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Abstract. We present a model of Linear Abadi and Plotkin Logic for
parametricity [8] based on the operational semantics of LILY, a polymor-
phic linear lambda calculus endowed with an operational semantics [3].
We use it to formally prove definability of general recursive types in LILY
and to derive reasoning principles for the recursive types.

1 Introduction

The combination of parametric polymorphism and recursion on the level of
terms yields a type theory expressive enough to solve general recursive type
equations[19, 8]. However, as realized by Plotkin [19], for this combination to
give a consistent theory, the parametricity principle must be weakened, and so
he suggested studying a dual intuitionistic / linear type theory in combination
with parametric polymorphism, in which for example the parametricity principle
would apply to graphs of linear, but not intuitionistic maps.

Based on these ideas, in 2000 Bierman, Pitts, and Russo [3] presented the
programming language LILY, a polymorphic intuitionistic / linear lambda calcu-
lus endowed with an operational semantics. In their paper, they sketched how to
carry out Plotkin’s ideas in the operational setting. The formulation of the para-
metricity principle was based on the notion of >>-closed relations, and the idea
was to use the strong connection between these and ground contextual equiva-
lence, to show correctness of recursive type encodings up to ground contextual
equivalence. In their paper, however, only correctness of the encodings of sum
types was proved.

In recent work the first three authors [8, 12] have presented an adaptation
of Abadi & Plotkin’s logic for parametricity [18] to PILLY , a polymorphic dual
intuitionistic / linear type theory with fixed points. The resulting logic — called
LAPL for Linear Abadi and Plotkin Logic — contains an axiomatized abstract
notion of admissible relations on which the formulation of the parametricity
principle is based. Admissible relations give the necessary weakening of the para-
metricity principle. In loc. cit. we showed in detail, following Plotkin’s sugges-
tions, that LAPL can be used to define a wide range of types, including general
nested recursive types. We also defined a sound and complete class of categorical
models for LAPL called LAPL-structures,

In this paper we present a concrete LAPL-structure constructed from the
operational semantics of LILY. This defines formally an interpretation of LAPL



into LILY, transferring the general results proved abstractly in LAPL to LILY.
The construction of the LAPL-structure involves showing that the >>-closed
relations define a notion of admissible relations.

This new model of LAPL based on the operational semantics of LILY is of
interest for the following reasons:

– It shows that our definition of LAPL in [8] is indeed a general one: In [8]
we presented a model based on admissible partial equivalence relations over
a universal model of the untyped lambda calculus and in [15] we presented
a model based on synthetic domain theory.

– The present model is simpler than our previous models mentioned above
in that it does not require any domain theory, realizability, or synthetic
domain theory. We hope this will make it more accessible. To make the
model accessible also for readers who are not that familiar with category
theory we deliberately choose to show not only the necessary categorical
properties required of an LAPL-structure but also sketch in more explicit
terms the interpretation of LAPL in our new model.

– The previous models mentioned above were constructed via a so-called para-
metric completion process, which roughly means that they were constructed
in two steps: first a simple non-parametric model was constructed and then
it was made parametric by filtering out all the non-parametric elements.
(See [12] for more on parametric completions.) The present model is the first
such1 that is not based on a parametric completion process.

– It allows us to conclude that a wide range of types are definable up to
ground contextual equivalence in LILY, as claimed but not formally proved
in [3] (except for the simple case of finite coproducts). Hence our model can
be used to prove correct program transformations based on parametricity
for a language with general recursive types, an improvement over earlier
work [10], which only dealt with algebraic data types.
In fact, we also proved this LILY definability of types in [15] from the model
based on synthetic domain theory by combining it with an adequate denota-
tional semantics of LILY, but here we can do it by much simpler techniques.

– The model we present here is, to our knowledge, the first model of general
recursive types as formalized via algebraic compactness based on operational
semantics. Algebraic compactness is a categorical formulation of what it
means to solve recursive domain equations; it ensures that the solutions are
universal in an appropriate categorical sense, thus allowing for the derivation
of (mixed) inductive-coinductive reasoning principles, c.f. [16]. In earlier work
by the first author and Harper [4] a reasoning principle similar to the one
derived here was presented for a recursive type, but it only worked for a single
top-level recursive type. For other related work on operational models of
recursive types, e.g., [1, 11], one may probably also establish useful reasoning
principles for the recursive types but as far as we know it has not been done
and, at any rate, it is pleasing that the reasoning principles presented here
are an immediate consequence of general results about LAPL-structures.

1 Except for the syntactic one constructed to prove completeness of LAPL-structures.



The remainder of this paper is organized as follows.
In Section 2 we recall the notion of an LAPL structure. In Section 3 we

extend the LILY language with tensor types and associated terms. Moreover, we
extend the operational properties of LILY studied in [3] to the new language and
slightly generalize the results in [3] (to work for terms with free term and type
variables, e.g.) and include a few new ones needed for the model construction.
We have included tensor types, even though we in the end show that they are
definable using parametricity, because it eases the construction of the model.

In Section 4 we construct a PILLY -model from the operational semantics of
our extension of LILY. This is the first step in the construction of the LAPL-
structure. The next step in the construction is the logic fibration. The interpre-
tation of the logic is basically set theoretic, interpreting propositions on types,
for example, as subsets of sets of ground contextual equivalence classes of terms.
As mentioned, the >>-closed relations play the role of admissible relations in
LAPL, and thus need to satisfy certain closure properties. These are also estab-
lished in Section 4.

The last step in the construction of the LAPL-structure is the relational
interpretation of types. We show how the inductive definition of the interpre-
tation of LILY-types as ⊥⊥-closed relations presented in [3] defines a relational
interpretation of types satisfying the requirements for LAPL-structures. Finally,
it is shown that the parametricity schema does indeed hold in the constructed
LAPL-structure.

In Section 5 we describe the interpretation of PILLY into the model we have
constructed out of the operational semantics of LILY.

Finally, in Section 6 we derive some consequences of parametricity for LILY,
and we conclude in Section 7.

2 LAPL-structures

The equational theory PILLY is a variant of DILL [2] extended with polymorphism
and fixed points given by a fixed point combinator of type

∏
α.(α → α) → α,

where in general we use σ → τ as notation for !σ ( τ .
We start off by sketching the notion of LAPL-structure as described in [8].

Some readers may prefer to first look at the concrete LAPL-structure constructed
in Section 4 and the explicit description of the interpretation in Section 5 and
then refer back to this section later. LAPL-structures model a variant of Abadi
& Plotkin’s logic for parametricity [20, 19] designed for reasoning about PILLY .
Propositions in the logic exist in contexts of free type variables, free variables of
PILLY and free relational variables. The free relational variables may be relations
or admissible relations. Propositions are written as

α | x : σ | R : Rel(σ,σ′),S : AdmRel(τ , τ ′) ` φ : Prop.

The vector α is a list of free type variables. We will not describe the logic in
details, but only mention a few main points. The variables x : σ are treated
intuitionistically in the logic. We may reason about linear terms by for example



using variables of type σ ( τ , but the reasoning about the terms is purely
intuitionistic.

The logic comes equipped with a notion of admissible relations, which is re-
quired to be closed under certain constructions. For example, equality relations
(relating equal elements of some type) are required to be admissible, and admis-
sible relations must be closed under reindexing along linear maps and universal
quantification.

For any type α ` σ(α) : Type with n free variables, and any n-vector
of admissible relations R : AdmRel(τ , τ ′), we can form an admissible relation
σ[R] : AdmRel(σ(τ ), σ(τ ′)). This is called the relational interpretation of σ, and
it is important for reasoning about parametricity. For example we can express the
identity extension schema [21] as σ[eqα] ≡ eqσ(α), which we use as our definition
of parametricity.

A pre-LAPL-structure is a schema of categories and functors
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is a model of PILLY [14] (a fibred version of a model of DILL [2], with generic
object Ω ∈ Kind for p, simple products modeling polymorphism in p, and a
term modeling the fixed point combinator).

We further require that the fibration q has fibred products and that I is a
faithful map preserving fibred products. The pair of fibrations (r, q) is an indexed
first-order logic fibration which has products and coproducts with respect to
projections Ξ×Ω → Ξ in Kind [5], meaning that each fibre of r over an object Ξ
in Kind is a first-order logic fibration with structure preserved under reindexing,
and that the logic models quantification along the mentioned projections in
Kind.

Finally, there should exist a fibred functor U mapping pairs of types σ, τ in
the same fibre of LinType to an object U(σ, τ) in Context acting as an object
of all relations from IG(σ) to IG(τ) in the logic of Prop.

A notion of admissible relations for a pre-LAPL-structure is a subfunctor V
of U closed under the constructions for admissible relations in the logic.



A pre-LAPL-structure models Abadi & Plotkin’s logic for parametricity, ex-
cept for the relational interpretation of types. The contexts of the logic are mod-
eled in Context using U , V to model the sets of all relations and admissible
relations between types respectively. The propositions of the logic are modeled
in Prop.

From a pre-LAPL-structure with a notion of admissible relations one can
define a PILL model (a PILLY model that does not necessarily model Y )

LinAdmRel 00

&&MMMMMMMMMMM ⊥ AdmRelations
pp
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(3)

of admissible relations. There exists two maps of PILL-models ∂0, ∂1 from (3) to
(2) basically mapping a relation to its domain and codomain respectively. An
LAPL-structure is a pre-LAPL-structure with a notion of admissible relations
and a map of PILL-models J from (2) to (3) such that

∂0 ◦ J = ∂1 ◦ J = id.

The functor J models the relational interpretation of types. It enables us to
talk about parametricity at all types in the model, not just the interpretations
of types in pure PILLY .

A parametric LAPL-structure is an LAPL-structure satisfying the iden-
tity extension schema in the internal logic. Moreover the extensionality schemes

∀x : σ.f(x) =τ g(x) ⊃ f =σ→τ g
∀α : Type.t α =σ u α ⊃ t =Qα.σ u,

should hold and the model should have very strong equality. The latter means
that if two terms of PILLY are provably equal in the logic, then they are in fact
equal in the model.

Parametric LAPL-structures are interesting because we can reason about the
contained PILLY -model using parametricity. In particular, we can solve a large
class of domain equations in parametric LAPL-structures, and show that a large
class of endo-functors have initial algebras and final coalgebras. Here we present
these results in a restricted form, which is sufficient for the purposes of this
paper.

We distinguish between pure PILLY and other PILLY -theories with added
type-constants and term-constants, such as the internal languages of models of
PILLY . A type of pure PILLY α ` σ(α) : Type in which α occurs only positively
induces by standard constructions a functor, in the sense that there exists a term
of type ∏

α, β.(α ( β) → (σ(α) ( σ(β))

preserving composition and identities. In the model σ induces an endo-functor
[[σ]] on LinType1, the fibre over the terminal object 1, which is the model of
the closed types.



For each such type there exists a closed type µα.σ(α), and closed terms,

in : σ(µα.σ(α)) ( µα.σ(α),
fold :

∏
β.(σ(β) ( β) → (µα.σ(α) ( β)

such that for any algebra f : σ(α) ( α, fold α !f is a map of algebras from in to
f in the sense that

f ◦ σ(fold α !f) = (fold α !f) ◦ in.

Likewise there exists a closed type να.σ(α) and closed terms,

out : να.σ(α) ( σ(να.σ(α)),
unfold :

∏
β.(β ( σ(β)) → (να.σ(α) ( β)

such that for any coalgebra g : α ( σ(α), unfoldα !g is a map of coalgebras from
g to out.

Theorem 1 ([8]). Suppose α ` σ(α) is a type in pure PILLY in which α occurs
only positively. In any parametric LAPL-structure in is interpreted as an initial
algebra and out as a final coalgebra for [[σ]] : LinType1 → LinType1.

The next proposition provides solutions to recursive domain equations.

Theorem 2 ([8]). Suppose α ` σ(α) : Type is a type in pure PILLY (α may
appear both positively and negatively). There exists a closed type rec α.σ(α) in
PILLY and terms

f : rec α.σ(α) ( σ(rec α.σ(α)),
g : σ(rec α.σ(α)) ( rec α.σ(α)

such that in any parametric LAPL-structure, f, g are interpreted as each others
inverses.

We refer to [8, 15] for further details, in particular for a formulation of the above
theorem for recursive types with parameters (as needed for nested recursive
types), which we omitted here for simplicity.

3 The LILY Language

We have extended the work in [3] in two main ways: The language has been
extended with tensor and all the definitions and theorems have been extended
to cover terms and types with free term and type variables.

The extension of the language was rather straightforward while the extension
to open terms and types required incorporation and adaptation of techniques
described in [17]. Among other things, it was necessary to define a frame stack
semantics and show a =ciu-theorem.

For reasons of space we omit most of the details of this development; they can
be found in the accompanying technical report [9]. The main results of interest
here are that contextual equivalence can be described by an inductively defined



relation ∆, that this relation models the equational theory of PILLY and that it
satisfies a substitution property which turns out to correspond to the identity
extension schema in our model.

The language without unit and tensor is given in [3]. In LILY with tensor the
raw terms and types are defined by:

τ ::= α | τ ( τ ′ | ∀α.τ | !τ | I | τ ⊗ τ
M ::= a | x | λa : τ.M | M1M2 | Λα.M | Mτ |

!(x = M : τ) | let !x be M1 in M2 | ∗ |
let ∗ be M1 in M2 | M1 ⊗M2 |
let a1 ⊗ a1 be M1 in M2

The typing judgments from [3] have been extended with standard rules for ∗ and
⊗. The full type system can be found in Appendix A.

As in [3], we have two dynamic semantics. One gives a call-by-value semantics
(⇓s) and one gives a call-by-name semantics (⇓n).

Definition 1. Let ⇓ denote either ⇓s or ⇓n. We then define ⇓s and ⇓n as
evaluation relations given by:

v1:
λa : τ.M ⇓ λa : τ.M

v2:
Λα.M ⇓ Λα.M

v3:
!(x = M : τ) ⇓!(x = M : τ)

v4: ∗ ⇓ ∗ v5:
M1 ⊗M2 ⇓ M1 ⊗M2

appt:
M ⇓ Λα.M ′ M ′[τ/α] ⇓ V

Mτ ⇓ V

rec:

M1 ⇓!(x = M : τ)
M2[(let !x be !(x = M : τ) in M)/y] ⇓ V

let !y be M1 in M2 ⇓ V

cval:
M1 ⇓s λa : τ.M M2 ⇓s V ′ M [V ′/a] ⇓s V

M1M2 ⇓s V

cname:
M1 ⇓n λa : τ.M M [M2/a] ⇓n V

M1M2 ⇓n V

unit:
M1 ⇓ ∗ M2 ⇓ V

let ∗ be M1 in M2 ⇓ V

tensor:
M1 ⇓ N1 ⊗N2 M2[N1, N2/a1, a2] ⇓ V

let a1 ⊗ a2 be M1 in M2 ⇓ V

Again, the operational semantics has been extended to accommodate ⊗. The
tensor of two arbitrary terms constitute a value. We write E ⇓n to mean ∃v.E ⇓n

v and let Typ denote the set of closed LILY types.
We will abbreviate let !x be !(x = M : τ) in M to fix x : τ.M as the

evaluation of this term is defined recursively and behaves like a fixed point. We
will also abbreviate a non-recursive thunk !(x = M : τ), x /∈ fiv(M) to !M .
These constructs then both look and behave like constructs of PILLY .



Definition 2 (Ground contextual equivalence). Given terms M,M ′ such
that Γ ;∆ `α M : τ and Γ ;∆ `α M ′ : τ we define Γ ;∆ `α M =gnd M ′ : τ if and
only if for all closed types τ ′ ∈ Typ and all contexts C such that ∅; ∅ `∅ C[M ] :!τ ′

and ∅; ∅ `∅ C[M ′] :!τ ′, we have C[M ] ⇓n⇔ C[M ′] ⇓n.

We now recall the notion of >>-closed relation [3].

Definition 3. For all closed types τ ∈ Typ, let Test(τ) denote the set {λa :
τ.M |∃τ ′ ∈ Typ.∅; ∅ `∅ λa : τ.M : τ (!τ ′}. For all closed types τ, τ ′ ∈ Typ, let
Rel(τ, τ ′) =def {r | r ⊆ Term(τ) × Term(τ ′)}, and let Rel∗(τ, τ ′) =def {s | s ⊆
Test(τ)× Test(τ ′)}.

Given r ∈ Rel(τ, τ ′), let r> ∈ Rel∗(τ, τ ′) be given by

r> =def {(V, V ′) | ∀(M,M ′) ∈ r.V M ⇓n⇔ V ′M ′ ⇓n}.

Given s ∈ Rel∗(τ, τ ′), let s> ∈ Rel(τ, τ ′) be given by

s> =def {(M,M ′) | ∀(V, V ′) ∈ s.V M ⇓n⇔ V ′M ′ ⇓n}.

Lemma 1. The operations (−)> forms a Galois connection between Rel(τ, τ ′)
and Rel∗(τ, τ ′).

As easy consequences hereof we get:

Lemma 2. The operator (−)>> is monotone (−1 ⊆ −2 ⇒ (−1)>> ⊆ (−2)>>),
inflationary ((−) ⊆ (−)>>) and idempotent

(
(−)>> = (−)>>

>>
)
. The operator

(−)> is order reversing
(
−1 ⊆ −2 ⇒ (−1)> ⊇ (−2)>

)
.

Thus we see that (−)>> is a closure operation on relations, and we say that a
relation r is >>-closed if r = r>>.

We now define some operations on relations, which will be used to give a
relational interpretation of the LILY types. The definitions come from [3], except
for the case of ⊗, which, however, is as would be expected.

Given r1 ∈ Rel(τ1, τ
′
1) and r2 ∈ Rel(τ2, τ

′
2), let r1 ( r2 ∈ Rel(τ1 ( τ2, τ

′
1 (

τ ′2) be given by

{(M,M ′) | ∀(M1,M
′
1) ∈ r1.(MM1,M

′M ′
1) ∈ r2}.

Given a family (R(r) ∈ Rel(τ [σ/α], τ ′[σ′/α′]) | σ, σ′ ∈ Typ, r ∈ Rel(σ, σ′)), we
define ∀r.R(r) ∈ Rel(∀α.τ,∀α′.τ ′) to be

{(M,M ′) | ∀σ, σ′ ∈ Typ, r ∈ Rel(σ, σ′).(Mσ,M ′σ′) ∈ R(r)}.

Given r ∈ Rel(τ, τ ′), let !r ∈ Rel(!τ, !τ ′) be given by

{(!(x = M : τ), !(x′ = M ′ : τ)) | (fix x : τ.M, fix x′ : τ ′.M ′) ∈ r}.

Given r1 ∈ Rel(τ1, τ
′
1) and r2 ∈ Rel(τ2, τ

′
2), let r1 ⊗ r2 ∈ Rel(τ1 ⊗ τ2, τ

′
1 ⊗ τ ′2) be

given by

{(M1 ⊗M2), (M ′
1 ⊗M ′

2) | (M1,M
′
1) ∈ r1 ∧ (M2,M

′
2) ∈ r2}

We now define relational interpretation ∆τ of types τ .



Definition 4. For all LILY types τ with free type variables α = α1, . . . , αn, for
all τ , τ ′ ∈ Typ, r, such that ri ∈ Rel(τi, τ

′
i), let

∆τ : Rel(τ1, τ
′
1)× · · · ×Rel(τn, τ ′n) → Rel(τ [τ/α], τ [τ ′/α])

be a function defined inductively on τ , by

∆αi
(r/α) =def ri

∆τ1(τ2(r/α) =def ∆τ1(r/α) ( ∆τ2(r/α)
∆∀α.τ (r/α) =def ∀r.∆τ (r>>/α, r/α)

∆!τ (r/α) =def (!∆τ (r/α))>>

∆I(r/α) =def {(∗, ∗)}>>
∆τ1⊗τ2(r/α) =def (∆τ1(r/α)⊗∆τ2(r/α))>>.

For closed LILY types τ ∈ Typ we write ∆τ instead of ∆τ (∅/∅) ∈ Rel(τ, τ).

One can show that ∆τ takes >>-closed relations to >>-closed relations.
The following proposition expresses that ∆ satisfies a substitution property

corresponding to identity extension, since by Proposition 2 below we see that ∆
corresponds to ground contextual equivalence, that is, to our notion of equality.

Proposition 1. For all types τ, τ ′ and type variables α,α′ such that ftv(τ) ⊆
{α,α′} and ftv(τ ′) ⊆ α we have:

∆τ [τ ′/α′](r/α) = ∆τ (r/α,∆τ ′(r/α)/α′).

Below we extend the ∆ relation to terms with free variables. The definition
basically says that two open terms are related if they are related when we close
them by substituting related closed terms into them.

Definition 5 (Logical relation on open terms). Suppose Γ ;∆ `α M : τ and
Γ ;∆ `α M ′ : τ with free type variables α1, . . . , αl, free intuitionistic variables
x1 : τ1, . . . , xm : τm and free linear variables a1 : τ ′1, . . . , an : τ ′n. We write

Γ ;∆ ` M∆M ′ : τ (4)

if and only if, given any σ, σ′, r, such that ri ∈ Rel(σi, σ
′
i) and each ri is >>-

closed, given any N , N ′ such that (Nj , N
′
j) ∈ ∆τj

(r/α), and given any M , M ′

such that, (Mk,M ′
k) ∈ ∆τ ′k

(r/α), we have

(M [σ/α,N/x,M/a],M ′[σ′/α,N ′/x,M ′/a]) ∈ ∆τ (r/α). (5)

Note that the ∆ to the right denotes the linear context whereas the ∆ to the left
is the relation that we are defining.

Proposition 2. We have

Γ ;∆ `α M =gnd M ′ : τ ⇔ Γ ;∆ `α M∆M ′ : τ



Using the above proposition and alternative characterizations of ground con-
textual equivalence one can show [9] that all the rules of the external equational
theory of PILLY [8] hold when equality is interpreted as contextual equivalence:

Lemma 3.

Γ ;∆ `α (λa : τ.M)N =gnd M [N/a] : τ ′

Γ ;∆ `α (Λα.M)σ =gnd M [σ/α] : τ [σ/α]
Γ ;∆ `α let !y be !(x = N : τ) in M

=gnd M [(fix x : τ.N)/y] : τ ′

Γ ;∆ `α let ∗ be ∗ in M =gnd M : τ
Γ ;∆ `α let a1 ⊗ a2 be M1 ⊗M2 in M3

=gnd M3[M1,M2/a1, a2] : τ
Γ ;∆ `α fix x : α.M =gnd M x not free in M
Γ ;∆ `α Y σ(!M) =gnd M !(Y σ(!M)) : σ
Γ ;∆ `α let !y be !(x = M1 : τ) in M2

=gnd M2[M1/y] : τ ′ x not free in M1

4 The LILY LAPL-structure

In this section we show how to construct an LAPL-structure from the operational
semantics of LILY. Thus we define specific categories LinType, Type, functors,
etc., and prove that they constitute an LAPL-structure.

We write αn for α1, . . . , αn (all distinct) and let Terms(σ) denote the set of
ground contextual equivalence classes of closed LILY terms of type σ.

The PILLY -model The base category Kind is defined as follows.

Definition 6 (Kind).

Objects: αn

Morphisms: σm : αn → αm iff ∀i ∈ {1, . . . ,m}. αn ` σi

Note, that we allow α0 as an object of Kind. The category Kind is clearly
cartesian.

The category LinType is defined as follows.

Definition 7 (LinType).

Objects: (αn, σ) such that αn ` σ
Morphisms: (ωm, [M ]) : (αn, σ) → (αm, τ), if [M ] is a ground contextual
equivalence class of LILY-terms, such that
– ωm : αn → αm in Kind
– −;x : σ `αn M : τ [ωm/αm]

Note that an object (αn,σ) of LinType is a morphism αn → α1 of Kind.
There is an obvious projection functor p : LinType → Kind given by

(αn, σ) 7→ αn and (ωm, [M ]) 7→ ωm.



Note that the fibre LinTypen over n has objects σ the types αn ` σ with n
free type variables and morphisms [M ] : σ → τ are equivalence classes of terms
−;x : σ `αn M : τ . Composition is by substitution.

LinType → Kind is fibred symmetric monoidal closed, as required and
expected. We write out some of the SMCC structure for the fibre LinTypen.
The tensor is given by:

I = I
σ ⊗ τ = σ ⊗ τ

[M ]⊗ [N ] = [let x⊗ y be z in M ⊗N ]

where −;x : σ `αn M : σ′, −; y : τ `αn N : τ ′ and −; z : σ ⊗ τ `αn let x ⊗
y be z in M ⊗N : σ′ ⊗ τ ′.

The closed structure, σ ( (−), is given by

σ ( τ = σ ( τ
σ ( [M ] = [λx : σ.(M [(fx)/y])]

where −; y : τ `αn M : τ ′ and −; f : σ ( τ `αn λx : σ.(M [(fx)/y]) : σ ( τ ′.
The category Type is defined as follows.

Definition 8 (Type).

Objects: (αn, σs) such that ∀i ∈ {1, . . . , s}. αn ` σi

Morphisms: (ωm, [M ]
r
) : (αn, σs) → (αm, τ r) such that

– ωm : αn → αm in Kind
– ∀i ∈ {1, . . . , r}. x : σs;− `αn Mi : τi[ωm/αm].

Note that objects here are sequences of types—this ensures that the fibration
q : Type → Kind given by the obvious projection functor has fibred finite
products.

The fibre Typen over n has as objects sequences of types σs such that
∀i ∈ {1, . . . , s}. αn ` σi and morphisms [M ]

r
: σs → τ r are sequences of terms

such that ∀i ∈ {1, . . . , r}. x : σs;− `αn Mi : τi.
The product in Typen is given by concatenation, projections by intuitionistic

weakening, while the exponential σs → τ r is !σ
s

( τ
r

, a simple adaptation of
the usual equation, σ → τ =!σ ( τ , to our case with lists of types.

We now define the adjunction F a G. It is mostly given by the fact that
Type is almost the coKleisli category of the !-monad on LinType. Thus G is
almost a forgetful functor and F is almost !.

The functor G : LinType → Type is defined on objects by (αn, σ) 7→
(αn, σ) and on morphisms by (ωm, [M ]) 7→ (ωm, [M ]). Note that G is not the
identity on terms, as −;x : σ `αn M : τ [ωm/αm] is mapped to x : σ;− `αn M :
τ [ωm/αm].

The functor F : Type → LinType is defined on objects by (αn, σs) 7→
(αn, !σ1 ⊗ · · ·⊗!σs) and on morphisms by

(ωm, [M ]
r
) 7→ (ωm, [let ⊗i x′i : ⊗i!σi be y in let !x

m
be x′

m
in ⊗i!Mi]).



Note that (F ◦G)(σ) =!σ.
If we define !! = F ◦G and calculate the resulting functor, we get

!!(σ) = !σ
!!([M ]) = [let !y be x in !M ].

This defines a comonad on LinType with the following structure:

δσ :!σ →!!σ = [let !y be x in !!y] εσ :!σ → σ = [let !y be x in y].

Lemma 4. The fibrations p and q together with the adjunction F a G constitute
a PILLY -model.

Pre-LAPL-structure The pre-LAPL-structure will be given by

Fam(Sub(Set))

��
LinType

p
%%LLLLLLLLLL ⊥

G

22 Type
Fpp I //

q

��

Fam(Set)

wwooooooooooo

Kind

(6)

Here the fibrations Fam(Sub(Set)) → Fam(Set) → Kind are the usual fi-
brations Fam(Sub(Set)) → Fam(Set) → Set reindexed along the functor
S : Kind → Set given on objects by αn 7→ Typn and on morphisms by σm 7→
(τn 7→ σ[τn/αn]

m
). This functor S tells us how to think of the objects of Kind in

terms of sets: n free type variables are thought of as all choices of n closed types.
The morphism σm is thought of as the corresponding transformation of choices.
Explicitly, the fibre Fam(Set)n has objects (αn, (Ai)i∈S(αn)), where each Ai is
a set, and morphism (fi)i∈S(αn)) : (αn, (Ai)i∈S(αn)) → (αn, (Bj)j∈S(αn)) are
functions fi : Ai → BS(σm)(i).

The functor I is given by “product of sets of terms”: I maps objects (αn, σs)
to (αn, (Terms(σ1[τn/αn]) × · · · × Terms(σs[τn/αn]))τn∈S(αn)) and morphisms
(ωm, [M ]

r
) to

(ωm, (t : σ1[τn/αn]
s
7→ [M [τn/αn][ts/xs]]

r
)τn∈S(αn)).

I is product-preserving by definition and that it is faithful follows from LILY
extensionality (Section 3).

Lemma 5. The composite fibration Fam(Sub(Set)) → Fam(Set) → Kind is
a fibred first-order logic fibration with products with respect to projections in
Kind.

Proof. This follows from general results in [5] and is obvious since the logic is
just the standard logic of sets. ut



Lemma 6. The diagram (6) defines a pre-LAPL-structure.

Proof. All that is missing in this proof is the definition of the fibred functor U
mapping a pair of types in the same fibre to an object of all relations between
them. We define U by

U : LinType×Kind LinType → Context = 2I(−)×I(=).

ut

We write r ⊆ σ × τ to denote the fact that r ⊆ Terms(σ) × Terms(τ) while
r ⊆Adm σ × τ denotes the fact that r ⊆ σ × τ and r = r>>.

Lemma 7. The subfunctor of U given by mapping (αn, σ, τ) to (αn, ({r ⊆Adm

S(σ)(τn)× S(τ)(τn)})τn∈S(αn)) defines a notion of admissible relations for the
pre-LAPL-structure (6).

Proof. See Appendix B. ut

As mentioned in the introduction, one of our aims with this paper is to show
that the notion of parametric LAPL-structures is a general notion of parametric
model. Lemma 7 is important in this respect, since it shows that the concrete
notion of >>-closed relations of the LILY model interprets the abstract notion of
admissible relations presented in the definition of parametric LAPL-structures.

Theorem 3. The pre-LAPL-structure (6) is an LAPL-structure.

Basically, what needs to be proved in Theorem 3 is that all types in the
model have a relational interpretation. But that is, of course, provided by the ∆
from Section 3. Thus the required J functor is given (explicit descriptions of the
abstractly defined categories AdmRelCtx and AdmRelations can be found
in appendix) by

Definition 9 (JBase : Kind → AdmRelCtx).

Objects: αn 7→ (αn, αn, (Πn
i=1{r ⊆Adm τi × τi+n})τ2n∈Typ2n)

Morphisms: σm 7→ (σm, σm,
((r1 ⊆Adm τ1 × τn+1, . . . , rn ⊆Adm τn × τ2n) 7→
(∆σ1(r

n/αn), . . . ,∆σm
(rn/αn)))τ2n∈Typ2n)

Definition 10 (JTotal : LinType → AdmRelations).

Objects: (αn, σ) 7→ (JBase(αn), JBase(σ))
Morphisms: (ωm, [M ]) 7→ (JBase(ωm), [M ], [M ])

Since the relational interpretation of types in LAPL-structures is given by a
map of PILL-models, the proof of Theorem 3 also checks that the definitions of
∆ for the various type constructors ((,⊗, !) agrees with the abstractly defined
structure on LinAdmRel → AdmRelCtx. We include the proof for ⊗ in
appendix.



Theorem 4. The LAPL-structure (6) is a parametric LAPL-structure, i.e., sat-
isfies identity extension, extensionality and very strong equality.

Proof. For identity extension, note that since contextual equivalence coincides
with the relation ∆, we can rewrite the required equation to

∆σ[τ1/α1,...,τn/αn] = J(σ)(∆τ1 , . . . ,∆τn
) = ∆σ[∆τ1/α1, . . . ,∆τn

/αn],

which is the content of Proposition 1. Very strong equality and extensionality
follows from the same properties of the subobject fibration over Set. ut

5 Interpretation

In this section we describe the interpretation of PILLY into the model we have
constructed out of the operational semantics of LILY.2

A PILLY kind context αn is interpreted as the object αn in Kind.
A PILLY type αn ` σ with n free type variables is modeled as an object in

LinType in the fiber over αn:

[[αn ` σ]] = (αn, σ),

which we abbreviate as:
[[σ]] = σ.

These definitions look deceptively simple. To verify that this is indeed the inter-
pretation one obtains in the LILY LAPL-structure one must of course calculate
the interpretation of types in the LILY LAPL-structure, and then one quickly
sees that the interpretation is as shown above.

Type contexts are modeled by the tensor and comonad structure on LinType.
A context x1 : σ1, . . . , x

′
n : σn; a1 : τ1, . . . , am : τm is modeled as

!![[σ1]]⊗ . . .⊗!![[σn]]⊗ [[τ1]]⊗ . . .⊗ [[τm]]

Thus we use tensor to concatenate contexts and we use !! to make the types in
the intuitionistic context behave intuitionistically. Of course the entire context
will be inside one fiber of LinType.

Terms with n free type variables are modeled as morphisms in LinType in
the fiber over αn.

A term Ξ | Γ ;∆ ` t : σ is modeled as a morphism

[[t]] : [[Γ ;∆]] → [[σ]]

2 Note that by the results in the preceding section, we already know that we have a
well-defined interpretation of PILLY — that is a direct consequence of the fact that
we have constructed an LAPL structure. Here we merely try to provide an intuitive
description of the resulting interpretation.



in LinTypen, that is, as a ground contextual equivalence class of LILY terms,
containing a representative M of the form

−;x : (!![[σ1]]⊗ . . .⊗!![[σn]]⊗ [[τ1]]⊗ . . .⊗ [[τm]]) `Ξ M : σ.

The inductive description of [[t]] follows from [12, 2]. For example,
[[Ξ | Γ ;∆, ∆′ ` t⊗ s : σ ⊗ τ ]] is the equivalence class of the LILY term

−;x :!Γ ⊗∆ ` let γ ⊗ δ ⊗ δ′ = split x in [[t]](γ ⊗ δ)⊗ [[s]](γ ⊗ δ′),

where split is a term definable in LILY such that split x is a tensor product in
the obvious way.

Now consider the interpretation of formulas in context:

α | x : σ | R : Rel(σ′,σ′′),S : AdmRel(τ ′, τ ′′) ` φ : Prop.

The interpretation of the above formula, abbreviated as simply [[φ]], is a family
of subsets, indexed by closed types τ :

[[φ]] ⊆
∏

σ∈σ Terms(σ[τ/α])
×

∏
σ′∈σ′,σ′′∈σ′′ P (Terms(σ′[τ/α])× Terms(σ′′[τ/α]))

×
∏

τ ′∈τ ′,τ ′′∈τ ′′ P
>>(Terms(τ ′[τ/α])× Terms(τ ′′[τ/α])),

where P>> denotes the function that yields the set of all >>-closed subsets. In
plain words, [[φ]] is a subset of ground contextual equivalence classes of terms of
types σ, of relations (on ground contextual equivalence classes of terms) and of
>>-closed relations (on ground contextual equivalence classes of terms). Thus
it is a very natural interpretation.

The connectives and quantifiers are interpreted just as we ordinarily do in
sets. For example, the interpretation of conjunction [[φ ∧ φ′]] is the intersection
of [[φ]] and [[φ′]].

The only remaining point to note is the interpretation of substitution of terms
into formulas: the interpretation of [[φ[M/x]]], is obtained as follows. As explained
above, the term M is interpreted as an equivalence class of LILY terms [M ]
and hence it induces an obvious function, which works by substitution, between
sets of ground contextual equivalence classes of terms Terms(. . .) → Terms(. . .)
(formally, the function is obtained via the I functor and the adjunction F a G).
That function is used to reindex the interpretation of φ.

6 Consequences

We now consider a few consequences of Theorem 4.
Consider the category whose objects are the closed types of LILY and whose

morphisms from σ to τ are closed terms of type σ ( τ of LILY identified up to
ground contextual equivalence. We call this category Lily.

As always, type expressions α ` σ(α) in LILY for which α only appears
positively in σ induce endofunctors on Lily.



Theorem 5. All functors Lily → Lily induced by types σ(α) in LILY have
initial algebras and final coalgebras and these are isomorphic.

Proof. This is a simple corollary of Theorems 1 and 4 once we observe that
LinType1 is equivalent to Lily and that types in PILLY are simply interpreted
as the corresponding types in LILY. ut

Likewise we have:

Theorem 6. For all types α ` σ(α) : Type of LILY (where α may appear both
positively and negatively), there exists a closed type τ of LILY such that τ and
σ(τ) are isomorphic as objects of Lily.

This way we get formal proofs of all the claimed isomorphisms in [3, Figure 1]
(loc. cit. only includes a formal proof of definability of coproducts).3 Moreover,
it shows that our model can be used to prove correct program transformations
based on parametricity for a language with general recursive types, an improve-
ment over earlier work [10], which only dealt with algebraic data types.

Example 1. As an immediate corollary of the definability of⊗ types in PILLY [20,
7], and the observation that LinType1 is equivalent to Lily, we get that in Lily,
the object σ ⊗ τ is isomorphic to

∏
α.(σ ( τ ( α) ( α. Phrased in purely

operational semantics terms, it means that in LILY there are terms f and g, with
types f : σ ⊗ τ →

∏
α.(σ ( τ ( α) ( α and g :

∏
α.(σ ( τ ( α) ( α →

σ⊗ τ such that the LILY terms corresponding to the composition of f and g are
ground contextually equivalent to the identity terms.

For general parametric LAPL-structures we may derive reasoning principles
for the definable inductive, coinductive, and recursive types [9]. The principles
look similar to the ones considered by Pitts [16] for classical domain theory. For
instance, we have the following principle for recursive types (cf. Theorem 2):

Theorem 7. Consider a type σ(β, γ) where β occurs only negatively and γ oc-
curs only positively. Suppose S+ ⊆Adm rec α.σ(α, α) × rec α.σ(α, α) is an ad-
missible relation and that S− ⊆ rec α.σ(α, α)× rec α.σ(α, α) is a relation. Then
the following rule holds:

(f, f) : S− ( σ(S+, S−) (g, g) : σ(S−, S+) ( S+

S− ⊂ rec α.σ(α, α) ⊂ S+

For the LILY LAPL-structure this theorem provides us with a mixed induction-
/coinduction principles for proving contextual equivalence of elements of recur-
sive types defined via parametric polymorphism in LILY.

Similar results were proved in operational semantics for a language with one
top-level recursive type in [4]. However, we want to stress that the definability
of recursive types in LAPL, Theorems 1 and 2, also works for recursive types
with parameters [8], as does the reasoning principles for the resulting types.
3 See [12] for the details of all the relevant proofs in LAPL.



Thus, without involving any form of classical or synthetic domain theory, but
just relying on purely operational semantics and general properties of LAPL-
structures, we have derived general reasoning principles for recursive types. We
are not aware of any other work where such general principles are derived directly
from operational semantics.4

7 Conclusion and Future Directions

We have constructed an LAPL-structure from the operational semantics of LILY
and used it to establish formally definability of a wide range of types in LILY.
Moreover, we have derived reasoning principles for definable inductive, coinduc-
tive, and recursive types.

In recent work, Møgelberg has investigated the application of LAPL in deno-
tational semantics [13]. In particular, he has shown how one may use any LAPL-
structure to define a denotational semantics of FPC. By studying the resulting
semantics of FPC in the LILY LAPL structure constructed here, we conjecture
that one may extend the semantics to a polymorphic version of FPC and show
it adequate with respect to the operational semantics of polymorphic FPC. In
operational terms the semantics amounts to a translation of polymorphic FPC
into LILY.

Future work also includes studying the interaction of parametric polymor-
phism with other effects than non-termination, in particular with references.
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We include this appendix for the benefit of the reviewers.

A Type System for LILY

We say a raw term M is well-typed and has type τ if and only if there is a set
of type variables α, an intuitionistic Γ and linear ∆ type environment such that
Γ,∆,α, τ, M are in the relation defined by the following rules.

ftv(Γ, τ) ⊆ α x /∈ dom(Γ )
Γ, x : τ ; ∅ `α x : τ

ftv(Γ, τ) ⊆ α

Γ ; a : τ `α a : τ

Γ ;∆, a : τ `α M : τ ′ a /∈ dom(∆)
Γ ;∆ `α λa : τ.M : τ ( τ ′

Γ ;∆1 `α M1 : τ ( τ ′ Γ ;∆2 `α M2 : τ dom(∆1) ∩ dom(∆2) = ∅
Γ ;∆1,∆2 `α M1M2 : τ ′

Γ ;∆ `α,α M : τ α /∈ α ∪ ftv(Γ,∆)
Γ ;∆ `α Λα.M : ∀α.τ

Γ ;∆ `α M : ∀α.τ ftv(τ ′) ⊆ α

Γ ;∆ `α Mτ ′ : τ [τ ′/α]
Γ, x : τ ; ∅ `α M : τ x /∈ dom(Γ )

Γ ; ∅ `α!(x = M : τ) :!τ
Γ ;∆1 `α M1 :!τ Γ, x : τ ;∆2 `α M2 : τ ′ x /∈ dom(Γ ) dom(∆1) ∩ dom(∆2) = ∅

Γ ;∆1,∆2 `α let !x be M1 in M2 : τ ′

Γ ; ∅ `α ∗ : I

Γ ;∆1 `α M1 : I Γ ;∆2 `α M2 : τ dom(∆1) ∩ dom(∆2) = ∅
Γ ;∆1,∆2 `α let ∗ be M1 in M2 : τ

Γ ;∆1 `α M1 : τ1 Γ ;∆2 `α M2 : τ2 dom(∆1) ∩ dom(∆2) = ∅
Γ ;∆1,∆2 `α M1 ⊗M2 : τ1 ⊗ τ2

Γ ;∆1 `α M1 : τ1 ⊗ τ2 Γ ;∆2, a1 : τ1, a2 : τ2 `α M2 : σ
dom(∆1) ∩ dom(∆2) = ∅ a1, a2 /∈ dom(∆1) ∪ dom(∆2) a1 6= a2

Γ ;∆1,∆2 `α let a1 ⊗ a2 be M1 in M2 : σ

B Admissible Relations

To justify that >>-closed relations can serve as a notion of admissible relations,
we must show that they enjoy the closure properties of Figure 4 in [8].

We have, however, since the mentioned publication been able to simplify the
set of axioms somewhat, and to showcase this, we use the closure properties of
Figure 4 in [6] instead. (We have shown the old set of axioms to hold.)

We refer to figure 4 in [6] and provide only a part of a formula to hint at
which construction we are debating:

R ⊆Adm σ× τ :A free admissible relational variable is interpreted as the projec-
tion into the set of admissible relations. Thus at every point it returns the
admissible relation it receives as the last component of its input.



eqσ: Equality is simply ground contextual equivalence, which is same as ∆,
which is >>-closed.

ρ(t x, u y): Assume ρ is >>-closed. We now wish to show ρ(tM, uN)>> ⇒
ρ>>(tM, uN). Writing out the two formulae, we get ρ(tM, uN)>> ⇔

∀f ′ : σ′ (!ω1, g
′ : τ ′ (!ω2.

(∀z′ : σ′, w′ : τ ′.ρ(t z′, u w′) ⊃ f ′ z′ ⇓⇔ g′ w′ ⇓)
⊃ f ′ M ⇓⇔ g′ N ⇓

and ρ>>(tM, uN) ⇔

∀f : σ (!ω1, g : τ (!ω2.
(∀z : σ,w : τ.ρ(z, w) ⊃ f z ⇓⇔ g w ⇓)
⊃ f(t M) ⇓⇔ g(u N) ⇓

Assume the formula for ρ(tM, uN)>> and that f : σ (!ω1, g : τ (!ω2

satisfy ∀z : σ,w : τ.ρ(z, w) ⊃ f z ⇓⇔ g w ⇓. If we instantiate ρ(tM, uN)>>

with f ′ = f ◦ t, g′ = g ◦ u, we get f(t M) ⇓⇔ g(u N) ⇓ as required.
ρ(x, y)∧ ρ′(x, y): Conjunction is modeled by intersection, so the following neat

argument applies: Assume ρ and ρ′ to be >>-closed. Since

ρ ∩ ρ′ ⊂ ρ and ρ ∩ ρ′ ⊂ ρ′

we get
ρ> ⊂ (ρ ∩ ρ′)> and ρ′> ⊂ (ρ ∩ ρ′)>

so
ρ> ∪ ρ′> ⊂ (ρ ∩ ρ′)>

Thus
(ρ ∩ ρ′)>> ⊂ (ρ> ∪ ρ′>)> ⊂ ρ>> = ρ

and likewise (ρ ∩ ρ′)>> ⊂ ρ′, so (ρ ∩ ρ′)>> ⊂ ρ ∩ ρ′.
(x : τ, y : σ).ρ(y, x): Let ρ̂ denote (x : τ, y : σ).ρ(y, x). Calculation now shows,

that ρ̂>> = ρ̂>>. Thus

ρ̂>>(M,N) = ρ̂>>(M,N) = ρ>>(N,M)
= ρ(N,M) = ρ̂(M,N)

where we obviously use, that ρ is >>-closed.
>:Writing out >>>(M,N) we get

∀f : σ (!ω1, g : τ (!ω2.
(∀z : σ,w : τ.>(z, w) ⊃ f z ⇓⇔ g w ⇓)
⊃ f M ⇓⇔ g N ⇓

Since >(z, w) holds in general, this is quickly shortened to

∀f : σ (!ω1, g : τ (!ω2.
(∀z : σ,w : τ.f z ⇓⇔ g w ⇓) ⊃ f M ⇓⇔ g N ⇓



which again (due to the very strong requirements on f and g) can be short-
ened to

∀f : σ (!ω1, g : τ (!ω2.>

which is of course just the same as >.
φ ⊃ ρ(x, y): If φ does not hold we get >. If φ does hold we get ρ which is

admissible.
Quantifications: All quantifications are proved the same way. We will do (∀x :

ω.ρ)>> ⊂ ∀x : ω.ρ>>. Writing out the two formulae, we get (∀x : ω.ρ)>>(M,N) ⇔

∀f : σ (!ω1, g : τ (!ω2.
(∀z : σ,w : τ.(∀x : ω.ρx(z, w)) ⊃ f z ⇓⇔ g w ⇓)
⊃ f M ⇓⇔ g N ⇓

and (∀x : ω.ρ>>)(M,N) ⇔

∀x : ω.
(∀f : σ (!ω1, g : τ (!ω2.
(∀z : σ,w : τ.ρx(z, w) ⊃ f z ⇓⇔ g w ⇓)
⊃ f M ⇓⇔ g : N ⇓)

Take any T : σ. Assume the formula for (∀x : ω.ρ)>>(M,N) and that
f : σ (!ω, g : τ (!ω satisfy ∀z : σ,w : τ.ρT (z, w) ⊃ f z ⇓⇔ g w ⇓.
Then, as ∀x : ω.ρx(z, w) implies ρT (z, w), we can plug f and g into (∀x :
ω.ρ)>>(M,N), obtaining f M ⇓⇔ g : N ⇓ as required.

ρ ⊆Adm σ × τ ∧ ρ′ ⊆ σ × τ ∧ ρ ≡ ρ′ ⇒ ρ′ ⊆Adm σ × τ : We recall, that
ρ ≡ ρ′ is short hand for ∀x : σ, y : τ.ρ(x, y) ⊃⊂ ρ′(x, y), which in our model
translates to actual equality among the relations ρ and ρ′. The statement is
then obvious.

C Relational Interpretation

If we write out the definition of AdmRelCtx and AdmRelations as prescribed
in Section 2 we get

Definition 11 (AdmRelCtx).

Objects: (αn, αm, (Ai)i∈S(αn+m)), where each Ai is a set.
Morphisms:
(σr, τ s, (fi)i∈S(αn+m)) :

(αn, αm, (Ai)i∈S(αn+m))

→ (αr, αs, (Bj)j∈S(αr+s)),

such that
– σr : αn → αr in Kind
– τ s : αm → αs in Kind
– fi : Ai → BS(σm×τs)(i)



Definition 12 (AdmRelations).

Objects: (αn, αm, (Ai)i∈S(αn+m), σ, τ, (fi)i∈S(αn+m)), such that
– (αn, σ) is an object of LinType
– (αm, τ) is an object of LinType
– (αn+m, (fi)i∈S(αn+m)) :

(αn+m, (Ai)i∈S(αn+m)) → V (αn+m, σ, τ)

in Context, i.e
∀τn+m ∈ S(αn+m).∀a ∈ Aτn+m .

fτn+m(a)
⊆Adm σ[τn+m/αn+m]× τ [τn+m/αn+m]

Morphisms:
(σr, τ s, (hi)i∈S(αn+m), [M ], [N ]) :

(αn, αm, (Ai)i∈S(αn+m), σ, τ, (fi)i∈S(αn+m))

→ (αr, αs, (Bi)i∈S(αr+s), ω, ρ, (gi)i∈S(αr+s))

such that
– (σr, [M ]) : (αn, σ) → (αr, ω) in LinType
– (τ s, [N ]) : (αm, τ) → (αs, ρ) in LinType
– ∀i ∈ S(αn+m). hi : Ai → BS(σr,τs)(i)

– ∀i ∈ S(αn+m).∀a ∈ Ai.

fi(a) ⊆ (V (ωr+s, [M ], [N ])j ◦ gj ◦ hi)(a)

as illustrated by the diagram:

Ai
fi

|∩
//

hi

��

V (σ, τ)i ⊆ 2I(σ)×I(τ) σ

[M ]

��

τ

[N ]

��
Bj

gj // V (ω, ρ)j

V ([M ],[N ])j

OO

⊆ 2I(ω)×I(ρ) ω ρ

where ω1 . . . ωr are weakened versions of σ1 . . . σr, ωr+1 . . . ωr+s are weak-
ened versions of τ1 . . . τs and j = S(σr, τ s)(i).

Note that in the definition of objects σ and τ has been weakened before V is
applied to them, and in the definition of morphisms the same has happened to
[M ] and [N ].

Lemma 8. J is a map of PILL models.

Proof. It is sufficient to show that J is a strong symmetric monoidal closed
functor which preserves the comonad structure on the nose [14]. Then J has an
extension to a map of PILL-models.

That the comonad structure is preserved on the nose is an easy consequence
of the very syntactic nature of our categories. That J is a strong SMC functor



is almost as easy. Only the constructs !, ⊗ and I are not defined directly as J
applied to their non-relational counterparts.

For brevity, we only include the proof for tensor. Given ρ ⊆Adm σ × τ and
ρ′ ⊆Adm σ′ × τ ′, the tensor relation ρ⊗ ρ′ ⊆Adm σ ⊗ σ′ × τ ⊗ τ ′ is defined as

(x : σ ⊗ σ′, y : τ ⊗ τ ′).∀α, β, R ⊆Adm α× β.
∀t : σ ( τ ( α, t′ : σ′ ( τ ′ ( β.(ρ ( ρ′ ( R)(t, t′) ⊃
R(let x′ ⊗ x′′ be x in tx′x′′, let y′ ⊗ y′′ be y in t′y′y′′).

Thus, for given types σ and τ (in the same fiber) and given terms M : σ⊗ τ and
N : σ⊗τ , we wish to compare the statement M J(σ⊗τ) N with M J(σ)⊗J(τ) N .
The former is given by

M ∆σ⊗τ N

while the latter is given by

∀α, β, R ⊆Adm α× β.
∀t : σ ( τ ( α, t′ : σ′ ( τ ′ ( β.(ρ ( ρ′ ( R)(t, t′) ⊃
R(let x′ ⊗ x′′ be M in tx′x′′, let y′ ⊗ y′′ be N in t′y′y′′),

where σ = σ′ because J(σ) is a relation on σ. Likewise τ = τ ′. If we assume
M ∆σ⊗τ N and introduce the following names

r1 = ∆σ, r2 = ∆τ , r3 = R
M1 = M, M ′

1 = N
M3 = −; a1 : σ, a2 : τ ` t a1 a2

M ′
3 = −; a′1 : σ, a′2 : τ ` t′ a′1 a′2,

we know that (M1,M
′
1) ∈ (r1 ⊗ r2)>> and that

(A,A′) ∈ r1 ∧ (B,B′) ∈ r2 ⇔
A ∆σA′ ∧ B ∆τB′ ⇒

R(t A B, t′ A′ B′) ⇔
(M3[A/a1, B/a2],M ′

3[A
′/a′1, B

′/a′2]) ∈ r3.

Thus a lemma in [9] applies, telling us that

(let a1 ⊗ a2 be M1 in M3, let a′1 ⊗ a′2 be M ′
1 in M ′

3) ∈ r3

m
R(let x′ ⊗ x′′ be M in t x′ x′′, let y′ ⊗ y′′ be N in t′ y′ y′′)

Thus M J(σ)⊗ J(τ) N .
For the converse direction choose

α = σ ⊗ τ, β = σ ⊗ τ
t = t′ = λx : σ.λy : τ.x⊗ y
R = ∆σ⊗τ .

This gives

let x′ ⊗ x′′ be M in x′ ⊗ x′′ ∆σ⊗τ let y′ ⊗ y′′ be N in y′ ⊗ y′′,

which quickly reduces to the required M ∆σ⊗τ N . ut


