
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Iris: Monoids and Invariants as an
Orthogonal Basis for Concurrent Reasoning

Ralf Jung
MPI-SWS &

Saarland University
jung@mpi-sws.org

David Swasey
MPI-SWS

swasey@mpi-sws.org

Filip Sieczkowski
Aarhus University

filips@cs.au.dk

Kasper Svendsen
Aarhus University

ksvendsen@cs.au.dk

Aaron Turon
Mozilla Research

aturon@mozilla.com

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Abstract
We present Iris, a concurrent separation logic with a simple premise:
monoids and invariants are all you need. Partial commutative
monoids enable us to express—and invariants enable us to enforce—
user-defined protocols on shared state, which are at the conceptual
core of most recent program logics for concurrency. Furthermore,
through a novel extension of the concept of a view shift, Iris supports
the encoding of logically atomic specifications, i.e., Hoare-style
specs that permit the client of an operation to treat the operation
essentially as if it were atomic, even if it is not.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Separation logic, fine-grained concurrency, atomicity,
partial commutative monoids, invariants, higher-order logic, compo-
sitional verification.

1. Introduction
Concurrency is fundamentally about shared state. This is true not
only for shared-memory concurrency, where the state takes the form
of a “heap” that threads may write to and read from, but also for
message-passing concurrency, where the state takes the form of a
“network” that threads may send to and receive from (or a sequence
of “events” on which threads may synchronize). Thus, to scalably
verify concurrent programs of any stripe, we need compositional
methods for reasoning about shared state.

This goal has sparked a long line of work, especially in recent
years, during which a synthesis of rely-guarantee reasoning [21] and
separation logic [31, 28] has led to a series of increasingly advanced
program logics for concurrency: RGSep [37], SAGL [13], LRG [12],
CAP [10], HLRG [15], CaReSL [34], iCAP [33], FCSL [27],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676980

TaDA [8], and others. In this paper, we present a logic called Iris that
explains some of the complexities of these prior separation logics in
terms of a simpler unifying foundation, while also supporting some
new and powerful reasoning principles for concurrency.

Before we get to Iris, however, let us begin with a brief overview
of some key problems that arise in reasoning compositionally about
shared state, and how prior approaches have dealt with them.

1.1 Invariants and their limitations
The canonical model of concurrency is sequential consistency [23]:
threads take turns interacting with the shared state (reading/writing,
sending/receiving), with each turn lasting for one step of computa-
tion.1 Although the semantics of sequentially consistent (SC) con-
currency is simple to define, that does not mean it is easy to reason
about. In particular, the key question is how to do thread-local
reasoning—that is, verifying one thread at a time—even though
other threads may interfere with (i.e., mutate) the shared state in
between each step of computation in the thread we are verifying.

The invariant rule. The simplest (and oldest) way in which
concurrent program logics account for such interference is via
invariants [5]. An invariant is a property that holds of some piece of
shared state at all times: each thread accessing the state may assume
the invariant holds before each step of its computation, but it must
also ensure that it continues to hold after each step.

Formally, in concurrent separation logics, the invariant rule looks
something like the following (omitting some important details that
we explain later in §4):

{R ∗ P } e {R ∗Q} e physically atomic

R ` {P } e {Q}

Here, the assertion R states the knowledge that there exists an
invariant R governing some piece of shared state. Given this
knowledge, the rule tells us that e may gain (exclusive) control of
the shared state satisfying R, so long as it ensures that R continues
to hold of it when it is finished executing. Note the crucial side
condition that e be physically atomic, meaning that it takes exactly
one step of computation. If e were not physically atomic, then
another thread might access the shared state governed by R during
e’s execution, in which case it would not be safe for the rule to grant
e exclusive control of the shared state throughout its execution.

1 There is much recent work on weaker models of concurrency, which are in
many ways more realistic, but in this paper we focus on SC concurrency.

1

The invariant rule is simple and elegant. Unfortunately, it also
suffers from two major limitations, which a significant amount of
follow-on work has attempted to overcome.

Limitation #1: The need for protocols. The first limitation per-
tains to the seemingly static nature of invariants. For the kinds of
interference found in more sophisticated concurrent programs, one
may require something a bit more “dynamic” than fixed invariants.
It is often necessary, for instance, to have a way of expressing:

• Irreversibility: once a certain change to some shared state has
occurred, it is irreversible—we cannot go back.

• Rights: certain changes to the shared state may only be made by
privileged threads that have the “rights” to make those changes.

At first glance, at least, neither of these seems to be expressible in
the limited language of invariants. As a consequence, many more
recent logics provide some mechanism—such as rely-guarantee
assertions [21, 37, 12], regions [10, 33, 8], STSs [34], and concur-
roids [27]—to account for irreversibility and rights. All of these
mechanisms are effectively different ways of describing protocols
on shared state, which assert how the shared state is permitted to
evolve over time.

Although the protocol mechanisms of modern logics are clearly
useful, each logic bakes in its own somewhat different mechanism
(and corresponding proof rules) as primitive, leading us to wonder:
Is this really necessary? Might there be a simpler logical mechanism
for legislating interference, from which more advanced mechanisms
could be easily derived?

Limitation #2: The need for logical atomicity. The second limita-
tion pertains to the side condition of the invariant rule requiring the
operation e to be physically atomic (take exactly one step of compu-
tation). Obviously, this side condition makes it much more desirable
(as a client) to program with physically atomic operations than with
non-atomic ones. But there are many operations that appear to be
atomic even though they take more than one step of computation,
and for such operations the invariant rule is not applicable.

Specifically, it is often desirable to construct concurrent pro-
grams so that the interference on shared state is only observable
within the limited scope of some mutable ADT (abstract data type).
For instance, consider concurrent stacks. A sophisticated imple-
mentation [16] may rely on fine-grained synchronization between
threads in order to maximize parallelism, and thus proving it cor-
rect demands the use of invariants (or protocols) to account for the
rampant interference. But this internal interference need not infect
the verification of client code. In particular, the canonical notion of
correctness for concurrent stacks is that it should appear to clients as
if all stack operations take effect atomically (i.e., in some sequential
order), which is typically formalized via linearizability [17] or con-
textual refinement [14, 34]. In this case, we say that the operations
provided by the stack ADT are observably atomic.

Ideally, we would like to be able to treat observably atomic
operations as if they were physically atomic. That way, clients of
the stack ADT could establish invariants on the contents of the
stack and then use the invariant rule when reasoning about push and
pop operations. This can be done to some extent with contextual
refinement (see the layered verification in [34]), but it requires going
outside the logic in order to connect up the verification of an ADT
with that of its clients. Moreover, the refinement approach is only
applicable in higher-level languages where the type system is strong
enough to support hiding the internals of an ADT from its clients.

A more flexible approach, we argue, would be to internalize
the notion of observable atomicity as a logical specification, so
that both the proof obligation for establishing atomicity and the
proof principle it provides to clients take the form of a single Hoare-
style specification written within the logic itself. We refer to such a

Elimination stack
(Appendix [1])

Mutable references
(Figure 18)

Channels with blocking receive
(Figure 12)

Local channel assertions
(Figure 11)

Asynchronous channels
(Figure 3)

Figure 1. Case study: A stack of abstractions.

specification as being logically atomic. Intuitively, the key benefit
of working with a logically atomic spec is to enable a version of the
invariant rule without the side condition that e be physically atomic.
This allows clients to treat operations providing such specs as if they
were actually atomic, without requiring any extra-logical reasoning.

Very recent work by da Rocha Pinto et al. on their logic TaDA [8]
supports precisely such a notion of logically atomic specs, together
with a number of useful but nonstandard proof rules, but all of
these are baked into the logic as primitive. Furthermore, TaDA is
currently not able to reason about a significant class of sophisticated
concurrent data structures that employ inter-thread cooperation (aka
“helping”) [35, 33].

This begs the question: Might there be a way to define logical
atomicity in terms of simpler logical primitives, and to derive the
associated reasoning principles within the logic?

1.2 Iris: An orthogonal basis for concurrent reasoning
In this paper, we propose Iris, a concurrent separation logic based
on a very simple premise: monoids and invariants are all you need.

Invariants we have already discussed at length. As for monoids:
Partial commutative monoids (PCMs) are widely known to provide
a generic model of resources—both physical resources (like the
heap) and logical resources (like ghost state)—suitable for use
in a separation logic. A number of modern logics involve PCMs
either in the model of the logic [33, 34] or as a feature in the logic
itself [22, 24, 9]. What does not seem to be widely known, however,
is that monoids and invariants form a kind of orthogonal basis for
concurrent reasoning. In particular:

• Monoids enable us to express protocols on shared state.

• Invariants enable us to enforce protocols on shared state.

These two mechanisms, put together, are unexpectedly powerful. In
particular, using monoids and invariants, we show how to:

• Encode a variety of the advanced protocol mechanisms from
modern logics (§2 and §3).

• Derive proof rules that are taken as primitive proof rules in other
modern logics (§4 and §5).

• Encode TaDA-style logically atomic specs, and derive their most
important associated proof rules (§7).

• Go beyond TaDA and verify logically atomic specs for fine-
grained concurrent ADTs that employ helping (§8).

A key technical novelty of Iris that facilitates the above contribu-
tions is an extension of the concept of view shift that has been pro-
posed in recent work [10, 9, 33]. We explain this mechanism in §4.
Furthermore, the soundness of Iris’s primitive proof rules, which we
discuss briefly in §6, has been fully mechanized in Coq [1].

2

Syntax
(Fix disjoint, infinite sets Chan and Var of channel names and variables.)

c, d ∈ Chan

x, y, f ∈ Var

v, w ::= x | c | rec f(x). e | () | (v, v) | inji v
e ::= v | e e | (e, e) | e.i | inji e |

case e of inj1 x⇒ e | inj2 x⇒ e |
newch | send(e, e) | tryrecv e | fork e

K ::= [] | send(K, e) | send(v,K) | tryrecvK | · · ·

Derived forms
None , inj1 () Some(e) , inj2 e

Machine states
M ∈ Bag (finite bags of values)

C ∈ Chan fin
⇀ Bag

T ∈ N fin
⇀ Exp

Pure reduction (omitted) e
pure→ e′

Per-thread reduction C; e→ C′; e′

C; e→ C; e′ when e
pure→ e′

C; newch→ C[c 7→ ∅]; c
C[c 7→M]; send(c, v)→ C[c 7→M] {v}]; ()

C[c 7→ ∅]; tryrecv c→ C[c 7→ ∅]; None

C[c 7→M] {v}]; tryrecv c→ C[c 7→M]; Some(v)

Machine reduction C;T → C′;T ′

C; e→ C′; e′

C;T [i 7→ K[e]]→ C′;T [i 7→ K[e′]]

C;T [i 7→ K[fork e]]→ C;T [i 7→ K[()], j 7→ e]

Figure 2. A language with asynchronous channels. (We denote the disjoint union f] [x 7→ y] by f [x 7→ y].)

To demonstrate the effectiveness of abstraction and modular
reasoning in Iris, we have applied it to a significant case study that
builds a stack of abstractions, with each layer exporting only an
abstract atomic specification to the layers above (Figure 1). The
bottom two layers are physically atomic, while the top three are
logically atomic.

At the bottom of the stack we start with a large-footprint
physically atomic specification of channels in a λ-calculus with
asynchronous message passing (§2). On top of that we first develop
small-footprint specs (§5.2), followed by channels with a logically
atomic blocking receive operation (§7.2). We then show that we
can use channels (via a standard encoding [26]) to implement a
logically atomic spec for mutable references, which we finally use
in the verification of a fine-grained elimination stack ADT (§8). Put
together, this constitutes a modular verification of elimination stacks
running on a message-passing machine, performed completely
within the Iris logic. Full details of the case study, as well as all
other omitted technical details, appear in our technical appendix [1].

2. Iris – Part I: Monoids
Iris is a higher-order separation logic parameterized by the language
of program expressions that one wishes to reason about.

For the purpose of this paper, we instantiate the programming
language to the one shown in Figure 2, which provides primitive op-
erations send(e, e) and tryrecv e for asynchronous (non-blocking)
message passing via channels. We have chosen this language, rather
than the usual heap-manipulating command language one finds in
most separation-logic papers, in order to emphasize (1) that noth-
ing about Iris is fundamentally tied to shared-memory concurrency,
and (2) that heap-like abstractions can in fact be built up within the
logic (§8).

The logic includes the usual connectives and rules of higher-
order separation assertion logic as generated by the grammar below.

Σ ::= 1 | Exp | Val | Prop | Σ× Σ | Σ→ Σ | · · ·

t, P, ϕ ::= () | (t, t) | π1 t | π2 t | λx : Σ. t | ϕ t
| t =Σ t | False | True | P ∧ P | P ∨ P | P ⇒ P

| ∃x : Σ. P | ∀x : Σ. P | P ∗ P | P —∗ P | · · ·

Here, Σ denotes the type of a term (written t, P , or ϕ among
others) in the logic. Terms include language expressions and values,
propositions, and products and function spaces over these. The

{bCc} newch {c. bC[c 7→ ∅]c}

{bC[c 7→M]c} send(c,m) {v. v = () ∧ bC[c 7→M] {m}]c}

{bC[c 7→M] {m}]c} tryrecv c {v. v = Some(m) ∧ bC[c 7→M]c}

{bC[c 7→ ∅]c} tryrecv c {v. v = None ∧ bC[c 7→ ∅]c}

Figure 3. Rules derived from the semantics of asynchronous chan-
nels (see Figure 2).

typing rules are standard and omitted (see the appendix [1]). The
judgment Γ | P ` Q says that for all instantiations of the variables
in Γ, the propositionsP entailQ. The contexts are often left implicit.
In the following sections, we will gradually introduce and motivate
key features of the logic along with their associated terms and types.

Physical state. To specify and reason about the behavior of pro-
grams, the logic features Hoare triples, written {P} e {v. Q}. Here
v serves as a binder for the return value in postcondition Q.

The logic is parametric in the syntax and semantics of the under-
lying programming language. As such, the logic only features basic
structural rules and lacks Hoare axioms for primitive expressions.
However, the logic provides a canonical way of adding such axioms,
by internalizing the reduction semantics of the underlying language
as axioms about the entire physical machine state.

To express this, Iris features a physical state assertion, written
bςc, and a type State of physical states of the underlying language.
For every term ς of type State, bςc asserts exclusive ownership
of the physical state, along with the knowledge that the physical
state is exactly ς . Using this assertion we can directly translate
the reduction relation defined in Figure 2 into the axioms given in
Figure 3. The physical state assertion only supports reasoning about
the entire physical state; however, as we will see in §5.2, through
the combination of monoids and invariants, it is possible to define
more local reasoning principles.

Figure 4 summarizes the syntax and proof rules for physical
states and selected structural Hoare rules. For now, ignore theV in
CSQ and the 2 in VSIMP. Combined, these rules simply yield the
standard rule of consequence with implication. In the next section,
we will explain how Iris generalizes that rule.

Ghost state. In addition to physical state assertions, Iris also sup-
ports assertions about ghost state (aka auxiliary state). Ghost state
was originally proposed as a way to abstractly characterize some

3

Syntax

P ::= · · · | P V P | {P } e {ϕ} | bςc | 2P Σ ::= · · · | State

Physical state axioms

bςc ∗ bς ′c ⇒ False

Structural Hoare rules
FRAME

{P } e {v. Q}
{P ∗R} e {v. Q ∗R}

RET

{True} w {v. v = w}

BIND
{P } e {v. Q} ∀v. {Q} K[v] {w. R}

{P } K[e] {w. R}

VSIMP
2(P ⇒ Q)

P V Q

CSQ

P V P ′ {P ′} e {v. Q′} ∀v. Q′ V Q

{P } e {v. Q}

Figure 4. Physical state and selected structural rules.

knowledge about the history of a computation that is essential to
verifying it [29]. More generally, ghost state is useful for modularly
describing a thread’s knowledge about some shared state, as well as
the rights it has to modify it [7, 22].

In many logics, ghost state takes the form of a ghost heap.
However, as the name implies, ghost state is a purely logical
construct, introduced solely for the purpose of verification, and thus
there is no need to tie it to a particular language or machine model.
Consequently, in Iris, following several recent logics [22, 9, 24], we
model ghost state as a partial commutative monoid (PCM), which
is taken as a parameter of the logic. We call the elements of this
PCM ghost resources, and we use the term “resources” to refer both
to physical states and ghost resources. (Assertions in Iris represent
predicates over both kinds of resources.)

We represent the partial commutative monoid as a (total) commu-
tative monoid with a zero element. The term a · b is thus always well
formed. Formally, we require a set |M | with two distinguished ele-
ments ⊥ (zero, undefined) and ε (unit) and an operation · (compose)
such that the following properties hold:

a · b = b · a ε · a = a (a · b) · c = a · (b · c)

⊥ · a = ⊥ ⊥ 6= ε

We call |M | the carrier of the monoid M = (|M |,⊥, ε, ·) and use
|M |+ to refer to the carrier without the zero element: |M | \ {⊥}.

To reason about these monoid elements, the logic features a
type Monoid of monoid elements and internalizes the composition
operation as a function on Monoid. For each term a of type Monoid,
the logic features a corresponding ghost assertion a , which asserts
a 6= ⊥, along with ownership of an a fragment of the global
ghost state. The global ghost state is the composition of all locally
owned fragments. Ghost resources can thus be split and combined
arbitrarily according to the chosen · operation: t · u ⇔ t ∗ u .

Since the ghost state is unrelated to the underlying physical state,
we can update the current global ghost state arbitrarily at any time.
We express updates of ghost state using view shifts. A view shift
from P toQ, written P V Q, asserts that it is possible to update the
state from P to Q without changing the underlying physical state.
The rule of consequence CSQ in Figure 4 thus allows view shifts
(and not just implications) to be applied in pre- and postconditions.

If we own a fragment a of the global ghost state, we must ensure
that any updates of the ghost state are consistent with any fragments
potentially owned by the environment (e.g., other threads). The
FPUPD rule in Figure 5 expresses that we can update a ghost fragment
a to an element b ∈ B if this update is frame-preserving (a B);

Syntax

a, P ::= · · · | a | a · a Σ ::= · · · | Monoid

Ghost resource axioms

a ∗ b ⇔ a · b True⇒ ε ⊥ ⇒ False

Ghost resource updates
FPUPD

a B

a V ∃b ∈ B. b
where a B is shorthand for

2∀af . a # af ⇒ ∃b ∈ B. b # af

Figure 5. Syntax and proof rules for ghost resources.

that is, if it preserves an arbitrary composable frame af :

a B , 2∀af . a # af ⇒ ∃b ∈ B. b # af

a b , a {b}

where a # af is notation for a · af 6= ⊥.
Note that the premise of rule FPUPD is merely a “fact”: it does

not express ownership of any state. To express such facts, the logic
features an always modality, written 2P , for asserting that P holds
and does not assert any ownership. Such assertions are called pure
and can be freely duplicated (i.e., we have 2P ⇒ 2P ∗ 2P and
2P ⇒ P). View shifts and Hoare triples are other examples of pure
assertions: the knowledge that a view shift or Hoare triple holds can
thus be freely duplicated.

3. Monoid constructions
The monoid representing ghost resources—together with the frame-
preserving update rules that it supports—can be seen as a way
of expressing a protocol on logical state: given ownership of a
particular monoid element, what does the owner know about the
global ghost state and how are they permitted to update it? In this
section, we present a number of useful monoid constructions (and
their attendant frame-preserving update rules), representing different
types of protocols. These protocols are not (yet) related to anything
else; they just exist on their own. We will see in §5 how to enforce a
protocol governing some other shared state.

The main novelty in this section is an encoding of State Tran-
sition Systems as a monoid. State Transistion Systems (STSs) pro-
vide a general and intuitive way of describing possible interference,
expressed as a directed graph. The nodes of the graph represent
possible ghost states, while edges describe how the ghost state may
evolve. In §3.7, we show how to internalize this way of describing
interference in Iris, through a general STS-as-monoid construction.

Recall that we represent PCMs as commutative monoids with
zero. When defining monoid carriers, we leave this zero element ⊥
implicit. Furthermore, we will not explicitly define the cases of the
composition function that involve ε or ⊥.

3.1 The exclusive monoid
The exclusive monoid over a set X supports two notions of owner-
ship: exclusive ownership of an element x ∈ X vs. no ownership.
The owner of an element x ∈ X thus has exact knowledge about
the state. Formally, EX(X) is the monoid with carrier X] {ε} and
composition only defined when one of the operands is ε.

This gives rise to the following frame-preserving update, which
captures the ownership intuition given above.

x a

Any non-trivial element of the monoid can be updated to any ele-
ment. In terms of separation-logic reasoning, the already described
physical assertions bςc behave like ghost assertions about an ex-

4

clusive monoid over physical states ς (see the axiom in Figure 4),
except that of course one cannot use view shifts to update them.

3.2 The fractional monoid
It is often desirable to share knowledge about some piece of ghost
state (e.g., between different threads). A simple way to do that would
be to reuse the carrier from EX(X), but let a · a = a. This captures
the right idea of knowledge, but gives up any notion of ownership:
since all elements are duplicable, no frame-preserving update is
possible. Instead, we would like a way to keep track of how much
the knowledge about ghost state has spread, so that, after gathering
it all up again, we can do a frame-preserving update.

This is achieved by the monoid FRAC(X) which has carrier(
(0, 1] ∩Q

)
×X] {ε} and composition

(q, x) · (q′, x′) , (q + q′, x) if q + q′ ≤ 1 and x = x′

With this monoid, we can do any frame-preserving update after
collecting all the pieces:

(1, x) a

3.3 The product monoid
Using a product construction, we can combine any family of
monoids (Mi)i∈I into a single monoid, while maintaining their
individual reasoning principles (i.e., frame-preserving updates).
We define the carrier of the product monoid

∏
i∈IMi to be the

product of the monoid carriers
∏
i∈I |Mi|+. Composition is defined

pointwise, if all of the constituent compositions are well defined
(otherwise it is ⊥).

We would like to operate on the ith component of this product
monoid just as we would act on the individual monoid Mi, and
indeed the following frame-preserving update rule holds.

a Mi B ` f [i 7→ a] {f [i 7→ b] | b ∈ B}

3.4 Finite partial functions
A very common monoid in separation logics is the heap, modeled as
a finite partial function from locations to values. We can obtain this
monoid from the product monoid, by adding just one new piece.

Given a countably infinite domain X and a monoid (codomain)
M , define FPFUN(X,M) to be the product monoid

∏
x∈XM , with

the additional restriction of the carrier to elements f where the set
dom(f) , {x | f(x) 6= εM} is finite. This is well defined, since
the set of these f contains the unit (which is the function mapping
everything to εM) and is closed under composition. You can think of
these f as finite partial functions to |M |+ \ {ε}, where the elements
outside their domains are mapped to ε.

Since the domain of f ∈ FPFUN(X,M) is finite, an additional
frame-preserving update becomes possible: a new element can be
allocated.

FPFUNALLOC

a ∈ |M |+ ` f {f [x 7→ a] | x /∈ dom(f)}
Note that x is bound by the set comprehension: in applying this
update, one cannot choose which x one gets.

Consider the monoid HEAP , FPFUN(Loc, EX(Val)), where
Loc is a set of locations. The carrier of this monoid consists of finite
partial functions from locations to values, and composition of h and
h′ is defined if all pointwise compositions are defined. From the
composition on EX(Val), it follows that this is the case iff dom(h)
and dom(h′) are disjoint. This is exactly the standard composition
of heaps in separation logic!

Now consider FHEAP(Loc) , FPFUN(Loc, FRAC(Val)). This
models a fractional heap, another commonly used monoid in sepa-
ration logics. It can be used as ghost heap. We define the syntactic
sugar x

q
↪→ w to mean [x 7→ (q, v)] if q ∈ (0, 1], and False other-

wise. Then we can show:

∀v. TrueV ∃x. x 1
↪→ v (1)

∀x, q1, q2, v, w. x
q1
↪→ v ∗ x

q2
↪→ w ⇔ x

q1+q2
↪→ v ∗ v = w (2)

∀x, q, v. x
q
↪→ v ⇒ x

q
↪→ v ∧ q ∈ (0, 1] (3)

∀x, v, w. x 1
↪→ v V x

1
↪→ w (4)

We can use (1) to allocate a new ghost heap cell. Knowledge about
the value and ownership of the location can be split and combined
using (2). This is useful, in particular, when combining two pieces
of a cell that were handed out earlier: one can learn that they point
to the same value. Rule (3) says that fractional assertions have well-
formed fractions. Having full ownership, the value in the ghost heap
can be updated using (4).

3.5 Named monoid instances and multiple monoids
In the previous section, we had to fix the global monoid to provide a
particular derived construction. We may, however, want to use two
different constructions in the same proof without requiring them
to share their monoid. It is also useful to be able to obtain a fresh
instance of a monoid at any time. As it turns out, all the tools we
need to mitigate this are already at hand. Given a family of monoids
(Mi)i∈I , we use a combination of the product and finite partial
function monoids to define a global monoid M as follows:

M ,
∏

i∈I
FPFUN(N,Mi)

The product construction allows us to use a different monoid for
independent parts of the proof, while the finite partial function
construction provides named instances of these monoids. For the
remainder of the article, we assume Iris has been instantiated with
the monoid M given above, constructed from a family of monoids
(Mi)i∈I , taken as a parameter.

We write a : Mi
γ

(or just a
γ

if Mi is clear from the context)
for [i 7→ [γ 7→ a]] when a ∈ |Mi|+, and for False when a = ⊥Mi .
The ghost resource a : Mi

γ
thus asserts ownership of a part a of the

instance named γ of monoid Mi in the current state. From the rules
for ghost resources (Figure 5) and the frame-preserving updates
in §3.3 and §3.4, we can derive the following rules for allocating,
updating, and combining named monoid ghost resources.

NEWGHOST

a ∈ |Mi|+

TrueV ∃γ. a : Mi
γ

GHOSTUPD
a Mi B

a : Mi
γ
V ∃b∈B. b : Mi

γ

GHOSTEQ

a : Mi
γ ∗ b : Mi

γ ⇔ a · b : Mi
γ

3.6 The authoritative monoid
A common pattern in concurrent reasoning is to put “someone”
in charge of owning the global, authoritative state of some ghost
resource, while “everyone else” owns fragments of that resource
together with the knowledge that their fragments are all contained
within the authoritative state.

We can capture this pattern with the monoid AUTH(M) where

|AUTH(M)|+ ,

{
(x, a)

∣∣∣∣∣ x ∈ |EX(|M |+)|+ ∧ a ∈ |M |+ ∧
(x = εEX(|M|+) ∨ a ≤M x)

}
So the monoid consists of pairs, where the right component behaves
just like M and the left component asserts exclusive ownership of a
(non-zero) element of M . We impose the additional restriction that
if an authoritative element is present, it must be an extension of the
current fragment (a ≤M x, which is shorthand for ∃b. a ·M b = x).
Composition is defined pointwise, and undefined if it is not in

5

the carrier—i.e., if the combined fragment exceeds the combined
authoritative element, or if two authoritative elements are present.
Note that (εEX(|M|+), εM) is the unit and asserts no ownership or
knowledge whatsoever, but (εM , εM) asserts that the authoritative
element is εM .

We write •x to assert full ownership (x, εM) and ◦ a to assert
fragmental ownership (εEX(|M|+), a). For consistency, we write
•x, ◦ a for (x, a).

The frame-preserving update for this monoid says that, if we own
the authoritative element and some fragment, then we can exchange
that fragment for anything that’s compatible with “the rest”:

AUTHUPD
M cancellative ∧ b # af ` (• a · af , ◦ a) (• b · af , ◦ b)

The rule requires that M be cancellative, which means

∀af , a, b. af · a = af · b 6= ⊥ ⇒ a = b

The monoids EX(X) and FRAC(X) are cancellative for any X , and
monoid products preserve cancellativity.

Building on an example from §3.4, consider AUTH(HEAP). This
monoid allows us to assert authoritative ownership of some complete
heap •h as well as fragmental ownership of, e.g., individual memory
locations as ◦ ` 7→ v. Since HEAP is cancellative, we obtain the
following frame-preserving updates.

AHEAPUPD
(•h · ` 7→ v, ◦ ` 7→ v) (•h · ` 7→ w, ◦ ` 7→ w)

AHEAPADD

` 6∈ dom(h) ` (•h) (•h · ` 7→ v, ◦ ` 7→ v)

Owning (•h, ◦ ` 7→ v), we can deduce that h = h′ · ` 7→ v for
some h′ by the definition of the carrier. Moreover, we can add a new
location ` to AUTH(HEAP) at any point we wish, provided we can
show that ` is not allocated in the current authoritative heap. This
contrasts sharply with the frame-preserving update FPFUNALLOC

for HEAP, where we can never be sure which location we get—we
just know it will be fresh.

3.7 STSs with tokens
In their logic CaReSL [34], Turon et al. show how to usefully
characterize the possible interference in a concurrent computation
using State Transition Systems (STSs) with tokens [35]. As suggested
in §1.1, these mechanisms serve to express irreversibility of state
change and the rights to make state changes. Concretely, an STS
comes equipped with a set of states and transitions between them,
as well as a set of tokens and a mapping from states to tokens. The
transition relation enforces irreversibility by restricting which states
are accessible from which other states. The tokens assigned to a
particular state are “owned” by the STS, and can be picked up by any
thread when transitioning to other states. Tokens must be conserved:
when taking transitions, the (disjoint) union of the tokens owned
locally and the tokens owned by the STS’s current state cannot
change. The tokens owned locally by a given thread thus serve to
limit the rights of other threads to make certain transitions.

As an example, consider the possible states of a remote procedure
call (RPC) between a client and a server. Initially, a call has been
sent, and it is the server’s turn to send back a reply. Only after that
has happened can the client receive the reply and terminate.

The corresponding STS is given in Figure 6. The second state,
Rx, contains the token SRV. This means that the token is owned by
the STS if we are at this state. To satisfy conservation of tokens,
a transition from Tx to Rx can only be performed by giving up
SRV. Owning SRV thus limits the possible interference from the
environment: nobody but the owner of SRV can make this transition.
Thus, saying we are at least in state Tx and we own token SRV
amounts to saying we are exactly in state Tx.

Tx
Rx

(SRV)
Done
(SRV)

Figure 6. STS for a remote procedure call.

(s, T)→ (s′, T ′) , s→ s′ ∧ T (s)] T = T (s′)] T ′

frm(s, T) , (s,TokSet \ (T (s)] T))

↑(S, T) ,
{
s′ ∈ S | ∃s ∈ S. frm(s, T)→∗ frm(s′, T)

}
|STSS | ,

(s, S, T)

∣∣∣∣∣∣∣
(s, S, T) ∈ EX(S)× P(S)× P(T) ∧
(s = ε ∨ s ∈ S) ∧ ↑(S, T) = S ∧
S 6= ∅ ∧ ∀s ∈ S. T (s) ∩ T = ∅

(s, S, T) · (s′, S′, T ′) , (s · s′, S ∩ S′, T] T ′)

(where composition is undefined if the result is not in |STSS |)

Figure 7. Monoid encoding of STSs.

The monoid STSS for an STS (S,→) with token set TokSet and
token assignment T : S → TokSet is defined in Figure 7. It has
three parts. First is the STS’s current authoritative state s. Ownership
and knowledge of this state can only ever be held by one party—
hence we use an exclusive monoid to represent it. Even if we do not
own the authoritative s, we can use the second part of the monoid,
S, to describe what we know about the set of possible states s could
be, e.g., that it is accessible from a certain state s0. Composition
on these sets is simply intersection, and knowledge about possible
states is freely duplicable (as S = S ∩ S). Finally, there is a set of
locally owned tokens T : since we own them locally, we know that
no other party owns them (composition is defined by]), and that
the protocol does not own them either (∀s ∈ S. T (s) ∩ T = ∅).

Regarding the second part of the monoid, not all possible sets
of states S are sensible. Every such set we define to exist will be
stable knowledge, meaning it cannot be invalidated by actions of the
environment. We thus restrict the set of possible states to be closed
under transitions by the environment, as formalized by the upward-
closure ↑ in Figure 7: ↑(S, T) = S. The figure also shows how to
lift the relation→ between states to a relation between state-token
pairs: (s, T)→ (s′, T ′) says that, owning the tokens in T , one can
move from s to s′ and end up with the tokens in T ′. In our RPC
STS, for example, we have (Tx, {SRV}) → (Rx, ∅). On the other
hand, (Tx, ∅) has no successor.

This definition gives rise to the following frame-preserving
update. Owning the authoritative state and some tokens, we can
make any transition that is justified by the tokens we own:

STSUPD
(s, T)→∗ (s′, T ′)

(s, S, T) (s′, ↑({s′}, T ′), T ′)

Note how we use ↑ to stabilize knowledge—having transitioned to
s′, we know that we are at least in s′.

While encoding STSs as monoids is interesting, we can only
unleash its true power—recovering CaReSL’s workhorse, the “island
update” rule—once we have a way of enforcing STSs as protocols
over the evolution of some shared state. For that, we need invariants.

4. Iris – Part II: Invariants
So far, Iris only supports reasoning about state that is owned by
one thread or another. There is no mechanism yet for sharing state
between threads. To support such sharing, we extend the logic now

6

with invariants. Given a proposition P , the assertion P
ι

asserts the
existence of a shared invariant named ι, which governs resources
satisfying P . Since invariant assertions just assert the existence
of a shared invariant, they are pure and thus freely duplicable:
P
ι ⇔ 2P

ι
.

To access the shared resource they govern, invariants can be
opened for the duration of a physically atomic expression. Opening
an invariant grants temporary ownership of the shared resource.
Once the invariant is reestablished (possibly after resources have
been transferred in or out), it can be closed again. The following
INV rule (which will turn out to be derivable from other rules) grants
e ownership of shared resource R for the duration of its execution.

INV
{.R ∗ P } e {v. .R ∗Q}E e phys. atomic

R
ι ` {P } e {v. Q}E]{ι}

For now, ignore the later modality ., we will come back to it later.
The rule (read backwards) says that, if you know that an invariant
R with name ι exists, you can add its resources to the precondition.
The verification of e can then freely use those resources as it wishes,
but it must give back control of some resources satisfying R when
it is done.

Masks. To ensure that each invariant is opened at most once, we
annotate Hoare triples with an invariant mask. For the Hoare triple
{P} e {v. Q}E we can assume the invariants in E hold prior to the
execution and must reestablish them after each single physical step.
We say that the invariants in E are enabled, which means that they
hold on some portion of the shared (physical and logical) state. Here
E is a term of type InvMask—the type of invariant masks, which
are simply sets of invariant names.

Mask-changing view shifts. It is helpful to think about the INV

rule as combining three separate steps of reasoning. First, note
that, in the conclusion, ι is enabled, which means that it can be
opened (disabled), and the resource satisfying .R can be transferred
from shared control to the local control of e. Second, this resource,
together with P , is used to reason about e, which reestablishes
.R and some additional Q under the assumption that ι is disabled.
Third, the invariant is closed (reenabled), which returns the resource
satisfying .R to shared control and restores the original invariant
mask. For reasons that will become clear in §7, we find it useful to
be able to reason about the opening and closing steps of this rule
independently of the reasoning about e that goes on in between.
Consequently, instead of taking INV as primitive, Iris employs a
novel notion of view shifts that can open or close invariants.

This is achieved by annotating view shifts with two sets of
invariants: those that are enabled before and after the update. The
view shift P E1VE2 Q expresses that it is possible to update the
local state from P to Q without updating the physical state, where
only the invariants in E1 and E2 are required to hold before and after
the update, respectively. We write P VE Q as syntactic sugar for
P EVE Q. The INVOPEN and INVCLOSE rules in Figure 8 express
invariant opening and closing as mask-changing view shifts.

The rule of atomic consequence (ACSQ in Figure 9) allows us
to open invariants E ′ for the duration of an expression e, provided
we close them again afterwards. This rule can be composed with
INVOPEN and INVCLOSE to obtain INV as a derived rule.

Note that ACSQ can only be sound for physically atomic expres-
sions: After doing one step in e, another thread may be next to
compute, and it may rely on invariants in E ′. We will see in §7 how
to give specifications for functions that are not physically atomic,
while still allowing opening invariants. Our more general notion of
mask-changing view shifts will prove to be very helpful there.

View shift rules. View shifts permit a frame rule VSFRAME similar
to the usual frame rule for Hoare triples. However, this rule serves

Syntax

P, ι, E ::= · · · | P ι | .P Σ ::= · · · | Name | InvMask

Proof rules
NEWINV

infinite(E) ` .P VE ∃ι ∈ E . P
ι

INVOPEN

P
ι ` True {ι}V∅ .P

INVCLOSE

P
ι ` .P ∅V{ι} True

Figure 8. Syntax and proof rules for invariants.

VSTRANS
E2 ⊆ E1 ∪ E3

P E1VE2 Q Q E2VE3 R

P E1VE3 R

VSFRAME

P E1VE2 Q

P ∗R E1]E
′
VE2]E

′
Q ∗R

VSTIMELESS
timeless(P)

.P V P

ACSQ

P E]E
′
VE P ′ {P ′} e {v. Q′}E

∀v. Q′ EVE]E
′
Q e phys. atomic

{P } e {v. Q}E]E′

Figure 9. Most important view shift rules (cf. our appendix [1]).

not only to frame resources around a view shift. It can also be used
to frame invariants: if some invariant ι not covered by either mask of
the view shift is known to be enabled, it remains so when the view
shift is applied. Hence, view shifts may only affect invariants that
they explicitly name in one of their masks. The same kind of framing
is possible for Hoare triples; we refer the reader to the appendix [1]
for the full set of rules.

The view shift transitivity rule VSTRANS allows two view shifts
to be combined, provided they agree on the invariants that are
enabled between the two view shifts and that those invariants are
not forgotten in the conclusion (E2 ⊆ E1 ∪ E3). This side condition
is necessary to ensure soundness of the VSFRAME rule.

New invariants are created by transferring local resources satis-
fying the invariant to the shared state. As this involves a relabeling
of resources (from “local” to “shared”) but not any actual change to
physical state, it can be expressed as a view shift. The NEWINV rule
in Figure 8 allocates an invariant with a name ι, chosen from a set
of possible names E . We require E to be infinite to make sure that
there is some invariant name in there that is not taken already. And
since we can pick the infinite set, we can reason that the different
invariants we create have different names (by creating them with
applications of NEWINV with disjoint E’s). Disjointness of invariant
names is important if we wish to apply INV in nested fashion, since
we will have to prove that each invariant is opened at most once.

Later modality. Since any Iris assertion can serve as an invariant,
one can define invariants that refer to other invariants or even
themselves. This impredicativity introduces a potential circularity.
Following iCAP [33] and CaReSL [34], we use step-indexing to
break this circularity, and internalize the notion of steps using a later
modality. The assertion .P expresses that P holds one step later. To
ensure that invariants are well defined, the shared resource backing
up P

ι
need only satisfy .P . Thus, opening an invariant (INVOPEN)

grants ownership of the shared resource one step later. Conversely,
to close an invariant (INVCLOSE), it suffices to reestablish the shared
resource one step later. If a resource P holds now, it also holds later:
P ⇒ .P .

With timeless propositions, things are simpler. Timeless propo-
sitions are not affected by ., as expressed in rule VSTIMELESS.
Examples of such propositions include physical state assertions and
ghost assertions. Timelessness matters primarily when reasoning

7

about propositions appearing in invariants: if an invariant is timeless,
we can immediately view shift from P

ι
to P by opening the invari-

ant to obtain .P , then applying VSTIMELESS. The formal definition
of timelessness can be found in the appendix [1].

5. Invariant constructions
In combination with invariants, the monoid constructions presented
in §3 let us encode powerful patterns for local reasoning about
protocols on shared resources, including several that were developed
in previous work [34, 33, 8]. To achieve this, an abstract protocol
(as defined by a monoid) is tied to an interpretation of what the
protocol is intended to guarantee about some shared resources, and
the desired connection between the two is enforced with an invariant.
It is then possible to derive Hoare triples for expressions that update
the shared resources in accordance with the protocol.

5.1 STSs with interpretation
The whole point of the encoding of STSs from §3.7 was to be able
to define protocols capable of governing some shared resource (e.g.,
the pointer structure implementing some concurrent mutable ADT,
although in general the shared resource need not be physical). To
support this functionality, we begin by extending the STSs from §3.7
with an interpretation ϕ(s) for each state s, which will say what
property should hold of the underlying shared resource when the
current (i.e., authoritative) state of the STS is s.

Let the STS (S,→), interpretation function ϕ : S → Prop, and
instance name γ be given. We then define the following invariant:

STSInv(S, ϕ, γ) , ∃s. (s,S, ∅) : STSS
γ ∗ ϕ(s)

By creating this invariant, we enforce that the current authoritative
state s of the STS instance γ is a shared resource, as is whatever
shared resource backs up its interpretation ϕ(s), which is the state
that multiple threads want to access concurrently.

Returning to the RPC example from §3.7, let us assume knowl-
edge of an STS invariant governing an instance γ of the RPC STS
in Figure 6. Suppose we own resources P and the STS resource
(Rx, ∅) γ and want to transition the STS to state Done and estab-
lish Q. Our ghost resource represents knowledge that the STS is
at least in state Rx (and ownership of no tokens). When we open
the invariant, we learn the authoritative state, s ∈ {Rx,Done}, and
take ownership of .ϕ(s). (The knowledge we started with ensures
s 6= Tx.) Since we want to transition to Done, our primary proof
obligation is to show that, no matter what s is, we can update the
resources on hand, P ∗.ϕ(s), to .ϕ(Done)∗Q. Having proven that,
we can then close the invariant and walk away with (Done, ∅) γ ∗Q.
(The ghost represents our updated knowledge about the STS.)

This general reasoning pattern is reflected in the derived rule STS

in Figure 10. If we ignore the tokens (for simplicity), the rule says:
if we know the STS instance γ is at least in state s0 and want to
update the STS, then it suffices to show that for any future state s
of s0 we can, adding .ϕ(s) to our precondition, establish .ϕ(s′) in
our postcondition (for some future state s′ of s).

The rule matches exactly CaReSL’s island update rule [34]. As
with INV from the previous section, it is derived using ACSQ, and
the proof follows the same decomposition: open invariant, reason
with additional resources, close invariant. The only difference is
an additional frame-preserving update using STSUPD right before
closing the invariant.

5.2 Authoritative monoids with interpretation
In this section, we implement the second layer of our stack (Figure 1)
using reasoning principles similar to those Krishnaswami et al. de-
veloped for “superficially substructural types” [22]. We derive these

principles by marrying an interpretation to the monoid AUTH(M),
much as we did for the monoid STSS in §5.1.

Consider the Hoare triples we obtained in Figure 3 to reason
about language primitives. They all carry in their precondition a
physical assertion, bςc, about the global machine state, which can
only ever be held by a single party. These are called large-footprint
specifications, as opposed to the small-footprint specifications given
in Figure 11, which only mention the channel they operate on [31].
We aim to derive these small-footprint specs. We will achieve this
by putting ownership of the entire physical state into an invariant, so
that it is shared by everybody. The invariant ties this physical state to
a ghost resource so that fragments of the ghost resource (which can
be split up among different threads) effectively control fragments of
the physical state.

We can model the state of a network using the monoid NET ,
FPFUN(Chan, EX(Bag)). This gives us an adequate level of shar-
ing: we can make assertions about individual channels, without
mentioning all the others. Next, we define the interpretation ϕ :
|NET|+ → Prop that we wish to hold for the authoritative state of
this monoid, i.e., the composition of all fragments:

ϕ(C) , bCc
(Here, we implicitly coerce between the finite partial functions in
|NET|+, and the ones comprising the possible physical states).

To tie the two together, we use an instance γ of AUTH(NET) and
the following invariant.

ChanInv , ∃C. •C : AUTH(NET)
γ ∗ ϕ⊥(C)

We extend ϕ to ϕ⊥ : |NET| → Prop by setting ϕ⊥(⊥) = False.
Now assume that we own ◦ c 7→M

γ
(which we will write

c � M), and consider what we obtain upon opening the invariant
ChanInv. While we cannot know which C witnesses the existential,
we know from the definition of AUTH(NET) that c 7→ M ≤ C,
and thus C(c) = M . With our temporary ownership of the shared
physical state bCc, we can justify operating on our channel c. All
of this follows just from owning c �M , which is a purely logical
assertion that has nothing to do per se with the physical state—it
is the invariant which lets us decide how we want to tie the two
together. After the operation on c, we make us of the fact that we
own both the authoritative state and the fragment governing c, so
we know nobody else can hold any knowledge about this channel.
Hence we can do a frame-preserving update synchronizing the ghost
state with the new physical state, and closing the invariant.

In general, we may want to give an interpretation ϕ : |M |+ →
Prop to every (non-zero) element of some cancellative monoid M .
We can do so with the invariant

AuthInv(M,ϕ, γ) , ∃c. • c : AUTH(M)
γ ∗ ϕ⊥(c)

The reasoning pattern enabled by this construction is codified by
rule AUTH in Figure 10.

The rule says that if we know an invariant tying the authoritative
part of γ to ϕ, and if we own the fragment a in γ, then we can gain
access to the interpretation ϕ⊥(a · af) of the current authoritative
state (where af is everything owned by the environment). If, using
the resources of the interpretation together with the P that we carried
in, we can establish ϕ⊥(b · af) (which implies b # af) together
with Q, then we are allowed to carry out whatever was left in Q,
and update our ghost fragment to b. Like STS, this rule combines
opening and closing an invariant with a frame-preserving update
(except here the update uses AUTHUPD rather than STSUPD).

The triples given in Figure 11 are derived using AUTH. The mask
Echan will contain the name of the invariant governing ChanInv.
Note that we make crucial use of the VSTIMELESS rule here: After
opening the invariant, we actually obtain .bCc. But physical state
assertions are timeless, so we can immediately view shift that to

8

STS
∀s ∈ ↑({s0}, T). {.ϕ(s) ∗ P } e {v. ∃s′, T ′. (s, T)→∗ (s′, T ′) ∗ .ϕ(s′) ∗Q}E e phys. atomic

STSInv(S, ϕ, γ)
ι ` { (s0, T)

γ ∗ P } e {v. ∃s′, T ′. (s′, T ′)
γ
∗Q}E]{ι}

INV
{.R ∗ P } e {v. .R ∗Q}E e phys. atomic

R
ι ` {P } e {v. Q}E]{ι}

AUTH
e phys. atomic M cancellative

∀af . {.ϕ⊥(a · af) ∗ P } e {v. ∃b. .ϕ⊥(b · af) ∗Q}E
AuthInv(M,ϕ, γ)

ι ` {a γ ∗ P } e {v. ∃b. b γ ∗Q}E]{ι}
Figure 10. Derived rules to reason about shared state.

{True} newch {c. c � ∅}

{c �M} send(c,m) {v. v = () ∧ c �M] {m}}Echan
{c �M} tryrecv c

{v. (M = ∅ ∧ v = None ∧ c � ∅) ∨
(∃m. m ∈M ∧ v = Some(m) ∧ c �M \ {m})}Echan

Figure 11. Derived rules for language primitives (see Figure 3 for
the basic rules).

bCc and not bother with the .. Furthermore, we obtain a single
unified description of tryrecv by case distinction on M .

This pattern turns out to be very expressive. It is applicable
whenever it is necessary to collect some state in a central place,
and useful to spread ownership and knowledge about parts of this
state. For example, in a heap-manipulating language, this pattern
easily scales to provide fractional permissions. Also note that AUTH

corresponds closely to Krishnaswami et al.’s “sharing rule” [22].
This is yet another example of Iris’s ability to derive powerful
reasoning principles that are built fixed into prior logics.

6. Semantics
The semantics of Iris is defined in the accompanying technical
appendix and formalized in the accompanying Coq development [1].
In this section we give a very brief overview of the model.

To model invariants, assertions in Iris are modeled relative
to a world that describes the invariants allocated so far. Since
invariants are themselves expressed as assertions, this introduces
a circularity in the modeling of assertions and worlds. This is the
standard type-world circularity that also arises in models of type
systems with dynamic allocation and higher-order store [3]. We
use standard metric-based techniques to solve the circularity [4, 6]
and, in particular, Sieczkowski et al.’s library [32] for solving such
circularities in Coq. Crucially, the construction of the semantic
domain of assertions—which allows us to model invariants—is
parametric in the ghost state monoid. Invariants and monoids are
thus also orthogonal semantically.

Iris’s adequacy theorem expresses that if {bςc} e {v. ϕ(v)} is
derivable and e executes to a value v when started in physical state ς ,
then v satisfies ϕ. Here, ϕ(v) is a pure predicate, i.e., it describes a
property of v and cannot mention resources or invariants. Formally:

Theorem 1 (Adequacy).
If ` {bςc} e {v. ϕ(v)} and ς; [i 7→ e]→∗ ς ′; [i 7→ v]] T ′,
then ϕ(v).

The T ′ in the final state permits e to fork off other threads.
Soundness of the underlying higher-order separation logic, the

rules in Figures 4, 5, 8, and 9, and the adequacy theorem have all
been proven in Coq [1].

{True} newch {c. c � ∅}

〈M. c �M〉 send(c,m) 〈v. c �M] {m} ∧ v = ()〉Echan

〈M. c �M〉 recv c 〈m. c �M \ {m} ∧m ∈M〉Echan

where
recv , rec recv(c).

let v = tryrecv c in

case v of None⇒ recv c | Some(m)⇒ m

Figure 12. Logically atomic spec for channels with blocking recv.

7. Logical atomicity
How can triples like the ones in Figure 11 be used? Of course, one
could just use them as normal Hoare triples, and establish c �M
before calling them. This, however, would effectively sequentialize
access to the channel: every caller would have to prove that they
exclusively own the channel in order to access it.

Moreover, we often want several threads to be able to “race” for
access to the resource. For example, consider the case where there
is an invariant ιeven governing the channel, making sure it only ever
contains even numbers:

∃M. c �M ∧ ∀m ∈M. m ∈ N ∧m is even
ιeven

Since send is a physically atomic operation, we can use INV to gain
access to the channel. We can open the invariant around the call to
send, atomically observing the current state of the channel. If we
are sending an even number, we can reestablish the invariant after
send is done, and close it again. This is sound because no other
thread can interfere with the physically atomic call to send. In this
case, we say that we have a physically atomic triple for send.

Now consider the blocking implementation of recv defined in
Figure 12. We would like to do the same kind of reasoning, e.g.,
to verify that recv c always returns an even number. But recv is
not physically atomic, so INV does not apply. However, intuitively,
recv behaves as if it were atomic: there is a single point in time
(often called the linearization point) where the receiving action is
(logically) committed, namely the instant when tryrecv succeeds.
We ought to be able to exploit this, and call recv based on the channel
assertion that is governed by ιeven—but if we only have a normal
Hoare triple for recv, there is no way to do this. Our goal is thus to
find a notion of a logically atomic triple that admits the reasoning
principles given in Figure 10, but is applicable to functions like recv.

Now, note that all of our reasoning principles in Figure 10
were derived using ACSQ, which lets us compose physically atomic
triples with view shifts that open and close invariants, whereas the
corresponding rule for general expressions, CSQ, works only for
view shifts with the same set of invariants enabled on both sides. It
is thus justified to say that ACSQ logically captures the essence of
what it means to be atomic. Hence, logically atomic triples should
support the same kind of reasoning, and we will use this insight in
determining how to define them.

9

7.1 Logically atomic triples
In order to motivate the definition of logical atomic specifications,
it is helpful to consider the needs of both a client using such a
specification, and a module proving it.

Client perspective. What would it mean for recv to support a
reasoning principle like ACSQ? Well, for example, we would like to
have the following instantiation of ACSQ:

{c �M} recv c {m. c �M \ {m} ∧m ∈M}Echan
P Echan]E

′
VEchan c �M

∀m. c �M \ {m} ∧m ∈M EchanVEchan]E
′
Q(m)

{P } recv c {m. Q(m)}Echan]E′

(5)

As a client of the module implementing recv , we would expect that
module to prove the first premise. We would then give proofs for
the two view shifts, and obtain the conclusion.

Now, recv is not physically atomic, so (5) is not sound. However,
we can transform (5) into the “elimination form” of its first premise,
i.e., into the statement that ACSQ can be applied to recv:

∀P,Q, E ′,M. (P Echan]E
′
VEchan c �M) ∧

(∀m. c �M \ {m} ∧m ∈M EchanVEchan]E
′
Q(m))

⇒ {P } recv c {v. Q(v)}Echan]E′

(6)

If this is the interface provided by the module, then we as client
can do exactly the reasoning that (5) would allow us to do! The
key observation is that such a statement can be made about any
operation, be it physically atomic or not.

There are still some problems, though. Suppose we want to call
recv on the channel c governed by the invariant ιeven. To do this, we
have to choose some M and then prove that we can view shift from
P to c �M . However, we only learn the current M after opening
the invariant (inside the proof of the the view shift), so we have no
way to fix it a priori! Furthermore, we cannot prove the second view
shift: at that point, we have forgotten that all messages in M are
even numbers, so we cannot reestablish the invariant.

To solve this, we introduce a special treatment for M such that it
only has to be fixed after opening the invariant. We will also bake in
an application of FRAME, similar to how ACSQ was baked into (6).
This leads us to the following:

∀P,Q,R, E ′. (P Echan]E
′
VEchan ∃M. c �M ∗R(M)) ∧(

∀M,m. c �M\{m} ∧m ∈M ∗R(M)

EchanVEchan]E
′
Q(M,m)

)
⇒ {P } recv c {m. ∃M. Q(M,m)}Echan]E′

(7)

This is strong enough to be useful in our example. We choose:

P , True Q(,m) , m ∈ N ∧m is even E ′ , {ιeven}

R(M) , ∀m ∈M. m ∈ N ∧m is even

The view shifts are then easy to show. Applying (7), this yields the
desired triple, stating that recv c always returns an even number:

{True} recv c {m. m ∈ N ∧m is even}Echan]{ιeven}
Note how our ability to prove the postcondition (that m is even)
relies crucially on the fact that the frame R can depend on M .

Module perspective. Let us now switch roles, and consider the
case of a module that wants to provide a specification like (7).
This means we get to assume some arbitrary P , Q, R, E ′ and the
associated view shifts, and we have to prove an (ordinary) Hoare
triple. Unlike in the normal case of proving a triple, we do not have
access to the resource c �M that we operate on. Instead, we own

〈x. α〉 e 〈v. β〉EME , EM # E ∧

2

∀P,Q,R, ER.〈x. P WV α | R(x), ER | v. β V Q(x, v)〉EME
⇒ {P } e {v. ∃x. Q(x, v)}>

〈x. P WV α | R, ER | v. β V Q〉EME ,

timeless(P) ∧ ER # E ∪ EM ∧

(P −EMWV−EM−ER ∃x. α ∗R) ∧

(∀x, v. β ∗R −EM−ERV−EM Q)

Figure 13. Definition of logically atomic triples and atomic shifts.

some P , about which we only know that we can view shift to the
desired resource. How can that be enough?

The key is this: at the “linearization point” (as explained above,
the single step of execution where the operation “commits”), we
will make use of the view shifts we have been given, together with
rule ACSQ, to grant us temporary access to c �M for that one step.
Formally, at the linearization point, we will use the view shift from
P to c�M , which may open some islands E ′—hence, we call it the
opening view shift. After operating on the resource, the only way
to complete the proof is to use a corresponding closing view shift,
of which we have only one, to view shift the updated resource back
to Q. Since this marks the point in time where the atomic action
commits, we also call this the committing view shift. Note that since
we do not know anything about R, we have no choice but to use the
same M with Q that we originally got from the opening view shift.

Sometimes, however, one has to deal with an operation that could
be the linearization point, but it is not known up front (i.e., until
reasoning about the postcondition) whether that will be the case.
For this reason, it is necessary to be able to abort an atomic update.
For example, recv internally uses tryrecv, which has two possible
outcomes: either a message was received, in which case we can
commit and are done, or the channel was empty, in which case we
loop again. Thus, in the proof, we would be stuck if the only closing
view shift we had at our disposal was the committing one. Hence we
extend (7) to assume an additional aborting view shift (as another
closing view shift), which lets us go back to P if the commit did not
happen. We arrive at the following, general pattern:

∀P,Q,R, E ′. (P E]E
′
WVE ∃x. α(x) ∗R(x)) ∧

(∀x, v. β(x, v) ∗R(x) EVE]E
′
Q(x, v))

⇒ {P } e {v. ∃x. Q(x, v)}E]E′

(8)

Leaving aside the generalization of the predicates, the only differ-
ence from (7) is that the first view shift is now bidirectional.

Formal definition. We define logically atomic triples in Figure 13.
Note that x is free in α, R, β and Q, while v is free in β and Q, and
also note that E1 # E2 denotes disjointness of invariant masks. The
definition differs from (8) only in a few technical details.

First of all, we collect the antecedent of the implication (8) into
its own syntactic sugar, which we call an atomic shift. An atomic
triple is, roughly, an implication from an atomic shift to a normal
Hoare triple that ties the pre- and postconditions of the triple and
the shift together. We give this Hoare triple a fixed mask, >. Since e
will generally not be physically atomic, ACSQ cannot be applied, so
a smaller mask would be of no use to a client.

The definition mentions three masks: E , EM , and ER. What are
they? Well, it turns out that rather than talking about the invariants
that the client may rely on being enabled (that would be E] E ′
in (8)), it is often more convenient to talk about those invariants the
client may not rely on. (In Figure 13, we write −E to denote >\ E .)

10

LAATOMIC
e phys. atomic

∀x. {α} e {v. β}EM
〈x. α〉 e 〈v. β〉EM

LAHOARE

〈x. α〉 e 〈v. β〉EME ∀x. timeless(α)

∀x. {α} e {v. β}>

LAFRAME

〈x. α〉 e 〈v. β〉EME E ′ # EM
〈x. α ∗ P 〉 e 〈v. β ∗ P 〉EME]E′

LAEXIST

〈x, y. α〉 e 〈v. β〉EME
〈x. ∃y. α〉 e 〈v. β〉EME

LACSQ

∀x. α E]E
′
WVE α′ 〈x. α′〉 e 〈v. β′〉EME ∀x, v. β′ EVE]E

′
β E ′ # EM

〈x. α〉 e 〈v. β〉EME]E′

LAINV

〈x. .R ∗ α〉 e 〈v. .R ∗ β〉EME ι 6∈ EM
R
ι ` 〈x. α〉 e 〈v. β〉EME]{ι}

LASTS

〈x, s. s ∈ ↑({s0}, T) ∗ .ϕ(s) ∗ α〉 e 〈v. ∃s′, T ′. (s, T)→∗ (s′, T ′) ∗ .ϕ(s′) ∗ β〉EME ι 6∈ EM

STSInv(S, ϕ, γ)
ι ` 〈x. (s0, T) : STSS

γ ∗ α〉 e 〈v. ∃s′, T ′. (s′, T ′) : STSS
γ
∗ β〉EME]{ι}

Figure 14. Selected proof rules for logically atomic triples.

Context: 〈M. P WV c �M | R, ER |
m. c �M \ {m} ∧m ∈M V Q(M,m)〉

Echan

∅

{P}>

L
A

H
O

A
R

E

〈P 〉−Echan

O
pe

n
E R

〈c �M ∗R(M)〉−Echan,ER
let v = tryrecv c in

〈(c � ∅ ∧ v = None ∧M = ∅ ∨
∃m. c �M \ {m} ∧m ∈M ∧
v = Some(m)

)
∗R(M)

〉
−Echan,ER

〈P ∗ v = None ∨
∃M,m. Q(M,m) ∗ v = Some(m)〉−Echan

{P ∗ v = None ∨ ∃M,m. Q(M,m) ∗ v = Some(m)}>
case v of None⇒ {P}> recv c {m. ∃M. Q(M,m)}>
| Some(m)⇒ {∃M, v. Q(M,m)}> m {m. ∃M. Q(M,m)}>

Figure 15. Proof outline for recv.

The first two masks describe invariants that the module knows
and cares about. We call EM the module mask: these are the
invariants the module wants to be able to open up before calling
client view shifts, so it is essential that the client not depend on
these invariants at all. We call E the shared mask: these are the
invariants that both the module and the client may depend on, and
that therefore the client may not disable in its atomic shift. Both of
these masks show up in logically atomic triples themselves.

The third mask, ER, we call the client mask. This is a set of
invariants that the client depends on and disables in its atomic shift.
The module does not know or care about these invariants, and thus
the client can choose ER arbitrarily, so long as it is disjoint from the
first two masks.

The atomic shift imposes a (somewhat odd) restriction that P
must be timeless, the reason for which is as follows. It is necessary,
when opening an invariant, to surround it with the . modality (see
INVOPEN). But with logically atomic triples, it is often the case that
invariants are opened in a nested fashion, i.e., the caller opens an
invariant “around” the triple (using LAINV, Figure 14), and the
module itself opens another invariant at the linearization point.
Ultimately, however, this all happens in an application of ACSQ

around a single, physical step of the underlying language. So there
is just one physical step available to strip off a single .. This issue is
solved by making P timeless, which means we can use VSTIMELESS

to deal with the .. In practice, this is not a serious restriction: The
assertions we use are typically either timeless (like ghost resources)

or pure (like invariant assertions). It is thus possible to move the
pure assertions into the context (which means we can make them
available anywhere), and to put the (timeless) resources into P .

Finally, note that atomic shifts and atomic triples (like view shifts
and Hoare triples) are pure facts and can therefore be duplicated.

Derived rules. These definitions support the derived rules given
in Figure 14. Most important is the rule of consequence (LACSQ),
which (like the original ACSQ) may be applied to view shifts that
change masks. But with LACSQ, we can open invariants around
expressions like recv that are not physically atomic! In other words,
for any expression satisfying a logically atomic specification, we
can apply well-established reasoning patterns (e.g., LAINV, LASTS)
that, in most logics, work only for physically atomic expressions.

LAATOMIC shows that any physically atomic triple is also logi-
cally atomic. The rule LAEXIST permits us to bind a variable in the
atomic shift. Unlike in the standard existential rule for Hoare triples
(cf. our appendix [1]), it would be unsound here to move y all the
way out of the triple to a universal quantifier. Finally, LAHOARE can
be used to convert logically atomic triples to normal ones. This is
where the timeless restriction rears its (only slightly ugly) head.

7.2 Proof of blocking receive
As an example of working with logically atomic specifications, we
are going to derive the already mentioned specification for recv:

∀c. 〈M. c �M〉 recv c 〈m. c �M \ {m} ∧m ∈M〉Echan (9)

First, we unfold the syntactic sugar for atomic triples. We thus
get to assume some P , Q, R, ER such that the atomic shift shown
at the top of Figure 15 holds.

The most important step of the proof (outlined in Figure 15) is
to establish the following triple:

〈P 〉 tryrecv c

〈v. P ∗ v = None ∨
∃M,m. Q(M,m) ∗ v = Some(m)〉

Echan

−Echan

(10)

Intuitively, tryrecv either returns some message and completes the
update (yielding Q), or it returns None and maintains P .

Once we have shown this, we can use LAHOARE to obtain a
normal Hoare triple, and complete the proof with standard reasoning.

To show (10), we will have to use the atomic shift. It is clear what
to do in the precondition: we are going to open the invariants ER
with the opening view shift, obtaining c �M . For the postcondition,
we are going to use the committing view shift in case tryrecv
succeeded, and the aborting view shift otherwise. Hence we have to

11

show:
〈∃M. c �M ∗R(M)〉 tryrecv c

〈v. c � ∅ ∗R(∅) ∗ v = None ∨
∃M,m. c �M \ {m} ∧m ∈M ∗
R(M) ∗ v = Some(m)

〉
Echan

−Echan,ER

(11)

Now we can apply LAEXIST to bind the M , followed by LACSQ

(but without changing masks) to make use of this bound variable in
the postcondition.

〈M. c �M ∗R(M)〉 tryrecv c

〈v. (c � ∅ ∧ v = None ∧M = ∅ ∨
∃m. c �M \ {m} ∧m ∈M ∧
v = Some(m)

)
∗R(M)

〉
Echan

−Echan,ER

(12)

Note that after framing R(M) with LAFRAME, this is exactly a
logically atomic version of the spec for tryrecv given in Figure 11.
We are thus just a single application of LAATOMIC away from
completing the proof. This also shows that our construction only
requires a logically atomic spec for tryrecv—it does not depend on
tryrecv being physically atomic.

Together with the triples for send and newch in Figure 11 and
an application of LAATOMIC, this completes the proof of the channel
specification from Figure 12. With this example, we have illustrated
(1) how to prove a logically atomic specification for recv, and (2)
how the logically atomic specification of tryrecv supports reasoning
principles normally reserved for physically atomic expressions.

8. Putting logical atomicity to work
Now that we have proven a logically atomic spec for recv, we are
in a position to state and prove a logically atomic spec for mutable
references, using the well-known encoding [26] in Figure 16.

The idea behind this encoding is to represent a reference as a
channel, on which a background “server” process listens for requests.
Allocating a reference (ref e) involves allocating a fresh channel r
(which represents the reference) and forking off a server process
(srv r e). This server process will listen for messages from client
processes that send it Get, Set, and Cas requests on r in order
to perform reads and writes on the reference. Each such request
includes a freshly generated reply channel d, along which the server
sends the result of the requested operation.

By analogy with ML-style modules, we wish to show that this
encoding is a “functor”:2 If enewch, esend, and erecv satisfy a logically
atomic spec for channels, then ref, !, :=, and cas satisfy such a spec
for references.

In Figures 17 and 18, we define predicates ϕchan and ϕref to
represent the “signatures” of channels and references, in which
the specific masks, expressions, and abstract predicates (that a
particular implementation would define) are held abstract. The
concrete predicate � in Figure 12 satisfies these properties: we
can implement ϕchan. Note that we require the abstract predicates to
be timeless so they can be used with LAHOARE.

In our appendix [1], we verify references as channels by proving

∀Echan, Eref, enewch, esend, erecv.
ϕchan(Echan, enewch, esend, erecv) ∧
Echan ⊆ Eref ∧ infinite(Eref \ Echan)
VEref ϕref(Eref, ref, !, :=, cas)

(13)

2 To our knowledge, the correctness of this encoding has not been specified
and proven in this modular style before. Prior work [38] has shown that an
entire language with references can be faithfully translated into π-calculus.

Let expressions enewch, esend, and erecv be given. Define

ref e , let r = enewch in fork srv r e; r

!e , rpc e Get

e := e′ , rpc e Set(e′)

cas(e, e1, e2) , rpc e Cas(e1, e2)

where

rpc , λr. λm.

let d = enewch in

esend(r, (d,m)); erecv d

srv , λr. rec loop(v).

let (d,m) = erecv r in

let reply = λm′. λv′. (esend(d,m
′); loop v′) in

casem of

Get⇒ reply v v

| Set(w)⇒ reply () w

| Cas(v1, v2)⇒ let b = (v = v1) in

let v′ = if b then v2 else v in

reply b v′

Figure 16. Implementing references as channels.

Since the reference operations use the channel interface, we require
that all invariants needed by the channel operations are available
in Eref. Furthermore, the reference module allocates an invariant
in order to enforce a protocol on the ghost state underlying the
abstract points-to predicate. Thus there need to be infinitely many
invariant names it can use for its own purposes (Eref\Echan) to satisfy
NEWINV. This is also the reason that (13) is a view shift rather than
an implication. Note that we can completely abstract away from
how the channel operations treat their invariant names, just as users
of ϕref do not have to care about the fact that some of the invariants
in Eref actually belong to the channel module. This shows that, with
some small effort, proper abstraction is possible in Iris despite our
use of global invariant masks at view shifts and Hoare triples.

In our proof of (13), the server thread for a reference is the one
that actually commits all operations on it by performing logical
updates on behalf of client requests. Hence, a client thread must
transfer its atomic shift and precondition P to the server, which it
does using the invariant of the reference module. (This transfer is
made possible by the fact that invariants in Iris are impredicative, as
explained at the end of §4.) The server can then apply the client’s
opening and committing view shift, sending Q back to the client.
This is a particularly simple example of helping [35, 33], a common
phenomenon in fine-grained concurrent algorithms.

To make the proof work out, we had to change the code in
Figure 16 slightly: at some places, we introduced skip to be able to
strip off a .. Since INVOPEN adds a . to the invariant, this means
we have to take a physical step if (1) the invariant is opened around
the last operation a function is performing and (2) the function’s
postcondition does not specify a .. The need to insert such skips is a
known irritation in the world of step-indexed logics, but it is perfectly
sound: adding skips does not affect the observable behavior of a
program for the kind of observations we are considering.

As logically atomic triples are compatible with advanced tech-
niques for reasoning with shared state (e.g., LASTS), it is perfectly
straightforward to verify clients of the references-as-channels mod-
ule against the abstract spec ϕref . To drive this point home, our
appendix [1] includes a verification of elimination stacks [16, 35],

12

ϕchan(Echan, enewch, esend, erecv) , 2∃(· � ·) ∈ Val× Bag→ Prop.

∀c,M. timeless(c �M) ∧
∀c,M,M ′. c �M ∗ c �M ′ ⇒ False ∧
{True} enewch {c. c � ∅} ∧

∀c,m. 〈M. c �M〉 esend(c,m) 〈x. c �M] {m} ∧ x = ()〉Echan

∧ ∀c. 〈M. c �M〉 erecv c 〈m. c �M \ {m} ∧m ∈M〉Echan

Figure 17. Specification for channels with blocking receive.

ϕref(Eref, eref , eget, eset, ecas) , 2∃(· 7→ ·) ∈ Val× Val→ Prop.

∀r, v. timeless(r 7→ v) ∧
∀r, v, w. r 7→ v ∗ r 7→ w ⇒ False ∧
∀v. {True} eref v {r. r 7→ v} ∧

∀r. 〈v. r 7→ v〉 eget r 〈x. r 7→ v ∧ x = v〉Eref ∧

∀r, v. 〈r 7→ 〉 eset r v 〈x. r 7→ v ∧ x = ()〉Eref ∧
∀r, v1, v2. 〈v. r 7→ v〉 ecas(r, v1, v2)

〈b. b = true ∧ v = v1 ∧ r 7→ v2 ∨
b = false ∧ v 6= v1 ∧ r 7→ v 〉Eref

Figure 18. Specification for references.

a challenging example from the literature that employs helping in
a more complex way than the references-as-channels module does.
This verification is parameterized by an arbitrary implementation of
references that is assumed to satisfy the logically atomic spec ϕref .
The code and proof closely follow those in the technical appendix of
iCAP [33], the chief difference being that the iCAP proof depends
on the reference operations being physically atomic, whereas ours
does not. With this, we complete our stack of abstractions (Figure 1).

9. Related work
In the introduction, we motivated Iris in relation to the state of the
art in modular concurrency verification. Here, we give a few more
detailed comparisons with the most closely related work.

Monoids. The centrality of partial commutative monoids dates
back to the earliest models of separation logic, but only recently
did a number of different models and logics begin to employ
PCMs as a way of characterizing more fine-grained notions of
interference [22, 9, 24]. The Views framework [9], in particular,
enables the user to tie logical resources (represented as a PCM of
the user’s choice) to physical resources, according to a particular
user-defined interpretation of logical resources as assertions about
physical ones. In this way, Views, like Iris, supports protocol-based
reasoning.

However, Views is limited in that it effectively requires the user to
bake in a fixed invariant tying logical to physical resources, with no
logical support for layering further invariants on top of those logical
resources. Iris, in contrast, provides built-in logical support for user-
defined invariants over logical (ghost) resources; these are crucial,
e.g., for enabling the verification of elimination stacks to impose
its own invariants over the logical points-to assertions exported by
the references-as-channels module one layer below. Furthermore,
although we have not emphasized it in this paper, Iris invariants
can be defined using higher-order, guarded recursive predicates akin
to [33] (unlike in Views, which only supported first-order logics).

View shifts were introduced by the Views framework as a
specialization of the notion of “repartitioning” from CAP [10]. A

repartitioning describes an update of ghost state in terms of an update
of the underlying physical state. A view shift in [9] is thus simply
a repartitioning that preserves the underlying physical state. CAP
uses a two-level approach for reasoning about atomic expressions:
one has to prove how the expression updates the physical state and
separately prove a repartitioning that relates this back to the abstract
level. In Iris, rule ACSQ offers more fine-grained control. Instead
of going all the way to the concrete physical state, it is possible to
open just as many levels of abstraction as are needed to justify the
execution of the atomic expression.

Although we believe our monoid encoding of STSs with tokens
is novel, most of the monoid constructions we used have been
described previously. In particular, Dockins et al. [11] treat monoids
in an algebraic manner, as separation algebras (SA). They provide
various generic building blocks like discrete SAs (equivalent to our
exclusive monoid), products and sums, as well as a generalization
of fractional monoids they call shares. To facilitate the treatment of
sums, their monoids can have multiple units. We believe that our
restriction to a single unit (and a single zero) can be lifted easily.
Unlike SAs, our monoids do not generally have to be cancellative.

Invariants. The idea of relating logical resources with physical
resources through invariants is also present in Pilkiewicz and Pot-
tier’s work on monotonic state [30], Jensen and Birkedal’s work on
“fictional separation logic” [20], and Krishnaswami et al.’s work on
“superficially substructural types” [22]. They are all restricted to a se-
quential setting. Pilkiewicz and Pottier’s type-and-capability system
uses “fates”—ghost variables whose values grow monotonically—to
reason locally about lower bounds on ghost state. Using invariants,
they lift these reasoning principles to monotonic physical state.
Invariants and fates are orthogonal, independent principles. Iris sup-
ports similar reasoning principles for monotonic state, through an
encoding of fates as STSs. Fictional separation logic (FSL) combines
monoids with indirect Hoare triples specifying an interpretation map,
which serves as invariant. Their approach is based on a syntactic
translation into a standard separation logic and it is not clear how this
approach extends to a concurrent setting. Superficially substructural
types (SST) combines the approach of a type system with the more
flexible forms of sharing supported by arbitrary monoids in FSL. As
we have shown in §5.2 (rule AUTH), we can support reasoning in the
style of SST’s “sharing rule”.

In the concurrent setting, previous work—e.g., on CaReSL [34],
iCAP [33], and TaDA [8]—has typically fixed a particular and
very useful monoid construction. Iris can be used to encode the
patterns of reasoning found in these logics, but with a simpler set
of primitive mechanisms and proof rules (whose soundness we
have verified in Coq [1]). In addition, on a technical level, Iris is
more general and expressive than these earlier logics. Like iCAP
but unlike CaReSL and TaDA, Iris supports full higher-order logic
and impredicative invariants, which are useful for giving modular
specifications of libraries. Going beyond iCAP, Iris supports mask-
changing view shifts; these are essential to our ability to encode
TaDA-style logically atomic specs, as shown in §7. The notions of
logical atomicity developed in TaDA and Iris are closely related,
as is evident by the extra binder both had to introduce (the “funny”
universal quantifier in TaDA, and the binder in the precondition of
Iris’s logically atomic triples), as well the similarity of the proof
rules. At this point, Iris lacks the “private” pre- and postcondition of
TaDA, but they would be easy to add to the syntactic sugar.

Like Iris, Cohen et al. [7] strive to provide a minimal basis for
concurrent reasoning, but theirs is based on a ghost heap and two-
state invariants, whereas ours is based on arbitrary ghost PCMs and
one-state invariants. The two approaches are optimizing for different
goals. Our logic is substructural and supports more expressive—e.g.,
higher-order and logically atomic—specifications. Theirs is not,
making it better suited to use with automated verification tools like

13

SMT solvers. However, more work remains to be done to sort out
the precise formal relationship between the two orthogonal bases.

Atomicity. Concerning the proving of logically atomic specs,
TaDA is currently not able to reason about fine-grained data struc-
tures that employ inter-thread cooperation (aka “helping”). In Iris,
this is possible thanks to the impredicative invariants (see the exam-
ple in §8), similar to the approach taken in iCAP, which in turn was
inspired by previous work of Jacobs and Piessens [19] on VeriFast.
To support impredicativity and thus also helping, our model of Iris is
based on a solution to a recursive domain equation. That is avoided
in VeriFast, which instead attempts to use a kind of Gödel encoding
of predicates. However, according to Jacobs [18], the soundness and
the generality of this encoding approach of VeriFast are unclear.

Liang and Feng [25] propose another approach to observable
atomicity, based on linearizability. Like CaReSL, they appeal to
an extra-logical theorem when verifying clients against modules
with observably atomic behavior. However, following ideas from
Turon et al. [35], their logic also supports speculative execution of
linearization points, which they use to establish soundness of the
reasoning patterns developed by Vafeiadis in his thesis [36].

Further work remains to be done in order to extend Iris with
support for such speculative reasoning [2]. (The same goes for
iCAP and TaDA as well.) Speculation is important in verifying
fine-grained concurrent ADTs in which the ordering of a sequence
of linearization points may not be known “in real time” but only
after the corresponding operations have completed. Intuitively,
speculation is challenging in Iris because, when we verify that a
module satisfies a logically atomic spec, we perform updates to the
state of the module using view shifts provided by the client, so the
client can (in theory) observe the linearization points in real time.
To address this problem, a natural starting point would be to try to
follow the model of speculation in Turon et al. [35] and generalize
Iris assertions from predicates over resources to predicates over sets
of resources, but it is not yet clear how this would fit into our general
approach to logical atomicity.

Acknowledgments
This research is supported in part by a Microsoft Research PhD
Scholarship, and in part by the ModuRes Sapere Aude Advanced
Grant from The Danish Council for Independent Research for
the Natural Sciences (FNU). We thank Lisa Kohl for fruitful
discussions during her internship at MPI-SWS, and we also thank the
anonymous reviewers for extremely helpful and detailed feedback.

References
[1] Appendix and Coq development. http://plv.mpi-sws.org/iris.
[2] M. Abadi and L. Lamport. The existence of refinement mappings.

Theor. Comput. Sci., 82(2):253–284, 1991.
[3] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation

independence. In POPL, 2009.
[4] P. America and J. Rutten. Solving reflexive domain equations in a

category of complete metric spaces. J. Comput. Syst. Sci., 39(3):343–
375, 1989.

[5] E. A. Ashcroft. Proving assertions about parallel programs. Journal of
Computer and System Sciences, 10(1):110–135, 1975.

[6] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg,
and H. Yang. Step-indexed Kripke models over recursive worlds. In
POPL, 2011.

[7] E. Cohen, et al. Invariants, modularity, and rights. In PSI, 2009.
[8] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A logic

for time and data abstraction. In ECOOP, 2014.
[9] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and

H. Yang. Views: Compositional reasoning for concurrent programs.
In POPL, 2013.

[10] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP, 2010.

[11] R. Dockins, A. Hobor, and A. W. Appel. A fresh look at separation
algebras and share accounting. In APLAS, 2009.

[12] X. Feng. Local rely-guarantee reasoning. In POPL, 2009.
[13] X. Feng, R. Ferreira, and Z. Shao. On the relationship between

concurrent separation logic and assume-guarantee reasoning. In ESOP,
2007.

[14] I. Filipović, P. O’Hearn, N. Torp-Smith, and H. Yang. Blaming the
client: On data refinement in the presence of pointers. In FACS, 2009.

[15] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about
optimistic concurrency using a program logic for history. In CONCUR,
2010.

[16] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack
algorithm. In SPAA, 2004.

[17] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. TOPLAS, 12(3):463–492, 1990.

[18] B. Jacobs. Personal communication, 2014.
[19] B. Jacobs and F. Piessens. Expressive modular fine-grained concur-

rency specification. In POPL, 2011.
[20] J. B. Jensen and L. Birkedal. Fictional separation logic. In ESOP,

2012.
[21] C. B. Jones. Tentative steps toward a development method for

interfering programs. TOPLAS, 5(4):596–619, 1983.
[22] N. R. Krishnaswami, A. Turon, D. Dreyer, and D. Garg. Superficially

substructural types. In ICFP, 2012.
[23] L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Trans. Comput., 28(9):690–691,
1979.

[24] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-
grained concurrency. In POPL, 2013.

[25] H. Liang and X. Feng. Modular verification of linearizability with
non-fixed linearization points. In PLDI, 2013.

[26] R. Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

[27] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco. Communi-
cating state transition systems for fine-grained concurrent resources.
In ESOP, 2014.

[28] P. O’Hearn. Resources, concurrency, and local reasoning. TCS,
375(1):271–307, 2007.

[29] S. Owicki and D. Gries. Verifying properties of parallel programs: An
axiomatic approach. CACM, 19(5):279–285, 1976.

[30] A. Pilkiewicz and F. Pottier. The essence of monotonic state. In TLDI,
2011.

[31] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, 2002.

[32] F. Sieczkowski, A. Bizjak, Y. Zakowski, and L. Birkedal. Modular
reasoning about concurrent higher-order imperative programs: a Coq
tutorial. http://users-cs.au.dk/birke/modures/tutorial/
index.html, 2014.

[33] K. Svendsen and L. Birkedal. Impredicative concurrent abstract
predicates. In ESOP, 2014.

[34] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In ICFP,
2013.

[35] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer.
Logical relations for fine-grained concurrency. In POPL, 2013.

[36] V. Vafeiadis. Modular fine-grained concurrency verification. PhD
thesis, University of Cambridge, 2007.

[37] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR, 2007.

[38] D. Walker. Objects in the pi-calculus. Inf. Comput., 116(2):253–271,
1995.

14

http://plv.mpi-sws.org/iris
http://users-cs.au.dk/birke/modures/tutorial/index.html
http://users-cs.au.dk/birke/modures/tutorial/index.html

	1 Introduction
	1.1 Invariants and their limitations
	1.2 Iris: An orthogonal basis for concurrent reasoning

	2 Iris – Part I: Monoids
	3 Monoid constructions
	3.1 The exclusive monoid
	3.2 The fractional monoid
	3.3 The product monoid
	3.4 Finite partial functions
	3.5 Named monoid instances and multiple monoids
	3.6 The authoritative monoid
	3.7 STSs with tokens

	4 Iris – Part II: Invariants
	5 Invariant constructions
	5.1 STSs with interpretation
	5.2 Authoritative monoids with interpretation

	6 Semantics
	7 Logical atomicity
	7.1 Logically atomic triples
	7.2 Proof of blocking receive

	8 Putting logical atomicity to work
	9 Related work

