for F in the same sense as in Theorem 3.1.
See the argument in Pitts [18].
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here, namely by taking C = Cppo⊥. The extra metric information in that category,
as compared with the underlying O-category, is useful in realizability models [1, 5];
in particular it is used to define the metric on the set of binary relations CURel(V )
in the work described in Section 7.1 [9]. In earlier work, Abadi and Plotkin [1,
Section 8] give a metric-space formulation of a realizability model of polymorphism
and recursive types. They note that the extra metric information can be used to
model subtypes and bounded quantification.

We now turn to the results. An O-category [23] is a category C where each
hom-set C(A,B) is equipped with an ω-complete partial order, usually written v,
and where each composition function is continuous with respect to these orders. A
functor F : Cop × C → C is locally continuous if each function on hom-sets that it
induces is continuous.

Assume now that C is an O-category such that each hom-set C(A,B) contains
a least element ⊥A,B and such that the composition functions of C are strict:
f ◦ ⊥A,B = ⊥A,C = ⊥B,C ◦ g for all f and g. We construct an M -category D
of ‘rank-ordered C-objects’ as follows. An object (A, (πn)n∈ω) of D is a pair con-
sisting of an object A of C and a family of endomorphisms πn : A → A in C that
satisfies the following four requirements:

(1) π0 = ⊥A,A.

(2) πm v πn for all m ≤ n.

(3) πm ◦ πn = πn ◦ πm = πmin(m,n) for all m and n.

(4)
⊔
n∈ω πn = idA.

(See also the rank-ordered sets of Baier and Majster-Cederbaum [7] and the projec-
tion spaces of de Vries [12].) Then, a morphism from (A, (πn)n∈ω) to (A′, (π′n)n∈ω)
in D is a morphism f from A to A′ in C that is uniform [1] in the sense that
π′n ◦ f = f ◦ πn for all n. Composition and identities in D are the same as in C. Fi-
nally, the distance function on a hom-set D((A, (πn)n∈ω), (A′, (π′n)n∈ω)) is defined
as follows:

d(f, g) =

{
2−max{n∈ω|π′n◦f=π

′
n◦g } if f 6= g

0 if f = g.

To see that d is well-defined, suppose that f 6= g. Then there must exist a greatest
number n such that π′n ◦ f = π′n ◦ g. Indeed, n = 0 is such a number by (1) above
and strictness of the composition functions of C. If the equation holds for arbitrarily
large n, then by (3) above it holds for all n. But then by (4) above and the fact
that the composition functions of C are continuous,

f = idA′ ◦ f =
( ⊔
n∈ω

π′n

)
◦ f =

⊔
n∈ω

(π′n ◦ f) =
⊔
n∈ω

(π′n ◦ g) = · · · = g ,

a contradiction. Hence d is well-defined.

Proposition 8.1. D is an M -category.

Proof. First, each hom-set D((A, (πn)n∈ω), (A′, (π′n)n∈ω)) is non-empty: it contains
the element ⊥A,A′ since π′n ◦ ⊥A,A′ = ⊥A,A′ ◦ πn = ⊥A,A′ by strictness. Second, it
is easy to see that the distance function on such a hom-set gives rise to a 1-bounded
ultrametric space. Third, the composition functions of D are non-expansive: it
suffices to see that if π′′n ◦ f1 = π′′n ◦ f2 and π′n ◦ g1 = π′n ◦ g2, then π′′n ◦ (f1 ◦ g1) =
π′′n ◦ f2 ◦ g1 = f2 ◦ π′n ◦ g1 = f2 ◦ π′n ◦ g2 = π′′n ◦ (f2 ◦ g2).

It remains to show that each hom-set is a complete metric space. Let (fm)m∈ω
be a Cauchy sequence. It follows from the definition of d that for each n ∈ ω there
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exists gn such that π′n ◦ fm = gn for all sufficiently large m. Then by (2) above the
sequence (gn)n∈ω is increasing: given n, we have gn = π′n ◦ fm v π′n+1 ◦ fm = gn+1

for all sufficiently large m.
The supremum g = tn∈ωgn is the limit of the sequence (fm)m∈ω. Indeed, given

an arbitrary number k, by (3) we have π′k ◦ gn = π′k ◦ π′n ◦ fm = π′k ◦ fm = gk for
all n ≥ k (and sufficiently large m), and therefore, by continuity of composition,
π′k ◦ (tn∈ωgn) = tn≥k(π′k ◦ gn) = gk = π′k ◦ fm for all sufficiently large m. This
shows that d(fm, g) ≤ 2−k for all sufficiently large m. Hence g is indeed the limit
of the sequence (fm)m∈ω.

We must show that g is uniform. First, each gn is uniform since for all k and all
sufficiently large m we have π′k ◦ gn = π′k ◦ π′n ◦ fm = π′n ◦ π′k ◦ fm = π′n ◦ fm ◦ πk =
gn ◦ πk. Second, g is uniform since each gn is: π′k ◦ (tn∈ωgn) = tn∈ω(π′k ◦ gn) =
tn∈ω(gn ◦ πk) = (tn∈ωgn) ◦ πk. In conclusion, each hom-set is complete, and D is
an M -category.

Now let F : Cop×C → C be a locally continuous functor. We construct a locally
contractive functor G : Dop ×D → D from F :

• On objects, G is given by

G((A, (πAn )n∈ω), (B, (πBn )n∈ω)) = (F (A,B), (πA,Bn )n∈ω)

where πA,B0 = ⊥ and πA,Bn+1 = F (πAn , π
B
n ) for all n.

• On morphisms, G is the same as F , i.e., G(f, g) = F (f, g).

To see that G is well-defined on objects, we must verify conditions (1)-(4) in
the definition of objects of D. Here (1) is immediate, (3) follows from strictness
of composition and functoriality of F , and (2) and (4) follow from local continu-
ity of F . In addition, given morphisms f : (A′, (πA

′

n )n∈ω) → (A, (πAn )n∈ω) and
g : (B, (πBn )n∈ω) → (B′, (πB

′

n )n∈ω), we must show that G(f, g) = F (f, g) is a well-

defined morphism in D. Clearly, πA
′,B′

0 ◦ F (f, g) = F (f, g) ◦ πA,B0 , and for all n,

πA
′,B′

n+1 ◦ F (f, g) = F (πA
′

n , πB
′

n ) ◦ F (f, g)

= F (f ◦ πA
′

n , πB
′

n ◦ g)

= F (πAn ◦ f, g ◦ πBn )

= F (f, g) ◦ F (πAn , π
B
n )

= F (f, g) ◦ πA,Bn+1 .

Finally, G is locally contractive with factor 1/2: it suffices to see that if πAn ◦ f1 =
πAn ◦ f2 and πB

′

n ◦ g1 = πB
′

n ◦ g2, then

πA
′,B′

n+1 ◦ F (f1, g1) = F (πA
′

n , πB
′

n ) ◦ F (f1, g1)

= F (f1 ◦ πA
′

n , πB
′

n ◦ g1)

= F (πAn ◦ f1, πB
′

n ◦ g1)

= F (πAn ◦ f2, πB
′

n ◦ g2)

= πA
′,B′

n+1 ◦ F (f2, g2) .

Proposition 8.2. Let G be constructed from F as above, and let A be an object
of C. The following two conditions are equivalent.

(1) There exists an isomorphism i : F (A,A)→ A such that

idA = fix (λeC(A,A). i ◦ F (e, e) ◦ i−1) .

(Here fix is the least-fixed-point operator.)
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(2) There exists a family of morphisms (πn)n∈ω such that A = (A, (πn)n∈ω) is
the unique fixed-point of G up to isomorphism.

Proof. (1) implies (2): Define the C-morphisms πn : A → A by induction on n:
π0 = ⊥A,A and πn+1 = i ◦ F (πn, πn) ◦ i−1. We must show that (A, (πn)n∈ω) is
an object of D by verifying the four requirements in the definition of D. The first
requirement is immediate by definition, the second and third requirements are easy
to show by induction, and the fourth requirement is exactly the assumption that
idA = fix (λeC(A,A). i ◦ F (e, e) ◦ i−1). Now let A = (A, (πn)n∈ω). It remains to
show that G(A,A) ∼= A; uniqueness follows from Theorem 3.1. We claim that the
isomorphism i : F (A,A)→ A in C is also an isomorphism from G(A,A) to A in D,
i.e., that both i and its inverse i−1 in C are uniform with respect to the families
of morphisms (πA,An )n∈ω and (πn)n∈ω on F (A,A) and A, respectively. Clearly

π0 ◦ i = i ◦ πA,A0 by strictness. Also,

πn+1 ◦ i = (i ◦ F (πn, πn) ◦ i−1) ◦ i = i ◦ F (πn, πn) = i ◦ πA,An+1

by the definitions of πn+1 and πA,An+1. So i is uniform. The proof that i−1 is uniform

is completely similar. In conclusion, i : G(A,A)→ A is an isomorphism in D.
(2) implies (1): Assume that i : G(A,A) → A is an isomorphism in D. Then

i : F (A,A) → A is clearly also an isomorphism in C; formally one applies the
forgetful functor D → C to i. Since i is uniform, as are all morphisms in D, we have
that πn+1 ◦ i = i ◦ πA,An+1 = i ◦ F (πn, πn), and hence that πn+1 = i ◦ F (πn, πn) ◦ i−1.
By the definition of objects of D we furthermore have that π0 = ⊥A,A and that
tn∈ωπn = idA. But then

fix (λeC(A,A). i ◦ F (e, e) ◦ i−1) =
⊔
n∈ω

πn = idA .

It remains to discuss how completeness properties of C transfer to D. One can
show, using theO-category variant of Lemma 3.2 [23], that the forgetful functor from
D to C creates terminal objects and limits of ωop-chains of split epis. Alternatively,
by imposing an additional requirement on C one can show that the forgetful functor
creates all limits: for a given limit in C, the induced bijection between cones and
mediating morphisms must be an isomorphism in the category of cpos (where cones
are ordered pointwise, using the order on each hom-set). That requirement is in
particular satisfied by the usual concrete categories of cpos.

9 Discussion and related work

We now discuss the level of generality of our results and clarify what the contribution
is compared to other results in the literature.

Metric spaces vs. ultrametric spaces. In the definition of an M -category we
require that hom-sets are ultrametric spaces and not merely general metric spaces.
In most of the related work on metric-space equations that we cite there is no such
restriction; only Rutten [19] restricts to ultrametric spaces.

The main reason that we restrict to ultrametric spaces is that doing so is suffi-
cient for the kind of applications in semantics we consider. Intuitively, the distin-
guishing feature of ultrametric spaces is that one can think of the distance d(x, x′)
between two elements as specifying some ‘level’ up to which x and x′ are in perfect
agreement. Such distance functions are often used: Turi and Rutten [25, p.529]
observed in 1998 that “in semantics, one usually works with these more specific
structures [ultrametric spaces].” On the other hand, there are by now applications
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in semantics where general (pseudo-)metric spaces must be used. In particular,
general metric spaces can be used to capture similarity in probabilistic transition
systems in a quantitative way [13, 26].

If we had considered general metric spaces, some definitions and proofs would
have become more complicated. More specifically, the definition of an increasing
Cauchy tower below would need to be modified in the style of the definition of a
‘converging tower’ in America and Rutten [6]. With that change, we expect that
at least the results of Section 3 and 4 would carry through also for general metric
spaces. A high-level explanation for the added complications is that the category
of complete, general metric spaces is not cartesian closed, only symmetric monoidal
closed [16].

Actually, one could specialize further than ultrametric spaces. All the ultra-
metric spaces we consider in the applications in Section 7 are of a special kind: all
non-zero distances are of the form 2−n for some natural number n ≥ 0. In prac-
tice, this means that when working with those applications, and in particular in
calculations, one considers the metric-space structure as given by a family of equiv-
alence relations =n where x =n y holds if and only if d(x, y) ≤ 2−n. One could
perhaps specialize even further, by requiring that these relations =n are obtained
from ‘projection’ functions [7, 12]. We did not restrict to any such structures, but
found ultrametric spaces to give simple proofs at a reasonable level of generality.

Generalized ultrametric spaces. Apart from the distinction between general
metric spaces and ultrametric spaces, there are other choices one could consider in
the definition of M -categories. First, it is likely that the restriction to non-empty
metric spaces could be removed, but that this would require unpleasant special cases
in the uniqueness and existence theorems.

Generalizing in a different direction than metric spaces, one could consider cat-
egories where the hom-sets are generalized ultrametric spaces [19]. In these spaces,
only the ultrametric inequality and the axiom d(x, x) = 0 are required: the distance
function need not be symmetric, and distinct elements can have distance 0. These
spaces are particularly nice from an (enriched) category theoretic viewpoint, since
they are exactly categories enriched over the preorder category [0, 1]op. On the other
hand, limits in such spaces are somewhat more complicated than in ordinary metric
spaces, and some basic intuitions need to be revisited: for example, non-expansive
functions are not necessarily continuous.

A remarkable aspect of generalized ultrametric spaces is that they generalize
both metric spaces and preorders. We find this particularly interesting in light of the
comparison between M -categories and O-categories in Section 8: one could imagine
that categories enriched over (complete) generalized ultrametric spaces would allow
for a result about solving recursive equations that generalizes both our work and
the classical result of Smyth and Plotkin. We do not know whether there exists
such a common generalization and leave it as a direction for future work.

Finally, one could perhaps go even further and generalize from the preorder
category [0, 1]op to arbitrary quantales. Here the goal would be to prove results that
relate to the work of Wagner [27] in the same way that Smyth and Plotkin’s work
on O-categories relates to Scott’s classical inverse limit construction. Wagner [27,
p. 92] briefly discusses such a possibility.

Contributions compared to related work. As mentioned in the introduction,
the idea of considering categories with metric spaces as hom-sets has been used in
earlier work [10, 20]. We now turn to a more detailed description of what is new in
our results.

First of all, while the results in Sections 4 (on locally compact subcategories)
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and 8 (on relating O-categories to M -categories) are generalizations of earlier work,
we find these generalizations sufficiently far-reaching and non-trivial to be consid-
ered new in their own right.

As for the main results in Section 3 about solutions to recursive equations,
the contribution with respect to previous work consists in Lemma 3.2, Proposi-
tion 3.3, and Theorem 3.4. First, Lemma 3.2 (and its immediate consequence,
Proposition 3.3) shows a limit-colimit coincidence result for general M -categories.
Theorem 4.15 of Rutten and Turi [20] gives some, but not all of this result. That
theorem only refers to cones in a category CE of embedding-projection pairs4, and
does not relate these cones to limiting cones or colimiting cocones in C. In particu-
lar, the theorem does not show that an inverse limit in C can be turned into a cone
in a category of embedding-projection pairs. This argument, which is an essential
part of the construction of fixed points of functors, is later given in the concrete
case of a category of complete metric spaces only (Theorem 4.23).

Second, Theorem 3.4 is new: we do not know of any other existence theorem
about fixed points of functors for a general class of ‘metric-enriched’ categories. A
small contribution here is the identification of suitable completeness conditions on
M -categories, together with examples that illustrate their use. In particular, the
condition of having all inverse limits of split epis is needed for the prime example
of an M -category, namely CBUltne itself. This condition seems to be of general use
given that the hom-sets of an M -category are required to be non-empty.

Still, it is fair to say that (as one reviewer put it) the ingredients of the existence
theorem already occur in various places in the literature. Perhaps a more proper
way to evaluate our main result is to consider how the applications in Section 7
would be treated using these previous results, notably Theorem 4.25 of Rutten and
Turi [20]. Although the recursive equations in the applications can be solved in
this way, we think that the route requires sufficient extra work that it useful to
state a general existence theorem that directly applies to mixed-variance functors
on arbitrary M -categories. Most importantly, in the absence of our Lemma 3.2 it
is, as noted above, necessary to argue ‘by hand’ that inverse limits of ωop-chains in
PreCBUltne can be turned into cones in a category of embedding-projection pairs.

10 Conclusion

We have generalized the standard solution of recursive equations over complete
ultrametric spaces [6] to the abstract setting of M -categories where, in the style of
Smyth and Plotkin [23], the focus is on the metric structure on the morphisms rather
than the objects. We have furthermore outlined an alternative existence theorem
which is, at least informally, a closer categorical analogy to Banach’s fixed-point
theorem.

We have given a general account of ‘compact’ variants of such categories, showing
that these subcategories always inherit solutions of recursive equations from the full
categories. As another application we have presented a construction that provides a
correspondence between solutions of generalized domain equations in O-categories
with solutions of equations in M -categories.

In addition, we have sketched a number of applications from denotational seman-
tics. In particular, the application in Section 7.2 requires a solution to a recursive
equation over metric spaces with additional structure; our results provide such a
solution.

4We assume that the second C in the statement of that theorem should have been CE .
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