
Local Reasoning about a Copying Garbage Collector∗

NOAH TORP-SMITH and LARS BIRKEDAL

IT University of Copenhagen

and

JOHN C. REYNOLDS

Carnegie Mellon University

We present a programming language, model, and logic appropriate for implementing and reasoning
about a memory management system. We state semantically what is meant by correctness of a
copying garbage collector, and employ a variant of the novel separation logics to formally specify
partial correctness of Cheney’s copying garbage collector in our program logic. Finally, we prove
that our implementation of Cheney’s algorithm meets its specification, using the logic we have
given, and auxiliary variables.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Mainten-
ance—documentation; D.2.8 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Assertions, Logics of programs, Specification techniques

General Terms: Realiability, Theory, Verification

Additional Key Words and Phrases: Separation Logic, Copying Garbage Collector, Local Reason-
ing

1. INTRODUCTION

Formal reasoning about programs that manipulate imperative data structures in-
volving pointers has proven to be very difficult, mainly due to a lack of reasoning
principles that are adequate and simple at the same time. Recently, Reynolds,
O’Hearn, and others have suggested separation logic as a tool for reasoning about
programs involving pointers; see [Reynolds 2002] for a survey and historical re-
marks. In his dissertation, Yang showed that separation logic is a promising di-
rection by giving an elegant proof of the non-trivial Schorr-Waite graph marking
algorithm [Yang 2001]. One of the key features making separation logic a promis-
ing tool is that it supports local reasoning : when specifying and reasoning about
program fragments involving pointers, one may restrict attention to the “footprint”

∗ An extended abstract of the present paper appeared in the proceedings of POPL’04 [Birkedal
etal. 2004].
Lars Birkedal’s and Noah Torp-Smith’s research was partially supported by Danish Natural Science
Research Council Grant 51–00–0315 and Danish Technical Research Council Grant 56–00–0309.
John Reynolds’s research was partially supported by an EPSRC Visiting Fellowship at Queen
Mary, University of London, by National Science Foundation Grant CCR-0204242, and by the
Basic Research in Computer Science Centre of the Danish National Research Foundation.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year

2 · Torp-Smith, Birkedal, Reynolds

of the programs, that is, to just that part of memory that the program fragments
read from or write to.

The aim of this paper is to further explore the idea of local reasoning and its
realization in separation logic. To this end we prove correctness of Cheney’s copying
garbage collector [Cheney 1970] via local reasoning in separation logic. There are
several reasons to focus on Cheney’s algorithm:

— The algorithm involves interesting imperative manipulations of data; in par-
ticular, it not only updates an existing data structure as the Schorr-Waite algorithm
does, but relocates the structure. Moreover, it simultaneously treats the same data
as a set of records linked by pointers and as an array of records.

— Cheney’s algorithm copies any kind of data, including cyclic data structures.

— Variants of the algorithm are used in practice, e.g., in runtime systems for
implementations of functional programming languages.

There are two other motivating factors that we call attention to. First, our analy-
sis answers a question in the literature and thus paves the way for important future
work that so far has been out of reach: In [Calcagno etal. 2003], local reasoning
and separation logic for a garbage collected language is analyzed. An underlying
garbage collector is presumed in the operational semantics of the language, inas-
much as a partial pruning and α-renaming (i.e., relocation) of the current state is
allowed at any time during execution of a program. In [Calcagno etal. 2003] it
is not mentioned how this pruning and renaming should be done, let alone proven
that it is done correctly. A remark at the end of the paper expresses the desirability
of such a proof — we provide one here. The analyses in [Calcagno etal. 2003] and
the present paper are at two distinct levels: the former is at the level of a user
language using a runtime system (a garbage collector), the latter is at the level of a
runtime system providing operations for the user language (memory allocation and
garbage collection). We believe these analyses pave the way for an investigation of
the correctness of combinations of user level programs and runtime systems. We
present some preliminary ideas in this direction in Sec. 9.

The additional motivating factor is that our analysis of garbage collection should
be of use in connection with foundational proof-carrying code [Appel 2001] and
typed assembly language [Morrisett etal. 1999]. In these settings, a memory allo-
cation (but no deallocation) construct is part of the instruction set and a memory
management system is implicitly assumed. We believe that our correctness proof
can contribute to mimicking the work of [Morrisett etal. 1999] in a more realistic
setting, for more machine-like assembly languages.

1.1 Contributions and Methodology

In Sec. 3 we present our storage model and the syntax and semantics of assertions.
As usual in separation logic, a state consists of a stack and a heap, where a stack
is a finite map from variables to values, and a heap is a finite map from locations
to integers. A new feature is that our values include finite sets and relations of
pointers and integers, which are used to give the semantics of assertions and of
auxiliary variables [Owicki and Gries 1976]. Our storage model is very concrete
and close to real machines; it treats locations as multiples of four (A datum other
than a location can be easily be encoded as a number that is not a multiple of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 3

four. More precisely, record fields containing such a number will not be altered by
the algorithm). This is similar to what is often used in real implementations of
runtime systems for compilers. For simplicity we assume that heaps consist only
of cons-cells, aligned such that the first field is always on a location divisible by
eight; hence pointers (to cons-cells) are multiples of eight. These assumptions and
definitions induce a semantic notion of what it means for a heap to be a garbage
collected version of another. This is presented in Section 3.2. Our definitions are
based on the analysis in [Calcagno etal. 2003] (already referred to above) and thus
involve generalizations of pruning and α-renaming of program states.

Our assertion language, presented in Sec. 3.4, is an extension of separation
logic [Reynolds 2002] with new assertion forms for finite sets and relations. These
are crucially used to express part of the specification of Cheney’s algorithm; in
particular the existence of an isomorphism between pointers to old cells and point-
ers to copies of the old cells – which exist at different points in time (before and
after execution of the algorithm) – is established using the new assertion forms.
We believe the methodology of using sets and relations can be used more widely,
to specify and prove correct other programs involving shared or cyclic structures.
Indeed a somewhat similar approach is being used by Richard Bornat [Bornat 2003]
to specify and verify an algorithm for copying directed acyclic graphs.

Moreover, we have extended the iterated separating conjunction [Reynolds 2002]
of separation logic to arbitrary finite sets. The assertion ∀∗x ∈ m. A holds in a
state (s, h), if m denotes a finite set {p1, . . . , pk} and A[p1/x] ∗ · · · ∗ A[pk/x] holds
in (s, h) (see Fig. 2 for a precise definition). As illustrated in Sec. 5, one can
specify a program by separating the locations it manipulates into disjoint sets with
different properties, and then use the iterated separating conjunction, together with
expressions for finite sets and relations, to express the particular properties of each
set.

In Sec. 4 we define the syntax and semantics of the programming language used
to implement the garbage collector. It is a simple imperative programming lan-
guage, with constructs for heap lookup and heap update (but no constructs for
allocation or disposal of heap cells). The associated program logic is presented in
Sec. 4.2. The program logic is mostly standard except for the new rules regarding
sets and relations, and it includes the frame rule of separation logic which makes
local reasoning possible, as explained in Sec. 4.2.

Cheney’s algorithm and the specification of our implementation thereof are pre-
sented in Sec. 5; the implementation itself is included in Appendix A. In Sec. 5.1 we
define a semantic condition on programs which implies that a program is a correct
garbage collector and show that this condition ensures that the heap after execution
of the program is a garbage collected version (in the sense of Sec. 3.2) of the heap
before execution if the latter satisfies certain requirements mentioned in Sec. 3.2.

We present an informal analysis of the algorithm and use it to derive a formal
specification of an invariant. At any point of execution, the pointers manipulated by
the algorithm can be divided into disjoint sets in which the elements have the same
property. Thus it is natural to use the method of sets and relations along with the
iterated separating conjunction mentioned before. The sets and relations are also
used in another crucial way, namely to record the initial contents of the heap (before
garbage collection). This makes it possible to relate the final heap (after garbage

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · Torp-Smith, Birkedal, Reynolds

collection) to the initial heap and prove that the final heap is a garbage collected
version of the initial heap. As mentioned, we use these to give a specification for
our implementation formulated in the program logic from Sec. 4.2, and before we
formally prove that implementation meets the specification (in Sec. 6), we show in
Sec. 5.4 that the resulting specification ensures that the implementation is indeed
a correct garbage collector.

We emphasize the following point. Cheney’s algorithm assumes two contiguous
“semi-heaps” of equal size, OLD and NEW, and works by copying all reachable
data from OLD into NEW. One of the reasons for the popularity of Cheney’s
algorithm (and variants thereof) is that it runs in time proportional to the size of
the reachable data; it never touches unreachable cells. This fact is reflected directly
in our specification of the algorithm, which refers to the reachable part of OLD only.
It is in the spirit of local reasoning to have such a direct correspondence between
the intuitive understanding of an algorithm and its formal specification.

2. AN INTRODUCTION TO SEPARATION LOGIC

In this section, we give a brief introduction to separation logic. Formal definitions
of the concepts used here will not be given, since it would clutter the presentation,
and since we will extend traditional separation logic with a few constructs later.
For formal definitions, we refer to Sections 3 and 4.

Separation logic is an extension of traditional Hoare logic [Hoare 1969]. The
simple while-language is extended with commands for manipulating imperative
data structures, stored in a heap, and if “dangling” pointers are dereferenced, the
semantics for the language will get “stuck”, or “abort”. Accordingly, the assertion
language is extended with basic predicates concerning the heap, and two new con-
nectives: the separating conjunction ∗ and the separating implication −−∗ (in this
paper we will not use the separating implication).

We have specifications {A} C {B}, stating that in any state in which A holds,
no execution of C will abort, and if the execution terminates in a final state, then
B will hold in that state. As a consequence, we have the slogan

“Well-specified programs do not go wrong.”

for separation logic.

2.1 An Example

As mentioned in Sec. 1, separation logic provides reasoning principles for proving
programs that manipulate shared mutable data structures. We will demonstrate
the advantage of separation logic by an example.

In traditional Hoare logic (without shared data structures), one has the rule of
constancy (as usual, Mod(C) is the set of variables modified by the command C).

{A} C {A′}

{A ∧ B} C {A′ ∧ B}
Mod(C) ∩ FV(B) = ∅

This rule has been useful, since it has allowed reasoning about only the parts of
the store that are modified by the program fragment. In the presence of aliasing,
however, the rule of constancy is not sound, as can be seen from the following

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 5

counterexample.

{x ↪→ 3} [x] := 4 {x ↪→ 4}

{x ↪→ 3 ∧ y ↪→ 3} [x] := 4 {x ↪→ 4 ∧ y ↪→ 3}
,

where the effect of [x] := 4 is that 4 is stored in the heap at the address denoted
by x. The problem here is that x and y might be references to the same heap
cell, and if we change the value stored in this heap cell, the assertion about what
y points to does not remain true. In Hoare logic, we would have to add a premise
like x 6= y, or some other non-interference predicate, for the conclusion to hold.
This may seem like a small thing to do, but if there are many variables in play,
the induced number of non-interference predicates in the involved assertions would
quickly become intractable. Further, if a program deals with more realistic data
structures, the assertions which prevent sharing also become unacceptably complex,
as can be seen from the examples in [Reynolds 2002]. In contrast, the assertion

x ↪→ 3 ∗ y ↪→ 3 (1)

in separation logic implicitly states that x and y are disjoint, since the two assertions
x ↪→ 3 and y ↪→ 3 must hold in disjoint parts of the heap in order for (1) to hold.
Therefore, the derivation

{x ↪→ 3} [x] := 4 {x ↪→ 4}

{x ↪→ 3 ∗ y ↪→ 3} [x] := 4 {x ↪→ 4 ∗ y ↪→ 3}

is valid in separation logic. In fact, it is an instance of the important frame rule:

{A} C {A′}

{A ∗B} C {A′ ∗B}
Mod(C) ∩ FV(B) = ∅

This rule allows local reasoning. Suppose we have a program with a while-loop
which performs some manipulations on a data structure stored in the heap. When
verifying the program, one has to exhibit an invariant for the while loop and
prove that it is indeed an invariant. The invariant is typically an assertion about
the full data structure, whereas each iteration of the loop manipulates a small
portion of this structure only. The Frame Rule allows us to prove the invariant
by proving a specification which mentions only the parts of the heap that are
actually manipulated in one loop iteration (this has been called the footprint of the
code fragment by O’Hearn [Reynolds 2002]), and then conclude the specification
regarding the full structure from this. We will see several applications of the frame
rule in subsequent sections. Also, we discuss benefits of separation logic in general
terms in Section 7.1, after we have shown correctness of our garbage collector.

3. SYNTAX AND SEMANTICS

In this section we present our storage model, and define a semantic notion of garbage
collection. We then proceed with the syntax and semantics of expressions and
assertions which are part of our program logic. The basis of the system is the
standard separation logic with pointer arithmetic [O’Hearn etal. 2001], but we
extend the expression and assertion languages with finite sets and relations, new
basic assertions about these, and an extension of the iterated separating conjunction
to arbitrary finite sets.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · Torp-Smith, Birkedal, Reynolds

3.1 Storage Model

We assume five countably infinite sets V arint, V arfs, V arfrp, V arfri of variables, and
let V ar be the disjoint union of these sets. We let metavariables x, y, . . . range over
V ar and assume a type-function

τ : V ar → types, where types = {int, fs, frp, fri}

indicating which type a given variable has. The sets of locations and pointers are
the sets of integers divisible by 4 and 8, respectively. More formally, we define:

Variables x, y, . . . ∈ V ar
Locations l ∈ Loc ≡ {4n | n ∈ Z}
Pointers p ∈ Ptr ≡ {8n | n ∈ Z}
Finite sets FS ≡ Pfin(Ptr)
Pointer relations FRP ≡ Pfin(Ptr × Ptr)
Integer relations FRI ≡ Pfin(Ptr × Z)
Values v ∈ V al ≡ Z ∪ FS ∪ FRP ∪ FRI

Heaps ≡ Loc ⇀fin Z

Stacks ≡ {s : V ar ⇀fin V al | ∀x ∈ V ar. s(x) ∈ [[τ(x)]]}
States ≡ Stacks×Heaps,

where [[int]] = Z, [[fs]] = FS, [[fri]] = FRI , and [[frp]] = FRP . We use the notation
Loc ⇀fin Z to denote the set of finite partial functions from Loc to Z. As mentioned
in Section 1.1, we will assume that data is arranged in cons cells that are aligned
in such a way that the first field of each cell is located at a location that is divisible
by 8, and this is why we define the subset Ptr of locations which point to such
cons cells.

The finite sets and both kinds of relations in the table above are extensions of
traditional separation logic. In the sense of [Reynolds 1981] and [Owicki and Gries
1976], variables of these types are used as auxiliary and ghost variables in the
garbage collector and the proof of its correctness. This means that they are not
necessary for the program to work, but they ease proofs of its properties.

Before we present the expression and assertion languages of our program logic,
we define several concepts related to heaps; these are needed for the definition of a
correct garbage collector.

3.2 What is a Garbage Collected Heap?

To implement and reason about a garbage collector, we must make some assump-
tions about heaps, and the assumptions will be part of our logic. For instance, if a
heap contains dangling reachable pointers, then our garbage collector will malfunc-
tion, and hence we must make assumptions that prevent this.

In what follows, we therefore define the concept of a “garbage collected heap”,
and what it means for a heap to be a garbage collected version of another. First,
we give a more precise definition of our requirement about aligned cons-cells. Let
S be a finite set of pointers, let f1, f2 : Ptr ⇀ Z be finite partial functions from
pointers to integers, and let h be a heap. We then define the semantic condition

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 7

pairheap by

pairheap(S, f1, f2, h) iff dom(f1) = dom(f2) = S
and dom(h) = {p+ k | p ∈ S and k ∈ {0, 4}}
and ∀p ∈ S. h(p) = f1(p) and h(p+ 4) = f2(p).

Note that if pairheap(S, f1, f2, h) holds, then h is determined by f1, f2, and S (and
S, f1, f2 are determined by h).

The concept of garbage collection depends on a given root set. Here, we assume
for simplicity that there is only one root cell. Thus, given a heap h and a pointer
r, we call (r, h) a rooted heap. Given such a rooted heap (r, h), we formally define
the sets rp(r, h) and rl(r, h) of pointers and locations that are reachable from r in
h as follows:

rp0(r, h) ≡ {r}
rpn+1(r, h) ≡ {h(`) | ` ∈ rln(r, h) ∩ dom(h) and h(`) ∈ Ptr}
rln(r, h) ≡ {p+ k | p ∈ rpn(r, h) and k ∈ {0, 4}}
rp(r, h) ≡

⋃∞

n=0 rpn(r, h)
rl(r, h) ≡

⋃∞
n=0 rln(r, h).

With these definitions, we can define the condition that “no reachable location
dangles”:

rl(r, h) ⊆ dom(h),

and that “all locations are reachable”:

rl(r, h) ⊇ dom(h).

If both these conditions hold, i.e., if rl(r, h) = dom(h), we say that the rooted
heap (r, h) is exactly reachable. The reachable pointers and locations satisfy a
monotonicity property:

h0 ⊆ h implies rl(r, h0) ⊆ rl(r, h). (2)

Furthermore, once there are no dangling reachable locations in a heap, further
enlargements of the heap does not increase reachability:

h0 ⊆ h and rl(r, h0) ⊆ dom(h0) implies rl(r, h0) = rl(r, h). (3)

It is not hard to see that if a rooted heap (r, h) has no dangling reachable lo-
cations, then h contains a unique subheap h0 such that (r, h0) is exactly reach-
able, and otherwise, h does not contain a subheap h0 such that (r, h0) is exactly
reachable. The subheap (r, h0) plays a role similar to that of prune(h) from the
article [Calcagno etal. 2003], but it is only well-behaved if there are no reachable
dangling locations in (r, h).

For any heap h, we define

pdom(h) ≡ dom(h) ∩ Ptr.

Now, assume (r, h) is exactly reachable. Then for all pointers p,

p ∈ pdom(h) iff p ∈ dom(h) iff p+ 4 ∈ dom(h), (4)

and for all locations `,

` ∈ dom(h) and h(`) ∈ Ptr implies h(`) ∈ pdom(h), (5)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · Torp-Smith, Birkedal, Reynolds

and

r ∈ pdom(h). (6)

Conversely, if the conditions (4) to (6) hold for a rooted heap (r, h), then one can
show

rp(r, h) ⊆ pdom(h) and rl(r, h) ⊆ dom(h)

by induction on n to the corresponding formulas where rp and rl are subscripted
with n.

The conditions (4) to (6) are just what is needed to define a heap morphism from
(r, h) to an arbitrary rooted heap. Henceforth, assume (r, h) satisfies (4) to (6),
(r′, h′) is an arbitrary rooted heap, and that β is a function from pdom(h) to
pdom(h′) such that for all p ∈ pdom(h) and k ∈ {0, 4},

h′((β(p)) + k) = β∗(h(p+ k)) (7)

and

r′ = β(r). (8)

Here, β∗ is the extension of β to Z that is the identity on numbers that are not in
pdom(h). Then β is called a heap morphism from (r, h) to (r′, h′).

Lemma 3.1. Assume (r, h) satisfies (4) to (6), (r′, h′) is an arbitrary rooted
heap, and β is a heap morphism from (r, h) to (r′, h′). Then,

—for all pointers p, if p ∈ rp(r, h), then β(p) ∈ rp(r′, h′).

—If β is an isomorphism of functions, then for all pointers p′, if p′ ∈ rp(r′, h′),
then p′ ∈ pdom(h′) and β−1(p′) ∈ rp(r, h).

—If β is an isomorphism of functions and (r, h) is exactly reachable, then (r′, h′)
is exactly reachable.

Proof. For the first claim, we prove the slightly stronger statement that for all
pointers p, if p ∈ rpn(r, h), then β(p) ∈ rpn(r′, h′). This is done by induction on
n. If p ∈ rp0(r, h), then p = r so that β(p) = β(r) = r′ ∈ rp0(r

′, h′). For the
induction step, if p ∈ rpn+1(r, h), there is a pointer q ∈ rpn(r, h) and a k ∈ {0, 4}
with p = h(q + k). Moreover, p, q ∈ dom(h), and by induction, β(q) ∈ rpn(r′, h′).
This implies

β(p) = β(h(q + k)) = β∗(h(q + k)) = h′(β(q) + k),

and thus, β(p) ∈ rpn+1(r
′, h′).

The second claim is also proved by induction on n. More precisely, we show that
if β is an isomorphism of functions (i.e., it is a bijection between pdom(h) and
pdom(h′)), then for all natural numbers n and all pointers p′, if p′ ∈ rpn(r′, h′),
then p′ ∈ pdom(h′) and β−1(p′) ∈ rpn(r, h). The base case is obvious, and for the
induction step, suppose p′ ∈ rpn+1(r

′, h′). Then there is a pointer q′ ∈ rpn(r′, h′)
and a k ∈ {0, 4} with p′ = h′(q′ + k). For this q′, the induction hypothesis yields
q′ ∈ pdom(h′) and β−1(q′) ∈ rpn(r, h), and thus

p′ = h′(q′ + k) = h′((β(β−1(q′)) + k)) = β∗(h(β−1(q′) + k)) = β(h(β−1(q′) + k)),

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 9

where the last step holds since p′ is a pointer. This means that p′ ∈ pdom(h′), and

β−1(p′) = β−1(β(h(β−1(q′) + k))) = h(β−1(q′) + k).

Now, since β−1(q′) ∈ rpn(r, h), β−1(p′) ∈ rpn+1(r, h).
Finally, also suppose that (r, h) is exactly reachable. To show that (r′, h′) is

exactly reachable, let `′ ∈ rl(r′, h′). By definition, there are a pointer p′ ∈ rp(r′, h′)
and a k ∈ {0, 4} with `′ = p′ + k. By the previous proof, p′ ∈ pdom(h′) and
`′ ∈ dom(h′). Conversely, if `′ ∈ dom(h′), then `′ = p′ + k for a k ∈ {0, 4} and
a p′ ∈ pdom(h′). Since β is a bijection, β−1(p′) ∈ pdom(h), and thus β−1(p′) ∈
rp(r, h), since (r, h) is exactly reachable. We can now use the proof of the first item
to conclude the desired result.

The Lemma justifies the following semantic notion of one heap being a garbage
collected version of another. This, of course, is central when verifying correctness
of a garbage collector.

Definition 3.2. Let (r, h), (r′, h′) be rooted heaps, and suppose h0 ⊆ h is such
that (r, h0) is exactly reachable. If there is a heap morphism β from (r, h0) to (r′, h′0)
for some subheap h′0 ⊆ h

′, then (r′, h′) is called a garbage collected version of (r, h).

This notion of garbage collection, of course, depends on the fact that we collect cons

cells only, and it does not imply that h and h′ need have the same size. Indeed,
a memory management system may shrink the heap after garbage collection, to
diminish the heap usage of a program, or it may allocate more space for a program,
to reduce the required number of rounds of garbage collection.

With this notion of garbage collection, we also note that the identity is an example
of a heap morphism, and the trivial program skip is thus an example of a correct
garbage collector. However, our interest lies with non-trivial garbage collectors.

Our notion of garbage collection is also quite conservative. Indeed, it has been
noted in the literature [Aditya etal. 1994; Morrisett etal. 1995] that if the program-
ming language that uses the garbage collector has a sufficiently rich type system,
there can be a significant difference between the data that is reachable and data
that can be reclaimed without affecting the program. This is because some objects
in the heap might be reachable, but we might be able to infer information about
reachable objects in the heap at run-time, (e.g. via type reconstruction [Aditya
and Caro 1993]) which implies that these objects are not necessary for execution of
the rest of the program. In this case we say that these objects are reachable, but
not live, and it would, of course, give better memory usage to collect objects that
are “dead” in this sense. Using region inference [Tofte and Talpin 1994; Tofte and
Birkedal 1998] it is also possible to statically infer that some data is dead, although
it is reachable, and combinations of region inference and garbage collection exist in
current run-time systems for ML [Tofte etal. 2004; Hallenberg etal. 2002]. It might
even be possible to employ such techniques as hash-consing [Goto 1974; Appel and
Gonçalves 1993] or other dynamic updates that affect data representation [Stoyle
etal. 2005]. However, these possibilities are not relevant to the goal of this paper,
which is a specification and proof of the Cheney algorithm in separation logic.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · Torp-Smith, Birkedal, Reynolds

3.3 Expressions

We define the syntax and semantics for expressions of each of the types int, fs, frp,
and fri. For expressions of type int we just present the syntax; the semantics
is straightforward. For expressions of the remaining types, we just present the
semantics as the syntax will be evident from the presentation of the semantics. In
general, the semantics for an expression E (of each of the types just mentioned) is
formally a map from stack s with FV(E) ⊆ dom(s) to values of suitable kinds, i.e.,
the semantics of an expression depends on a stack.

Expressions of type int are defined by the following grammar:

e ::= n | xint| e1 + e2 | e1 − e2 | e1 × e2 | e mod j
| e1 ≤ e2 | e1 = e2 | ¬e | e1 ∧ e2 | #mfs,

where n ∈ Z and j ∈ N \ {0}. The semantics of #mfs is the number of elements in
the finite set of pointers denoted by mfs (see below). In order to avoid introducing
an explicit type of boolean values, we use a standard encoding of truth values, where
0 denotes “false”, and all other integers denote “true”. Although the superscript
that indicates the type is only meant to indicate the type of variables, we sometimes
use a superscript to indicate the type of composite expressions. Most frequently,
however, we will omit the superscripts, even on variables, if it causes no confusion.

We use m to range over expressions of type fs. The semantics of an expression
of type fs is a set of pointers. For instance, the expression Itv(e1, e2) denotes the
set of pointers in the half-open interval from e1 to e2. In general, the semantics of
an expression m of type fs is a map from stacks s with FV(m) ⊆ dom(s) to the set
FS of finite sets of pointers, and it is given by

[[∅fs]]s = ∅
[[xfs]]s = s(x)
[[{e}]]s = {[[e]]s} ∩ Ptr

[[Itv(eint
1 , e

int
2)]]s = {p ∈ Ptr | [[e1]]s ≤ p ∧ p < [[e2]]s}

[[mfs
1 ∪m

fs
2]]s = [[m1]]s ∪ [[m2]]s

[[mfs
1 \m

fs
2]]s = [[m1]]s \ [[m2]]s

We can now formally define the semantics of expressions of form #mfs:

[[#mfs]]s = k, where [[m]]s = {p1, . . . , pk} (note that k may be 0).

We use r to range over expressions of type frp. The semantics of an expression r
of type frp is a map from stacks s with FV(r) ⊆ dom(s) to the set FRP of finite
relations on pointers, and it is given by the following clauses.

[[∅frp]]s = ∅
[[xfrp]]s = s(x)
[[r†]]s = {(p′, p) | (p, p′) ∈ [[r]]s}

[[rfrp1 ◦ r
frp
2]]s = {(p, p′′) | ∃p′. (p, p′) ∈ [[r2]]s ∧ (p′, p′′) ∈ [[r1]]s}

[[rfrp ∪ {(eint
1 , e

int
2)}]]s = [[r]]s ∪ ({([[e1]]s, [[e2]]s)} ∩ Ptr × Ptr)

[[rfrp \ {(eint
1 , e

int
2)}]]s = [[r]]s \ ({([[e1]]s, [[e2]]s)})

Note that we use r† for the inverse of the relation r.
To conclude our semantics for expressions, we give the semantics for expressions

of type fri. We use ρ to range over such expressions. The � operator will be used
to model the structure-preserving property of our garbage collector, inasmuch as
it extends a relation with the identity on non-pointers before composing it with

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 11

another relation (cf. the definition of β∗ from Sec. 3.2). Hence, the semantics of
an expression ρ of type fri is a map from stacks s with FV(ρ) ⊆ dom(s) to the set
FRI of relations between pointers and integers.

[[xfri]]s = s(x)
[[ρfri ◦ rfrp]]s = {(p, n) | ∃p′ ∈ Ptr. (p, p′) ∈ [[r]]s ∧ (p′, n) ∈ [[ρ]]s}
[[rfrp � ρfri]]s = {(p, n) | ((p, n) ∈ [[ρ]]s ∧ n 6∈ Ptr) ∨

(∃p′ ∈ Ptr. (p, p′) ∈ [[ρ]]s ∧ (p′, n) ∈ [[r]]s)}

Note the connection between the (−)∗-construct and the semantics of the special
relation composition �: if ϕ and ψ are functions denoting the relations r and ρ,
respectively, then ϕ∗ ◦ ψ is the denotation of r � ρ.

Substitution is defined in a standard way; there are no binders in the expres-
sion language. The following substitution lemma is easily proved by induction on
expressions.

Lemma 3.3. Let s be a stack, and let δ, δ′ ∈ Types. Then, for all expressions
eδ, e′δ

′

of type δ and δ′ respectively, and for all variables xδ′

of type δ′,

[[e[e′/x]]]s = [[e]](s[x 7→ [[e′]]s]),

where s[x 7→ v] is the function that is like s, but with x mapped to v.

We use ≡ to denote syntactic equality between expressions, and we sometimes write
e1 = e2 to denote that [[e1]]s = [[e2]]s, for all stacks s with FV(e1)∪FV(e2) ⊆ dom(s).

3.4 Assertions

Our assertion language is a variant of that of separation logic [Reynolds 2002] with
assertion forms for finite sets and relations. We first present the syntax of assertions
and give informal explanations of the most interesting assertion forms. Then we
give the formal semantics and present some useful inference rules.

We use A, B, andD to range over assertions, which are generated by the following
grammar:

A,B,D ::= e1 ≤ e2 | e1 = e2
| ¬e | T
| F | ¬A
| A→ B | A ∧ B
| A ∨ B | ∀xδ . A
| ∃xδ . A
| emp | e1 7→ e2
| A ∗B | A −−∗ B
| ∀∗xint ∈ m. A
| e ∈ m | m1 ⊥ m2

| m1 = m2 | m1 ⊆ m2

| (e1, e2) ∈ ρ | (e1, e2) ∈ r
| Ptr(e) | PtrRg(ρ,m)
| Tfun(r,m) | Tfun(ρ,m)
| iso(r,m1,m2)
| Reachable(ρ1, ρ2,m, e),

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · Torp-Smith, Birkedal, Reynolds

y

4

nil7

7 nil

7 nil

Fig. 1. A sample partition of a heap

where δ ranges over Types. We have grouped the assertion forms by horizontal
lines. The assertion forms above the first horizontal line are the usual assertion
forms from classical logic with equality.

The second group are assertions that describe the heap. Apart from the iterated
separating conjunction, these are all part of standard separation logic. The assertion
emp states that the heap is empty, and e1 7→ e2 states that there is precisely one
location in the domain of the heap. A ∗ B means that A and B hold in disjoint
subheaps of the current heap, and A −−∗ B means that for all heaps h′ that are
disjoint from the current heap h and in which A hold, the combination of the
extension and the current heap will satisfy B. Finally, ∀∗ is an iterated separating
conjunction. Informally, if s, h |= ∀∗x ∈ m. A, and if [[m]]s = {p1, . . . , pk}, then h
can be split into disjoint heaps h = h1 · . . . · hk with s, hi |= A[pi/x]. This assertion
form plays a crucial role in our specification of our garbage collector. This is
evident in Sections 5.2 and 5.3, but to illustrate this important new assertion form,
we provide a simple example of using ∀∗ to describe heaps here.

Consider the heap depicted in Figure 1. The heap cells here can be split into three
disjoint sets in each of which all the cells have similar properties. This partition is
illustrated with dotted lines in the figure. The first set simply consists of the cell
pointed to by y, whereas the second set (called m1) consists of three cells which
clearly have a similar property. The cells in the last group m2 have the property
that their first fields contain the pointer y, and the second fields all contain a pointer
to a cell in m1. Hence, a description of this heap is given by the assertion

∃m1,m2. ((y 7→ 4) ∗
(∀∗x ∈ m1. x 7→ 7, nil) ∗
(∀∗x ∈ m2. (∃z. z ∈ m1 ∧ x 7→ y, z))).

At any state of execution of the garbage collection algorithm, the pointers in-
volved in the algorithm can be split into disjoint sets as in this example, and thus
the iterated separating conjunction can be used to obtain an assertion which de-
scribes the heap, in a way similar to the example above. Also note that the sets
involved in the assertion form might change throughout execution of a program;
thus this assertion form describes a “dynamic” heap. An example of this can be
found in Section 6.1.

The next group contains assertion forms that are related to our extension of
standard separation logic. They are assertions about sets and relations, and most
of them are self-explanatory. The assertion PtrRg(ρ,m) loosely says that m is the
pointers in the range of the relation ρ; Tfun says that a relation is a total function
on a set, and iso says that a relation is a bijection between two sets. Finally,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 13

the assertion Reachable says that an exactly reachable heap is described by two
(functional) relations on a set, and a “root pointer”.

The set FV(A) of free variables for an assertion A is defined as usual. Note that
x (and not m) is bound in ∀∗x ∈ m. A. Substitution A[e/x] of the expression e
for the variable x in the assertion A is defined in the standard way. We sometimes
write A(x) to indicate that the variable x may occur free in A.

The semantics for propositions is formally given by a judgment of the form

(s, h) |= A,

the intended meaning of which is that the proposition A holds in the state (s, h).
We require FV(A) ⊆ dom(s). Before the definition of this judgment, we need to
introduce a partial commutative monoid structure on the set of heaps: Write h1#h2

to indicate dom(h1)∩ dom(h2) = ∅ (we call such heaps disjoint), and if h1#h2, we
define the combined heap h1 · h2 by

n 7→

{

h1(n) if n ∈ dom(h1)
h2(n) if n ∈ dom(h2)

.

The semantics is given in Fig. 2. We let b range over the boolean expressions
e1 ≤ e2, e1 = e2,¬e, and δ range over Types.

Note that the semantics is classical for the standard first-order logic fragment,
and that the parameters for the assertion form Reachable determine the heap that
is required to exist unambiguously.

As for expressions, we have the expected substitution lemma for assertions.

Lemma 3.4. Let e be an expression of type δ, let x be a variable of type δ, and
let A be an assertion. Then, for all states s, h,

(s, h) |= A[e/x] iff (s[x 7→ [[e]]s], h) |= A

Definition 3.5. We call an assertion A valid if, for all states (s, h) with FV(A) ⊆
dom(s), (s, h) |= A. We use ⇒ to denote semantic validity, i.e., A ⇒ B if
(s, h) |= A implies (s, h) |= B, for all states (s, h).

The following shorthand notations are standard in separation logic, and we shall
also use them in this paper.

e 7→ e1, e2 ≡ (e 7→ e1) ∗ (e+ 4 7→ e2)
e1 ↪→ e2 ≡ e1 7→ e2 ∗ T

e ↪→ e1, e2 ≡ e 7→ e1, e2 ∗ T
e 7→ − ≡ ∃xint. e 7→ x

e 7→ −,− ≡ ∃xint, yint. e 7→ x, y

These notations make sense for all locations, but we shall only use them when e
denotes a pointer. We also write e1 6= e2 for ¬(e1 = e2).

There are certain special classes of assertions [Yang 2001],[Reynolds 2002], which
we will use later. These are defined here.

Definition 3.6.

—An assertion A is called pure if its validity does not depend on the heap, i.e., if
(s, h) |= A if and only if (s, h′) |= A, for all stacks s and heaps h, h′.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · Torp-Smith, Birkedal, Reynolds

A (s, h) |= A if and only if

b [[b]]s 6= 0
T T

F F

¬A s, h 6|= A
A → B s, h |= A implies s, h |= B
A ∧ B s, h |= A and s, h |= B
A ∨ B s, h |= A or s, h |= B
∀xδ . A for all v ∈ [[δ]], s[x 7→ v], h |= A
∃xδ . A for some v ∈ [[δ]], s[x 7→ v], h |= A
emp dom(h) = ∅
e1 7→ e2 h = {([[e1]]s, [[e2]]s)}
A ∗ B there are heaps h1, h2 such that h1#h2,

h1 · h2 = h, s, h1 |= A, and s, h2 |= B
A −−∗ B s, h · h′ |= B for all h′ with h#h′ and s, h′ |= A

∀∗p ∈ m. A

{

s, h |= A[p1/p] ∗ · · · ∗ A[pk/p] if [[m]]s = {p1, . . . , pk}
s, h |= emp if [[m]]s = ∅

e ∈ m [[e]]s ∈ [[m]]s
m ⊥ m′ [[m]]s ∩ [[m′]]s = ∅
m1 = m2 [[m1]]s = [[m2]]s
m1 ⊆ m2 [[m1]]s ⊆ [[m2]]s
(e1, e2) ∈ r ([[e1]]s, [[e2]]s) ∈ [[r]]s

(e1, e2) ∈ ρ ([[e1]]s, [[e2]]s) ∈ [[ρ]]s
Ptr(e) [[e]]s ∈ Ptr
PtrRg(ρ, m) ∀ (p, q) ∈ [[ρ]]s. q ∈ Ptr ⇒ q ∈ [[m]]s
Tfun(r, m) ∀p ∈ [[m]]s. ∃!n ∈ Z. (p, n) ∈ [[r]]s
Tfun(ρ, m) ∀p ∈ [[m]]s. ∃!n ∈ Z. (p, n) ∈ [[ρ]]s
iso(r, m1, m2) ∀p1 ∈ M1. ∃!p2 ∈ M2. (p1, p2) ∈ ϕ ∧

∀p2 ∈ M2. ∃!p1 ∈ M1. (p1, p2) ∈ ϕ ∧
∀(p1, p2) ∈ ϕ. p1 ∈ M1 ∧ p2 ∈ M2,
where M1 = [[m1]]s,M2 = [[m2]]s, ϕ = [[r]]s

Reachable(ρ, ρ′,m, e) s, h |= Tfun(ρ, m) ∧ Tfun(ρ′,m) and ∃h′. ([[e]]s, h′) is exactly
reachable, and pairheap([[m]]s, [[ρ]]s, [[ρ′]]s, h′)

Fig. 2. Semantics of Assertions

—We call an assertion A intuitionistic if, for all stacks s and heaps h, h′,

(s, h) |= A and h ⊆ h′ imply (s, h′) |= A.

Here, ⊆ is just set-theoretic inclusion of graphs.

Remark 3.7. Special rules apply for certain of the newly introduced classes of
assertions. Here are some of these rules.

—When A is a pure assertion, the rule

A ∧ (B ∗ C)←→ (A ∧ B) ∗ C (9)

is valid for any assertions B and C.

—Pure assertions are intuitionistic.

—Syntactically, an assertion is pure, if it does not contain any occurrences of emp,
∀∗, 7→, or the shorthand notation ↪→.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 15

3.5 Some Useful Rules

A number of axiom schemata are used in proofs later. We believe they could be part
of a small theory of finite sets and relations that could be used in proofs of other
programs where the goal is to establish an isomorphism between data structures
before and after execution. The schemata most relevant to separation logic are
listed below, and more can be found in the survey paper [Reynolds 2002]. Beside
these, there are a number of obvious rules regarding sets and relations which can
easily be verified semantically. For completeness, these are listed in Appendix B.
Rules for ∀∗:

(∀∗x ∈ m. A) ∧ m = m′ → ∀∗x ∈ m′. A (10)

m = ∅ → ((∀∗x ∈ m. A)←→ emp) (11)

(∀∗x ∈ m. x 7→ − ∧ A) ∧ y ∈ m→
(∀∗x ∈ m. x 7→ − ∧ A) ∧ (y ↪→ −)

(12)

When m and m′ are disjoint,

(∀∗x ∈ m. A) ∗ (∀∗x ∈ m′. A)←→ (∀∗x ∈ m ∪m′. A) (13)

As a special case, we get

e ∈ m→
((∀∗x ∈ m. A)←→ ((∀∗x ∈ (m \ {e}). A) ∗A[e/x])).

(14)

General / Structural rules: When x 6∈ FV(e),

(e ↪→ e′) ∧ ((∃x. e 7→ x ∧ A) ∗B)←→
(e 7→ e′ ∧ A[e′/x])) ∗B

(15)

If B is pure and B′ is intuitionistic,

A ∧ B → B′

(A ∗A′) ∧ B → B′
. (16)

We also use the commutativity and associativity of the separating conjunction (the
same rules for the traditional conjunction are also used, but we refrain from stating
them here):

A ∗B ←→ B ∗A and A ∗ (B ∗ C)←→ (A ∗B) ∗ C (17)

Theorem 3.8. The rules (10) - (17), and the rules (34) - (83) from Appendix
B are all valid.

We shall use the commutativity and associativity rules implicitly in proofs, and we
shall often just say “by purity”, when we apply the distributive law (9) for pure
assertions from Remark 3.7.

The following lemma is useful when reasoning about assertions involving ∀∗.

Lemma 3.9. Suppose A,B, s, and h are such that (s, h) |= ∀∗x ∈ m. A, and
∀x′. x′ ∈ m ∧ A[x′/x]→ B[x′/x] is valid. Then (s, h) |= ∀∗x ∈ m. B.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · Torp-Smith, Birkedal, Reynolds

Proof. We do a case analysis on the cardinality of [[m]]s. If [[m]]s = ∅, then

(s, h) |= ∀∗x ∈ m. A ⇐⇒ (s, h) |= emp ⇐⇒ (s, h) |= ∀∗x ∈ m. B

If [[m]]s = {p1, . . . , pk}, we have

(s, h) |= A[p1/x] ∗ · · · ∗A[pk/x],

so there is a partition h = h1 · . . . · hk such that for i = 1 . . . k, s, hi |= A[pi/x].
Since we have s, hi |= A[pi/x] ∧ pi ∈ m, we get (s, hi) |= B[pi/x], and this means
that

(s, h) |= ∀∗x ∈ m. B,

as desired.

This shows that we can exploit the information about x′ ∈ m to do “implication
under ∀∗”. Another useful rule comes from the following lemma for which we omit
the proof.

Lemma 3.10. If D is a pure assertion, and if D ∧A→ A′ and D ∧B → B′ are
valid, then D ∧ (A ∗B)→ D ∧ (A′ ∗B′) is valid.

By induction, this means that D∧ (A1 ∗ · · ·∗Ak)→ (A′
1 ∗ · · ·∗A

′
k) can be inferred

from D ∧ A1 → A′
1, and · · · , and D ∧ Ak → A′

k.
Note that Lemma 3.10 is not valid if D is not pure — as a counterexample, set

A to 4 7→ 2, B to 8 7→ 3, A′ to 4 7→ 10, B′ to 8 7→ 17, and D to (4 7→ 2 ∗ 8 7→ 3).
As an example of a rule that can be derived from the rules above, we get the

following from (15) and purity. Here, A must be a pure assertion; otherwise the
second step below is not valid.

(e ↪→ e′) ∧ ((∃x. (e 7→ x ∧ A)) ∗B)
⇓
(e 7→ e′ ∧ A[e′/x]) ∗B
⇓
((e 7→ e′) ∗B) ∧ A[e′/x]
⇓
A[e′/x]

(18)

In addition to the rules above, we have the standard rules of classical logic. We
will sometimes implicitly substitute equals for equals; for example, we will infer
e ∈ m2 from e ∈ m1 ∧m1 = m2. Also, the most basic arithmetic will be performed
implicitly, so we will for example infer x− 8 ≤ y from x ≤ y.

4. PROGRAMMING LANGUAGE

In this section we first define the syntax and semantics of the programming language
used for implementing our garbage collector. Next, we use the assertion language
from Sec. 3.4 to give a program logic in the style of Hoare for the language. This
enables us to specify and prove correct the collector in Sec. 5 and 6.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 17

4.1 Syntax and Semantics

Definition 4.1. The syntax of the implementation language is given by the fol-
lowing grammar:

C ::= skip | xint := e | xfs := m | xfrp := r | xint := [e] | [e] := e
| C;C | while e do C od | if e then C else C fi

Note that there are no constructs for allocating or deallocating locations on the
heap. In our implementation and specification of Cheney’s algorithm we simply
assume that the domain of the heap contains the necessary locations. It would be
straightforward to add these features to the language, implement a version of the
algorithm that allocates the necessary space before collection and disposes garbage
afterwards, and modify our proof of its correctness. We discuss this further in
Section 5.

The operational semantics is given by a (small-step) relation ; on configurations
(ranged over by K). Configurations are either of the form s, h (these are called
terminal) or of the form C, s, h (these are called non-terminal).

Definition 4.2. The relation ; on configurations is defined by the following
inference rules:

skip, s, h ; s, h

[[e]]s = n

xint := e, s, h ; s[x 7→ n], h

[[m]]s = M

xfs := m, s, h ; s[x 7→M], h

[[r]]s = ϕ

xfrp := r, s, h ; s[x 7→ ϕ], h

[[e]]s = p p ∈ dom(h) h(p) = n

xint := [e], s, h ; s[x 7→ n], h

[[e1]]s = p [[e2]]s = n p ∈ dom(h)

[e1] := e2, s, h ; s, h[p 7→ n]

C1, s, h ; C ′, s′, h′

C1;C2, s, h ; C ′;C2, s
′, h′

C1, s, h ; s′, h′

C1;C2, s, h ; C2, s
′, h′

[[e]]s = 0

while e do C od, s, h ; s, h

[[e]]s 6= 0 C;while e do C od, s, h ; K

while e do C od, s, h ; K

[[e]]s = 0 C2, s, h ; K

if b then C1 else C2 fi, s, h ; K

[[e]]s 6= 0 C1, s, h ; K

if b then C1 else C2 fi, s, h ; K

The semantics is easily seen to be deterministic. We introduce the following
terminology.

Definition 4.3. We say that

—C, s, h is stuck if there is no configuration K such that C, s, h ; K.

—C, s, h goes wrong if there is a non-terminal configuration K with C, s, h ;
∗ K

and K is stuck.

—C, s, h terminates normally if there is a terminal configuration s′, h′ such that
C, s, h ;

∗ s′, h′.

Other published definitions of the programming language used in separation
logic use a special configuration called “abort” or “fault” instead of the concept

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · Torp-Smith, Birkedal, Reynolds

of “stuck”; we are able to avoid this complication because we have restricted the
programming language to a deterministic sublanguage.

As is standard, we define Mod(C) to be the set of variables that are modified by
the command C, i.e., those that occur on the left hand side of the forms xδ := v
and xint := [e] (but not [x] := e). The set FV(C) for a command is just the set of
variables that occur in C.

4.2 Partial Correctness Specifications and Program Logic

Definition 4.4. Let A and B be assertions, and let C be a command. The
partial correctness specification (pcs) {A} C {B} is said to hold if, for all states
(s, h) with FV(A,C,B) ⊆ dom(s), (s, h) |= A implies

—C, s, h does not go wrong, and

—if C, s, h ;
∗ s′, h′, then (s′, h′) |= B.

We refer to A and B as the pre- and postcondition of the specification, respectively.

We present a set of proof rules that are sound with respect to Def. 4.4. First,
we give rules regarding the different constructs in the programming language and
then we give some structural rules.
Rule for skip: {A} skip {A}
Rules for assignment

{B[e/x]} xint := e {B}
{B[m/x]} xfs := m {B}
{B[r/x]} xfrp := r {B}

(19)

Rules for heap lookup. When x 6∈ FV(e′, A) and y 6∈ FV(e),

{(∃y. e 7→ y ∧ A) ∧ x = e′} x := [e] {e[e′/x] 7→ x ∧ A[x/y]} (20)

When x 6∈ FV(e, A) and y 6∈ FV(e),

{∃y. e 7→ y ∧ A} x := [e] {e 7→ x ∧ A[x/y]} (21)

Rule for heap update : {e1 7→ −} [e1] := e2 {e1 7→ e2} (22)

Rule for sequencing

{A} C1 {B′} {B′} C2 {B}

{A} C1;C2 {B}

Rule for conditionals

{A ∧ b} C1 {B} {A ∧ ¬b} C2 {B}

{A} if b then C1 else C2 fi {B}

Rule for while loops

{A ∧ b} C {A}

{A} while b do C od {A ∧ ¬b}

Structural Rules:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 19

Rule of consequence

A⇒ A′ {A′} C {B′} B′ ⇒ B

{A} C {B}

Rule of Conjunction

{A} C {A′} {B} C {B′}

{A ∧ B} C {A′ ∧ B′}

∀ introduction rule

{A} C {B}

{∀x. A} C {∀x. B}
x /∈ Modifies(C)

The Frame Rule

{A} C {B}

{A ∗A′} C {B ∗A′}
Modifies(C) ∩ FV(A′) = ∅

The frame rule makes local reasoning possible: suppose the assertion A ∗ A′

describes a state in which we are to execute C, but that the “footprint” of C, i.e.,
those locations read or written by C, is described by A and B. Then from a local
specification {A} C {B} for C, involving only this footprint, one can infer a global
specification {A∗A′} C {B ∗A′}, which also mentions locations not in the footprint
of C. It is simpler to state and reason about local specifications, and the frame rule
says that it is adequate to do so. We shall see several applications of the frame rule
later.

We have the expected soundness result.

Theorem 4.5. If a specification {A} C {B} is derivable by the rules in this
section, then {A} C {B} holds.

The proof of this theorem follows from proofs in earlier literature on separation
logic [Yang 2001; Reynolds 2002].

5. THE GARBAGE COLLECTION ALGORITHM

We implement and reason about Cheney’s Algorithm [Cheney 1970]. The imple-
mentation of the algorithm and the associated memory allocator is given in Ap-
pendix A. It assumes two disjoint contiguous “semi-heaps” which have as domains
the intervals Itv(startOld, endOld) and Itv(startNew, endNew) of equal size. We use
the abbreviations

OLD ≡ Itv(startOld, endOld) and NEW ≡ Itv(startNew, endNew)

for these two intervals in the rest of the paper. The memory allocator attempts
to allocate a cons-cell in OLD; if there is no space available in OLD, the garbage
collector copies all cells in OLD reachable from root into NEW, and then the allo-
cation resumes in NEW. The garbage collector GC∗ is delimited by comments in
the code in Appendix A. Notice that the algorithm is aware of the locations of the
reachable cells only. In the spirit of local reasoning, our specification will therefore
only involve the reachable pointers in OLD, called RCH, and not the remaining
(unreachable) part of OLD. The implementation starts by initializing the variables

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · Torp-Smith, Birkedal, Reynolds

offset, scan, free, and maxFree, according to which of the semi-heaps mentioned
above that contains the data to be copied. We consider the case where offset is
initialized to startNew.

The set {ϕ,FWD,UFWD} is an auxiliary variable set for the implementation,
in the sense of [Owicki and Gries 1976; Reynolds 1981]. Thus, assignments to
these variables are not necessary for the program to work; rather they ease the job
of proving properties about the program – hence these assignments need not be
executed. We have marked assignments to these variables with vertical bars in the
margin of the code. We could have chosen to existentially quantify these variables
and omit them from the program, but the reasoning becomes clearer when the
program modifies the auxiliary variables explicitly.

Had we chosen to include allocation and disposal of blocks of memory in our
programming language, a different implementation might have allocated a new
semi-heap initially, then performed the garbage collection, and finally disposed the
old semi-heap after collection. We stick to the current implementation, since this
other implementation would not add any features of significant interest to our proof.

In the rest of this section, we first present a semantic condition in Sec. 5.1 which
ensures that our program is a correct garbage collector. This condition is tightly
connected to Cheney’s algorithm (and our implementation of it), inasmuch as it
explicitly mentions the input and output variables such as offset and scan, and even
auxiliary variables such as ϕ, head, and tail. We then present the precondition for
the algorithm and the invariant for the while loop in the implementation, both for-
mulated in the assertion language from Sec. 3.4. Before we formally prove that our
implementation meets the corresponding specification in Sec. 6, we show in Sec. 5.4
that the specification entails that our implementation meets the requirement from
Sec. 5.1.

5.1 Semantic Specification of a Copying Garbage Collector

The semantic definition of a garbage collector presented here is quite specific to
our implementation, since it mentions the variables we use. It can be generalized
by quantifying over these, but it is clearer to use the same variables as in the
implementation. Thus, we have the following definition:

Definition 5.1. We call a command GC∗ a correct copying garbage collector
provided that if

(a) [[head]]s, [[tail]]s are total functions on [[RCH]]s, and [[offset]]s, [[maxFree]]s are
pointers,

(b) the heaps hrch, hnew, hextra are disjoint,

(c) the rooted heap ([[root]], hrch) is exactly reachable,

(d) pairheap([[RCH]]s, [[head]]s, [[tail]]s, hrch),

(e) dom(hnew) = [[NEW]]s,

(f) #[[RCH]]s ≤ #[[NEW]]s, and

(g) GC∗, s, hrch · hnew · hextra ;
∗ s′, h′,

then there exists a disjoint split h′ = h′rch ·h
′
fin ·h

′
free and a variable FIN such that

(a’) the heaps h′rch, h
′
fin, h

′
free, and hextra are pairwise disjoint,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 21

(b’) dom(h′rch) = dom(hrch),

(c’) dom(h′fin) = [[FIN]]s′,

(d’) dom(h′fin · h
′
free) = dom(hnew), and

(e’) [[ϕ]]s′ is a heap morphism from ([[root]]s, hrch) to ([[offset]]s′, h′fin) that is an
isomorphism of functions.

Clearly, if ([[root]]s, hrch ·hnew ·hextra) contains an exactly reachable subheap, then
that must be ([[root]]s, hrch), and ([[offset]]s′, h′fin) will be an isomorphic exactly
reachable subheap, due to Lemma 3.1. Thus, this condition clearly ensures that
GC∗ works as we would expect of a garbage collector on a heap with no dan-
gling reachable locations, i.e., it makes ([[offset]]s′, h′) a garbage collected version of
([[root]]s, hrch ·hnew ·hextra) in the sense of Definition 3.2 (but it does not say what
GC∗ does if this is not the case). Furthermore, the definition specifies properties
specific to a copying garbage collector; for example, it assumes that there is enough
new space in the heap to make a new copy of the reachable data.

In the rest of this section, we first present a specification for our implementation
and then show that this specification is strong enough to infer that our implemen-
tation of Cheney’s algorithm meets the requirements in Def. 5.1.

5.2 The Precondition

Before execution of GC∗, we assume that an assertion InitAss holds. InitAss can be
split into two parts:

InitAss ≡ Ic ∧ Ih,

where Ic is pure and Ih describes the heap unambiguously. These assertions are
given by

Ic ≡ RCH ⊥ NEW ∧#RCH ≤ #NEW ∧ root ∈ RCH ∧
PtrRg(head,RCH) ∧ PtrRg(tail,RCH) ∧ Tfun(head,RCH) ∧ Tfun(tail,RCH) ∧
Reachable(head, tail,RCH, root) ∧ Ptr(offset) ∧ Ptr(maxFree)

and

Ih ≡ (∀∗x ∈ RCH. ((∃y. (x, y) ∈ head ∧ x 7→ y) ∗ (∃y′. (x, y′) ∈ tail ∧ x+ 4 7→ y′))) ∗
(∀∗x ∈ NEW.x 7→ −,−).

We use the convention that variables in upper case sans serif (like OLD) always have
type fs. The variables head and tail are of type fri, and the rest of the variables are
of type int.

Note that Ic is “constant” in the sense that it trivially remains true throughout
execution of GC∗, since it is pure and only contains variables that are not modified.
This means that it is also part of the invariant of the while loop.

We describe part of these assertions in detail. For Ic, note in particular the
conjunct

Reachable(head, tail,RCH, root) (23)

expressing that head, tail,RCH, and root describe an exactly reachable subheap.
We shall see that RCH is the set of intially reachable pointers from root. Since
the variables head, tail, root, and RCH are not modified by the algorithm, this
holds at any step of execution. The rest of Ic simply records basic facts about the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · Torp-Smith, Birkedal, Reynolds

2

3 4 5

root

1 2

(1)

scan free maxFreeoffset

UFINFIN

BUSY

UFWD

FWD

· · ·

FREE

NEW

OLD

Fig. 3. A state of execution

relationship between the various sets and pointers. To understand Ih, suppose x
denotes a pointer and consider the assertion

(∃y. (x, y) ∈ head ∧ x 7→ y) ∗ (∃y′. (x, y′) ∈ tail ∧ x+ 4 7→ y′).

It asserts that there are values v, v′ that are related to (the denotation of) x by the
relations head and tail, and at the same time, x and x + 4 point to these values in
the heap. In this way, head and tail “record” the contents of the cell pointed to by
x. By the definition of ∀∗, the assertion

((∀∗x ∈ RCH. ((∃y. (x, y) ∈ head ∧ x 7→ y) ∗ (∃y′. (x, y′) ∈ tail ∧ x+ 4 7→ y′)))

therefore asserts that head and tail record the contents of all cells pointed to be
pointers in RCH, (and those pointers are in the domain of the heap). It is easy to
see from (23) and this assertion that RCH is the domain of an exactly reachable
subheap of the initial heap. Also, Ih asserts that the set NEW is in the domain of
the heap, so we can safely place copies of cells from RCH here.

5.3 The Invariant

To exhibit an invariant of the while-loop, we consider Fig. 3, which is a snapshot
of a state during execution. Only the reachable cells in OLD (the part of the
heap above the bold horizontal line) are shown. Three of the cells in RCH have
been modified at this stage: their first fields have been updated with forwarding
pointers ; these appear bolder in the figure. The original contents of these first fields
are indicated with dotted lines and parenthesized numbers. The pointers in RCH
naturally divide into two sets:

—UFWD: The pointers in RCH that point to cells not yet modified by the algorithm.

—FWD: The pointers in RCH that point to cells that have their first fields over-
written with a pointer in NEW.

The algorithm proceeds by traversing all the cells in between the scan and free
pointers, that is, scan always points to the next cell to be traversed. A cell is tra-
versed by scanning its two fields. If the field being scanned contains a non-pointer,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 23

the traversal simply proceeds to the next field or cell; if the field being scanned
contains a pointer p in UFWD, the cell pointed to by p is copied and a forwarding
pointer is placed in the original field; if the field being scanned contains a pointer
in FWD, then the cell pointed to has already been copied and we simply update
the scanned field to point to the copy. We use the auxiliary variables ϕ (which is of
type frp), FWD, and UFWD to keep track of the forwarding pointers, and to record
the reachable cells that have been already copied into NEW. When a cell is copied
from RCH to NEW, the corresponding pointer is moved from UFWD to FWD, and
ϕ is updated. To simplify certain aspects of the proof, each execution of the body
of the while command uses the subprograms ScanCar and ScanCdr to scan the two
fields of a cell that lie at the locations scan and scan + 4. Thus the actual value of
scan always addresses the first field of a cell, and is therefore a pointer.

The pointers in NEW divide into the following three sets:

—FIN (which is an abbreviation of Itv(offset, scan)): The pointers in NEW that
have been scanned. These are not modified further by the algorithm.

—UFIN (which is an abbreviation of Itv(scan, free)): The pointers in NEW that
have not been scanned. These point to the original contents of cells pointed to
by pointers in RCH.

—FREE (which is an abbreviation of Itv(free,maxFree)): The pointers in NEW that
are available for allocation.

The five sets are illustrated in Fig. 3. Note that FIN, UFIN and FREE are intervals,
whereas this is not the case for FWD and UFWD in general. Also, observe that ϕ
is a one-to-one correspondence between the pointers in FWD and those in BUSY ≡
FIN∪UFIN = Itv(offset, free). This bijection will turn out to be the heap morphism
we are looking for.

The invariant of the algorithm has a pure and an impure part; the latter describes
the heap. The pure part is

Ipure ≡ Ic ∧ (root, offset) ∈ ϕ ∧ (root ∈ FWD) ∧
iso(ϕ,FWD,BUSY) ∧ (RCH = FWD ∪ UFWD) ∧
scan ≤ free ∧ offset ≤ scan ∧ Ptr(free) ∧ Ptr(scan)

Note in particular the conjunct iso(ϕ,FWD,BUSY) expressing that ϕ is a bijection.
The rest of Ipure simply records basic facts about the relationship between the
various sets and pointers.

We now describe the impure part of the invariant; we use the partitioning of
pointers into sets from before.

The cells pointed to by pointers in UFWD have not been modified by the algo-
rithm; hence they are described by head and tail in the same way as the pointers in
RCH in InitAss. We thus define

AUFWD ≡ ∀∗x ∈ UFWD.
((∃y. (x, y) ∈ head ∧ x 7→ y) ∗ (∃y′. (x, y′) ∈ tail ∧ x+ 4 7→ y′)).

Each of the cells pointed to by a pointer in FWD has a forwarding pointer in its
first field. Recalling that ϕ records the forwarding pointers, we define

AFWD ≡ ∀∗x ∈ FWD. (∃y. (x, y) ∈ ϕ ∧ x 7→ y,−).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · Torp-Smith, Birkedal, Reynolds

42

42

p

ϕ
†(p)

head(ϕ†(p))

ϕ
∗(head(ϕ†(p)))

42 = tail(ϕ†(p)) = ϕ
∗(tail(ϕ†(p)))

Fig. 4. The situation for a pointer p in FIN

A cell pointed to by a pointer in UFIN contains the original contents of a cell pointed
to by a pointer in FWD. The latter pointer is recorded by the inverse of ϕ, and
hence we define

AUFIN ≡ ∀∗x ∈ UFIN. ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′)).

The cells in FIN have been scanned. The case-distinction between pointers and
non-pointers during scanning is captured by the operator �. We define

AFIN ≡
∀∗x ∈ FIN. ((∃y. (x, y) ∈ ϕ� (head ◦ ϕ†) ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ x+ 4 7→ y′)).

To understand AUFIN and AFIN, it is helpful to consider Fig. 4, in which we use
a functional notation for the functional relations head, tail, and ϕ. The pointer
p ∈ FIN is the address of the rightmost bottom cell. Before p was scanned, it held
the original contents of a cell pointed to by a pointer q ∈ RCH. After that cell
was copied, it had its first field overwritten with the forwarding pointer p; this is
recorded by ϕ, hence (q, p) ∈ ϕ. The original contents of the cell pointed to by q is
recorded by head and tail, so letting q′ denote the address of the rightmost upper
cell in Fig. 4, we have (q, q′) ∈ head, hence (p, q′) ∈ head ◦ ϕ†. Before the field
pointed to by p was scanned, it had q′ in its first field. Now, by scanning the first
field in the cell pointed to by p, we copy the cell pointed to by q′ (if necessary), and
update the field we are scanning to point to the address of the copy of that cell.
Denoting the address of the copy by q′′, we then have (q′, q′′) ∈ ϕ, by the definition
of ϕ, and hence, (p, q′′) ∈ ϕ� (head ◦ ϕ†).

For the pointers in FREE, we need only know that they are in the domain of the
heap, to allow us to safely copy cells into FREE. We therefore define

AFREE ≡ ∀∗x ∈ FREE. x 7→ −,−.

In summary, the invariant of the algorithm is

I ≡ Ipure ∧ (AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN ∗ AFREE),

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 25

Unchanging Changing

Abbreviations NEW ≡ Itv(startNew, endNew) FIN ≡ Itv(offset, scan)
UFIN ≡ Itv(scan, free)
FREE ≡ Itv(free,maxFree)
BUSY ≡ Itv(offset, free)

Auxiliary RCH FWD

head UFWD

tail ϕ

Program startOld root

endOld scan

startNew free

endNew offset

maxFree

Table I. Variables involved in the proof of the garbage collector.

and hence, we aim to prove the specification

{InitAss} GC∗ {I ∧ scan = free}. (24)

Notice that the sets UFWD,FWD, etc. change throughout execution of the algo-
rithm. Therefore, each of the corresponding assertions AUFWD,AFWD, . . . describe
dynamic portions of the heap.

We prove that the specification (24) holds in Section 6, but prior to that, we
prove that this implies correctness of the algorithm in Section 5.4.

For the assertions A− defined above, we will abuse notation slightly. It will some-
times be practical to consider an iterated separating conjunction over over one of
the above mentioned sets, except for one element, which needs to be considered sep-
arately. Therefore, for example, we will let AFWD−x denote the following assertion
(compare with the definition of AFWD)

∀∗z ∈ (FWD \ {x}). (∃y. (z, y) ∈ ϕ ∧ z 7→ y,−).

To get a better overview, we list the different variables (along with what they
abbreviate) that are involved in the program and the proof in Table I. Recall that
auxiliary variables are not needed for the program to work, but are included to ease
the proof of the program. Auxiliary variables that are not modified by programs
are called “ghost variables” or “logical variables” in the literature [Reynolds 1981;
Gries and Levin 1980].

5.4 Sufficiency of the Specification

Before we formally show that our implementation meets the specification (24), we
show that the specification entails that the implementation meets the requirements
from Def. 5.1.

First, since heaps are finite, there is a variable-free assertion Ah0
which is sat-

isfied only by h0, for every heap h0. For instance, if h is the two-element heap
[0 : 4 | 8 : 67], then Ah might be 0 7→ 4 ∗ 8 7→ 67. For any heap hextra, the following
specification therefore follows from (24) and the frame rule.

{InitAss ∗Ahextra
} GC∗ {(I ∧ scan = free) ∗Ahextra

}. (25)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · Torp-Smith, Birkedal, Reynolds

Thus, to show that our specification implies that our implementation meets the
requirements of Def. 5.1, it suffices to show that if the conditions (a) to (f) in
Def. 5.1 are met, then

(s, hrch · hnew · hextra) |= InitAss ∗Ahextra
,

and if GC∗, s, hrch · hnew · hextra ;
∗ s′, h′ and

(s′, h′) |= I ∗Ahextra
∧ scan = free,

then conditions (a’) to (e’) from Def. 5.1 are met. The first of these claims is
relatively straightforward, so we focus on the latter. For brevity, we first set
h = hrch · hnew · hextra.

Thus, assume GC∗, s, h ;
∗ s′, h′ for a state (s, h) in which the conditions (a)

to (f) hold, and that the specification (25) holds. We then need to show that the
conditions (a’) to (e’) from Def. 5.1 hold. The desired split of h′ is the obvious one,
so we only focus on showing the condition (e’).

In our proof, we occasionally use names of variables instead of their denotations.
Also, since head, tail, and ϕ denote functional relations (this clearly follows from I),
we use functional notation for them, taking care to ensure definedness. For example,
we write “there exists a q such that ϕ(p) = q” instead of “there exists a q such that
(p, q) ∈ ϕ”.

First note that the variables RCH, head, and tail are not modified by GC∗, so the
values of these before and after execution of the algorithm are equal (for example,
[[RCH]]s = [[RCH]]s′). The following lemma is important to establish that (the
denotation of) ϕ is indeed a bijection that has the right domain and codomain.

Lemma 5.2. Under the assumptions above,

[[RCH]]s = [[RCH]]s′ = [[FWD]]s′.

Proof. The invariant I contains the assertion Reachable(head, tail,RCH, root),
and therefore there is a heap h0 such that ([[root]]s′, h0) is exactly reachable and
pairheap(RCH, head, tail, h0). As mentioned in Section 3.2, h0 is determined by the
values of RCH, head, and tail. These variables are not altered by the algorithm,
so h0 is the same heap that is determined by Reachable(head, tail,RCH, root) in the
state (s, h), which implies h0 = hrch. Hence ([[root]]s′, hrch) is exactly reachable.
Let p be a pointer in [[RCH]]s′ = pdom(hrch). This implies p ∈ rp([[root]]s′, hrch),
and we show by induction on n, that p ∈ rpn([[root]]s′, hrch) implies p ∈ [[FWD]]s′.

If n = 0, then p = root, and root ∈ FWD is part of I.
Assume, for the induction step, that rpn([[root]]s′, hrch) ⊆ [[FWD]]s′, and let p ∈

rpn+1([[root]]s′, hrch). We need to show that p ∈ [[FWD]]s′. By assumption, there
is ` ∈ rln([[root]]s′, hrch) with hrch(`) = p. By definition, ` = p0 + k for some
p0 ∈ rpn([[root]]s′, hrch) and k ∈ {0, 4}. By the induction hypothesis, p0 ∈ s′(FWD).
We argue by cases on whether k is 0 or 4.

If k = 0, then hrch(p0) = p. Because we have pairheap(RCH, head, tail, hrch), this
implies head(p0) = p. Since p0 is in FWD, I implies that there is a q0 such that
(p0, q0) ∈ ϕ (i.e., p0 = ϕ−1(q0)), and this means that q0 is in FIN. The iterated
separating conjunction over the set FIN that is part of I implies that there is a q1
such that q0 points to q1, and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 27

q1 = ϕ∗(head ◦ ϕ−1(q0))
= ϕ∗(head(p0))
= ϕ∗(p)
= ϕ(p),

since p is a pointer. This means that p is in the domain of ϕ, and thus p ∈ FWD.
If k = 4, we use the same argument, but with tail instead of head. For example,

p = hrch(p0 + 4) = tail(p0).
This completes the proof of Lemma 5.2.

Lemma 5.3. The equation

h′fin((ϕ(p)) + k) = ϕ∗(hrch(p+ k))

holds for all pointers p ∈ dom(hrch) = s′(RCH) = s′(FWD) and k ∈ {0, 4}.

Proof. Let p be such a pointer. We show the desired equation by cases on
whether k is 0 or 4.

If k = 0, we show h′fin(ϕ(p)) = ϕ∗(hrch(p)). Note first that head(p) = hrch(p)
because of pairheap(RCH, head, tail, hrch).

The fact that p ∈ s′(FWD) implies (by I), that there is a q ∈ FIN with q = ϕ(p).
For this q, there is a q0 such that q points to q0, so that q0 = h′fin(q) = h′fin(ϕ(p)),
and

q0 = ϕ∗(head ◦ (ϕ−1(q)))
= ϕ∗(head ◦ (ϕ−1(ϕ(p))))
= ϕ∗(head(p))
= ϕ∗(hrch(p)),

as desired.
If k = 4, we show h′fin(ϕ(p)+4) = ϕ∗(hrch(p+4)). Again, since p ∈ FWD, there

is a q ∈ FIN such that q = ϕ(p). For this q, there is a q1 such that h′fin maps the
location q + 4 to q1 (i.e., h′fin(ϕ(p) + 4) = q1). At the same time,

q1 = ϕ∗(tail ◦ ϕ−1(q))
= ϕ∗(tail ◦ ϕ−1(ϕ(p)))
= ϕ∗(tail(p))
= ϕ∗(hrch(p)),

as desired. This completes the proof of Lemma 5.3.

Now, since I implies that ϕ is a bijection between [[FWD]]s′ = [[RCH]]s′ = [[RCH]]s
and [[FIN]]s′ = [[BUSY]]s′, and the equation in Lemma 5.3 holds, we only need to
show that ϕ([[root]]s) = [[offset]]s′ to conclude that the condition (e’) holds for the
state (s′, h′) after execution of GC∗. But this holds since (root, offset) ∈ ϕ is part
of I and root is not modified by GC∗.

6. PROOFS

In this section, we show the two specifications:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · Torp-Smith, Birkedal, Reynolds

{InitAss}
INIT∗

{I}
and

{I ∧ ¬(scan = free)}
BODY

{I}
,

where INIT∗ is the code before the while loop, and BODY is the body of the loop.
The assertions InitAss and I are those formulated in Sections 5.2 and 5.3.

Both of these proofs use local reasoning. Recall that the idea is to infer a local
specification for program fragments that manipulate the heap. These local specifica-
tions mention exactly the parts of the heap that are manipulated by the fragments,
and the frame rule is then applied to obtain a global specification. Without the
separating conjunction ∗ and the frame rule, we would have to assert complicated
non-interference claims each time we manipulate the heap. This is discussed further
in Section 7.1.

6.1 Establishing the Invariant

We show that INIT∗ establishes I when run in a state satisfying the precondition
InitAss from Section 5.2. Therefore, let INIT and INIT∗ be the code fragments

INIT ≡ t1 := [root];
t2 := [root + 4];
[free] := t1;
[free + 4] := t2;
[root] := free

and
INIT∗ ≡ scan := offset;

free := offset;
FWD := ∅;
UFWD := RCH;
ϕ := ∅;
INIT;
FORW := FORW ∪ {root};
UNFORW := UNFORW \ {root};
ϕ := ϕ ∪ {(root, free)};
free := free + 8.

As mentioned, we use local reasoning and thus we first infer a local specification
for INIT, and then use this local specification and the frame rule to obtain a global
specification for INIT∗.

The local specification for INIT below only mentions the locations that are read
or manipulated by INIT. We use the notation {A} ⇒ {B} for applications of the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 29

rule of consequence, i.e., to denote that A→ B is valid.

{

(∃y. (root, y) ∈ head ∧ root 7→ y) ∗ (∃y′. (root, y′) ∈ tail ∧ root + 4 7→ y′) ∗
(free 7→ −,−)

}

t1 := [root]
{

((root, t1) ∈ head ∧ root 7→ t1) ∗ (∃y′. (root, y′) ∈ tail ∧ root + 4 7→ y′) ∗
(free 7→ −,−)

}

t2 := [root + 4]
{

((root, t1) ∈ head ∧ root 7→ t1) ∗ ((root, t2) ∈ tail ∧ root + 4 7→ t2) ∗
(free 7→ −,−)

}

[free] := t1

[free + 4] := t2
{

((root, t1) ∈ head ∧ root 7→ t1) ∗ ((root, t2) ∈ tail ∧ root + 4 7→ t2) ∗
(free 7→ t1, t2)

}

⇓
{

(root, t1) ∈ head ∧ (root, t2) ∈ tail ∧ ((root 7→ t1) ∗ (root + 4 7→ t2) ∗
(free 7→ t1, t2))

}

[root] := free
{

(root, t1) ∈ head ∧ (root, t2) ∈ tail ∧ ((root 7→ free,−) ∗
(free 7→ t1, t2))

}

We explain the first of these specifications in detail. First, the specification

{(∃y. (root, y) ∈ head ∧ root 7→ y)}
t1 := [root]

{((root, t1) ∈ head ∧ root 7→ t1)}

is valid by the rule (21) for heap lookup. The first specification above is then valid
by the frame rule. The second specification is valid by the same argument. For the
third specification, we use the frame rule again, along with two applications of the
rule (22) for heap update. The implication follows from Remark 3.7 (we use purity
of the assertions (root, t1) ∈ head and (root, t2) ∈ tail), and for the last specification,
we use the rule (22) for update, the frame rule, and an obvious rule for existentials,
to “forget” an occurence of t2.

From the local specification for INIT above, we infer the following specification for
INIT∗ using the frame rule. We have labeled the steps with numbers and emphasized
changes from the preceding stage in the assertions by underlining, to ease the
reading. For brevity, we use ϕ′ instead of ϕ \ {(root, free − 8)} in the last step
below.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · Torp-Smith, Birkedal, Reynolds

{InitAss}

(1) scan := offset; free := offset; FWD := ∅; UFWD := RCH; ϕ := ∅;

Ic ∧ scan = offset ∧ free = offset ∧ FWD = ∅ ∧ ϕ = ∅ ∧ UFWD = RCH ∧
((∀∗x ∈ RCH. ((∃y. (x, y) ∈ head ∧ x 7→ y) ∗ (∃y′. (x, y′) ∈ tail ∧ x + 4 7→ y′))) ∗
(∀∗x ∈ NEW. x 7→ −,−))

(2)⇓

Ic ∧ iso(ϕ, FWD, BUSY) ∧ FWD ∪ UFWD = RCH ∧ root ∈ UFWD ∧

scan = offset ∧ free = offset ∧ FWD = ∅ ∧ ϕ = ∅ ∧ UFWD = RCH ∧
(AUFWD ∗ AFWD ∗ AUFIN ∗ AFIN ∗ AFREE)

(3)⇓

Ic ∧ iso(ϕ, FWD, BUSY) ∧ FWD ∪ UFWD = RCH ∧ root ∈ UFWD ∧
scan = offset ∧ free = offset ∧ FWD = ∅ ∧ ϕ = ∅ ∧ UFWD = RCH ∧
((AUFWD−root ∗ AFWD ∗ AUFIN ∗ AFIN ∗ AFREE−free) ∗

((∃y. (root, y) ∈ head ∧ root 7→ y) ∗ (∃y′. (root, y′) ∈ tail ∧ root + 4 7→ y′) ∗

(free 7→ −,−)))

(4) INIT

Ic ∧ iso(ϕ, FWD, BUSY) ∧ FWD ∪ UFWD = RCH ∧ root ∈ UFWD ∧
scan = offset ∧ free = offset ∧ FWD = ∅ ∧ ϕ = ∅ ∧ UFWD = RCH ∧
((AUFWD−root ∗ AFWD ∗ AUFIN ∗ AFIN ∗ AFREE−free) ∗
(((root 7→ free,−) ∗ (free 7→ t1, t2)) ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail))

(5)⇓

Ic ∧ iso(ϕ, FWD, BUSY) ∧ FWD ∪ UFWD = RCH ∧ root ∈ UFWD ∧
scan = offset ∧ free = offset ∧ FWD = ∅ ∧ ϕ = ∅ ∧ UFWD = RCH ∧
(root, t1) ∈ head ∧ (root, t2) ∈ tail ∧ ¬(root ∈ FWD) ∧ ¬((root, free) ∈ ϕ) ∧

((AUFWD−root ∗ AFWD ∗ AUFIN ∗ AFIN ∗ AFREE−free) ∗
((root 7→ free,−) ∗ (free 7→ t1, t2)))

(6)
FWD := FWD ∪ {root}; UFWD := UFWD \ {root};
ϕ := ϕ ∪ {(root, free)}; free := free + 8

Ic ∧ iso(ϕ′, FWD \ {root}, BUSY \ {free − 8}) ∧

(FWD \ {root}) ∪ (UFWD ∪ {root}) = RCH) ∧

(root ∈ FWD) ∧ ¬(root ∈ UFWD) ∧ (root, free − 8) ∈ ϕ ∧

scan = offset ∧ offset = free − 8 ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail ∧
((∀∗x ∈ ((UFWD ∪ {root}) \ {root}). ((∃y. (x, y) ∈ head ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ∧ x + 4 7→ y′))) ∗
(∀∗x ∈ (FWD \ {root}). (∃y. (x, y) ∈ ϕ′ ∧ x 7→ y,−)) ∗

(∀∗x ∈ FIN. ((∃y. (x, y) ∈ ϕ′ � (head ◦ (ϕ′)†) ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ ϕ′ � (tail ◦ (ϕ′)†) ∧ x + 4 7→ y′))) ∗

(∀∗x ∈ (UFIN \ {(free − 8)}). ((∃y. (x, y) ∈ head ◦ (ϕ′)† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ (ϕ′) ∧ x + 4 7→ y′))) ∗
(∀∗x ∈ ((FREE ∪ {(free − 8)}) \ {(free − 8)}). x 7→ −,−) ∗

(root 7→ (free − 8),−) ∗ ((free − 8) 7→ t1, t2))

In this derivation, the first step uses Hoare’s rule for assignment several times.
The second step uses the rule (11) for ∀∗ (to conclude AFWD,AFIN, and AUFIN) and
(10) (for AUFWD and AFREE). This step also uses the rules (34), (83), (57), and (44).
The third step uses the rule (14) and the fact that free ∈ FREE by definition, and
we use the frame rule and purity along with our local specification from before to

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 31

take the fourth step. The fifth step is a consequence of purity and the rules (55),
(56), and the last step follows from Hoare’s rule for assignment.

We must show that the invariant I follows from the conclusion in this derivation.
We make an informal argument of this here, but a completely formal argument may
be found in Appendix C.

For the pure parts of I, the only thing to notice is that since ϕ \ {(root, free− 8)}
is a bijection, we can conclude that when we add the pair (root, free− 8) to it and
also add the two pointers to the relevant sets, it is still a bijection.

For the impure part of I, we argue that each of the iterated separating conjunc-
tions can be inferred from the corresponding parts of the conclusion above.

The iterated separating conjunction AUFWD over UFWD can be inferred from the
conclusion because ¬(root ∈ UFWD) implies that

(UFWD ∪ {root}) \ {root} = UFWD.

The same argument can be used for AFREE. The assertion AFWD can be inferred
from the iterated separating conjunction over FWD\{root}, and root 7→ (free−8),−
in the conclusion above, since root ∈ FWD and we can infer the assertion

(∃y. (root, y) ∈ ϕ ∧ root 7→ y,−)

for root, and therefore add root to the set FWD \ {root} over which we quantify
in the iterated separating conjunction in the conclusion above. For AFIN we can
use the conjunct scan = free to infer that both of the assertions about FIN are
equivalent to emp.

For AUFIN, we can use the parts of the conclusion above that involve ϕ, head, and
tail along with what we know about free− 8, to infer

(∃y. (free − 8) 7→ y ∧ (free− 8, y) ∈ head ◦ ϕ†) ∗
(∃y′. ((free− 8) + 4) 7→ y′ ∧ (free− 8, y′) ∈ tail ◦ ϕ†),

and then add free− 8 to UFIN \ {free− 8}, to obtain the desired iterated separating
conjunction.

This establishes that running INIT∗ starting from a state satisfying the assertion
InitAss from Section 5.2 terminates in a state that satisfies I, as desired.

6.2 Maintaining the Invariant

We have shown that I is established by the initializing code. The next step is to
show that I is indeed an invariant, i.e., that the specification

{I ∧ scan 6= free}
BODY

{I}

holds, where BODY is the body of the while loop. Note that BODY consists of
two similar parts ScanCar and ScanCdr, one for each field of the cell pointed to by
scan, they are marked in the code with comments. Between these halves, that cell
is in a “mixed state”: the first field of it is finished, whereas the other is about to

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · Torp-Smith, Birkedal, Reynolds

be scanned. The aim is thus to show that the following specifications hold.

{I ∧ scan 6= free}
ScanCar;

{I′}
ScanCdr;
scan := scan + 8

{I},

(26)

where I′ is an assertion which holds in the intermediate state where scan is “halfway
between UFIN and FIN”:

I′ ≡
Ipure ∧ scan 6= free ∧
(AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE ∗
(∃y. (scan, y) ∈ ϕ� (head ◦ ϕ†) ∧ scan 7→ y) ∗
(∃y′. (scan, y′) ∈ head ◦ ϕ† ∧ scan + 4 7→ y′))

We focus on showing the first of the involved specifications, {I} ScanCar {I′}. The
proof of the other is analogous and not described in all details. First, we describe
ScanCar informally. It “scans” the first field in the cell pointed to by scan, and there
are three branches according to the value a in it (and maybe the place it points to):

(1) If a is a non-pointer, nothing happens.

(2) If a is a pointer, we branch according to the value b = [a] of the first field of
the cell pointed to by a.
(a) If b is a forwarding pointer, i.e., a pointer in NEW, we just update [scan]

to b.
(b) If b is not a forwarding pointer, we copy the cell and update [a] to a

forwarding pointer, and we also update [scan] to point to the new copy.

The effect of the command a := [scan] is formalized in this specification.

{I ∧ scan 6= free}
⇓

Ipure ∧ scan 6= free ∧
((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗

(∃y. (scan, y) ∈ head ◦ ϕ† ∧ scan 7→ y) ∗ (∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′))

a := [scan]

Ipure ∧ scan 6= free ∧
((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗
((scan, a) ∈ head ◦ ϕ† ∧ scan 7→ a) ∗ (∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′))

⇓

Ipure ∧ scan 6= free ∧ (scan, a) ∈ head ◦ ϕ† ∧

((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗
(scan 7→ a) ∗ (∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′))

.

The first step here is due to (14), the specification step uses the rule (21) for lookup,
the frame rule and purity; the last rewriting uses purity.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 33

Henceforth, we let Ia be the conclusion in the derivation above.
According to the rule of conditionals, there are two specifications to be shown,

according to the outer if -branch in ScanCar. The first of these is

{Ia ∧ ¬(a mod 8 = 0)}
⇓
{Ia ∧ ¬Ptr(a)}

skip

{I′}

(27)

This specification is shown in Sec. 6.2.1. The second specification we have to
show for the outer if -branch contains an inner if-branch, so it too splits into two
specifications. Before writing these down, we formalize the effect of the command
b := [a]. We have

{Ia ∧ a mod 8 = 0}
(1) ⇓

{Ia ∧ Ptr(a)}
(2) ⇓

{Ia ∧ Ptr(a) ∧ a ∈ RCH}
(3) ⇓

{Ia ∧ Ptr(a) ∧ (a ∈ FWD ∨ a ∈ UFWD)}
(4) ⇓

{Ia ∧ Ptr(a) ∧ (a ↪→ −∨ a ↪→ −)}
(5) ⇓

{Ia ∧ Ptr(a) ∧ (a ↪→ −)}

b := [a]

{Ia ∧ Ptr(a) ∧ (a ↪→ b)}

The first of the implications uses (49), and the second follows from (scan, x) ∈
head ◦ϕ† ∧ PtrRg(head,RCH), (73), and (74). The third follows from (77), and the
fourth from (12). Finally the specification is an instance of the rule for lookup and
the frame rule, since b does not occur free in Ia ∧ Ptr(a).

According to the rule of conditionals, there are two more specifications to show
to conclude the desired specification {I ∧ ¬(scan = free)} ScanCar {I′}. They are

{Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ b mod 8 = 0 ∧ offset ≤ b ≤ maxFree}
⇓
{Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ b ∈ NEW}

[scan] := b

{I′}

(28)

and

{Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ ¬(b mod 8 = 0 ∧ offset ≤ b ≤ maxFree)}
⇓
{Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ ¬(b ∈ NEW)}

CopyCell∗

{I′},

(29)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · Torp-Smith, Birkedal, Reynolds

where

CopyCell∗ ≡ t1 := [a];
t2 := [a+ 4];
[free] := t1;
[free + 4] := t2;
[a] := free;
[scan] := free;
FWD := FWD ∪ {a};
UFWD := UFWD \ {a};
ϕ := ϕ ∪ {(a, free)};
free := free + 8

These specifications are shown in Sec. 6.2.2 and Sec. 6.2.3, respectively. But first,
we note a lemma for later use.

Lemma 6.1. Ipure implies free ≤ maxFree.

Proof. By the rule (46) for intervals with a common start-point, it suffices to
show that #BUSY ≤ #NEW. But this follows from

#BUSY = #FWD ≤ #RCH ≤ #NEW

The first equality follows from iso(ϕ,FWD,BUSY) and (65), whereas the first in-
equality follows from (44), (79), and FWD ∪ UFWD = RCH. The last inequality is
part of Ipure.

6.2.1 If Nothing Happens. We show that the specification (27) holds. According
to the rule for skip and the rule of consequence, that amounts to

Lemma 6.2. The assertion

A ≡ Ia ∧ ¬Ptr(a)

implies I′.

Proof. We have

Ipure ∧ scan 6= free ∧ ¬Ptr(a) ∧ (scan, a) ∈ head ◦ ϕ† ∧
((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗
(scan 7→ a) ∗ (∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′))
⇓
Ipure ∧ scan 6= free ∧ ¬Ptr(a) ∧ (scan, a) ∈ ϕ� (head ◦ ϕ†) ∧

((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗
(scan 7→ a) ∗ (∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′))
⇓
Ipure ∧ scan 6= free ∧ ¬Ptr(a) ∧
((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗
((scan, a) ∈ ϕ� (head ◦ ϕ†) ∧ scan 7→ a) ∗

(∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′))
⇓
I′

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 35

The first implication follows from the fact that A implies (scan, a) ∈ ϕ�(head◦ϕ†)
by (67). The second implication follows from purity.

This implies that the specification (27) holds.

6.2.2 If We do not Copy. We show the specification (28) in this section. The
proof goes as follows: first, we show that the precondition implies a ∈ FWD, and
use this to infer (scan, b) ∈ ϕ � (head ◦ ϕ†). Then we use a local specification to
infer the desired global specification.

Lemma 6.3. The assertion

A ≡ Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ b ∈ NEW

implies a ∈ FWD.

Proof. We give an informal argument here, and we refer to Appendix D for
a more formal proof. We have a ∈ RCH which is equal to the union of FWD and
UFWD, so it suffices to assume a ∈ UFWD and derive a contradiction. If a ∈ UFWD,
we know that the assertion in the body of AUFWD holds for a. This implies that
whatever a points to is related to a by head, and since any pointer in the range of
head is is RCH, which is disjoint from NEW, we get the desired contradiction from
a ↪→ b and b ∈ NEW.

Lemma 6.4. The assertion A from Lemma 6.3 implies (scan, b) ∈ ϕ�(head◦ϕ†).

Proof. We use Lemma 6.3 and show A∧a ∈ FWD→ (scan, b) ∈ ϕ�(head◦ϕ†).
By (68),

(scan, a) ∈ head ◦ ϕ† ∧ A ∧ (a, b) ∈ ϕ→ (scan, b) ∈ ϕ� (head ◦ ϕ†),

so it suffices to show

A ∧ a ∈ FWD→ (a, b) ∈ ϕ.

Like before, we use (16) and show

AFWD ∧ a ↪→ b ∧ a ∈ FWD→ (a, b) ∈ ϕ.

We have

AFWD ∧ a ↪→ b ∧ a ∈ FWD
⇓
(AFWD−a ∗ (∃y. (a, y) ∈ ϕ ∧ a 7→ y,−)) ∧ a ↪→ b

⇓
AFWD−a ∗ ((a, b) ∈ ϕ ∧ a 7→ b,−)

⇓
(a, b) ∈ ϕ

In this derivation, we have first used (14), then (18), and finally purity.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · Torp-Smith, Birkedal, Reynolds

We turn to the local specification for this branch of the program. Again, it only
mentions the footprint of the branch:

{scan 7→ − ∧ (scan, b) ∈ ϕ� (head ◦ ϕ†)}
[scan] := b

{scan 7→ b ∧ (scan, b) ∈ ϕ� (head ◦ ϕ†)}
⇓
{∃y. (scan, y) ∈ ϕ� (head ◦ ϕ†) ∧ scan 7→ y}

(30)

The first step follows from the rule (22) for heap update and the rule of conjunction.
We can now show a global specification for [scan] := b.

{Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ b ∈ NEW}
⇓
{Ia ∧ (scan, b) ∈ ϕ� (head ◦ ϕ†)}

⇓

Ipure ∧ scan 6= free ∧
((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗
(scan 7→ a ∧ (scan, b) ∈ ϕ� (head ◦ ϕ†)) ∗

(∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′))

[scan] := b

Ipure ∧ scan 6= free ∧
((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗
(scan 7→ b ∧ (scan, b) ∈ ϕ� (head ◦ ϕ†)) ∗
(∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′))

⇓
I′

(31)

For the first implication, we use Lemma 6.4, and for the second, we use purity.
The specification step follows from our local specification (30), the frame rule, and
purity. This proves the desired global specification (28).

Remark 6.5. If we did not have the separating conjunction ∗, the specification
step in (31) would require us to ensure that the assignment to the heap cell [scan]
does not affect any of the assertions A−, via non-interference predicates stating
that, e.g., scan is not in any of the sets involved in the specification.

We are now ready to address the specification (29) for the most complicated
branch of ScanCar. The code resembles INIT∗, hence the proof of its specification
will be similar to the proof in Section 6.1.

6.2.3 If We Copy. We show that the specification (29) is derivable. To this end,
CopyCell∗ is split into two parts:

CopyCell ≡ t1 := [a]; Increment ≡ FWD := FWD ∪ {a};
t2 := [a+ 4]; UFWD := UFWD \ {a};
[free] := t1; ϕ := ϕ ∪ {(a, free)};
[free + 4] := t2; free := free + 8;
[a] := free;
[scan] := free;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 37

We first show that in this case, a ∈ UFWD. Then we derive a local specification for
CopyCell, which leads to the desired global specification for CopyCell∗.

Lemma 6.6. The assertion

A ≡ Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ ¬(b ∈ NEW)

implies a ∈ UFWD ∧ ¬(a ∈ FWD).

Proof. We give an informal proof here; a completely formal proof is given in
Appendix E. The proof goes by contradiction (as the proof of Lemma 6.3); this time
we assume a ∈ FWD and derive a contradiction. As in the proof just mentioned,
if a is in FWD, then whatever a points to is related to a in ϕ, which is a bijection
which has BUSY as its codomain. This contradicts that a points to b which is not
in NEW.

We turn to the local specification for CopyCell. As usual, it only involves the
footprint of the program fragment.

{

(∃y. (a, y) ∈ head ∧ a 7→ y) ∗ (∃y′. (a, y′) ∈ tail ∧ a+ 4 7→ y′) ∗
(scan 7→ −) ∗ (free 7→ −,−)

}

t1 := [a]
{

((a, t1) ∈ head ∧ a 7→ t1) ∗ (∃y. (a, y′) ∈ tail ∧ a+ 4 7→ y′) ∗

(scan 7→ −) ∗ (free 7→ −,−)

}

t2 := [a+ 4]
{

((a, t1) ∈ head ∧ a 7→ t1) ∗ ((a, t2) ∈ tail ∧ a+ 4 7→ t2) ∗

(scan 7→ −) ∗ (free 7→ −,−)

}

[free] := t1
{

((a, t1) ∈ head ∧ a 7→ t1) ∗ ((a, t2) ∈ tail ∧ a+ 4 7→ t2) ∗
(scan 7→ −) ∗ (free 7→ t1,−)

}

[free + 4] := t2
{

((a, t1) ∈ head ∧ a 7→ t1) ∗ ((a, t2) ∈ tail ∧ a+ 4 7→ t2) ∗
(scan 7→ −) ∗ (free 7→ t1, t2)

}

⇓
{

((a 7→ t1) ∗ (a+ 4 7→ t2) ∗ (scan 7→ −) ∗ (free 7→ t1, t2)) ∧
(a, t1) ∈ head ∧ (a, t2) ∈ tail

}

[a] := free
{

((a 7→ free) ∗ (a+ 4 7→ t2) ∗ (scan 7→ −) ∗ (free 7→ t1, t2)) ∧
(a, t1) ∈ head ∧ (a, t2) ∈ tail

}

[scan] := free
{

((a 7→ free) ∗ (a+ 4 7→ t2) ∗ (scan 7→ free) ∗ (free 7→ t1, t2)) ∧
(a, t1) ∈ head ∧ (a, t2) ∈ tail

}

⇓
{

((a 7→ free,−) ∗ (scan 7→ free) ∗ (free 7→ t1, t2)) ∧
(a, t1) ∈ head ∧ (a, t2) ∈ tail

}

(32)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · Torp-Smith, Birkedal, Reynolds

The implication in the middle of this derivation is due to pureness, and the rest
of the steps use the rules for lookup (21) and update (22), along with the frame
rule.

We now infer the specification for CopyCell∗ via the local specification (32). In
this derivation, we write ϕ′ instead of ϕ \ {(a, free− 8)} for brevity.

{Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ ¬(b ∈ NEW)}
⇓
{Ia ∧ Ptr(a) ∧ a ∈ UFWD ∧ ¬(a ∈ FWD)}

⇓

Ipure ∧ scan 6= free ∧ (scan, a) ∈ head ◦ ϕ† ∧ Ptr(a) ∧ a ∈ UFWD ∧
¬(a ∈ FWD) ∧ ∀x. ¬((a, x) ∈ ϕ) ∧

((AUFWD−a ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE−free) ∗

(∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′) ∗

(∃y. (a, y) ∈ head ∧ a 7→ y) ∗ (∃y′. (a, y′) ∈ tail ∧ a + 4 7→ y′) ∗

(scan 7→ −) ∗ (free 7→ −,−))

CopyCell

Ipure ∧ scan 6= free ∧ (scan, a) ∈ head ◦ ϕ† ∧ Ptr(a) ∧ a ∈ UFWD ∧
¬(a ∈ FWD) ∧ ∀x. ¬((a, x) ∈ ϕ) ∧
((AUFWD−a ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE−free) ∗
(∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′) ∗
((a 7→ free,−) ∗ (scan 7→ free) ∗ (free 7→ t1, t2)) ∧ (a, t1) ∈ head ∧ (a, t2) ∈ tail)

⇓

Ipure ∧ scan 6= free ∧ (scan, a) ∈ head ◦ ϕ† ∧ Ptr(a) ∧ a ∈ UFWD ∧
¬(a ∈ FWD) ∧ ¬((a, free) ∈ ϕ) ∧ (a, t1) ∈ head ∧ (a, t2) ∈ tail ∧

((AUFWD−a ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE−free) ∗
(∃y′. (scan, y′) ∈ tail ◦ ϕ† ∧ scan + 4 7→ y′) ∗
((a 7→ free,−) ∗ (scan 7→ free) ∗ (free 7→ t1, t2)))

FWD := FWD ∪ {a}; UFWD := UFWD \ {a};
ϕ := ϕ ∪ {(a, free)}; free := free + 8

Ic ∧ root ∈ FWD \ {a} ∧

iso(ϕ′, FWD \ {a}, BUSY \ {free − 8}) ∧

(RCH = (FWD \ {a}) ∪ (UFWD ∪ {a})) ∧

scan ≤ free − 8 ∧ offset ≤ scan ∧ Ptr(free − 8) ∧ Ptr(scan) ∧

scan 6= free − 8 ∧ (scan, a) ∈ head ◦ (ϕ′)† ∧ Ptr(a) ∧ ¬(a ∈ UFWD) ∧

a ∈ FWD ∧ (a, t1) ∈ head ∧ (a, t2) ∈ tail ∧
((∀∗x ∈ ((UFWD ∪ {a}) \ {a}). ((∃y. (x, y) ∈ head ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ∧ x + 4 7→ y′))) ∗
(∀∗x ∈ (FWD \ {a}). (∃y. (x, y) ∈ ϕ′ ∧ x 7→ y,−)) ∗ (a 7→ (free − 8),−) ∗

(∀∗x ∈ FIN. ((∃y. (x, y) ∈ ϕ′ � (head ◦ (ϕ′)†) ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ ϕ′ � (tail ◦ (ϕ′)†) ∧ x + 4 7→ y′))) ∗

(∀∗x ∈ (UFIN \ {(free − 8)}). ((∃y. (x, y) ∈ head ◦ (ϕ′)† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ (ϕ′) ∧ x + 4 7→ y′)) ∗ ((free − 8) 7→ t1, t2)) ∗

(∀∗x ∈ ((FREE ∪ {(free − 8)}) \ {(free − 8)}). x 7→ −,−))

The first implication follows from Lemma 6.6. The second follows from (14) and
(66). The global specification for CopyCell follows from our local specification (32),
purity, and the frame rule. The implication immediately thereafter is a consequence

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 39

of purity. The specification for the three auxiliary variables and the update of free
follows from Hoare’s rule for assignment and obvious rules for intervals.

Remark 6.7. Notice the crucial use of local reasoning in this derivation. If
we did not have the separating conjunction, then for each of the updates of the
heap in CopyCell in this global specification, we would have to make sure that the
location we update does not interfere with each of the assertions AUFWD−a,AFWD,
etc. Essentially the same remark can be made about the proof in Section 6.1 for
INIT.

Like in Section 6.1, we must now show that I′ follows from the conclusion in
the derivation above. The proof of this, however, is for the most part completely
analogous to the proof there (if one replaces root by a). Therefore, we omit it here;
the diligent reader may find a proof in Appendix F.

We therefore conclude that the first part of the specification (26) for the while-
loop holds. The treatment of the other half will not be as detailed as this one, since
the proofs are completely analogous for the most part. However, the specification
for scan := scan + 8 needs an argument.

6.2.4 After ScanCdr. We show that the invariant I is established after running
ScanCdr; scan := scan+8 in a state in which I′ holds. We omit the detailed proof for
ScanCdr, since it is analogous to that of ScanCar. One can obtain the specification

{I′}

ScanCdr

Ipure ∧ scan 6= free ∧
((AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN−scan ∗ AFREE) ∗
(∃y. (scan, y) ∈ ϕ� (head ◦ ϕ†) ∧ scan 7→ y) ∗
(∃y′. (scan, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ scan + 4 7→ y′))

Letting A be the conclusion in the above specification, we must show that

{A}

scan := scan + 8

{I}

(33)

holds. Intuitively, this specification holds because by increasing scan, we move the
border between the intervals FIN and UFIN, and so the cell that has been scanned
by the current iteration of the while loop moves from UFIN to FIN. There is a
formal derivation of (33) in Appendix G.

This means that the specification (26) holds, as desired, and hence we can con-
clude

Theorem 6.8. The implementation GC∗ of Cheney’s algorithm in Appendix A
is a correct copying garbage collector in the sense of Definition 5.1.

7. CONCEPTUAL REMARKS

In this section, we discuss our proof at the meta-level. In particular, we illustrate
what we gained from using separation logic, and in particular local reasoning. We
also discuss our extensions of standard separation logic.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · Torp-Smith, Birkedal, Reynolds

7.1 Benefits of Local Reasoning

Given that one of the aims of this paper is to demonstrate the power of separation
logic, it is natural to ask to what extent local reasoning helped in the proof, and
what we could have done without it.

A “brute force” way of answering this question would be to present a proof of
our implementation that does not use local reasoning, and then compare the two
proofs. That task, however, would be too tedious. Instead, we argue that proofs of
“nontrivial” pointer-manipulating programs in general tend to be more complicated
than proofs of the same programs in separation logic. We have also made remarks in
the proof where we outline how local reasoning helped us (cf. Remarks 6.5 and 6.7).

A semantic analysis of pointer manipulations that does not use separation logic
may be found in the papers [Calcagno etal. 2000] and [Bornat 2000]. In the first-
mentioned paper, it is shown how to reason about programs that manipulate a
list stored in the heap. The idea is to treat the list as a sequence of locations, and
when a location is updated, the precondition is that the updated location is disjoint
from the list. An important difference from our work is that lists are inductively
defined; the structure we garbage collect can be cyclic, and thus cannot be defined
inductively. In [Bornat 2000], proofs of several pointer manipulating programs
are outlined. Some of these programs manipulate structures in the heap that are
not inductively defined. In these cases, the approach is to determine the set of
locations that is involved in the representation of a structure, and for each heap
update, one has to ensure that the updated location is disjoint from this set, using
non-interference predicates.

In contrast, local reasoning takes advantage of the ∗ connective and the frame
rule to state the required non-interference implicitly. The proof of the critical oper-
ations, namely the heap updates, are simple and do not require any non-interference
predicates.

7.2 Remarks on Our Extension of Separation Logic

As mentioned, our proof uses an extension of standard separation logic with finite
sets, relations, paths, and the iterated separating conjunction ∀∗. It is therefore
appropriate to discuss the applicability of these extensions of standard separation
logic in other settings.

As mentioned, we believe that the approach with sets and relations is applicable
in other settings where the goal is to establish the existence of a relation between
the heap before and after execution of a program, in particular if the structure
represented in the heap is not definable by induction. The approach would be
similar to that used here: given a snapshot of execution like that of Fig. 3, it
might be possible to divide the heap into disjoint portions where the locations in
each portion have a certain property. Given such a partition, one can then use the
∀∗ connective to give an unambiguous description of the heap and use this in a
specification, as we have done in our specification and proof.

On the other hand, it is quite possible that some of our extensions are of limited
use in other settings. We use paths and the reachability predicates to express what
is reachable before execution of our garbage collector. In a list reversal program,
for example, this would be explicitly assumed in the specification. Also the PtrRg is

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 41

used to take a crucial step in the proof of Lemma 6.3, but it is not straightforward
to think of other proofs of programs where such a predicate would be crucial.

8. RELATED WORK

There have been several proposals for ways of using types to manage the problem of
reasoning about programs that manipulate imperative data structures [Crary etal.
1999; Smith etal. 2000; Ahmed etal. 2003; Petersen etal. 2003]. They are based
on the idea that well-typed programs do not go wrong, but they are not aimed
at giving proofs of correctness. In the work [Crary etal. 1999] on capabilities,
traditional region calculus [Tofte and Talpin 1994] is extended with an annotation
of a capability to each region, and this gives criteria to decide when it is safe to
deallocate a region. In the setting of alias types [Smith etal. 2000], a static notion
of constraint is used describe the shape of the heap, and this is used to decide when
it is safe to execute a program. In the work [Ahmed etal. 2003] on hierarchical
storage, ideas from BI [Pym 2002] and region calculi are used to give a type system
with structure on locations. In [Petersen etal. 2003] Petersen et. al. propose to
use a type theory based on ordered linear logic as a foundation for defining how
data is laid out in memory. The type theory in [Petersen etal. 2003] builds upon
a concrete allocation model such as the one provided by Cheney’s copying garbage
collector. In the paper [Hawblitzel etal. 2004] by Hawblitzel and others, low-level
pointer operations are added to standard λ-calculi in order to use ideas from well-
studied type systems (including the work mentioned above) when reasoning about
pointer programs. The work in the just cited paper is still in progress and will be
interesting to follow, also considering two of the authors’ work on separation logic
for higher-order programming languages [Birkedal etal. 2005].

The first attempt of a formal correctness proof of a garbage collector was pub-
lished in [Dijkstra etal.], where the problem “was selected as one of the most
challenging – and hopefully, most instructive! – problems”. The proof given there
is informal and merely gives an idea of how to obtain a formal proof. Other in-
formal proofs were published in [Ben-Ari 1984] and [Pixley 1988]. The fact that a
“mechanically verifiable proof would need all kinds of trivial invariants” was used
to justify the informal approach. Russinoff [Russinoff 1994] explored how great a
detail that was needed for a formal proof and demonstrated that the proofs in [Ben-
Ari 1984] and [Pixley 1988] are fallacious. Wadler [Wadler 1976] gave an analysis
and gave (semantic) proofs of complexity properties of a realtime garbage collection
system, and moreover, there have been several formal verifications of correctness
proofs of abstract versions of mark-and-sweep garbage collectors, using several dif-
ferent techniques [Russinoff 1994; Jackson 1998; Havelund 1999; Coupet-Grimal
2003]. Note that many of the garbage collectors mentioned in this paragraph are
concurrent and as such, more complicated to prove. Recent progress [O’Hearn
2004] paves the way for verifying concurrent garbage collectors in separation logic.
A comparison between logical frameworks for verifying proofs has been performed
by Burdy [Burdy 2001].

In their work on a type preserving garbage collector, Wang and Appel [Wang
and Appel 2001] transform well-typed programs into a form where they call a func-
tion, which acts as a garbage collector for the program. This function is designed
such that it is well-typed in the target language, and thus is safe to execute. The

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · Torp-Smith, Birkedal, Reynolds

approach of Wang and Appel guarantees safety, but not correctness of the garbage
collector, and there is no treatment of cyclic data structures, since the user lan-
guage does not create cyclic data structures. Monnier and Shao [Monnier and Shao
2002] combine ideas from region calculi and alias types in their work on typed re-
gions and propose a programming language with a type system expressive enough
to type a garbage collector, which is type preserving, generational, and handles
cyclic data structures. As mentioned in Section 9, it is on the schedule for future
work to extend our reasoning principles to a complete runtime system, and not only
a garbage collector. Fluet and Wang [Fluet and Wang 2004] have implemented a
safe runtime system for Scheme in Cyclone [Jim etal. 2002], including a copying
garbage collector which is also based on Cheney’s algorithm. Since Cyclone does
not allow address arithmetic, they use a linked list to keep track of their queue
in the NEW-space, whereas our implementation language uses address arithmetic
and exploits the contiguous space NEW to implement the “implicit queue” that
is used in the breadth-first search of Cheney’s algorithm. Further, the type sys-
tem of Cyclone guarantees memory safety, whereas our proof implies the existence
of an isomorphism between the heaps before and after execution of the garbage
collector. Another implementation of a complete runtime system for Scheme is
the VLISP project, an overview of which can be found in [Guttmann etal. 1992]
and [Guttmann etal. 1994]. As part of that project, a proof that a garbage collec-
tor implemented on a Garbage Collected Stored Bytecode Machine, establishes a
“state correspondence” between the states before and after execution is included in
a technical report [Swarup etal. 1992]. However, this proof is carried out at a com-
pletely semantical level, using the operational semantics and the above-mentioned
state correspondences, which are similar to simulation relations. As mentioned in
Section 3.2, we simply assume that there is only one cell in the root set before we
garbage collect, and we have thus glossed over the issues of correctly constructing
and keeping track of the root set. In both the implementation from [Fluet and
Wang 2004] and the VLISP project, it is shown that the root sets are correctly
maintained.

Recently, there has been a lot of work on Proof Carrying Code [Necula and Lee
1996], [Necula 1997]. The basic idea of a code producer submitting a proof of
safety along with a program could, of course, be transferred to low-level program-
ming languages, like the one used with separation logic. Nipkow’s research group in
Munich has developed a framework for formally verifying programs in traditional
Hoare logic with arrays [Mehta and Nipkow 2003], and an extension to separation
logic is at its early stages [Weber 2004]. Also, Berdine et al. are working on Small-
foot [Berdine etal. 2005], a model checker for low-level programs that uses ideas
from separation logic. Once more developed, these would allow one to verify cor-
rectness proof mechanically and perhaps to ship the proof of a garbage collector
along with proofs of programs using the garbage collector.

9. CONCLUSION AND FUTURE WORK

We have specified and proved correct Cheney’s copying garbage collector using local
reasoning in an extension of standard separation logic. The specification and the
proof are manageable because of local reasoning and we conclude that the idea of
local reasoning scales well to such challenging algorithms.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 43

We have extended separation logic with sets and relations, generalized the iter-
ated separating conjunction and shown how these features can be used to specify
naturally and prove correct an algorithm involving movement of cyclic data struc-
tures. We believe the methods used herein are of wider use and future work should
include further experimentation with other subtle algorithms, such as those ana-
lyzed in [Bornat etal. 2004] (and also, Bornat’s methods might be applicable to
Cheney’s algorithm).

One the goals of this paper was to prove the simple variant of Cheney’s collector,
but it is natural to ask whether the approach of this work scales to more complex
systems where the collected data have more complex types or where the collector is
of a different type than stop-and-copy. We do not have a proof of such a collector,
but we believe that an extension of the methodology presented here will serve as a
basis for proofs of such algorithms. For example, in a more complex type system,
the definition of a heap morphism needs to be refined, and presumably this will
induce new notions in the logic.

One could argue that it is a weakness of separation logic that we had to extend it
with the above mentioned new constructs, since it would be worrying if one would
have to extend the logic for every new major proof. However, as explained in the
recent article [Biering etal. 2005], one can see these extensions as simple definitional
extensions of higher-order separation logic. That is, there is a single logic in which
one can define, e.g., the finite sets and relations and then prove in the logic (rather
than semantically) that properties such as those in Appendix B hold.

Future work also includes studying how to specify and prove correct combinations
of user level programs and runtime systems, as mentioned in the introduction. In his
work on Foundational Proof Carrying Code [Appel 2001], Appel suggests compiling
high-level languages into the Typed Assembly Language [Morrisett etal. 1999].
Our work offers an alternative to this. We suggest compiling types from high-level
languages into garbage insensitive predicates, in the sense of [Calcagno etal. 2003],
and using our memory allocator and garbage collector as an implementation of the
malloc operation of TAL. By the nature of garbage insensitive predicates, we would
have {P} GC {P} for these predicates, for any correct garbage collector GC, and
thus predicates resulting from type-safety guarantees would be preserved by the
garbage collector, as desired.

Acknowledgments

The authors wish to thank Peter O’Hearn, Hongseok Yang, Richard Bornat, Cris-
tiano Calcagno, Henning Niss, Martin Elsman, and Mads Tofte for insightful discus-
sions. We also thank the anonymous referees for their useful and detailed comments.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · Torp-Smith, Birkedal, Reynolds

REFERENCES

Aditya, S. and Caro, A. 1993. Compiler-directed type reconstruction for polymorphic languages.
In Proceedings of the Conference on Functional Programming Languages and Computer Ar-
chitecture (FPCA ’93), Copenhagen, Denmark, pp. 74–82. ACM Press.

Aditya, S., Flood, C. H., and Hicks, J. E. 1994. Garbage collection for strongly-typed languages
using run-time type reconstruction. In Proceedings of the 1994 ACM Conference on LISP and
Functional Programming (LFP ’94), Orlando, Florida, United States, pp. 12–23. ACM Press.

Ahmed, A., Jia, L., and Walker, D. 2003. Reasoning about hierarchical storage. In Proc. of
the Eighteenth Annual IEEE Symposium on Logic in Computer Science (LICS’03), Ottawa,
Canada. IEEE Press.

Appel, A. W. 2001. Foundational proof carrying code. In Proc. of the Sixteenth IEEE Symposium
on Logic in Computer Science (LICS’01), Boston, MA, USA. IEEE Press.

Appel, A. W. and Gonçalves, M. J. R. 1993. Hash-consing garbage collection. Technical Report
CS-TR-412-93 (February), Princeton University.

Ben-Ari, M. 1984. Algorithms for on-the-fly garbage collection. ACM Transactions of Principles
on Programming Languages and Systems (TOPLAS) 6, 3, 333–344.

Berdine, J., Calcagno, C., and O’Hearn, P. W. 2005. Symbolic execution with separation
logic. In Proceedings of the Third Asian Symposium on Programming Languages and Systems
(APLAS’05), Tsukuba, Japan, pp. 52–68. Springer Verlag.

Biering, B., Birkedal, L., and Torp-Smith, N. 2005. BI-hyperdoctrines and higher order sepa-
ration logic. In Proc. of ESOP 2005: The European Symposium on Programming, Edinburgh,
Scotland, pp. 233–247.

Birkedal, L., Torp-Smith, N., and Reynolds, J. 2004. Local reasoning about a copying garbage
collector. In Proc. of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’04), Venice, Italy, pp. 220–231.

Birkedal, L., Torp-Smith, N., and Yang, H. 2005. Semantics of separation-logic typing and
higher-order frame rules. In Proceedings of the Twentieth Annual IEEE Symposium on Logic
in Computer Science (LICS 2005), Chicago, IL, USA, pp. 260–269. IEEE Press.

Bornat, R. 2000. Proving pointer programs in Hoare logic. In Proceedings of the 5th Interna-
tional Conference on Mathematics of Program Construction, Volume 1837 of Lecture Notes In
Computer Science, Ponte De Lima, Portugal, pp. 102–126. Springer Verlag.

Bornat, R. 2003. Correctness of copydag via local reasoning. Private Communication.

Bornat, R., Calcagno, C., and O’Hearn, P. 2004. Local reasoning, separation and aliasing. In
Proceedings of SPACE 2004, Venice, Italy.

Burdy, L. 2001. B vs Coq to prove a garbage collector. In Proc. of the 14th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs 2001), Volume 2152 of
LNCS, Edinburgh, Scotland. Springer Verlag.

Calcagno, C., Ishtiaq, S., and O’Hearn, P. W. 2000. Semantic analysis of pointer aliasing,
allocation and disposal in Hoare logic. In Proc. of the Second International Conference on
Principles and Practice of Declarative Programming (PPDP’00), Montreal, Canada.

Calcagno, C., O’Hearn, P. W., and Bornat, R. 2003. Program logic and equivalence in the
presence of garbage collection. Theoretical Computer Science 298, 3, 557–587.

Cheney, C. J. 1970. A nonrecursive list compacting algorithm. Communications of the
ACM 13, 11 (November), 677–678.

Coupet-Grimal, S. 2003. C. nouvet. Journal of Logic and Computation 13, 6 (December),
815–833.

Crary, K., Walker, D., and Morrisett, G. 1999. Typed memory management in a calculus
of capabilities. In Proc. of the 26th ACM SIGPLAN-SIGACT on Principles of Programming
Languages (POPL’99), San Antonio, TX, USA, pp. 262–275.

Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, G. S., and Steffens, E. M. F.

On-the-fly garbage collection: an exercise in cooperation.

Fluet, M. and Wang, D. 2004. Implementation and performance evaluation of a safe runtime
system in Cyclone. In Informal Proceedings of the Second Workshop on Semantics, Program

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 45

Analysis and Computing Environments for Memory Management (SPACE’04), Venice, Italy.

ACM/SIGPLAN.

Goto, E. 1974. Monocopy and associative algorithms in extended lisp. Technical Report TR 74-
03, University of Tokyo.

Gries, D. and Levin, G. 1980. Assignment and procedure call proof rules. ACM Transactions
on Programming Languages and Systems (TOPLAS) 2, 4 (October), 564–579.

Guttmann, J., Ramsdell, J., and Wand, M. 1994. VLISP: A verified implementation of scheme.
Lisp and Symbolic Computation 8, 1–2, 5–32.

Guttmann, J. D., Monk, L. G., Ramsdell, J. D., Farmer, W. M., and Swarup, V. 1992. A
guide to VLISP, a verified programming language implementation. Technical Report M92B091,
The MITRE Corporation.

Hallenberg, N., Elsman, M., and Tofte, M. 2002. Combining region inference and garbage
collection. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI’02), Berlin. ACM Press.

Havelund, K. 1999. Mechanical verification of a garbage collector. In Proc. of the Fourth
International Workshop Formal Methods for Parallel Programming : Theory and Applications

(FMPPTA’99), San Juan, Puerto Rico.

Hawblitzel, C., Wei, E., Huang, H., Krupski, E., and Wittie, L. 2004. Low-level linear
memory management. In Proceedings of SPACE 2004, Venice, Italy.

Hoare, C. A. R. 1969. An axiomatic approach to computer programming. Communications of
the ACM 12, 583, 576–580.

Jackson, P. B. 1998. Verifying a garbage collection algorithm. In Proc. of the 11th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’98), Volume 1479 of LNCS,
Canberra, Australia, pp. 225–244. Springer Verlag.

Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang, Y. 2002. Cyclone:
A safe dialect of C. In Proc. of the USENIX Annual Technical Conference, Monterey, CA,
USA, pp. 275–288.

Mehta, F. and Nipkow, T. 2003. Proving pointer programs in higher-order logic. In Automated
Deduction – CADE-19.

Monnier, S. and Shao, Z. 2002. Typed regions. Technical Report YALEU/DCS/TR-1242, Dept.

of Computer Science, Yale University, New Haven, CT.

Morrisett, G., Felleisen, M., and Harper, R. 1995. Abstract models of memory management.
In Proceedings of the Seventh International Conference on Functional Programming Languages
and Computer Architecture (FPCA ’95), La Jolla, California, United States, pp. 66–77. ACM
Press.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999. From system F to typed assembly
language. ACM Transactions on Programming Languages and Systems 21, 3, 527–568.

Necula, G. C. 1997. Proof-carrying code. In Proc. of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’97), Paris, France, pp. 106–119.

Necula, G. C. and Lee, P. 1996. Safe kernel extensions without run-time checking. In Proceed-
ings of the Second USENIX Symposium on Operating Systems Design and Implementation
(OSDI’96), Berkeley, CA, USA, pp. 229–243.

O’Hearn, P. W. 2004. Resources, concurrency and local reasoning. In Proceedings of the 15th
International Conference on Concurrency Theory (CONCUR’04), Volume 3170 of LNCS, Lon-
don, England, pp. 49–67.

O’Hearn, P. W., Reynolds, J. C., and Yang, H. 2001. Local reasoning about programs that
alter data structures. In Proceedings of the Annual Conference of the European Association
for Computer Science Logic (CSL 2001), Berlin, Germany.

Owicki, S. and Gries, D. 1976. An axiomatic proof technique for parallel programs. Acta
Informatica 6, 4, 319–340.

Petersen, L., Harper, R., Crary, K., and Pfenning, F. 2003. A type theory for memory
allocation and data layout. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’03), New Orleans, LA, USA, pp. 172–184.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 · Torp-Smith, Birkedal, Reynolds

Pixley, C. 1988. An incremental garbage collection algorithm for multimutator systems. Dis-

tributed Computing 3, 1, 41–50.

Pym, D. 2002. The Semantics and Proof Theory of the Logic of Bunched Implications, Volume 26
of Applied Logics Series. Kluwer.

Reynolds, J. C. 1981. The Craft of Programming. Prentice-Hall International Series in Computer
Science. Prentice-Hall, London.

Reynolds, J. C. 2002. Separation logic: A logic for shared mutable data structures. In Proc.
of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02), Copenhagen,
Denmark, pp. 55–74. IEEE Press.

Russinoff, D. M. 1994. A mechanically verified incremental garbage collector. Formal Aspects
of Computing 6, 359–390.

Smith, F., Walker, D., and Morrisett, G. 2000. Alias types. In Proceedings of the 9th European
Symposium on Programming Languages and Systems (ESOP’00), Berlin, Germany, pp. 366–
381.

Stoyle, G., Hicks, M., Bierman, G., Sewell, P., and Neamtiu, I. 2005. Mutatis mutandis:
Safe and predictable dynamic software updating. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’05), Long Beach, CA,
USA, pp. 183–194. ACM Press.

Swarup, V., Farmer, W. M., Guttmann, J. D., Monk, L. G., and Ramsdell, J. D. 1992. The
VLISP byte-code interpreter. Technical Report M 92B096, The MITRE Corporation.

Tofte, M. and Birkedal, L. 1998. A region inference algorithm. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 20, 4 (July), 734–767.

Tofte, M., Birkedal, L., Elsman, M., and Hallenberg, N. 2004. A retrospective on region-
based memory management. Higher-Order Symbolic Computation 17, 3 (September), 245–265.

Tofte, M. and Talpin, J.-P. 1994. Implementation of the call-by-value lambda-calculus using a
stack of regions. In Proc. of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’94), Portland, OR, USA, pp. 188–201.

Wadler, P. L. 1976. Analysis of an algorithm for real time garbage collection. Communications
of the ACM 19, 9 (September), 491–500.

Wang, D. and Appel, A. W. 2001. Type preserving garbage collectors. In Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’01),
London, United Kingdom, pp. 166–178.

Weber, T. 2004. Towards mechanized program verification with separation logic. In Annual Con-
ference of the European Association for Computer Science Logic (CSL’04), Karpacz, Poland.

Yang, H. 2001. Local reasoning for stateful programs. Ph. D. thesis, University of Illinois,
Urbana-Champaign.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 47

A. IMPLEMENTATION OF CHENEY’S ALGORITHM

alloc(l,n1,n2) {
if (free < maxFree)

[free] := n1;
[free + 4] := n2;
free := free + 8;
l := free-8

else

if (offset = startOld) then

offset := startNew;
maxFree := endNew

else

offset := startOld;
maxFree := endOld

fi;
// Garbage Collection starts

scan := offset;
free := offset;

| FWD := ∅;
| UFWD := RCH;
| ϕ := ∅;

t1 := [root];
t2 := [root + 4];
[free] := t1;
[free + 4] := t2;
[root] := free;

| FWD := FWD ∪ {root};
| UFWD := UFWD \ {root};
| ϕ := ϕ ∪ {(root, free)};

free := free + 8;

while ¬(scan = free)
// ScanCar begins

a := [scan];
if (a mod 8 = 0)
b := [a];
if (b mod 8 = 0 ∧

offset ≤ b ∧
b ≤ maxFree)

[scan] := b
else

// CopyCell∗ begins

t1 := [a];
t2 := [a+ 4];
[free] := t1;

[free + 4] := t2;
[a] := free;
[scan] := free;

| FWD := FWD ∪ {a};
| UFWD := UFWD \ {a};
| ϕ := ϕ ∪ {(a, free)};

free := free + 8
// CopyCell∗ ends

fi;
else skip

fi;
// ScanCar ends

// ScanCdr begins

a := [scan + 4];

if (a mod 8 = 0)
b := [a];
if (b mod 8 = 0 ∧

offset ≤ b ∧
b ≤ maxFree)

[scan + 4] := b
else

t1 := [a];
t2 := [a+ 4];
[free] := t1;
[free + 4] := t2;
[a] := free;
[scan + 4] := free;

| FWD := FWD ∪ {a};
| UFWD := UFWD \ {a};
| ϕ := ϕ ∪ {(a, free)};

free := free + 8
fi;

else skip

fi;
// ScanCdr ends

scan := scan + 8
od;

// Garbage Collection ends

root := offset;
alloc(l,n1,n2)

fi

}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

48 · Torp-Smith, Birkedal, Reynolds

B. SET-THEORETIC RULES

Elementary rules

e ≥ e′ → Itv(e, e′) = ∅ (34)

e ∈ m→ (m \ {e}) ∪ {e} = m (35)

¬(e ∈ m)→ (m ∪ {e}) \ {e} = m (36)

e ∈ (m \ {e′})→ e ∈ m (37)

Ptr(e)→ e ∈ m ∪ {e} (38)

(e, e′) ∈ r \ {(e1, e2)} → (e, e′) ∈ r (39)

Ptr(e) ∧ Ptr(e′)→ (e, e′) ∈ r ∪ {(e, e′)} (40)

¬(e− 8 ∈ Itv(e, e′)) (41)

e ≤ e′ − 8 ∧ Ptr(e′)→ e′ − 8 ∈ Itv(e, e′) (42)

e ≤ e′ ∧ e′ ≤ e′′ − 8 ∧ Ptr(e) ∧ Ptr(e′) ∧ Ptr(e′′)→ e′ ∈ Itv(e, e′′) (43)

m1 ⊆ m2 → #m1 ≤ #m2 (44)

e ∈ m→ Ptr(e) (45)

m1 = Itv(e, e1) ∧m2 = Itv(e, e2) ∧#m1 ≤ #m2 ∧ Ptr(e1) ∧ Ptr(e2) (46)

→ e1 ≤ e2

m1 ⊆ m2 ∧m2 ⊆ m1 → m1 = m2 (47)

iso(r,m1,m2) ∧ (e, e′) ∈ ρ ◦ r ◦ r† → (e, e′) ∈ ρ (48)

e mod 8 = 0→ Ptr(e) (49)

Ptr(e)→ Ptr(e− 8) ∧ Ptr(e+ 8) (50)

(e, e′) ∈ r → (e′, e) ∈ r† (51)

(e, e′) ∈ r1 ∧ (e′, e′′) ∈ r2 → (e, e′′) ∈ r2 ◦ r1 (52)

(e, e′) ∈ (r1 ◦ r2) ◦ r3 ←→ (e, e′) ∈ r1 ◦ (r2 ◦ r3) (53)

e ∈ Itv(e1, e2) ∧ e2 ≤ e3 → e ∈ Itv(e1, e3) (54)

m = ∅ → ∀x. ¬(x ∈ m) (55)

r = ∅ → ∀x, y. ¬((x, y) ∈ r) (56)

Rules for iso:

iso(∅, ∅, ∅) (57)

Ptr(e1) ∧ Ptr(e2) ∧ ¬(e1 ∈ m1) ∧ ¬(e2 ∈ m2) ∧ iso(r,m1,m2)→
iso(r ∪ {(e1, e2)},m1 ∪ {e1},m2 ∪ {e2})

(58)

(e1 ∈ m1) ∧ (e2 ∈ m2) ∧ (e1, e2) ∈ r∧
iso(r \ {(e1, e2)},m1 \ {e1},m2 \ {e2})→ iso(r,m1,m2)

(59)

iso(r,m1,m2) ∧ (e1, e2) ∈ r → e1 ∈ m1 ∧ e2 ∈ m2 (60)

iso(r,m1,m2)→ iso(r†,m2,m1) (61)

iso(r,m1,m2) ∧ e ∈ m1 → ∃x. (e, x) ∈ r ∧ x ∈ m2 (62)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 49

Tfun(ρ,m2) ∧ iso(r,m1,m2)→ Tfun(ρ ◦ r,m1) (63)

iso(r,m1,m2)→ Tfun(r,m1) (64)

iso(r,m1,m2)→ #m1 = #m2 (65)

iso(r,m1,m2) ∧ ¬(e ∈ m1)→ ∀xint. ¬((e, x) ∈ r) (66)

Rules for �

(e, e′) ∈ ρ ∧ ¬Ptr(e′)→ ∀rfrp. (e, e′) ∈ r � ρ (67)

(e, e′) ∈ ρ ∧ Ptr(e′) ∧ (e′, e′′) ∈ r → (e, e′′) ∈ r � ρ (68)

Tfun(ρ,m) ∧ (e′, e) ∈ ρ ∧ Ptr(e) ∧ e′ ∈ m ∧ (e′, e′′) ∈ r � ρ→ (e, e′′) ∈ r (69)

(e, e′) ∈ r � ρ→

((e, e′) ∈ ρ ∧ ¬Ptr(e′)) ∨ (∃x. Ptr(x) ∧ (e, x) ∈ ρ ∧ (x, e′) ∈ r) (70)

(e, e′) ∈ r � ρ ∧ (e, e′′) ∈ r � ρ ∧ Tfun(r,m) ∧ Tfun(ρ,m′) ∧

e ∈ m′ ∧ ((∃z. (e, z) ∈ ρ ∧ z ∈ m) ∨ ¬Ptr(e′))→ e′ = e′′ (71)

(e, e′) ∈ r � (ρ ◦ ρ′)←→ (e, e′) ∈ (r � ρ) ◦ ρ′ (72)

Rules for PtrRg

PtrRg(r,m) ∧ Ptr(e) ∧ (e′, e) ∈ r → e ∈ m (73)

PtrRg(r,m)→ PtrRg(r ◦ ρ,m) (74)

Rules for ⊆ and ⊥

m ∪ ∅ = m (75)

m1 ∪m2 = m2 ∪m1 (76)

e ∈ m1 ∪m2 → (e ∈ m1 ∨ e ∈ m2) (77)

e ∈ m1 ∪m2 ∧ ¬(e ∈ m1)→ e ∈ m2 (78)

m1 ∪m2 = m→ m1 ⊆ m ∧ m2 ⊆ m (79)

m1 ⊥ m2 → ∀x. ¬(x ∈ m1 ∧ x ∈ m2) (80)

m1 ∪m2 = m ∧ e ∈ m1 → (m1 \ {e}) ∪ (m2 ∪ {e}) = m
(m1 \ {e}) ∪ (m2 ∪ {e}) = m ∧ e ∈ m1 → m1 ∪m2 = m

(81)

(∀x. (x ∈ m1)→ (x ∈ m2))←→ m1 ⊆ m2 (82)

m1 ⊥ m2 ∧m′
1 ⊆ m1 → m′

1 ⊥ m2 (83)

C. FORMAL PROOF OF INIT∗

We need to show that I follows from the conclusion of the derivation in Section 6.1.
I can be viewed as a conjunction I ≡ I1 ∧ · · · ∧ Ik of assertions, where some of the

Iis are pure and one is not pure; let us say that Ik is the impure part of I, and write

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

50 · Torp-Smith, Birkedal, Reynolds

Ik on the form A1 ∗· · ·∗Am. Similarly, the conclusion in the derivation has the form
I′1 ∧ · · · ∧ Ik′ where I′i are pure for i ∈ {1, · · · , k′ − 1} and where Ik′ ≡ A′

1 ∗ · · · ∗A
′
m.

We show that each of I1, . . . , Ik−1 follow from I′1 ∧ · · · ∧ I′k′−1 and each of the Ai

from I′1 ∧ · · · ∧ I′k′−1 ∧A
′
i; this is sufficient by Lemma 3.10. We start by proving the

pure conjuncts of I from the conclusion in the derivation in Section 6.1.

—iso(ϕ,FWD,BUSY). This follows from

iso(ϕ \ {(root, free− 8)},FWD \ {root},BUSY \ {(free− 8)}) ∧ root ∈ FWD ∧
(free− 8) ∈ BUSY ∧ (root, free− 8) ∈ ϕ ∧ Ptr(free− 8),

(59), and (42).

—RCH = FWD ∪ UFWD follows from

(FWD \ {root}) ∪ (UFWD ∪ {root}) = RCH) ∧ root ∈ FWD

and (81).

—Ic ∧ (RCH ⊥ NEW)∧#RCH ≤ #NEW∧ root ∈ FWD∧ offset ≤ scan is part of the
conclusion in Section 6.1.

—scan ≤ free. Follows from scan = offset ∧ free− 8 = offset.

—Ptr(scan)∧Ptr(free). Follows from (50) and Ptr(offset)∧scan = offset∧Ptr(free−8).

—(root, offset) ∈ ϕ follows from (root, free− 8) ∈ ϕ and offset = free− 8.

For the impure parts, the argument is a bit more complicated. We deal with each
of the parts in the iterated separating conjunction (AUFWD ∗ AFWD ∗ AFIN ∗ AUFIN ∗
AFREE) separately.
For UFWD, we have

¬(root ∈ UFWD) ∧
(∀∗x ∈ ((UFWD ∪ {root}) \ {root}).

((∃y. (x, y) ∈ head ∧ x 7→ y) ∗ (∃y′. (x, y′) ∈ tail ∧ x+ 4 7→ y′)))
⇓
((UFWD ∪ {root}) \ {root}) = UFWD ∧

(∀∗x ∈ ((UFWD ∪ {root}) \ {root}).
((∃y. (x, y) ∈ head ∧ x 7→ y) ∗ (∃y′. (x, y′) ∈ tail ∧ x+ 4 7→ y′)))

⇓
(∀∗x ∈ UFWD. ((∃y. (x, y) ∈ head ∧ x 7→ y) ∗ (∃y′. (x, y′) ∈ tail ∧ x+ 4 7→ y′)))
‖
AUFWD,

where the two implications follow from (36) and (10), respectively.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 51

For FWD,

(root, free− 8) ∈ ϕ ∧ root ∈ FWD ∧
((∀∗x ∈ (FWD \ {root}). (∃y. (x, y) ∈ ϕ \ {(root, free− 8)} ∧ p 7→ y,−))∗
(root 7→ free− 8,−))
⇓
root ∈ FWD ∧
((∀∗x ∈ (FWD \ {root}). (∃y. (x, y) ∈ ϕ ∧ x 7→ y,−))∗
(root 7→ free− 8,− ∧ (root, free− 8) ∈ ϕ))

⇓
root ∈ FWD ∧
((∀∗x ∈ (FWD \ {root}). (∃y. (x, y) ∈ ϕ ∧ x 7→ y,−))∗
(∃y. root 7→ y,−∧ (root, y) ∈ ϕ))

⇓
∀∗x ∈ FWD. (∃y. (x, y) ∈ ϕ ∧ x 7→ y,−)
‖
AFWD

The first implication follows from the rule for pure assertions in Remark 3.7, from
(39), and Lemma 3.9. The third implication is an instance of (14).

For FIN, it is easiest to note that the condition scan = offset in the conclusion of
the derivation above makes both of the assertions about FIN equivalent to emp.

The following derivation takes care of FREE (we implicitly use (41)):

¬(free− 8 ∈ FREE) ∧
∀∗x ∈ ((FREE ∪ {(free− 8)}) \ {(free− 8)}. x.→ −,−)
⇓
FREE = (FREE ∪ {(free− 8)}) \ {(free− 8)} ∧

∀∗x ∈ ((FREE ∪ {(free− 8)}) \ {(free− 8)}. x.→ −,−)
⇓
∀∗x ∈ FREE. x 7→ −,−
‖
AFREE

The first implication here is an instance of (36), and the second implication
follows from (10).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

52 · Torp-Smith, Birkedal, Reynolds

Finally, for UFIN, we use (42) and get

(root, free− 8) ∈ ϕ ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail ∧
Ptr(free − 8) ∧ (free− 8) ∈ UFIN ∧
((∀∗x ∈ (UFIN \ {free− 8}). ((∃y. (x, y) ∈ head ◦ (ϕ \ {(root, free− 8)})† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ (ϕ \ {(root, free− 8)})†) ∧ x+ 4 7→ y′))) ∗
(free− 8 7→ t1, t2))

(1)⇓
(free− 8, root) ∈ ϕ† ∧ (root, t1) ∈ head ∧ (root, t2) ∈ tail ∧

Ptr(free − 8) ∧ (free− 8) ∈ UFIN ∧
((∀∗x ∈ (UFIN \ {free− 8}). ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))) ∗
(free− 8 7→ t1) ∗ ((free− 8) + 4 7→ t2))

(2)⇓
(free− 8, t1) ∈ head ◦ ϕ† ∧ (free− 8, t2) ∈ tail ◦ ϕ† ∧ (free − 8) ∈ UFIN ∧

((∀∗x ∈ (UFIN \ {free− 8}). ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))) ∗

(free− 8 7→ t1) ∗ ((free− 8) + 4 7→ t2))
(3)⇓

(free− 8) ∈ UFIN ∧
((∀∗x ∈ (UFIN \ {free− 8}). ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))) ∗
(free− 8 7→ t1 ∧ (free− 8, t1) ∈ head ◦ ϕ†) ∗

((free− 8) + 4 7→ t2 ∧ (free− 8, t2) ∈ tail ◦ ϕ†))

(4)⇓
(free− 8) ∈ UFIN ∧
((∀∗x ∈ (UFIN \ {free− 8}). ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))) ∗
(∃y. free− 8 7→ y ∧ (free− 8, y) ∈ head ◦ ϕ†) ∗

(∃y′. (free− 8) + 4 7→ y′ ∧ (free − 8, y′) ∈ tail ◦ ϕ†))

(5)⇓
∀∗x ∈ UFIN. ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))
‖
AUFIN

Here, the first implication uses (39), (51), and Lemma 3.9. The second follows
from (52), and the third implication follows from purity. Finally, the last implication
is an instance of the rule (14).

D. FORMAL PROOF OF LEMMA 6.3

The assertion (scan, a) ∈ head ◦ϕ† ∧Ptr(a)∧PtrRg(head,RCH) implies a ∈ RCH by
(74) and (73), so A implies a ∈ RCH. By (78),

a ∈ RCH ∧ FWD ∪ UFWD = RCH ∧ ¬(a ∈ UFWD)→ a ∈ FWD,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 53

so we assume a ∈ UFWD and derive a contradiction, i.e., we show A ∧ (a ∈
UFWD)→ F. By (16), it suffices to show (since F is a intuitionistic assertion)

AUFWD ∧ (a ↪→ b) ∧ PtrRg(head,RCH) ∧ Ptr(b) ∧
RCH ⊥ NEW ∧ b ∈ NEW ∧ a ∈ UFWD→ F

We have

AUFWD ∧ a ↪→ b ∧ PtrRg(head,RCH) ∧ Ptr(b) ∧
RCH ⊥ NEW ∧ b ∈ NEW ∧ a ∈ UFWD

(1)⇓
(AUFWD−a ∗ (∃y. (a, y) ∈ head ∧ a 7→ y) ∗ (∃y′. (a, y′) ∈ tail ∧ a+ 4 7→ y′)) ∧

a ↪→ b ∧ PtrRg(head,RCH) ∧ Ptr(b) ∧ RCH ⊥ NEW ∧ b ∈ NEW
(2)⇓

(AUFWD−a ∗ (a+ 4 7→ −) ∗ (∃y. (a, y) ∈ head ∧ a 7→ y)) ∧
a ↪→ b ∧ PtrRg(head,RCH) ∧ Ptr(b) ∧ RCH ⊥ NEW ∧ b ∈ NEW

(3)⇓
(AUFWD−a ∗ (a+ 4 7→ −) ∗ ((a, b) ∈ head ∧ a 7→ b)) ∧

PtrRg(head,RCH) ∧ Ptr(b) ∧ RCH ⊥ NEW ∧ b ∈ NEW
(4)⇓

(AUFWD−a ∗ (a+ 4 7→ −) ∗ (a 7→ b)) ∧
(a, b) ∈ head ∧ PtrRg(head,RCH) ∧ Ptr(b) ∧ RCH ⊥ NEW ∧ b ∈ NEW

(5)⇓
b ∈ RCH ∧ RCH ⊥ NEW ∧ b ∈ NEW

(6)⇓
F

The first of these implications follows from (14), the third follows from (15), the
fourth from purity, the fifth from (73), and the last follows from (80).

E. FORMAL PROOF OF LEMMA 6.6

First,

Ia ∧ Ptr(a) ∧ (a ↪→ b) ∧ ¬(b ∈ NEW)
⇓
(scan, a) ∈ head ◦ ϕ† ∧ PtrRg(head,RCH) ∧
Ptr(a) ∧ FWD ∪ UFWD = RCH
⇓
a ∈ RCH ∧ FWD ∪ UFWD = RCH
⇓
a ∈ FWD ∨ a ∈ UFWD

The second implication follows from (73) and (74), and the third is by (77). So, as
in the proof of Lemma 6.3, we assume a ∈ FWD and derive a contradiction, i.e.,
we show (a ∈ FWD) ∧ A → F. By (16) and Lemma 6.1, the following derivation

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

54 · Torp-Smith, Birkedal, Reynolds

establishes this.

AFWD ∧ a ↪→ b ∧ iso(ϕ,FWD,BUSY) ∧ ¬(b ∈ NEW) ∧ free ≤ maxFree ∧ a ∈ FWD
(1)⇓

(AFWD−a ∗ (∃y. (a, y) ∈ ϕ ∧ a 7→ y,−)) ∧

a ↪→ b ∧ iso(ϕ,FWD,BUSY) ∧ ¬(b ∈ NEW) ∧ free ≤ maxFree
(2)⇓

(AFWD−a ∗ (a+ 4 7→ −) ∗ (∃y. (a, y) ∈ ϕ ∧ a 7→ y)) ∧
a ↪→ b ∧ iso(ϕ,FWD,BUSY) ∧ ¬(b ∈ NEW) ∧ free ≤ maxFree

(3)⇓
(AFWD−a ∗ (a+ 4 7→ −) ∗ ((a, b) ∈ ϕ ∧ a 7→ b)) ∧

iso(ϕ,FWD,BUSY) ∧ ¬(b ∈ NEW) ∧ free ≤ maxFree
(4)⇓

(AFWD−a ∗ (a+ 4 7→ −) ∗ (a 7→ b)) ∧
(a, b) ∈ ϕ ∧ iso(ϕ,FWD,BUSY) ∧ ¬(b ∈ NEW) ∧ free ≤ maxFree

(5)⇓
(a, b) ∈ ϕ ∧ iso(ϕ,FWD,BUSY) ∧ ¬(b ∈ NEW) ∧ free ≤ maxFree

(6)⇓
b ∈ BUSY ∧ ¬(b ∈ NEW) ∧ free ≤ maxFree

(7)⇓
b ∈ Itv(offset, free) ∧ ¬(b ∈ Itv(offset,maxFree)) ∧ free ≤ maxFree

(8)⇓
F

The first of these implications follows from (14), the second is a matter of nota-
tion. The third implication is an instance of (15), and the next comes from purity.
The sixth implication in the derivation follows from (60), and the last is by (54).
This shows the lemma.

F. LAST STEP OF SPECIFICATION FOR COPYCELL∗

We need to show that I′ follows from the conclusion of the specification for CopyCell∗

from Section 6.2.3. As mentioned, this proof is similar to the proof in Section 6.1. In
particular, the pure part of I′ follows from the pure part of the conclusion above by
the same argument as in Section 6.1, and the same argument goes for the separating
conjunction over the sets FWD, UFWD, and FREE, and for the location scan + 4.
Thus, if we let B be the pure part of the conclusion of the global specification in
Section 6.2.3, what is left to show is that

B ∧ (((free − 8) 7→ t1, t2) ∗ (scan 7→ free− 8) ∗
(∀∗x ∈ ((UFIN \ {scan)} \ {(free− 8)}).
((∃y. (x, y) ∈ head ◦ (ϕ \ {(a, free− 8)})† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ (ϕ \ {(a, free− 8)})†) ∧ x+ 4 7→ y′)))

(84)

implies

(∀∗x ∈ (UFIN \ {scan}).
((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))) ∗

(∃y. (scan, y) ∈ ϕ� (head ◦ ϕ†) ∧ scan 7→ y),

(85)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 55

and that

B ∧
(∀∗x ∈ FIN.
((∃y. (x, y) ∈ ϕ \ {(a, free− 8)} � (head ◦ (ϕ \ {(a, free− 8)})†) ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ (ϕ \ {(a, free− 8)})� (tail ◦ (ϕ \ {(a, free− 8)})†) ∧ x+ 4 7→ y′)))

implies

B ∧
(∀∗x ∈ FIN. ((∃y. (x, y) ∈ ϕ� (head ◦ ϕ†) ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ x+ 4 7→ y′))).

The last of these follows from (39) and Lemma 3.9. For the first, we have

(a, t1) ∈ head ∧ (a, t2) ∈ tail ∧ (a, free − 8) ∈ ϕ ∧
(scan, a) ∈ head ◦ (ϕ \ {(a, free− 8)})† ∧ Ptr(a) ∧
((∀∗x ∈ ((UFIN \ {scan}) \ {(free− 8)}).

((∃y. (x, y) ∈ head ◦ (ϕ \ {(a, free− 8)})† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ (ϕ \ {(a, free− 8)})†) ∧ x+ 4 7→ y′)) ∗

(scan 7→ free− 8) ∗ (free− 8 7→ t1, t2))
(1)⇓

(free− 8, t1) ∈ head ◦ ϕ† ∧ (free− 8, t2) ∈ tail ◦ ϕ† ∧

(scan, free− 8) ∈ ϕ� (head ◦ ϕ†) ∧

(∀∗x ∈ ((UFIN \ {scan}) \ {(free− 8)}).
((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′)) ∗

(scan 7→ free− 8) ∗ ((free− 8) 7→ t1) ∗ ((free − 8) + 4 7→ t2))
(2)⇓
∀∗x ∈ ((UFIN \ {scan}) \ {(free− 8)}).

((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′)) ∗

(scan 7→ free− 8 ∧ (scan, free− 8) ∈ ϕ� (head ◦ ϕ†)) ∗

((free− 8) 7→ t1 ∧ (free − 8, t1) ∈ head ◦ ϕ†) ∗

((free− 8) + 4 7→ t2 ∧ (free− 8, t2) ∈ tail ◦ ϕ†)

(3)⇓
∀∗x ∈ ((UFIN \ {scan}) \ {free− 8}).

((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′)) ∗

(∃y. scan 7→ y ∧ (scan, y) ∈ ϕ� (head ◦ ϕ†)) ∗

(∃y. (free− 8) 7→ y ∧ (free− 8, y) ∈ head ◦ ϕ†) ∗

(∃y′. (free− 8) + 4 7→ y′ ∧ (free − 8, y′) ∈ tail ◦ ϕ†)

(4)⇓
∀∗x ∈ (UFIN \ {scan}).

((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′)) ∗

(∃y. scan 7→ y ∧ (scan, y) ∈ ϕ� (head ◦ ϕ†))

The first implication follows from (39), ordinary composition of relations (52), the
rule (68) for the special relation composition �, and from Lemma 3.9. The second

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

56 · Torp-Smith, Birkedal, Reynolds

implication follows from purity, and the last implication from (14). We have thus
obtained (84) ⇒ (85).

G. FORMAL DERIVATION OF (33)

By the rule for assignment and obvious rules for intervals, we get

{A}
⇓

Ipure ∧ scan 6= free ∧
((AUFWD ∗ AFWD ∗ AFREE) ∗
(∀∗x ∈ FIN. ((∃y. (x, y) ∈ ϕ� (head ◦ ϕ†) ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ x+ 4 7→ y′))) ∗
(∀∗x ∈ (UFIN \ {scan}). ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))) ∗
(∃y. (scan, y) ∈ ϕ� (head ◦ ϕ†) ∧ scan 7→ y) ∗
(∃y′. (scan, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ (scan + 4) 7→ y′))

scan := scan + 8

Ic ∧ RCH ⊥ NEW ∧#RCH ≤ #NEW ∧ root ∈ FWD ∧
iso(ϕ,FWD,BUSY) ∧ FWD ∪ UFWD = RCH
scan− 8 ≤ free ∧ offset ≤ scan− 8 ∧ Ptr(free) ∧ Ptr(scan− 8) ∧

((AUFWD ∗ AFWD ∗ AFREE) ∗
(∀∗x ∈ (FIN \ {scan− 8}). ((∃y. (x, y) ∈ ϕ� (head ◦ ϕ†) ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ x+ 4 7→ y′))) ∗
(∀∗x ∈ ((UFIN ∪ {scan− 8}) \ {scan− 8}).

((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))) ∗

(∃y. (scan− 8, y) ∈ ϕ� (head ◦ ϕ†) ∧ (scan− 8) 7→ y) ∗
(∃y′. (scan− 8, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ ((scan− 8) + 4) 7→ y′))

⇓

Ic ∧ RCH ⊥ NEW ∧#RCH ≤ #NEW ∧ root ∈ FWD ∧
iso(ϕ,FWD,BUSY) ∧ FWD ∪ UFWD = RCH
scan− 8 ≤ free ∧ offset ≤ scan− 8 ∧ Ptr(free) ∧ Ptr(scan− 8) ∧
((AUFWD ∗ AFWD ∗ AFREE) ∗
(∀∗x ∈ (FIN \ {scan− 8}). ((∃y. (x, y) ∈ ϕ� (head ◦ ϕ†) ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ x+ 4 7→ y′))) ∗
(∃y. (scan− 8, y) ∈ ϕ� (head ◦ ϕ†) ∧ (scan− 8) 7→ y) ∗

(∃y′. (scan− 8, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ ((scan− 8) + 4) 7→ y′) ∗

(∀∗x ∈ ((UFIN ∪ {scan− 8}) \ {scan− 8}).
((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ† ∧ x+ 4 7→ y′))))

The specification step uses the rule for assignment.
Like in Section 6.1 and 6.2.3, we now have to show that the pure part of I follows

from the pure part I′′p of the conclusion I′′ in the derivation above, and that the
separating conjunction in I follows from that of I′′ and I′′p . The only problem in the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Local Reasoning about a Copying Garbage Collector · 57

pure part of I is to conclude

Ptr(scan) ∧ scan ≤ free ∧ offset ≤ scan

But this follows from

Ptr(scan− 8) ∧ Ptr(free) ∧ scan− 8 6= free ∧ scan− 8 ≤ free ∧ offset ≤ scan− 8.

For the heap-dependent part of I, we see that AUFWD, AFWD, and AFREE follow
directly from the corresponding parts of I′′. So what is left to show is that

I′′p ∧
(∀∗x ∈ ((UFIN ∪ {(scan− 8)}) \ {scan− 8}). ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ tail ◦ ϕ†) ∧ x+ 4 7→ y′))

implies

∀∗x ∈ UFIN. ((∃y. (x, y) ∈ head ◦ ϕ† ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ tail ◦ ϕ†) ∧ x+ 4 7→ y′),

and that

I′′p ∧
((∀∗x ∈ (FIN \ {scan− 8}). ((∃y. (x, y) ∈ ϕ� (head ◦ ϕ†) ∧ x 7→ y) ∗

(∃y′. (x, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ x+ 4 7→ y′))) ∗
(∃y. (scan− 8, y) ∈ ϕ� (head ◦ ϕ†) ∧ scan− 8 7→ y) ∗
(∃y′. (scan− 8, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ scan− 8 7→ y′))

implies

∀∗x ∈ FIN. ((∃y. (x, y) ∈ ϕ� (head ◦ ϕ†) ∧ x 7→ y) ∗
(∃y′. (x, y′) ∈ ϕ� (tail ◦ ϕ†) ∧ x+ 4 7→ y′)).

For the first of these, the implication follows from (10), Lemma 3.9, and (39),
since ¬((scan− 8) ∈ UFIN) implies (UFIN ∪ {scan− 8}) \ {scan− 8} = UFIN (recall
UFIN ≡ Itv(scan, free)). The second implication follows from Lemma 3.9, (39), and
(14), since scan− 8 ∈ FIN ≡ Itv(offset, scan).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

