
105

Mechanized Relational Verification of Concurrent Programs

with Continuations

AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium

LARS BIRKEDAL, Aarhus University, Denmark

Concurrent higher-order imperative programming languages with continuations are very flexible and allow for
the implementation of sophisticated programming patterns. For instance, it is well known that continuations
can be used to implement cooperative concurrency. Continuations can also simplify web server implementa-
tions. This, in particular, helps simplify keeping track of the state of server’s clients. However, such advanced
programming languages are very challenging to reason about. One of the main challenges in reasoning about
programs in the presence of continuations is due to the fact that the non-local flow of control breaks the bind
rule, one of the important modular reasoning principles of Hoare logic.

In this paper we present the first completely formalized tool for interactivemechanized relational verification
of programs written in a concurrent higher-order imperative programming language with continuations
(call/cc and throw). We develop novel logical relations which can be used to give mechanized proofs of
relational properties. In particular, we prove correctness of an implementation of cooperative concurrency with
continuations. In addition, we show that that a rudimentary web server implemented using the continuation-
based pattern is contextually equivalent to one implemented without the continuation-based pattern. We
introduce context-local reasoning principles for our calculus which allows us to regain modular reasoning
principles for the fragment of the language without non-local control flow. These novel reasoning principles
can be used in tandem with our (non-context-local) Hoare logic for reasoning about programs that do feature
non-local control flow. Indeed, we use the combination of context-local and non-context-local reasoning to
simplify reasoning about the examples.

CCS Concepts: • Theory of computation → Logic and verification; Hoare logic; Separation logic;
Program specifications; Program verification; Invariants; Pre- and post-conditions; • Software and its

engineering→ Formal software verification; Semantics.

Additional Key Words and Phrases: Logical relations, Continuations, Concurrency

ACM Reference Format:

Amin Timany and Lars Birkedal. 2019. Mechanized Relational Verification of Concurrent Programs with
Continuations. Proc. ACM Program. Lang. 3, ICFP, Article 105 (August 2019), 28 pages. https://doi.org/10.1145/
3341709

1 INTRODUCTION

In a programming language with continuations, a computation can be suspended into a continuation
object which can be resumed later. Continuations enable interesting programming patterns. For
instance, it is well-known that they can be used to implement cooperative concurrency [Haynes
et al. 1984]: switching between threads can be implemented by suspending the running thread,
storing the suspension and running another thread. Another notable application of continuations

Authors’ addresses: Amin Timany, Department of Computer Science, imec-Distrinet, KU Leuven, Leuven, Belgium, amin.
timany@cs.kuleuven.be; Lars Birkedal, Department of Computer Science, Aarhus University, Aarhus, Denmark, birkedal@
cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/8-ART105
https://doi.org/10.1145/3341709

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709

105:2 Amin Timany and Lars Birkedal

is the implementation of continuation-based web servers [Flatt 2017; Krishnamurthi et al. 2007;
Queinnec 2004]. Web servers store the state of their communication with each client in order
to provide a coherent experience for returning clients. For this purpose continuation-based web
servers store the continuation of the server-side program. This helps simplify the web server
program because the only thing that the server needs to do in order to serve a returning client
appropriately is to resume the continuation corresponding to the last communication with the
client.

Both of the aforementioned programming patters involve concurrency, higher-order and impera-
tive aspects of the programming language in combination with continuations in sophisticated and
interesting ways. Such expressive and advanced programming languages and programs written
in them are known to be challenging to model and reason about. In this paper we present novel
techniques for relational reasoning about such programming languages and programs written in
them.
Specifically, we develop a new logical relations model for proving contextual refinement of

programs written in F
µ ,ref
conc,cc , a call-by-value programming language featuring concurrency (conc),

impredicative polymorphism (F), recursive types (µ), dynamically allocated higher-order store
(ref) and first-class continuations (cc) with call/cc and throw primitives. We employ this logical
relations model to prove (1) contextual equivalence of two simple web server implementations: a
continuation-based one and a state-storing one; and (2) that one-shot continuations (continuations
that can only be used once) can be used to simulate ordinary continuations [Friedman and Haynes
1985]. The latter is a well-known result for sequential programs, see, e.g., Dreyer et al. [2012]. Here

we show that it also holds in F
µ ,ref
conc,cc , that is, in the presence of concurrency.

In addition, we develop a relational model for showing the correctness of a continuation-based
implementation of cooperative concurrency. We consider two programming languages: a language,

F
µ ,ref
cc,coop, with built-in cooperative concurrency (coop) and a sequential language, F

µ ,ref
cc , featuring

continuations. We develop a cross-language logical relation between F
µ ,ref
cc and F

µ ,ref
cc,coop and use it to

show correctness of a translation of cooperative concurrency into one based on continuations.
We define our logical relations models in a variant of the Iris program logic framework [Jung

et al. 2016; JUNG et al. 2018; Jung et al. 2015; Krebbers et al. 2017a]. Iris is a framework for state-of-
the-art higher-order concurrent separation logics. We use Iris because (1) it allows us to define our
logical relations and reason about them at a higher level of abstraction compared to an explicit
model construction; (2) we side-step the well-known type-world-circularity problems [Ahmed 2004;
Ahmed et al. 2002; Birkedal et al. 2011] involved in defining logical relations for programming
languages with higher-order store (since that is already łtaken care ofž by the model of Iris); and
(3) we can leverage the Coq implementation of the Iris base logic [Krebbers et al. 2017a] and
the Iris Proof Mode [Krebbers et al. 2017b] when mechanizing our development in Coq. Indeed,
accompanying this paper is a tool for mechanized relational verification of concurrent programs
with continuations. The mechanization has been done in Coq and all the results in the paper have
been formally verified.

1.1 Context-local Reasoning Principles

Some of the most important features of concurrent separation logics for modular/local reasoning
about concurrent imperative programs, e.g. da Rocha Pinto et al. [2014]; Dinsdale-Young et al. [2013,
2010]; Jung et al. [2016, 2015]; Krebbers et al. [2017a,b]; Ley-Wild and Nanevski [2013]; Nanevski
et al. [2014]; O’Hearn [2007]; Sergey et al. [2015]; Svendsen and Birkedal [2014]; Turon et al. [2013a]
are thread-local reasoning and context-local reasoning. Thread-local reasoning means that we can
reason about each thread in isolation: when we reason about a particular thread, we need not

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:3

explicitly consider interactions from other concurrently executing threads. Similarly, context-local
means that when we reason about a particular expression, we need not consider under which
evaluation context it is being evaluated. The latter is sometimes codified by the soundness of a
proof rule such as the following:

Hoare-Bind (inadmissible in presence of continuations)

{P } e {Ψ} ∀w . {Ψ(w)}K[w] {Φ}

{P }K[e] {Φ}

The Hoare-triple {P } e {Ψ} intuitively means that, given precondition P , expression e is safe and,
whenever it reduces to a value v , we are guaranteed that Ψ(v) holds. Intuitively, the above rule
expresses that to prove a Hoare triple for an expression e in an evaluation context K , it suffices
to prove a property for e in isolation from K , and then show that the desired postconditionΦ can
be obtained when substituting a valuew satisfying the postcondition Ψ for e into the evaluation
context. In a programming language with non-local control operators, e.g. call/cc and throw, the
context under which a program is being evaluated is of utmost importance, and thus the above
proof rule is not sound in general for languages with non-local control operators. In spite of this, we
ought be able to reason about those parts of the program that do not feature any non-local control
flow operators in a context-local way. We explain this via an example which we use to demonstrate
how non-local control flow operators can break context-local reasoning. We then discuss how our
context-local program logic allows us to regain context-local reasoning in a sound way, and, how
we can employ our context-local program logic to derive a context-local specification for the this
example.
To illustrate how non-local control flow operators can break context-local reasoning, consider

the following program:

CallIncr ≜ λf . letx = ref(0) in letд = f () inx ← !x + 2;д (); !x

(In Section 2 we present the syntax and semantics of F
µ ,ref
conc,cc formally; here we simply explain

informally what is intended by our ML-like syntax above.) The program CallIncr takes a function f

as argument, allocates a local reference with value 0, calls f , and binds its result (again a function)
to д. It then increments the internal reference and subsequently calls д before returning the value
stored in the internal reference. Intuitively, in a programming language without non-local control
flow this program should always return 2 (if it terminates, of course). Hence, using the bind rule
we would be able to derive the following (incorrect) specification for CallIncr :

{true}h () {x . {true} x () {y. y = ()}} implies {true} CallIncr h {x . x = 2}
(CallIncr-incorrect-spec)

This specification says that, if h is a function that upon call returns a function x for which we
know the Hoare-triple {true} x () {y. y = ()} holds, then CallIncr applied to h should return 2. This
specification CallIncr-incorrect-spec does not hold though. For a concrete counter-example, let h
to be

h = λ_. call/cc (x . λ_. throw (λ. ()) tox)

This function, when called, captures the current continuation x and then returns a function that
returns to the point x , this time, with the result (λ. ()), a function that simply returns the unit value
(). Hence, when CallIncr is called with h, the internal reference of CallIncr wil be incremented
twice, and thus return value be 4 and not 2. Notice that for h above we can prove the spec
{true}h () {x . {true} x () {y. y = ()}} since this spec considers h in isolation, i.e., the captured
continuation will be the empty continuation.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:4 Amin Timany and Lars Birkedal

Hence, as expected, the program CallIncr only behaves context-locally if the argument it is
applied to does. This is indeed reflected in the context-local specification of CallIncr expressed in
terms of context-local Hoare triples (Specification CallIncr-context-local-spec below). We introduce
context-local Hoare triples in Section 4. A context-local Hoare triple {P }cl e {x . Q} not only implies
safety of e (as ordinary Hoare triples do), but also implies that e behaves context-locally. Hence,
they can be used to reason about programs context-locally, and thus the bind rule holds for them. In
particular, we can prove the following context-local specification for the program CallIncr above:

{true}cl h () {x . {true}cl x () {y. y = ()}} implies {true}cl CallIncr h {x . x = 2}
(CallIncr-context-local-spec)

This specification captures exactly the intuitive idea explained above: if we know that h, and the
function it returns, behave context-locally, then so does CallIncr h.

Since context-local Hoare-triples cannot be used to reason about all programs, particularly about
non-trivial uses of call/cc and throw, we have to express our logical relations model using ordinary
(non-context-local) Hoare-triples, following ideas from earlier work [Krebbers et al. 2017b; Turon
et al. 2013a]. In Section 4, we discuss how ordinary (non-context-local) Hoare-triples interact with
their context-local counter parts. Using a combination of non-context-local and context-local triples,
we can simplify reasoning about contextual equivalence of concurrent programs with continuations
using our logical relations model. We achieve this by reasoning about parts of programs that do
not use non-local control operators using context-local Hoare-triples.

Contributions. In this paper, we make the following contributions:

• We present a program logic (weakest preconditions and Hoare-triples) for reasoning about

programs written in F
µ ,ref
conc,cc , a programming language with impredicative polymorphism,

recursive types, higher-order functions, higher-order store, concurrency and first-class con-
tinuations.
• We present context-local weakest-preconditions and Hoare-triples which simplify reasoning
about programs without non-local control flow.

• We present a novel logical relations model for F
µ ,ref
conc,cc .

• We use our logical relations model and context-local reasoning to prove equivalence of two
simple web server implementations: a continuation-based one and a state-storing one.
• We further use our logical relationsmodel to prove correctness of Friedman andHaynes [1985]
encoding of continuations by means of one-shot continuations in a concurrent programming
language.

• We develop a cross-language logical relations model between F
µ ,ref
cc and F

µ ,ref
cc,coop for proving

program refinement.
• We use our cross-language logical relations model to prove correctness of a continuation-
based implementation of cooperative concurrency.
• We have developed a fully formalized tool for mechanized interactive relational verification
of concurrent programs with continuations. Our tool is developed on top of Iris, a state-of-
the-art program logic framework, and we have used it to mechanize all of our contributions
in the Coq proof assistant.

2 THE LANGUAGE: F
µ ,ref
conc,cc

The language that we consider in this paper, F
µ ,ref
conc,cc , is a typed lambda calculus with a standard call-

by-value small-step operational semantics. It features impredicative polymorphism (F), recursive
types (µ), higher-order mutable references (ref), fine-grained concurrency (conc) and first-class

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:5

continuations (cc). The types of F
µ ,ref
conc,cc are as follows:

τ ::= α | 1 | B | N | τ → τ | ∀α . τ | µα . τ | τ × τ | τ + τ | ref(τ) | cont(τ)

Here α ranges over type variables. The types 1, B andN are the unit type, the type of Boolean values
and the type of natural numbers respectively. The type ref(τ) is the type of references with contents
of type τ and cont(τ) is the type of continuations that can be resumed by throwing them a value of
type τ . The symbols ×, +, µ, ∀ and→ are the usual product, sum, recursive type, polymorphic type
and function type formers, respectively.
The syntax for expressions and values is:

e ::= x | () | true | false | n | e ⊚ e | rec f(x) = e | e e | Λ e | e _ | fold e | unfold e | (e, e) | πi e

| inji e | match e with inji x ⇒ ei end | ℓ | ref(e) | ! e | e ← e | cas(e, e, e) | fork {e}

| cont(K) | call/cc (x . e) | throw e to e

v ::= () | true | false | n | rec f(x) = e | Λ e | foldv | (v,v) | inji v | ℓ | cont(K)

We write n for natural numbers and the symbol ⊚ stands for binary operations on natural numbers
(both basic arithmetic operations and basic comparison operations). We consider both recursive
functions rec f(x) = e and polymorphic type abstractions Λ e to be values. We write e _ for type level
application (e is a polymorphic expression). We use fold and unfold to fold and unfold elements
of recursive types. Memory locations ℓ are values of reference types. The expression ! e reads
the memory location e evaluates to, and e ← e ′ is an assignment of the value computed by e ′ to
the memory location computed by e . The expression fork {e} is for forking off a new thread to
compute e and we write cas(e, e ′, e ′′) for the compare-and-set operation. A continuation, cont(K),
is essentially a suspended evaluation context (see the operational semantics below).

Evaluation contexts of F
µ ,ref
conc,cc are as follows:

K ::= [] | K ⊚ e | v ⊚ K | K e | v K | K _ | foldK | unfoldK | if K then e else e | (K, e) | (v,K)

| πi K | inji K | matchK with inji x ⇒ ei end | ref(K) | !K | K ← e | v ← K

| cas(K, e, e) | cas(v,K, e) | cas(v,v,K) | throwK to e | throwv toK

The evaluation context [] is the empty evaluation context.

2.1 Typing

An excerpt of the typing rules is depicted in Figure 1. The context Ξ = α1, . . . ,αn is a list of distinct
type variables and the context Γ = x1 : τ1, . . . xn : τn assigns types to program variables.

2.2 Operational Semantics

We define the call-by-value small-step operational semantics of F
µ ,ref
conc,cc in two stages. We first define

a head-step relation→K . Here, K is the context under which the head step is being performed.
Based on this, we define the operational semantics of programs by what we call the thread-pool
step relation→. A thread pool reduces by making a head reduction step in one of the threads, by
forking off a new thread, or by resuming a captured continuation in one of the threads. These rules
are depicted in Figure 2. In this figure, σ is the physical state of the program, i.e., the program heap,
which is a finite partial map from memory locations to values. An excerpt of the head-step relation
is given in Figure 3. Notice that the head-step for call/cc captures the continuation that is the index
of the head-step relation.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:6 Amin Timany and Lars Birkedal

Ξ | Γ ⊢ e : τ

T-Var

x : τ ∈ Γ

Ξ | Γ ⊢ x : τ
T-Unit

Ξ | Γ ⊢ () : 1
T-Nat

Ξ | Γ ⊢ n : N

T-TLam

Ξ,α | Γ ⊢ e : τ

Ξ | Γ ⊢ Λ e : ∀α . τ

T-Rec

Ξ | Γ, x : τ , f : τ → τ ′ ⊢ e : τ ′

Ξ | Γ ⊢ | rec f(x) = e : τ → τ ′

T-App

Ξ | Γ ⊢ e : τ → τ ′ Ξ | Γ ⊢ e ′ : τ

Ξ | Γ ⊢ e e ′ : τ ′

T-TApp

Ξ | Γ ⊢ e : ∀α . τ

Ξ | Γ ⊢ e _ : τ [τ ′/α]

T-Fold

Ξ | Γ ⊢ e : τ [µα . τ/α]

Ξ | Γ ⊢ fold e : µα . τ

T-UnFold

Ξ | Γ ⊢ e : µα . τ

Ξ | Γ ⊢ unfold e : τ [µα . τ/α]

T-Ref

Ξ | Γ ⊢ e : τ

Ξ | Γ ⊢ ref(e) : ref(τ)

T-DeRef

Ξ | Γ ⊢ e : ref(τ)

Ξ | Γ ⊢ ! e : τ

T-Fork

Ξ | Γ ⊢ e : τ

Ξ | Γ ⊢ fork {e} : 1

T-Assign

Ξ | Γ ⊢ e : ref(τ) Ξ | Γ ⊢ e ′ : τ

Ξ | Γ ⊢ e ← e ′ : 1

T-CAS

Ξ | Γ ⊢ e1 : ref(τ) Ξ | Γ ⊢ e2 : τ Ξ | Γ ⊢ e3 : τ

Ξ | Γ ⊢ cas(e1, e2, e3) : B

T-Call/cc

Ξ | Γ, x : cont(τ) ⊢ e : τ

Ξ | Γ ⊢ call/cc (x . e) : τ

T-Throw

Ξ | Γ ⊢ e : τ Ξ | Γ ⊢ e ′ : cont(τ)

Ξ | Γ ⊢ throw e to e ′ : τ ′

Fig. 1. An excerpt of the typing rules

(®e;σ) → (®e ′;σ ′)

(e,σ) →K (e
′
,σ ′)

(®e1,K[e], ®e2;σ) → (®e1,K[e
′], ®e2;σ

′)
(®e1,K[fork {e}], ®e2;σ) → (®e1,K[()], ®e2, e;σ)

(®e1,K[throwv to cont(K ′)], ®e2;σ) → (®e1,K
′[v], ®e2;σ)

Fig. 2. The thread-pool step relation.

Contextual refinement/equivalence. A program e contextually refines a program e ′ if both pro-
grams have type τ and nowell-typed context (a closed top-level programwith a hole) can distinguish
a situation where e ′ is replaced by e . We write C : (Ξ | Γ;τ) { (Ξ′ | Γ′;τ ′) for a context (a term
with a hole) such that Ξ′ | Γ′ ⊢ C[e] : τ ′ holds whenever Ξ | Γ ⊢ e : τ does. We define contextual
refinement of e ′ by e , written Ξ | Γ ⊢ e ≤ctx e

′ : τ , as follows:

Ξ | Γ ⊢ e ≤ctx e
′ : τ ≜ Ξ | Γ ⊢ e : τ and Ξ | Γ ⊢ e ′ : τ and

for any C such that C : (Ξ | Γ;τ) { (· | ·; 1) holds C[e] ⇓ implies C[e ′] ⇓

where e ⇓ stands for termination of e when run under the empty heap defined as follows:

e ⇓≜ ∃v, ®e,σ . (e; ∅) →∗ (v, ®e;σ)

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:7

(e,σ) → (e ′,σ ′)

((rec f(x) = e) v,σ) →K (e[v, (rec f(x) = e)/x, f],σ) (unfold (foldv),σ) →K (v,σ)

((Λ e) _,σ) →K (e,σ) (if true then e2 else e3,σ) →K (e2,σ)

(if false then e2 else e3,σ) →K (e3,σ) (π1 (v1,v2),σ) →K (v1,σ) (π2 (v1,v2),σ) →K (v2,σ)

(match inj1v with inj1 x ⇒ e1 | inj2 x ⇒ e2 end,σ) →K (e1[v/x],σ)

(match inj2v with inj1 x ⇒ e1 | inj2 x ⇒ e2 end,σ) →K (e2[v/x],σ)

ℓ < dom(σ)

(ref(v),σ) →K (ℓ,σ ⊎ {ℓ 7→ v})

σ = σ ′ ⊎ {ℓ 7→ v ′}

(ℓ ← v,σ) →K ((),σ
′ ⊎ {ℓ 7→ v})

v = σ (ℓ)

(! ℓ,σ) →K (v,σ)

σ = σ ′ ⊎ {ℓ 7→ v}

(cas(ℓ,v,v ′),σ) →K (true,σ
′ ⊎ {ℓ 7→ v ′})

σ = σ ′ ⊎ {ℓ 7→ v ′′} v , v ′′

(cas(ℓ,v,v ′),σ) →K (false,σ)

(call/cc (x . e),σ) →K (e[cont(K)/x],σ)

Fig. 3. An excerpt of the head-reduction rules

The intuitive explanation above for contextual refinement is the reason why in a contextual
refinement e ≤ctx e ′ or in a logical relatedness relation e ≤log e

′, usually, the program on the left
hand side, e , is referred to as the implementation side and the program on the right hand side, e ′, is
referred to as the specification side. Two programs are contextually equivalent, if each contextually
refines the other:

Ξ | Γ ⊢ e ≈ctx e
′ : τ ≜ Ξ | Γ ⊢ e ≤ctx e

′ : τ ∧ Ξ | Γ ⊢ e ′ ≤ctx e : τ

3 LOGICAL RELATIONS

It is challenging to construct logical relations for languages with higher-order store because of
the so-called type-world circularity [Ahmed 2004; Ahmed et al. 2002; Birkedal et al. 2011]. The
logic of Iris is rich enough to allow for a direct inductive specification of the logical relations for
programming languages with advanced features such as higher-order references, recursive types,
and concurrency [Krebbers et al. 2017b; Krogh-Jespersen et al. 2017; Timany et al. 2018].

3.1 An Iris Primer

Iris [Jung et al. 2016; JUNG et al. 2018; Jung et al. 2015; Krebbers et al. 2017a] is a state-of-the-art
higher-order concurrent separation logic designed for verification of programs. In Iris one can
quantify over the Iris types κ:

κ ::= 1 |κ × κ |κ → κ |Ectx |Var |Expr |Val |N |B |κ
fin
−⇀ κ | finset(κ) |Monoid |Names | iProp | . . .

Here Ectx, Var, Expr and Val are Iris types for evaluation contexts, variables, expressions and

values of F
µ ,ref
conc,cc . Natural numbers, N, and Booleans B are also included among the base types of

Iris. Iris also features partial maps with finite support, κ
fin
−⇀ κ, and finite sets, finset(κ). Resources

in Iris are represented using partial commutative monoids, Monoid, and instances of resources are

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:8 Amin Timany and Lars Birkedal

named using so-called ghost-names, Names. Finally, and most importantly, there is a type of Iris
propositions iProp. The grammar for Iris propositions is as follows:

P ::= ⊤ | ⊥ | P ∗ P | P −∗ P | P ∧ P | P ⇒ P | P ∨ P | ∀x : κ . Φ(x) | ∃x : κ . Φ(x)

| ▷ P | µr .P | □ P | wp e
{
x . P

}
| {P } e {x . Q} | |⇛P | P

N
| . . .

Here, ⊤, ⊥, ∧, ∨,⇒, ∀, ∃ are the standard higher-order logic connectives. The predicatesΦ are Iris
predicates, i.e., terms of type κ → iProp.

The connective ∗ is the separating conjunction. Intuitively, P ∗Q holds if resources can be split
into two disjoint pieces such that one satisfies P and the other Q . The magic wand connective
P −∗ Q is satisfied by resources such that when these resources are combined with some resource
satisfying P the resulting resources would satisfy Q .
The ▷ modality, pronounced łlaterž is a modality that intuitively corresponds to some abstract

form of step-indexing [Appel and McAllester 2001; Appel et al. 2007; Dreyer et al. 2011]. Intuitively,
▷ P holds if P holds one step into the future. Iris has support for taking fixed points of guarded
propositions, µr .P . This fixed point can only be defined if all occurrences of r in P are guarded, i.e.,
appear under a ▷ modality. We use guarded fixed points for defining the interpretation of recursive

types in F
µ ,ref
conc,cc . For any proposition P we have P ⊢ ▷ P .

When the modality□ is applied to a proposition P , the non-duplicable resources in P are forgotten,
and thus □ P is łpersistent.ž In general, we say that a proposition P is persistent if P ⊣⊢ □ P (where
⊣⊢ is the logical equivalence of Iris propositions). A key property of persistent propositions is that

they are duplicable: P ⊣⊢ P ∗ P . The type system of F
µ ,ref
conc,cc is not a sub-structural type system and

variables (in the typing environment) may be used multiple times. Therefore when we interpret
types as logical relations in Iris, those relations should be duplicable. We use the persistence
modality □ to ensure this.

The Iris program logic for F
µ ,ref
conc,cc . Iris facilitates specification and verification of programs by

means of weakest-preconditions wp e
{
x . P

}
, which intuitively hold whenever e is safe and, more-

over, whenever e terminates with a resulting value v , then P[v/x] holds. When x does not appear
in P we write wp e

{
x . P

}
as wp e

{
P
}
. Also, we sometimes write wp e

{
Φ
}
for wp e

{
x . Φ(x)

}
In Iris, Hoare triples are defined in terms of weakest preconditions:

{P } e {x . Q} ≜ □
(
P −∗ wp e

{
x . Q

})
Note that the □ modality ensures that the Hoare triples are persistent and hence duplicable (in
separation logic jargon, Hoare triples should just express łknowledgež and not claim ownership of
any resources).
A key feature of Iris (as for other concurrency logics) is that specification and verification is

done thread-locally: the weakest precondition only describes properties of execution of a single
thread. Concurrent interactions are abstracted and reasoned about in terms of resources (rather
than by explicit reasoning about interleavings). For programming languages that do not include
continuations or other forms of non-local control flow, the weakest precondition is not only
thread-local, but also what we may call context-local. Context-local means that to reason about
an expression in an evaluation context, it suffices to reason about the expression in isolation, and
then separately about what the context does to the resulting value. This form of context-locality is
formally expressed by the soundness of the following bind rule

inadmissible-bind

wp e
{
x . wp K[x]

{
Φ
}}

wp K[e]
{
Φ
}

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:9

This rule is not sound when expressions include call/cc since call/cc captures the evaluation context
and hence its behaviour depends on it. We discussed inadmissibility of this rule in Introduction.

Thus, for reasoning about F
µ ,ref
conc,cc we cannot use the łstandardž Iris rules [Jung et al. 2016; JUNG

et al. 2018; Jung et al. 2015; Krebbers et al. 2017a,b] for weakest preconditions. Instead, we use new
rules such as the following:

fst-wp

▷wp K[v]
{
Φ
}

wp K[π1 (v,w)]
{
Φ
}

if-true-wp

▷wp K[e]
{
Φ
}

wp K[if true then e else e ′]
{
Φ
}

rec-wp

▷wp K[e[rec f (x) = e,v/f , x]]
{
Φ
}

wp K[(rec f (x) = e) v]
{
Φ
}

callcc-wp

▷wp K[e[cont(K)/x]]
{
Φ
}

wp K[call/cc (x . e)]
{
Φ
}

throw-wp

▷wp K ′[v]
{
Φ
}

wp K[throwv to cont(K ′)]
{
Φ
}

The difference from the standard rules is that our new rules include an explicit context K . Earlier,
such rules could be derived using the bind rule, but that is not sound in general in our settings.
Note that the context is used in the rules callcc-wp and throw-wp for call/cc and throw. These
two rules directly reflect the operational semantics of call/cc and throw.
To demonstrate how the rules of our program logic are used to reason about a program we

discuss the following program:

call/cc (x . (throw 5 tox) + 4) + 2

This program first captures the current continuation, []+ 2, and then continues with evaluating the
throw operation. At that point, the throw operation causes the program to forget about the rest of
computation, i.e., adding 4 and 2, and jumps to the captured continuation, i.e., [] + 2, with value 5.
Hence, the overall result is 7. We prove this fact, i.e., wp call/cc (x . (throw 5 tox)+ 4)+ 2

{
x . x = 7

}
,

in our program logic as follows:

trivial
wp 5 + 2

{
x . x = 7

}
throw-wp with K = ([] + 4) + 2, and, K ′ = [] + 2

wp ((throw 5 to cont([] + 2)) + 4) + 2
{
x . x = 7

}
callcc-wp with K = [] + 2

wp call/cc (x . (throw 5 to x) + 4) + 2
{
x . x = 7

}
Notice the importance of the context K in applying the rule callcc-wp in this proof.

In summa, for F
µ ,ref
conc,cc we use new non-context-local rules for reasoning about weakest preconditions,

and the non-context-local rules allow us to reason about call/cc and throw.
Because of the explicit context K , the non-context-local rules for weakest preconditions are

somewhat more elaborate to use than the corresponding context-local rules. However, that is the
price we have to pay to be able to reason in general about non-local control flow. In Section 4 we
will see how we can still recover a form of context-local weakest precondition for reasoning about
those parts of the program that do not use non-local control flow.
In the rules above for weakest preconditions, the antecedent is only required to hold a step

of computation later (▷) Ð that is because these rules correspond to expressions performing a
reduction step.

The update modality and invariants. The update modality |⇛ accounts for updating (allocation,
deallocation and mutation) of resources.1 Intuitively, |⇛P is satisfied by resources that can be
updated to new resources for which P holds. For any proposition P , we have that P ⊢ |⇛P . If P
holds, then resources can be updated (trivially) so as to have that P holds. The update modality is

1This modality is called the fancy update modality in Krebbers et al. [2017a].

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:10 Amin Timany and Lars Birkedal

idempotent, |⇛ |⇛P ⊣⊢ |⇛P . We write P ≡∗ Q as a shorthand for P −∗ |⇛Q . Crucially, resources
can be updated throughout a proof of weakest preconditions:

|⇛wp e
{
Φ
}
⊣⊢ wp e

{
Φ
}
⊣⊢ wp e

{
x . |⇛Φ(x)

}
Iris features invariants P

N
for enforcing concurrent protocols. Each invariant P

N
has a name,

N , associated to it. Names are used to keep track of which invariants are open.2 Intuitively, P
N

states that P always holds. The following rules govern invariants.

inv-alloc

▷ P

|⇛ P
N

inv-open-wp

e is atomic

R
N

(▷R) −∗ wp e
{
y. (▷R) ∗ wp K[y]

{
x . Q

}}
wp K[e]

{
x . Q

}
These rules say that invariants can always be allocated by giving up the resources being protected
by the invariant and they can be kept opened only during the execution of physically atomic opera-
tions. Iris invariants are impredicative, i.e., they can state P holds invariantly for any proposition P ,
including invariants. This is why the later operator is used as a guard to avoid self-referential para-
doxes [Krebbers et al. 2017a]. Invariants essentially express the knowledge that some proposition

holds invariantly. Hence, invariants are always persistent, i.e., P
N
⊣⊢ □ P

N
.

3.2 Resources Used in Defining Logical Relations

We need some resources in order to define our logical relations in Iris. We need resources for repre-
senting memory locations of the implementation side, the memory locations of the specification
side and the expression being evaluated on the specification side. These resources are written as
follows:

ś ℓ 7→i v : memory location ℓ contains value v on the implementation side.
ś ℓ 7→s v : memory location ℓ contains value v on the specification side.
ś j Z⇒ e: the thread j on the specification side is about to execute e .

These resources are defined using more primitive resources in Iris, but we omit such details here.
What is important is that we can use these resources to reason about programs. In particular, we
can derive the following rules (and similarly for other basic expressions) for weakest preconditions
and for execution on the specification side.

∀ℓ. ℓ 7→i v −∗ wp K[ℓ]
{
Φ
}

wp K[ref(v)]
{
Φ
} ℓ 7→i v −∗ wp K[v]

{
Φ
}

▷ ℓ 7→i v

wp K[! ℓ]
{
Φ
}

ℓ 7→i w −∗ wp K[()]
{
Φ
}

▷ ℓ 7→i v

wp K[ℓ ← w]
{
Φ
} j Z⇒ K[ref(v)]

|⇛∃ℓ. ℓ 7→s v ∗ j Z⇒ K[ℓ]

ℓ 7→s v j Z⇒ K[! ℓ]

|⇛ℓ 7→s v ∗ j Z⇒ K[v]

ℓ 7→s v j Z⇒ K[ℓ ← w]

|⇛ℓ 7→s w ∗ j Z⇒ K[()]

These resources are all exclusive in the sense that:

ℓ 7→i v ∗ ℓ 7→i v
′ ⊢ ⊥ ℓ 7→s v ∗ ℓ 7→s v

′ ⊢ ⊥ j Z⇒ e ∗ j Z⇒ e ′ ⊢ ⊥

2Officially in Iris, the update modality is in fact annotated with so-called masks (sets of invariant names), which are used to
ensure that invariants are not re-opened. For simplicity, we do not include masks in this paper.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:11

3.3 Logical Relations in Iris

Figure 4 presents our binary logical relation for F
µ ,ref
conc,cc . We define the logical relation in several

stages. The first thing we define is the relation of observational refinement. Intuitively, an expression
e observationally refines an expression e ′ if, whenever e reduces to a value so does e ′. We define this
in Iris using magic wand and weakest precondition. The whole formula reads as follows: assuming
that there is some thread j on the specification side that is about to execute e ′ (represented in Iris
by j Z⇒ e ′) then, after execution of e , we know that thread j on the specification side has also been
executed to some valuew .
We then use the notion of observational refinement defined above to define the value relation,

the expression relation and the evaluation context relation for each type. In contrast to earlier
definitions of logical relations in Iris [Krebbers et al. 2017b; Krogh-Jespersen et al. 2017; Timany
et al. 2018], our logical relation is an example of so-called biorthogonal logical relations [Pitts 2005],
also known as top-top closed logical relations. That is, we define two expressions to be related
if plugging them into related evaluation contexts results in observationally related expressions.
Two evaluation contexts are defined to be related if plugging related values into them results in
observationally related expressions.

The value relation interpretation JΞ ⊢ τ K∆ of a type τ in context Ξ is defined by induction on τ .
Here ∆ is an environment mapping type variables in Ξ to Iris relations. For all the non-continuation
types, the definition is exactly as in for the language without call/cc [Krebbers et al. 2017b].

Pairs of values of base types, 1,B, andN, are related if they are equal values of their corresponding
type. A pair of values are related at the sum type if they are both formed by applying the same
injection to values that are in turn related at the appropriate type. A pair of values are related
at the product type, τ × τ ′, if they are each a pair of values such that their first components are
related at τ and their second components are related at τ ′. The value interpretation of recursive
types are defined using Iris’s guarded fixpoint operator µr .P . It intuitively states that two values of
are related at a recursive types if they are both folded values with their underlying values again
related at recursive types. The value relation for functions types τ → τ ′ expresses that two values
of the function type are related if whenever applied to related values of the domain type, τ , the
resulting expressions are related at the codomain type, τ ′. The use of the persistently modality,
□, is to make sure that value interpretations of polymorphic programs are persistent. The value
relation for polymorphic values requires two related values to produce two related expressions
when instantiated, regardless of what predicate f we take as the interpretation of the type variable;
provided that f is a persistent predicate. The use of the persistently modality here, as well as
the side-condition on f being persistent, are required to ensure that the value interpretations
are persistent. Two values of a reference type are related if they are both locations that always
(expressed using Iris invariants) store related values. Finally, the relational interpretation of cont(τ)
expresses that two continuations are related whenever their corresponding evaluation contexts are
related at the evaluation context relation for the type in question.
The evaluation context relation KJΞ ⊢ τ K∆ relates evaluation contexts K and K ′ if plugging

related values of type τ in them results in observationally related expressions.
The expression relation is the standard biorthogonal expression relation. It states that EJΞ ⊢

τ K∆(e, e
′) holds whenever, for any two related evaluation contexts K and K ′, the expressions K[e]

and K ′[e ′] are observationally related.
The notion of logical relatedness states, as usual for call-by-value languages, that two expressions

e and e ′ are logically related if substituting related values for their free variables results in related
expressions.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:12 Amin Timany and Lars Birkedal

Observational refinement: O : Expr × Expr→ iProp

O(e, e ′) ≜ ∀j . j Z⇒ e ′ −∗ wp e
{
∃w . j Z⇒ w

}
Value interpretation of types: JΞ ⊢ τ K∆ : Val × Val→ iProp

JΞ ⊢ αK∆ ≜ ∆(α)

JΞ ⊢ 1K∆(v,v
′) ≜ v = v ′ = ()

JΞ ⊢ BK∆(v,v
′) ≜ v = v ′ = true ∨v = v ′ = false

JΞ ⊢ NK∆(v,v
′) ≜ ∃n. v = v ′ = n

JΞ ⊢ τ1 + τ2K∆(v,v
′) ≜

∨
i ∈{1,2}

(∃w,w ′. v = inji w ∧v
′
= inji w

′ ∧ JΞ ⊢ τiK∆(w,w
′))

JΞ ⊢ τ × τ ′K∆(v,v
′) ≜ ∃w1,w2,w

′
1,w2′. v = (w1,w2) ∧v

′
= (w ′1,w

′
2) ∧

JΞ ⊢ τ K∆(w1,w
′
1) ∗ JΞ ⊢ τ ′K∆(w2,w

′
2)

JΞ ⊢ µα . τ K∆ ≜ µ f : Val × Val→ iProp.

λ(v,v ′). ∃w,w ′. v = foldw ∧v ′ = foldw ′ ∧

▷Jα,Ξ ⊢ τ K∆,α 7→f (w,w
′)

JΞ ⊢ τ → τ ′K∆(v,v
′) ≜ □

(
∀w,w ′. JΞ ⊢ τ K∆(w,w

′) ⇒ EJΞ ⊢ τ ′K∆(v w,v ′ w ′)
)

JΞ ⊢ ∀α . τ K∆(v,v
′) ≜ ∀f : Val × Val→ iProp.

persistent(f) ⇒ □
(
EJα,Ξ ⊢ τ K∆,α 7→f (v _,v ′ _)

)
JΞ ⊢ ref(τ)K∆(v,v

′) ≜ ∃ℓ, ℓ′. v = ℓ ∧v ′ = ℓ′∧

∃w,w ′. ℓ 7→i w ∗ ℓ
′ 7→s w

′ ∗ JΞ ⊢ τ K∆(w,w
′)
N .ℓ.ℓ′

JΞ ⊢ cont(τ)K∆(v,v
′) ≜ ∃K,K ′. v = cont(K) ∧v ′ = cont(K ′) ∧ KJΞ ⊢ τ K∆(K,K

′)

Evaluation context interpretation of types: KJΞ ⊢ τ K∆ : Ectx × Ectx→ iProp

KJΞ ⊢ τ K∆(K,K
′) ≜ ∀v,v ′. JΞ ⊢ τ K∆(v,v

′) ⇒ O(K[v],K ′[v ′])

Expression interpretation of types: EJΞ ⊢ τ K∆ : Expr × Expr→ iProp

EJΞ ⊢ τ K∆(e, e
′) ≜ ∀K,K ′. KJΞ ⊢ τ K∆(K,K

′) ⇒ O(K[e],K ′[e ′])

Logical relatedness: Ξ | Γ ⊨ e ≤log e
′ : τ : iProp for Γ = x1 : τ1, . . . , xn : τn

Ξ | Γ ⊨ e ≤log e
′ : τ ≜ ∀∆, #»v ,

#»

v ′.

(
∗
xi :τi

JΞ ⊢ τiK∆(vi ,v
′
i)

)
⇒ EJΞ ⊢ τ K∆

(
e[#»v / #»x], e ′[

#»

v ′/ #»x]
)

The map ∆ : Var→ (Val × Val) → iProp maps free type variables to their value interpretations.
The λ in the definition of JΞ ⊢ µα . τ K∆ is the meta-level λ used for forming an Iris predicate.

Fig. 4. An excerpt of the logical relations for F
µ ,ref
conc,cc

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:13

We can now state and prove the fundamental theorem of logical relations for F
µ ,ref
conc,cc . The theorem

expresses that any well-typed expression is logically related to itself.

Theorem 3.1 (Fundamental theorem of logical relations).

Ξ | Γ ⊢ e : τ ⇒ Ξ | Γ ⊨ e ≤log e : τ

This theorem is proven by induction on the typing derivation using the basic rules for weakest-
preconditions and executions on the specification side.
The above theorem, together with some basic properties of observational refinement, implies

the soundness of our logical relations, i.e., that logical relatedness implies contextual refinement:

Theorem 3.2 (Soundness of logical relations).

Ξ | Γ ⊨ e ≤log e
′ : τ ⇒ Ξ | Γ ⊨ e ≤ctx e

′ : τ

Our logical relation is expressed in terms of weakest preconditions and the proofs of the above
theorems use the earlier presented proof rules for weakest preconditions. Before turning to ap-
plications, we pause to present context-local weakest preconditions, which we can use to simplify
reasoning about program fragments, which do not use non-local control flow.

4 CONTEXT-LOCAL WEAKEST PRECONDITIONS

To make it simpler to reason about expressions that do not use non-local control flow, we define
a new notion of context-local weakest precondition (CLWP). The definition is given in terms of
the earlier weakest precondition, which, as we will explain below, means that we will be able to
mix and match reasoning steps using (non-context local) weakest preconditions and context-local
weakest preconditions.

Definition 4.1. The context-local weakest precondition of e with respect toΦ is defined as follows:

clwp e
{
Φ
}
≜ ∀K,Ψ. (∀v . Φ(v) −∗ wp K[v]

{
Ψ
}
) −∗ wp K[e]

{
Ψ
}

Based on this, we also define context-local Hoare triples:

{P }cl e {x . Q} ≜ □
(
P −∗ clwp e

{
x . Q

})
Note how the above definition essentially says that clwp e

{
Φ
}
holds if the bind rule holds for e ,

which intuitively means that e behaves context-locally. Another way to look at the definition of
context-local weakest preconditions above is the following. In order to prove clwp e

{
Φ
}
, we have

to show that given any evaluation context K and predicate Ψ we have to show that running e under
K can satisfy postcondition Ψ. Since K and Ψ are universally quantified and the only thing we know
about them is that ∀v . Φ(v) −∗ wp K[v]

{
Ψ
}
, the only way for the program K[e] to guarantee Ψ as

its postcondition is that it would, in its execution, eventually reach a point K[v] for a value v such
thatΦ(v). This means that intuitively e does not tamper with the evaluation context it is running
under. In other words, for all intents and purposes e behaves context-locally. Therefore, the bind
rule below is sound for context-local weakest preconditions.

bind

clwp e
{
x . clwp K[x]

{
Φ
}}

clwp K[e]
{
Φ
}

Moreover, the łstandardž rules for the basic language constructs (excluding call/cc and throw, of
course) can also be derived for context-local weakest preconditions, as shown in Figure 5. We

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:14 Amin Timany and Lars Birkedal

fst-clwp

▷ clwpv
{
Φ
}

clwp π1 (v,w)
{
Φ
}

if-true-clwp

▷ clwp e
{
Φ
}

clwp if true then e else e ′
{
Φ
}

rec-clwp

▷ clwp e[v/x][rec f (x) = e/f]
{
Φ
}

clwp (rec f (x) = e) v
{
Φ
}

alloc-clwp

clwp ref(v)
{
x . ∃ℓ.x = ℓ ∗ ℓ 7→i v

}
load-clwp

▷ ℓ 7→i v

clwp ! ℓ
{
x . x = v ∗ ℓ 7→i v

}
Fig. 5. An excerpt of inference rules for CLWP’s.

can also use invariants during atomic steps of computation while proving context-local weakest
preconditions.

inv-open-clwp

R
N

(▷R) −∗ clwp e
{
x . (▷R) ∗Q

}
e is atomic

clwp e
{
x . Q

}
Now we have both (non-context-local) weakest preconditions and context-local weakest precon-

ditions. What is the upshot of this? The key point is that when we prove correctness / relatedness
of programs, we can use the simpler context-local weakest preconditions for reasoning about
those parts of the program which are context local (do not use call/cc or throw) and only use
the (non-context-local) weakest preconditions for reasoning about those parts that may involve
non-local control flow. This fact is expressed formally by the rule clwp-wp below, which establishes
a connection between weakest-preconditions and context-local weakest preconditions.

clwp-wp

clwp e
{
Ψ
}

∀v . Ψ(v) −∗ wp K[v]
{
Φ
}

wp K[e]
{
Φ
}

This rule basically says that if we know that e context-locally guarantees postcondition Ψ then
we can prove wp K[e]

{
Φ
}
by assuming that, locally under the context K , it will only evaluate to

values that satisfy Ψ. Moreover, it guarantees that the evaluation of e does not tamper with the
evaluation context that we are considering it under.
It is easy to show that clwp e

{
Φ
}
implies wp e

{
Φ
}
; simply take K to be the empty evaluation

context, [], and Ψ to be Φ. Hence, similarly to a (non-context-local) weakest precondition, the
context-local weakest precondition clwp e

{
Φ
}
also implies the safety of e , and, that whenever e

terminates with a value v ,Φ(v) holds.
The proposition clwp e

{
Φ
}
only says that e behaves context-locally. Therefore, in principle, we

should be able to give context-local specifications to programs that do use call/cc and throw, but
still behave context-locally. For instance, the following example from Section 3.1:

call/cc (x . (throw 5 tox) + 4) + 2

This program does indeed use call/cc and throw, but it does not tamper with the evaluation context
that it runs under. That is to say that the effects of call/cc and throw are confined within the
program itself. Hence, we can prove that the following context-local specification holds for this
program.

clwp call/cc (x . (throw 5 tox) + 4) + 2
{
x . x = 7

}
However, as there are no context-local reasoning rules for call/cc and throw, we have to unfold
the definition of context-local weakest precondition proposition and prove this fact manually:

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:15

trivial
(∀v . v = 7 −∗ wp K [v]

{
Ψ
}
) ⊢ wp K [5 + 2]

{
Ψ
}

throw-wp
(∀v . v = 7 −∗ wp K [v]

{
Ψ
}
) ⊢ wp K [((throw 5 to cont(K [[] + 2])) + 4) + 2]

{
Ψ
}
callcc-wp

(∀v . v = 7 −∗ wp K [v]
{
Ψ
}
) ⊢ wp K [call/cc (x . (throw 5 to x) + 4) + 2]

{
Ψ
}

introducing assumptions
∀K , Ψ. (∀v . v = 7 −∗ wp K [v]

{
Ψ
}
) −∗ wp K [call/cc (x . (throw 5 to x) + 4) + 2]

{
Ψ
}

unfolding clwp
clwp call/cc (x . (throw 5 to x) + 4) + 2

{
x . x = 7

}
5 WEB SERVER REFINEMENT

The combination of continuations and concurrency allows for a simplified implementation of web
servers. Such servers store explicitly captured (using call/cc) server-side continuations in order to
track the state of communication with the client [Flatt 2017; Hendershott 2017; Krishnamurthi et al.
2007; Might 2017; Queinnec 2004]. To serve a returning user such web servers simply resume the
stored continuation for that user. We refer to these servers as continuation-based as opposed to the
more traditional state-storing, where server stores data that it later uses to reconstruct the state of
the server for returning clients. In this section we show that two simple servers, one implemented
in continuation-based style and one implemented in state-storing style, are equivalent.

Two Servers. The two servers that we consider take a number as a request. They reply to each
user with the sum of the numbers that that user has submitted. Figure 6 shows implementations of
the handler functions of the servers.3

The handlers take a connection (of type serverConnT) as input which consists of a pair of functions
for reading the request and writing the response. The idea is that these functions are an abstraction
of a TCP connection and thus the contextual equivalence can be understood as showing that
clients cannot distinguish between the two implementations. These servers both internally use a
table to associate a resumption id (a number to remember the client by) to each client. Here the
functions associate and get are used for storing into the table and looking up resumption ids in
the table, respectively. The state-storing implementation associates to a resumption id the sum so
far. The continuation-based implementation associates a captured continuation to a resumption id.
Each returning client sends its resumption id along with its request. The function sumloop in the
continuation based implementation is essentially a loop that sends the sum so far to the client and
asks for the next number by calling read__client. The function read__client captures the current
continuation and associates it with a resumption id. This resumption id is then sent to the client.
After this, the server stops as the request in question is served.4 Notice that the read__client never
returns. In practice the control is returned to the point after the call to this function when the
client returns with the resumption id associated to the current continuation. In this case, as the
connection is new, the server will supply the new connection (reader, writer) along with the new
request.
Since the two servers, apart from their handlers, are identical (they just pass requests to their

handlers) we here only discuss the contextual equivalence of the two handlers by showing that
each handler refines the other. Here we show one of these refinements:

Ξ | Γ ⊨ handler2 ≤log handler1 : ServerConnT→ 1

The other is similar.
The two handlers internally use a concurrent (protected by a spin lock) table to store and look-up

resumptions. The table and lock implementations are straightforward and thus omitted. Since these

3We use an ML-like syntax for the sake of brevity and legibility; our Coq formalization includes the F
µ ,ref
conc,cc code for these

handlers.
4The command abort is the command that ends the program (thread) and can be written in our programming language as
throw () to [] where [] is the empty evaluation context.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:16 Amin Timany and Lars Birkedal

(* In the code below, the function r̀esumptionid̀ converts the index of a continuation in
the table into a session id, i.e., a session cookie. Similarly, the function r̀esult̀
formats the response appropriately, making it ready to be sent to the client. *)

1 let handler1 : ServerConnT -> 1 =
2 let tb = newTable () in
3 fun (cn : ServerConnT) ->
4 let (reader, writer) = cn in
5 match reader () with
6 (Some cid, n) ->
7 begin
8 match get tb cid with
9 None -> () (* unknown resumption id! *)
10 | Some sum -> writer (result (sum + n));
11 writer (resumptionid (associate tb (sum + n)));
12 abort
13 end
14 | (None, n) ->
15 writer (result n);
16 let cid = associate tb n in
17 writer (resumptionid cid)

1 let read__client tb writer =
2 callcc (k. writer (resumptionid (associate tb k)); abort)
3

4 let rec sumloop m reader writer =
5 writer (result m);
6 let (v, reader, writer) = read__client tb writer in
7 sumloop (m + v) reader writer
8

9 let handler2 : ServerConnT -> 1 =
10 let tb = newTable () in
11 fun (cn : ServerConnT) ->
12 let (reader, writer) = cn in
13 match reader () with
14 (Some cid, n)->
15 begin
16 match get tb cid with
17 None -> () (*unknown resumption id!*)
18 | Some k -> throw (n,reader,writer) to k
19 end
20 | (None, n)-> sumloop n reader writer

Fig. 6. Two server handlers: one state-storing (top) and one continuation-based (bottom).

implementations do not use call/cc and throw, we give their relational specs using context-local
weakest preconditions. Given the rule clwp-wpwe can use these specs during the proof of contextual
refinement of handlers. We discuss the relational specs of the table before presenting the refinement
of handlers.

5.1 Relational Spec for the Table and the Lock

The essence of relating the tables on both sides (specification side and implementation side) is
simple. Two tables are related if their contents are. For this purpose we introduce the predicate
relTables(v,v ′,γ ,Φ) which states that the table v is related to the table v ′ where their contents
are related by the binary predicate Φ. We ignore γ for now. It is only used for the internal lock
protecting the table. With this definition, new tables are related (as they are both empty). The
related specs for the get and associate operations require that only related values can be stored

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:17

into tables and guarantee that when looking the table up we are guaranteed to receive related
values, if any.

What does it mean for the contents, i.e., a number and a continuation to be related here, i.e.,
what should we take forΦ? The answer is simple. The number n is related to the continuation K

if n is the same as the number that the suspended program in K considers to be the sum. Notice
that this relation specifies some details about the program captured into K . This program uses the
table itself! Therefore, it is not possible to write down the relation for the contents of the table
before the table is created. As a result, the standard relational spec for the table, e.g., the relational
spec that we get for free from the fundamental theorem of logical relations, does not suffice for our
application. Such standard specs require the relation on the contents to be given before the table is
created:

∀Φ. {j Z⇒ K[newTable ()]}cl

newTable ()

{x . ∃v ′. j Z⇒ K[v ′] ∗ ∃γ . relTables(x,v ′,γ ,Φ)}

(weaker standard spec)

Note the quantification over Φ outside the whole triple. Hence, we give the following stronger
relational spec to our tables:

{j Z⇒ K[newTable ()]}cl

newTable ()

{x . ∃v ′. j Z⇒ K[v ′] ∗ ∀Φ. |⇛∃γ . relTables(x,v ′,γ ,Φ)}

{relTables(tb, tb′,γ ,Φ) ∗ j Z⇒ K[get tb′ n]}cl

get tb n

{x . ∃v
′
. j Z⇒ K[v ′] ∗

(
x = v ′ = None ∨

(∃w,w ′ x = Some(w) ∧v ′ = Some(w ′) ∗Φ(v,v ′))
)}

{relTables(tb, tb′,γ ,Φ) ∗Φ(v,v ′) ∗ j Z⇒ K[associate tb′ v]}cl

associate tb v

{x . ∃n. x = n ∗ j Z⇒ K[n]}

Notice that with our stronger specification we can refer to the tables themselves in the predicateΦ
that we pick for relating the contents, whereas in the (weaker standard spec) specification one has
to pick this relation beforehand, and hence one cannot refer to the tables v and v ′ because they
have not been created yet!

The predicate relTables(tb, tb′,γ ,Φ) is defined in terms of the relLocks predicate, which pertains
to the relational specification of spin locks given below.

relTables(tb, tb′,γ ,Φ) ≜ relLocks(tb.lock, tb′.lock,γ , PΦ)

PΦ ≜ ∃ls. contents(tb,map π1 ls) ∗ contents(tb
′
,map π2 ls) ∗ ∗

(x ,x ′)∈ls

Φ(x, x ′)

Here tb.lock is the lock protecting the table tb. The proposition PΦ above simply states that the there
is a list of pairs of values, which are pairwise related byΦ and, moreover, that the first projections
of these pairs are stored in the implementation side table and the second projections of these pairs
are stored in the specification side table. The contents predicate simply specifies that the index of
an element in the table is its index in the list.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:18 Amin Timany and Lars Birkedal

Relational spec for the spin lock. Similar to the table specification the lock specification also
needs to be strengthened. The relational specs for locks is given below. In this specs the persistent
proposition relLocks(v,v ′,γ , P) states that v is a lock protecting two things: resources P and the
fact that v ′ is not acquired; this is crucial as we discuss below. The proposition locked(γ) states that
both of the locks associated to γ are currently acquired.

{j Z⇒ K[newlock ()]}cl

newlock ()

{x . ∃v ′. j Z⇒ K[v ′] ∗ ∀P . P ≡∗ ∃γ . relLocks(x,v ′,γ , P)}

{relLocks(v,v ′,γ , P) ∗ j Z⇒ K[acquire v ′]}cl

acquire v

{_. j Z⇒ K[()] ∗ locked(γ) ∗ P }

{relLocks(v,v ′,γ , P) ∗ P ∗ locked(γ) ∗ j Z⇒ K[release v ′]}cl

release v

{_. j Z⇒ K[()]}

The specification captures that whenever we acquire the lock on the implementation side, the lock
on the specification side is free and can be acquired. This is necessary for showing contextual
refinements because if the implementation side converges, then we need to show that so does the
specification side and the acquire operation is potentially non-terminating. This also means that
whenever we release the lock on the implementation side, the lock on the specification side is also
released.

5.2 Proving Equivalence of Handlers

We prove only one direction here: Ξ | Γ ⊨ handler2 ≤log handler1 : ServerConnT→ 1. We use the
rules for weakest preconditions and executions on the specification side explained above and make
use of the relational specification given above for tables, which is justified by the clwp-wp rule. A
key element of the proof is the choice of predicate for relating the contents of the two tables. We
use the following predicate:

Φhandlers(w,w
′) = ∃sum ∈ N. w ′ = sum ∧

∃K . w = cont

(
K

[
let (v, reader,writer) = [] in

sumloop (sum +v) reader writer

])

The relationΦhandlers essentially captures what was explained in prose earlier: the two sides consider
the sum stored (as part of a continuation object in the continuation-based server) to be the same
value. The relationΦhandlers above is indeed capturing the essence of the intuitive reason why the
two implementations of handlers have contextually equivalent behavior. According to the definition
of our logical relations, to show logical relatedness we need to show that given any two related
contexts the two programs behave in an observationally related way. Since at the time of picking
the predicate above we do not know what contexts we will have to operate under, we have to
consider that our code of interest is inside some arbitrary (hence existentially quantified in the
continuation-based) evaluation context. The actual value of this evaluation context is not important
as the control never reaches this evaluation context; the thread is ended with an abort before that.
Note the use of the table itself (referenced inside sumloop) in theΦhandlers .

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:19

6 ONE-SHOT CALL/CC

In this section we consider a more technical verification challenge involving continuations, due
to Friedman and Haynes [1985]. The challenge is to show that call/cc can be implemented using
references and one-shot continuations, i.e., continuations that can only be called once. This problem
has been studied for sequential higher-order languages with references in Dreyer et al. [2012];
Stùvring and Lassen [2007], with pen-and-paper proofs. Here we show that the equivalence also
holds in our concurrent language (subtly so; because we are using may contextual equivalence)
and we give a mechanized formal proof thereof.
For this verification we introduce two closed programs CC (essentially a call/cc) and CC1

(encoding a one shot continuation) both of type ∀α . (cont(α) → α) → α .

CC ≜ Λ λf . call/cc (x . f x)

CC1 ≜ Λ λf . letb = ref(false) in

call/cc
©«
x . f

©«
cont

©«
lety = [] in

if !b thenΩ elseb ← true;

throwy tox

ª®®¬
ª®®¬
ª®®¬

Here Ω is the trivially diverging expression. When applied, the one-shot continuation, CC1, first
allocates a one-shot bit b and then calls the given function with a continuation that uses b to
ensure that the continuation is only called once. Using one-shot continuations, we simulate normal
continuations by defining CC′:

CC′ ≜ Λ λf . let ℓ = ref(cont([])) inG f

G ≜ recG(f) = letx = CC1 _

(
λy. ℓ ← y;

f (cont(throw cont([]) to !ℓ))

)
in

CC1 _ (λy.G (λz. throwx toy))

The expression CC′ above has the same type as CC. CC′ perhaps looks fairly complex but the
intuition is straightforward. It first allocates ℓ with the trivial continuation, then it takes a one-shot
continuation and updates ℓ. When the one-shot continuation is used, it will first grab another fresh
one-shot continuation and update ℓ with it before continuing. Hence, intuitively, every time the
one-shot continuation stored in ℓ is used, it is immediately refreshed, thus mimicking the behavior
of CC. We now prove that CC is contextually equivalent to CC′:

Theorem 6.1. · | · ⊨ CC ≈ctx CC
′ : ∀α . (cont(α)→α)→α

We only discuss one side of the refinement, namely, CC′ ≤ctx CC. The invariant that we need in
order to prove this refinement is intuitively that the one-shot bit of the continuation stored in ℓ
is always storing the value false indicating that the one-shot continuation is unused. This fact is
expressed in terms of Iris invariants as follows:

∃b . b 7→i false ∗ ℓ 7→i cont
©«
lety = [] in

if !b thenΩ elseb ← true;

throwy to cont(K[restore(ℓ)])

ª®®¬

N .CC

where

restore(ℓ) ≜ letx = [] inCC1 _ (λy.G (λ_. throwx toy))

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:20 Amin Timany and Lars Birkedal

Here K is the continuation that is captured by CC. The invariant above is exactly the invariant that
Dreyer et al. [2012] use when translated to our system.5

This invariant suffices for a sequential programming language. However, in our concurrent
settting, the łcontinuationž captured by CC′ may be shared among multiple threads and, if they
use it concurrently, it may happen that a thread is using the continuation captured by CC′ and
before this thread manages to capture another one-shot continuation and restore ℓ, another thread
attempts to use the then invalid one-shot continuation, and hence it diverges.

We prove that the contextual refinement still holds (despite the possibility of divergence). How-
ever, because of the possible racing, we need to use a weaker invariant:

∃b,M . OneShotBits(M) ∗ isOneShotBit(b) ∗(
∗
r ∈M

∃v ∈ {true, false} . r 7→i v

)
∗ ℓ 7→i cont

©«
lety = [] in

if !b thenΩ elseb ← true;

throwy to cont(K[restore(ℓ)])

ª®®¬

N .CC

This invariant says that ℓ stores a one-shot continuation with a one-shot bit b and that we have
a set of bits that, intuitively, have been associated to one-shot continuations. We also know that
b is one such one-shot bit, isOneShotBit(b). The predicates OneShotBits() and isOneShotBit() are
defined using Iris resources.6 Here, we only need to know two things about them: isOneShotBit(b)
is persistent and:

OneShotBits(M) ∗ isOneShotBit(b) ⊢ b ∈ M (in-bits)

Persistence allows us to retain the information isOneShotBit(b) once we have opened the invariant
and have read ℓ. Due to the race condition explained above, when we open the invariant we know,
by (in-bits), that there is a value v ∈ {true, false} stored in b, and this suffices for being able to
complete the refinement proof.

7 CORRECTNESS OF CONTINUATION BASED COOPERATIVE CONCURRENCY

Cooperative concurrency, a.k.a. light-weight concurrency, is a form of concurrency where threads
cooperate and use a yield command to relinquish control to other threads. This is in contrast to
preemptive concurrency, where the operating system preempts and schedules threads. Cooperative
concurrency is often implemented using continuations [Haynes et al. 1984]. Forking a new thread
suspends the execution of the current thread, enqueues the suspension in a queue, and runs
the forked thread. The yield command dequeues a previously enqueued suspension (thread) and
resumes it, after enqueuing the current continuation.
In this section, we prove correctness of a continuation-based implementation of cooperative

concurrency. It is not entirely obvious how to state the desired correctness property. Here we use
a relational approach inspired by compiler correctness, and show that a language with built-in
cooperative concurrency can be compiled into a continuation-based implementation of cooperative
concurrency. We prove the correctness of this compilation, by showing that a compiled program
refines its source program.

The programming language with built-in cooperative concurrency is called F
µ ,ref
cc,coop . This language

serves as our specification of cooperative concurrency. Concretely, F
µ ,ref
cc,coop provides two primitive

commands Cfork and yield. The semantics of F
µ ,ref
cc,coop keeps track of the currently running thread

5In the work of Dreyer et al. [2012], invariants were called islands.
6The one-shot bit predicates are defined using the authoritative resource algebra over the resource algebra of finite sets of
locations (where the algebra operation is set union). See JUNG et al. [2018]

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:21

and keeps executing that thread until it reaches a fork or a yield command. In the former case, it
starts a new thread and starts executing that. In the latter case, the semantics picks another thread
and proceeds with executing that. The programming language that we consider as the target of

translation of F
µ ,ref
cc,coop is F

µ ,ref
cc , the sequential fragment of F

µ ,ref
conc,cc , i.e., F

µ ,ref
conc,cc without fork and cas.

In the rest of this section, we define the precise syntax and semantics of the source and target
languages, the translation of cooperative concurrency, and a cross-language logical relation between
the source and target language, which we use to show the correctness of the translation.

7.1 Syntax and Semantics of F
µ ,ref
cc and F

µ ,ref
cc,coop

The programming languages F
µ ,ref
conc,cc , F

µ ,ref
cc and F

µ ,ref
cc,coop have the same types and similar typing rules

for shared parts; we use ⊢coop and ⊢seq to distinguish them. The typing rules for Cfork and yield in

F
µ ,ref
cc,coop are as follows:

T-CFork

Ξ | Γ ⊢coop e : τ

Ξ | Γ ⊢coop Cfork {e} : 1
T-Yield

Ξ | Γ ⊢coop yield : 1

The language F
µ ,ref
cc is a fragment of F

µ ,ref
conc,cc with the same operational semantics. Formally, the head

steps for F
µ ,ref
cc are identical to the corresponding fragment in F

µ ,ref
conc,cc . For the general execution,

however, we define the sequential step relation,→seq, in place of the thread-pool step→ for F
µ ,ref
conc,cc .

(e,σ) →K (e
′
,σ ′)

(K[e];σ) →seq (K[e
′];σ ′)

(K[throwv to cont(K ′)];σ) →seq (K
′[v];σ)

The head-step relation for the fragment of F
µ ,ref
cc,coop , apart from Cfork and yield, is defined identically

to F
µ ,ref
conc,cc and F

µ ,ref
cc . For general reduction, in place of a thread-pool step we define a cooperative

step,→coop. The step (®e ;n;σ) →coop (®e ′;n
′;σ ′) is to be understood as a step transforming the thread

pool ®e into the thread pool ®e ′ and state σ into σ ′ while changing the current thread being executed
from thread number n to thread number n′. All head steps (and throw) do not change the current
thread. For Cfork and yield we have:

length(e1) = n m = length(®e1,K[Cfork {e}], ®e2)

(®e1,K[Cfork {e}], ®e2;n;σ) →coop (®e1,K[()], ®e2, e;m;σ)

length(e1) = n 0 ≤ m < length(®e1,K[yield], ®e2)

(®e1,K[yield], ®e2;n;σ) →coop (®e1,K[()], ®e2;m;σ)

A quick inspection of the cooperative step relation should make it clear that F
µ ,ref
cc,coop does really

capture cooperative concurrency. Hence, by showing that F
µ ,ref
cc,coop can be correctly compiled to F

µ ,ref
cc

by a compiler that compiles Cfork and yield using continuations, we establish correctness of an
implementation of cooperative concurrency using continuations.

7.2 Translation and its Correctness

The translation from F
µ ,ref
cc,coop into F

µ ,ref
cc is very straightforward. It simply translates Cfork and yield

to programs that use the the light-weight thread library LiThr given in Figure 7.7 This simple and

7Note that the specification side, F
µ ,ref
cc,coop , does not restrict scheduling, i.e., yield non-deterministically chooses another

thread. Here, on the implementation side we have chosen to use a queue for scheduling of threads.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:22 Amin Timany and Lars Birkedal

LiThr ≜ letQ = newQueue in

let Frk = λx . call/cc

(
y.enqueue Q y;

throwx to cont([] ())

)
in

let Yld = λ_. call/cc

©«

x . enqueue Q x ;

lety = dequeue Q in

matchy with

Some(z) ⇒ throw () to z
| None ⇒ ()
end

ª®®®®®®®®¬
in

(Frk, Yld)

Fig. 7. The light-weight thread library LiThr.

minimalistic light-weight thread library provides two functions: one for forking a new thread,
Frk, and one for relinquishing control to other threads, Yld. Notice that the dequeue operation
can return None if the queue empty. However, since in Yld the dequeue operation is immediately
preceded by an enqueue operation, this will never happen.

We translate programs in F
µ ,ref
cc,coop into programs of F

µ ,ref
cc as follows:

Comp(e) ≜ let (F,Y) = LiThr in ⟨⟨e⟩⟩

Where ⟨⟨e⟩⟩ translates F
µ ,ref
cc,coop programs into programs that use special free variables F and Y as

functions for forking and yielding respectively. The translation ⟨⟨e⟩⟩ is very simple. It only changes
Cfork and yield and leaves the rest of the program untouched (similar to throw below):

⟨⟨throw e to e ′⟩⟩ ≜ throw ⟨⟨e⟩⟩ to ⟨⟨e ′⟩⟩

⟨⟨yield⟩⟩ ≜ Y () ⟨⟨Cfork {e}⟩⟩ ≜ F (λ_. ⟨⟨e⟩⟩)

Notice that for Cfork we use a λ to turn e into a thunk.

Lemma 7.1 (Typing of translation). Let e be a program in F
µ ,ref
cc,coop such that Ξ | Γ ⊢coop e : τ .

The following typing judgement holds for the translation of e .

Ξ | Γ,Y : 1→ 1, F : (1→ 1) → 1 ⊢seq ⟨⟨e⟩⟩ : τ

Correctness of translation. We will show correctness of our translation by showing observational
refinement. To this end, we define propositions e ⇓seq and e ⇓coop , which state when programs of

F
µ ,ref
cc and F

µ ,ref
cc,coop terminate:

e ⇓seq ≜ ∃v,σ . (e; ∅) →∗seq (v ;σ)

e ⇓coop ≜ ∃®e,σ . (e; 0; ∅) →∗coop (®e;n;σ) ∧ en is a value

Notice that programs of F
µ ,ref
cc terminate whenever the current thread at the time has terminated.

Theorem 7.2 (Correctness of translation). Let e be a closed program of type τ , · | · ⊢coop e : τ .

The following holds

if Comp(e) ⇓seq then e ⇓coop

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:23

Intuitively, this theorem expresses that if the compiled program Comp(e) produces a result
so would the original program (standard observational refinement). We prove this theorem by

setting up a cross-language logical relation between F
µ ,ref
cc and F

µ ,ref
cc,coop . We show that the translation

⟨⟨e⟩⟩ is suitably related to e . Theorem 7.2 then follows essentially because Comp(e) reduces to
⟨⟨e⟩⟩[Frk/F][Yld/Y].

7.3 Cross-language Logical Relation

The types and basic terms of both F
µ ,ref
cc,coop and F

µ ,ref
cc are the same as F

µ ,ref
conc,cc . Hence, our cross-

language logical relation is very similar to the logical relation presented in Section 3, except that
it is defined for pairs of expressions, values and evaluation contexts where the first component

pertains to F
µ ,ref
cc and the second to F

µ ,ref
cc,coop. In fact, the only part of the logical relation in Section 3

that we need to change is the definition of observational refinement. To define the observational

refinement relation between F
µ ,ref
cc and F

µ ,ref
cc,coop we need to introduce resources that we may use for

keeping track of the execution on the specification side, i.e., the F
µ ,ref
cc,coop side. For this purpose, in

addition to propositions ℓ 7→s v and j Z⇒ e for keeping track of the heap and the (light-weight)
threads on the specification side, we need a proposition to keep track of the current thread on
the specification side. Hence, we introduce the proposition CurTh(j), for asserting that the current

thread being run is thread j. For all the basic terms of F
µ ,ref
cc,coop, the rules for execution on the

specification side remain similar to the ones in F
µ ,ref
conc,cc , except that they require the thread being

evaluated to be the current thread. As an example, the rule for storing a value in a reference on the
specification side is given below. The only rules that change the current thread are those pertaining
to Cfork and yield.

ℓ 7→s v CurTh(j) j Z⇒ K[ℓ ← w]

|⇛CurTh(j) ∗ ℓ 7→s w ∗ j Z⇒ K[()]

CurTh(j) j Z⇒ K[Cfork {e}]

|⇛∃j ′. CurTh(j ′) ∗ j Z⇒ K[()] ∗ j ′ Z⇒ e

CurTh(j) j Z⇒ K[yield]

|⇛CurTh(j) ∗ j Z⇒ K[()]

CurTh(j) j Z⇒ K[yield] j ′ Z⇒ e ′

|⇛CurTh(j ′) ∗ j Z⇒ K[()] ∗ j ′ Z⇒ e ′

Note that there are two rules pertaining to the execution of yield as it may result in continuing the
execution of the same thread.
For our cross-language logical relations we define the observational refinement relation, Ocross

as follows:

Ocross(e, e ′) ≜ ∀j . CurTh(j) ∗ j Z⇒ e ′ −∗ wp e
{
∃j ′,w . j ′ Z⇒ w ∗ CurTh(j ′)

}
Note how the specification side is expected to be in a thread that has reached a value in its execution,
similarly to how we defined ⇓coop above.

7.4 Proof of Correctness of Translation

In order to prove correctness of the translation we need to reason about a relation between the
internal state of the LiThr library and threads on the specification side. In particular, for each
continuation K stored in the internal queue of LiThr there must be a thread j ′ Z⇒ e ′ on the
specification side such that K[()] observationally refines e ′. We use the proposition LiThrInv for

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:24 Amin Timany and Lars Birkedal

this purpose.8

LiThrInv ≜ ∃l . isQueue(Q, l) ∗∗
K ∈l

∃j ′, e ′, j ′ Z⇒ e ′ ∗ □(Ocross(K[()], e ′))
N .LiThr

The proposition isQueue(Q, l) asserts that Q is a queue whose contents are the list l . The two
operations of the queue, enqueue and dequeue, have the following specs:

{isQueue(Q, l)}cl

enqueue Q v

{x . x = () ∗ isQueue(Q,v :: l)}

{isQueue(Q, l)}cl

dequeue Q

{x . (∃l ′. l = l ′ ++ [v] ∗ x = Some(v) ∗ isQueue(Q, l ′)) ∨ (x = None ∗ l = [] ∗ isQueue(Q, l))}

where ++, :: and [·] are the usual list operations and [] is the empty list.
To prove the desired correctness theorem (Theorem 7.2), we now prove the fundamental theorem

for our cross-language logical relation. It says that, under the assumption that the internal state of

the library LiThr is appropriate, any well-typed F
µ ,ref
cc,coop program is refined by its translation when

linked with the LiдhtTh library.

Theorem 7.3 (Fundamental theorem of cross-language logical relations). Let e be a

program in F
µ ,ref
cc,coop such that Ξ | Γ ⊢coop e : τ . Then we have

LiThrInv ⇒ Ξ | Γ ⊨ ⟨⟨e⟩⟩[Frk, Yld/F,Y] ≤log e : τ

Proof. By induction on the derivation of Ξ | Γ ⊢coop e : τ . All cases, except for Cfork and yield

follow similarly to their counterpart in the proof of Theorem 3.1. Cases Cfork and yield follow by
the fact that their translations are applications to F and Y respectively under the assumption that
the invariant LiThrInv holds for the internal queue of LiThr. □

Theorem 7.2 now follows from Theorem 7.3 (in the same way that Theorem 3.2 followed from
Theorem 3.1), using and the fact that the program Comp(e) reduces to ⟨⟨e⟩⟩[Frk, Yld/F,Y].

8 MECHANIZATION IN COQ

Taking advantage of the Coq formalization of Iris and Iris Proof Mode (IPM) [Krebbers et al. 2017b],
we have mechanized all the technical development and results presented in this paper in Coq.

This includes mechanizing the small-step operational semantics of F
µ ,ref
conc,cc , F

µ ,ref
cc and F

µ ,ref
cc,coop, and

instantiating Iris with them. Our Coq development is about 15800 lines and includes proofs of
contextual refinements for pairs of fine-grained/coarse-grained stacks and counters which we
omitted discussion of for reasons of space.
For binders, we use the Autosubst library [Schäfer et al. 2015] which facilitates the use of

de Bruijn indices by providing support for simplification of substitutions. In F
µ ,ref
conc,cc , F

µ ,ref
cc and

8This is a slight simplification. The proposition LiThrInv is defined using Iris’s non-atomic invariants. These are invariants
that can be kept open for multiple steps of computation. They are admissible in our system because we have no real
concurrency causing racy behavior. It is crucial to be able to keep the LiThrInv open for multiple steps so as to prove that
the dequeue operation in Yld never returns a None value. (If the languages had included concurrent racy behaviour, then
we could have used a lock in the library and then we would have been able to use standard Iris atomic invariants.) The
definition of Ocross is also slightly simplified here. It should be slightly adjusted to allow for the use of non-atomic invariants.
Iris’s weakest preconditions by default only allow atomic invariants.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:25

F
µ ,ref
cc,coop, evaluation contexts are also values and hence also expressions. This forces us to define

these mutually inductively. This means that we need to derive the induction principle for these
inductive types in Coq by hand. Furthermore, we have to help Autosubst in deriving substitution

and simplification lemmas for F
µ ,ref
conc,cc that it should otherwise automatically infer. This is mainly

why the definition of F
µ ,ref
conc,cc , F

µ ,ref
cc and F

µ ,ref
cc,coop combined takes up about 20% of the whole Coq

development.

9 RELATED WORK

There has been a considerable body of work on (delimited) continuations, but, we are not aware of
any logics or relational models for reasoning about concurrent programs with continuations, let
alone a mechanized framework for relational verification of concurrent programs with continua-
tions.

Program logics for reasoning about continuations. Delbianco and Nanevski [2013] present a
type theory for Hoare-style reasoning about an imperative higher-order programming language
with (algebraic) continuations, but without concurrency. The system of Delbianco and Nanevski
[2013] does not allow higher-order code (including continuations) to be stored in the heap. Note
that storing higher-order code in the heap is essential for all our case studies: implementing
cooperative concurrency with continuations, implementing the continuation-based web servers
and implementing continuations in terms of one-shot continuations. Crolard and Polonowski [2012]
develop a program logic for reasoning about jumps but their sequential programming language
features no heap or recursive types. Berger [2010] presents a program logic for reasoning about
programs in a programming language which is essentially an extension of PCF [Plotkin 1977] with
continuations.

Relational reasoning about continuations. The work most closely related to ours is that of Dreyer
et al. [2012] who consider a variety of different stateful programming languages and investigate
the impact of the higher-order state and control effects (including call/cc and throw). In contrast
to our work, they do not consider concurrency. Moreover, they reason directly in a model, whereas
we define our logical relation using a program logic (Iris), which means that we can reason more
compositionally and at a higher level of abstraction. Another advantage of using Iris, is that we
have been able to leverage its Coq formalization and thus to mechanize all of our development.
As mentioned in Section 6, our proof that continuations can be expressed in terms of one-shot
continuations is inspired by loc. cit.
There are several other works on relational reasoning for sequential programming languages

with continuations, e.g., Felleisen and Hieb [1992]; Laird [1997]; Stùvring and Lassen [2007]. These
differ from our work at least in that they do not consider concurrency.

Relational reasoning about concurrency. There has been much work on relational reasoning about
concurrent higher-order imperative programs, without continuations. Theworkmost closely related
to ours also is that of Krebbers et al. [2017b], who develop mechanized logical relations (in Iris) for

reasoning about contextual equivalence of programs in F
µ ,ref
conc , a language similar to the one we

consider but without call/cc and throw. The approach in loc. cit. is based on earlier, non-mechanized
logical relations for fine-grained concurrent programs [Birkedal et al. 2012; Turon et al. 2013a,b].
These relational models give an alternative method to linearizability [Herlihy and Wing 1990] for
reasoning about contextual refinement for fine-grained concurrent programs. The logical relations
method also works in the presence of higher-order programs, which linearizability traditionally
struggles with, although there has been some recent promising developments [Cerone et al. 2014;
Murawski and Tzevelekos 2017]. In this paper, we have extended the method of logical relations

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

105:26 Amin Timany and Lars Birkedal

for reasoning about contextual refinement for higher-order fine-grained concurrent programs to
work for programs that also use continuations.

Correctness of compilation of cooperative concurrency. The only other work that we are aware of
which proves correctness of compilation of cooperative concurrency is by Nakata and Saar [2013].
Nakata and Saar [2013] compile a simple while language extended with procedures, first-order
store (only integers can be stored) and cooperative concurrency. Their target language is again
a simple while language extended with procedures, delimited continuations and a store that can
store in each cell either an integer value or a captured continuation. They use a syntactic proof
of correctness as opposed to our semantic (using a logical relations model) proof. Such syntactic
proof methods do not scale to higher-order programming languages with advanced features like

higher-order store and impredicative polymorphism, e.g., F
µ ,ref
conc,cc in our case.

10 CONCLUSION AND FUTURE WORK

We have developed a logical relation for F
µ ,ref
conc,cc , a programming language with advanced features

such as impredicative polymorphism à la system F, higher-order mutable references, recursive
types, concurrency and most notably continuations. We have devised new non-context-local proof
rules for reasoning about weakest preconditions in Iris in the presence of continuations and
also introduced context-local weakest preconditions for regaining context-local reasoning about
expressions that do not involve non-local control flow. We have defined our relational model and
proved properties thereof in the Iris program logic framework. This has greatly simplified the
definition of our relational model, the existence of which is non-trivial because of the type-world
circularity [Ahmed 2004; Ahmed et al. 2002; Birkedal et al. 2011]. Furthermore, working inside
Iris has enabled us to mechanize the entire development presented in this paper on top of the Coq
proof assistant.

We have demonstrated how our logical relation can be used to establish contextual equivalence
for a pair of simplified web-server implementations: one storing the state explicitly and one
storing the current continuation. The application of context local reasoning in the middle of our
logical relatedness proofs demonstrates the usefulness and versatility of context-local weakest
preconditions. Finally, we have also given the first (mechanized) proof of the correctness of Friedman
and Haynes [1985] encoding of continuations by means of one-shot continuations in a concurrent
programming language.

We developed a cross-language logical relation between F
µ ,ref
cc and F

µ ,ref
cc,coop. We used this logical

relation to give a compiler-correctness-inspired proof of correctness of the continuation-based
implementation of cooperative concurrency. This is to the best of our knowledge the first formal
proof of correctness of continuation-based cooperative concurrency for a programming language
with a rich advanced features and types.

In the future, wewish to extend ourmechanization to reason about delimited continuations [Danvy
and Filinski 1990; Felleisen 1988]. Currently our mechanized reasoning is done interactively, in the
same style as one reasons in Coq. In the future, we would also like to complement that with more
automated reasoning methods.

ACKNOWLEDGMENTS

The first author is a postdoctoral fellow of the Flemish research fund (FWO). This project was
supported in part by the FWO grant (grant no. G.0962.17N), the FWO travel grant (V435817N), the
EU Types (CA15123) short scientific mission (STSM) grant (reference: 40667) and by the ModuRes
Sapere Aude Advanced Grant from The Danish Council for Independent Research for the Natural
Sciences (FNU).

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

Mechanized Relational Verification of Concurrent Programs with Continuations 105:27

REFERENCES

Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation. Princeton University.
Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. 2002. A Stratified Semantics of General References Embeddable in

Higher-Order Logic. In Proceedings of 17th Annual IEEE Symposium Logic in Computer Science. IEEE Computer Society
Press, 75ś86.

Andrew Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying Code.
TOPLAS 23, 5 (2001), 657ś683.

Andrew Appel, Paul-André Melliès, Christopher Richards, and Jérôme Vouillon. 2007. A Very Modal Model of a Modern,
Major, General Type System. In POPL.

Martin Berger. 2010. Program Logics for Sequential Higher-Order Control. Springer Berlin Heidelberg, Berlin, Heidelberg,
194ś211.

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Stùvring, Jacob Thamsborg, and Hongseok Yang. 2011. Step-
Indexed Kripke Models over Recursive Worlds. In POPL.

Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. 2012. A Concurrent Logical Relation. In CSL.
Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2014. Parameterised Linearisability. In ICALP.
T. Crolard and E. Polonowski. 2012. Deriving a Floyd-Hoare logic for non-local jumps from a formulñ-as-types notion

of control. The Journal of Logic and Algebraic Programming 81, 3 (2012), 181 ś 208. The 22nd Nordic Workshop on
Programming Theory (NWPT 2010).

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.
In ECOOP. 207ś231.

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In Proceedings of the 1990 ACM Conference on LISP and

Functional Programming.
Germán Andrés Delbianco and Aleksandar Nanevski. 2013. Hoare-style reasoning with (algebraic) continuations. ACM

SIGPLAN Notices 48, 9 (2013), 363ś376.
Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and Hongseok Yang. 2013. Views: Composi-

tional Reasoning for Concurrent Programs. In POPL.
T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. 2010. Concurrent abstract predicates. In ECOOP.

504ś528.
D. Dreyer, A. Ahmed, and L. Birkedal. 2011. Logical Step-Indexed Logical Relations. LMCS 7, 2:16 (2011).
Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order state and control effects on local relational

reasoning. Journal of Functional Programming 22, 4-5 (2012), 477ś528.
Mattias Felleisen. 1988. The Theory and Practice of First-class Prompts. In Proceedings of the 15th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL).
Matthias Felleisen and Robert Hieb. 1992. The revised report on the syntactic theories of sequential control and state.

Theoretical Computer Science 103, 2 (1992), 235 ś 271.
Matthew Flatt. 2017. More: Systems Programming with Racket. https://docs.racket-lang.org/more/index.html.
Daniel P. Friedman and Christopher T. Haynes. 1985. Constraining Control. In Proceedings of the 12th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages (POPL ’85). ACM, New York, NY, USA, 245ś254.
Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. 1984. Continuations and Coroutines (LFP ’84).
Greg Hendershott. 2017. http://www.greghendershott.com/2014/09/written-in-racket.html.
Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. TOPLAS

12, 3 (1990), 463ś492.
Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In ICFP. 256ś269.
RALF JUNG, ROBBERT KREBBERS, JACQUES-HENRI JOURDAN, ALEŠ BIZJAK, LARS BIRKEDAL, and DEREK DREYER.

2018. Iris from the ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional
Programming 28 (2018), e20. https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. 637ś650.

Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The essence of
higher-order concurrent separation logic. In European Symposium on Programming (ESOP).

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive Proofs in Higher-Order Concurrent Separation Logic.
In POPL.

Shriram Krishnamurthi, Peter Walton Hopkins, Jay McCarthy, Paul T Graunke, Greg Pettyjohn, and Matthias Felleisen. 2007.
Implementation and use of the PLT Scheme web server. Higher-Order and Symbolic Computation 20, 4 (2007), 431ś460.

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017. A Logical Account of a Type-and-Effect System. In
POPL.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

https://docs.racket-lang.org/more/index.html
http://www.greghendershott.com/2014/09/written-in-racket.html
https://doi.org/10.1017/S0956796818000151

105:28 Amin Timany and Lars Birkedal

James Laird. 1997. Full Abstraction for Functional Languages with Control. In Proceedings of the 12th Annual IEEE Symposium

on Logic in Computer Science (LICS ’97). IEEE Computer Society, Washington, DC, USA, 58ś. http://dl.acm.org/citation.
cfm?id=788019.788859

Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective Auxiliary State for Coarse-Grained Concurrency. In POPL.
Matt Might. 2017. http://matt.might.net/articles/low-level-web-in-racket/.
Andrzej S. Murawski and Nikos Tzevelekos. 2017. Higher-Order Linearisability. In CONCUR 2017.
Keiko Nakata and Andri Saar. 2013. Compiling Cooperative Task Management to Continuations. In Fundamentals of Software

Engineering, Farhad Arbab and Marjan Sirjani (Eds.).
Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In ESOP.
Peter W. O’Hearn. 2007. Resources, Concurrency and Local Reasoning. Theor. Comput. Sci. 375, 1-3 (2007), 271ś307.
Andrew M. Pitts. 2005. Typed Operational Reasoning. In Advanced Topics in Types and Programming Languages, B. C. Pierce

(Ed.). The MIT Press, Chapter 7, 245ś289.
Gordon D. Plotkin. 1977. LCF considered as a programming language. Theoretical computer science 5, 3 (1977), 223ś255.
Christian Queinnec. 2004. Continuations and web servers. Higher-Order and Symbolic Computation 17, 4 (2004), 277ś295.
Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions.

In ITP (LNCS), Vol. 9236. 359ś374.
Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized verification of fine-grained concurrent programs.

In PLDI. 77ś87.
Kristian Stùvring and Soren Lassen. 2007. A Complete, Co-Inductive Syntactic Theory of Sequential Control and State. In

POPL.
Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In ESOP. 149ś168.
Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A Logical Relation for Monadic Encapsula-

tion of State: Proving contextual equivalences in the presence of runST. Proc. ACM Program. Lang. 2, POPL (Jan. 2018), to
appear.

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013a. Unifying refinement and Hoare-style reasoning in a logic for
higher-order concurrency. In ICFP.

Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013b. Logical relations for fine-grained
concurrency. In POPL.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 105. Publication date: August 2019.

http://dl.acm.org/citation.cfm?id=788019.788859
http://dl.acm.org/citation.cfm?id=788019.788859
http://matt.might.net/articles/low-level-web-in-racket/

	Abstract
	1 Introduction
	1.1 Context-local Reasoning Principles

	2 The Language: F, refconc, cc
	2.1 Typing
	2.2 Operational Semantics

	3 Logical Relations
	3.1 An Iris Primer
	3.2 Resources Used in Defining Logical Relations
	3.3 Logical Relations in Iris

	4 Context-local Weakest Preconditions
	5 Web Server Refinement
	5.1 Relational Spec for the Table and the Lock
	5.2 Proving Equivalence of Handlers

	6 One-shot call/cc
	7 Correctness of Continuation Based Cooperative Concurrency
	7.1 Syntax and Semantics of F, refcc and F, refcc, coop
	7.2 Translation and its Correctness
	7.3 Cross-language Logical Relation
	7.4 Proof of Correctness of Translation

	8 Mechanization in Coq
	9 Related Work
	10 Conclusion and Future Work
	Acknowledgments
	References

