
Higher-Order Ghost State

Ralf Jung
MPI-SWS, Germany
jung@mpi-sws.org

Robbert Krebbers
Aarhus University, Denmark
mail@robbertkrebbers.nl

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Derek Dreyer
MPI-SWS, Germany
dreyer@mpi-sws.org

Abstract
The development of concurrent separation logic (CSL) has sparked a
long line of work on modular verification of sophisticated concurrent
programs. Two of the most important features supported by several
existing extensions to CSL are higher-order quantification and
custom ghost state. However, none of the logics that support both
of these features reap the full potential of their combination. In
particular, none of them provide general support for a feature we
dub “higher-order ghost state”: the ability to store arbitrary higher-
order separation-logic predicates in ghost variables.

In this paper, we propose higher-order ghost state as a interesting
and useful extension to CSL, which we formalize in the framework
of Jung et al.’s recently developed Iris logic. To justify its soundness,
we develop a novel algebraic structure called CMRAs (“cameras”),
which can be thought of as “step-indexed partial commutative
monoids”. Finally, we show that Iris proofs utilizing higher-order
ghost state can be effectively formalized in Coq, and discuss the
challenges we faced in formalizing them.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation logic, fine-grained concurrency, higher-
order logic, compositional verification, interactive theorem proving

1. Introduction
Over a decade ago, O’Hearn made a critical observation: separation
logic—developed to simplify the verification of sequential, heap-
manipulating programs—can help simplify the verification of con-
current programs as well. In concurrent separation logic (CSL) [28],
assertions denote not only facts about the state of the program, but
also ownership of a piece of that state. Concretely, this means that
if a thread t can assert ` 7→ v, then t knows not only that location
` currently points to v, but also that it “owns” `, so no other thread
can read or write ` concurrently. Given this ownership assertion, t
can perform local (and essentially sequential) reasoning on accesses
to `, completely ignoring concurrently operating threads.

Of course at some point threads have to communicate through
some kind of shared state (such as a mutable heap or message-
passing channels). To reason modularly about such communication,
the original CSL used a simple form of resource invariants, which

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

ICFP ’16, September 18–22, 2016, Nara, Japan.
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4219-3/16/09. . . $15.00.
DOI: http://dx.doi.org/10.1145/2951913.2951943

were tied to a “conditional critical region” construct for synchro-
nization. Since O’Hearn’s pioneering (and Gödel-award-winning)
paper, there has been an avalanche of follow-on work extending
CSL with more sophisticated mechanisms for modular reasoning,
which allow shared state to be accessed at a finer granularity (e.g.,
atomic compare-and-swap instructions) and which support the ver-
ification of more “daring” (less clearly synchronized) concurrent
programs [40, 17, 16, 13, 18, 38, 35, 27, 11, 24].

In this paper, we focus on two of the most important extensions
to CSL—higher-order quantification and custom ghost state—and
observe that, although several logics support both of these exten-
sions, none of them reap the full potential of their combination. In
particular, none of them provide general support for a feature we
dub “higher-order ghost state”.

Higher-order quantification is the ability to quantify logical
assertions (universally and existentially) over other assertions and,
in general, over arbitrary higher-order predicates. Several recent
extensions to CSL have incorporated higher-order quantification [36,
35, 24, 21, 27], in part because it leads to more generic and reusable
specifications of concurrent data structures (see §4), and in part
because it is seemingly necessary for verifying some higher-order
concurrency paradigms [35, 38, 31].

Ghost state is “logical state”, i.e., state that is essential to
maintain in the proof of a program but is not part of the physical state
manipulated by the program itself. It is a fixture of Hoare logics since
the work of Owicki and Gries [29] in the 1970s, and is useful for
a variety of purposes: for encoding various kinds of “permissions”,
for recording information about the trace of the computation, for
describing “protocols” on how threads may interact with shared
state, and more. Traditionally, ghost state was manipulated by
instrumenting a program with updates to “ghost” (or “auxiliary”)
variables. Although this approach is convenient for integration into
automatic verification tools [10], it is unnecessarily low-level: there
is no reason logical state needs to be manipulated in exactly the
same way as physical state, and doing so makes it harder to reason
about updates to shared logical state in a modular fashion.

Recently, a number of researchers have argued that a more high-
level, general, and flexible way to represent ghost state is via partial
commutative monoids (PCMs). Intuitively, PCMs are a natural
fit for ghost state because they impose only the bare minimum
requirements on something that should be “ownable” in a separation
logic, while leaving lots of room for proof-specific customization.
Several newer extensions to CSL [24, 27, 12] thus give users the
freedom to define ghost state on a per-proof basis in terms of an
arbitrary PCM of their choosing. Furthermore, the Iris logic [24] has
established that PCMs (together with simple invariants) are flexible
enough to derive several advanced reasoning mechanisms that were
built in as primitive in prior logics.

Unfortunately, a limitation arises when one uses PCMs to support
custom ghost state in the context of a logic with higher-order
quantification. Specifically, PCMs yield a model of ghost state that
is first-order. By this we mean that there is an inherent stratification:

1

MC1W1 C2 W2

P1 ∗ P2

P1 P2

P1 P2

Figure 1. Structure of illustrative example

separation-logic assertions may talk about ownership of ghost state,
but the PCM structure of ghost state may not depend (recursively)
on the language of logical assertions. At first glance, this may not
seem like a big deal. Why would you want higher-order ghost
state—i.e., ghost state that is mutually recursive with the language
of assertions—anyway? What would that even mean?

To give some intuition for what higher-order ghost state is and
what it can be good for, let us turn to a simple yet interesting
illustrative example of some intuitively sensible reasoning that, as
far as we know, no existing logic can support.

1.1 Illustrative Example: Splitting and Joining Existentials
Imagine we have three threads—a main thread M and two worker
threads W1 and W2—running concurrently, and that we have two
communication channels C1 and C2 connecting each worker to the
main thread (see Figure 1). The idea of the example is that M is
going to initialize some state, split up ownership of the state, send
the pieces to W1 and W2 via their respective channels, and after
some computation, they are going to send their pieces back so that
M can join them together and reassert ownership of the whole state.

Formally: Let i range over {1, 2}. Let us suppose that M will
initialize its state so that it satisfies the assertion P , after which M
would like to split up ownership into two “disjoint” pieces P1 and
P2 such that P = P1 ∗ P2 and Pi is the assertion to be transferred
back and forth with the corresponding Wi over Ci. (The ∗ operator
here is the “separating conjunction” connective of separation logic,
which enforces the disjointness of P1 and P2.) To make this work,
it is essential that M and Wi agree ahead of time on the fact that Ci
will be used to transfer ownership of Pi.

So far, so good. But now what happens if the assertion P
depends on some information (say, on some x of type T) that is only
determined dynamically, right beforeM wants to transfer ownership
of P to the other, already running, threads. (For instance, x might
be some information that depends on the result of I/O or some other
source of nondeterminism.) In this case, we cannot associate the
channels Ci ahead of time with the assertions Pi since, at the point
the channels are created, the identity of x is not known. Instead,
all we can really do is to existentially quantify over x—that is, set
up our channels so that instead of transferring Pi to Wi, M will
transfer ∃x:T. Pi, which is well-defined at the point the channels
are created.

In the forward direction (sending from M to Wi), this works
because P = P1 ∗ P2 implies ∃x:T. P ⇒ ∃x:T. P1 ∗ ∃x:T. P2.
But when the Wi try to return the state to M , we run into a problem:
although P1 ∗ P2 ⇒ P , it is not true that ∃x:T. P1 ∗ ∃x:T. P2 ⇒
∃x:T. P because there is no way to deduce that the existential
witnesses for x in ∃x:T. P1 and ∃x:T. P2 are the same. This is all
very frustrating since we know that, at least when M split up its
original state, the witnesses were indeed the same.

Fortunately, there is another way: custom ghost state! Using
custom ghost state, we can allocate a oneshot ghost variable γ up
front: initially, γ will be undefined, and once M determines what

term e should be the witness for x, it will set γ to e.1 We will write
γ ↪→ e to denote the knowledge that e has been stored in γ. Unlike
normal heap ownership assertions, γ ↪→ e can be freely duplicated
(i.e., γ ↪→ e⇔ γ ↪→ e ∗ γ ↪→ e) since γ can only be assigned once.
Furthermore, if we know γ ↪→ e1 and γ ↪→ e2, then we also know
that e1 = e2 because, once set, γ maps to a unique e.

We can now amend the assertions ∃x:T.Pi that are sent between
the threads to ∃x:T. (γ ↪→ x ∗ Pi), thus recording the fact that
the witness x is precisely the term stored in γ. And the virtue of
this encoding is that now the existential can be split and rejoined:
∃x:T. (γ ↪→ x∗P)⇔ ∃x:T. (γ ↪→ x∗P1)∗∃x:T. (γ ↪→ x∗P2).
The⇒ direction relies on the fact that γ ↪→ x is duplicable, and the
⇐ direction relies on the fact that γ stores a unique witness.

There is just one catch: in all the existing logics that support
custom ghost state, the witness x stored in γ is restricted to be
first-order (i.e., an “object-level” term), hence restricting all the
existentials in the example to be first-order as well. If x instead is (or
contains) an assertion or higher-order predicate of the logic—as may
very well be the case if we are working in a higher-order concurrent
separation logic [36, 35, 24, 27]—then the whole approach falls
over. Moreover, this problem is not limited to logics with custom
ghost state: to our knowledge, no existing logic is capable of proving
this example in the general case.

The good news is that restricting custom ghost state to first-order
is unnecessary. To overcome it, we will need the ability to store
terms of arbitrary higher type T (including assertions and higher-
order predicates) in ghost variables like γ. In other words, we will
need higher-order ghost state.

1.2 Contributions
In this paper, we make the following contributions:

• We propose and formalize higher-order ghost state as an inter-
esting and useful extension of concurrent separation logic.
• We give a semantics to justify this extension in terms of a novel

algebraic structure we call a CMRA (“camera”), which can be
thought of as a kind of “step-indexed” PCM.
• We demonstrate that separation-logic proofs utilizing higher-

order ghost state can be effectively formalized in Coq.

To be concrete, we will develop our notion of higher-order ghost
state as an extension to the Iris logic of Jung et al. [24]. Iris is a
higher-order variant of CSL that supports custom ghost state through
the choice of an arbitrary user-supplied PCM. Over the course of
the paper, we will gradually extend Iris from its original version,
numbered 1.0, to the latest version, numbered 2.0, which can handle
higher-order ghost state in a generic manner.

In §2, we give an overview of the key features of Iris and
showcase their use on a simple representative example. Along the
way, we introduce Iris 1.1, which makes some improvements to the
original Iris 1.0, in particular generalizing its model of resources
from PCMs to resource algebras (RAs), which are more flexible.

In §3, we extend Iris with higher-order ghost state and put the
extension on a sound formal footing. This involves revisiting the
category-theoretic model of Iris 1.x and further generalizing its
model of resources to the aforementioned step-indexed CMRAs.
Furthermore, we discuss how the new semantic structure of our
higher-order ghost state not only generalizes the original model of
Iris—in certain ways, it also simplifies it.

In §4, we return to our example from §1.1, flesh it out more
carefully, and show how to verify it in Iris 2.0. Our implementation
of the example makes use of a “barrier” synchronization primitive

1 This is just one particular form of proof-specific ghost state that can be
encoded as a PCM—we will see in §2.1 how to encode it.

2

(drawn from Dodds et al. [15]), whose own proof of correctness
independently involves an interesting use of higher-order ghost state.

In §5, we describe our Coq formalization of Iris 2.0, which
improves significantly on the original Coq formalization of Iris
1.0 in several respects. All proofs backing this paper have been
formalized in Coq [1].

Finally, in §6 and §7, we conclude with related and future work.

2. Iris Primer
Iris is a generic higher-order concurrent separation logic. Generic
here refers to the fact that the logic is parameterized by the language
of program expressions that one wishes to reason about, so the same
logic can be used for a large variety of languages. For the purpose
of this paper, we instantiate Iris with an ML-like language with
higher-order store, fork, and compare-and-swap (CAS):

e ::= x | rec f(x) = e | e1(e2) | assert(e) | fork {e} |
| ref(e) | !e | e← e | CAS(e, e1, e2) | . . .

(We omit the usual operations on pairs and sums.)
The logic includes the usual connectives and rules of higher-

order separation assertion logic, some of which are shown in the
grammar below.2 In this section, we will give a brief tour of Iris, and
demonstrate the purpose of these most important logical connectives.

P,Q,R ::= True | False | P ∧Q | P ∨Q | P ⇒ Q

| ∀x. P | ∃x. P | P ∗Q | ` 7→ v | .P | t = u

| P ι | a γ | V(a) | {P } e {v. Q} | P V Q | . . .
What makes Iris a higher-order separation logic is that universal

and existential quantifiers can range over any type, including that of
assertions and (higher-order) predicates. Furthermore, notice that
Hoare triples {P } e {v. Q} are part of the assertion logic instead
of being a separate entity. As a consequence, triples can be used in
the same way as any logical assertion, and in particular, they can be
nested to account for specifications of higher-order functions.

We will demonstrate this, and some other core features of Iris,
by verifying the safety of the simple higher-order-program given in
Figure 2. This is of course a rather contrived example, but it serves
to showcase the core features of Iris.

The function mk_oneshot allocates a oneshot location at x and
returns a record with two functions. (Formally, records are syntactic
sugar for pairs.) The function tryset(n) tries to set the location to
n, which will fail if the location has already been set. We use CAS to
ensure correctness of the check even if two threads concurrently try
to set the location. The function check() records the current state
of the location and then returns a closure which, if the location has
already been initialized, checks that it does not change.

The specification looks a little funny with most pre- and post-
conditions being True. The reason for this is that all we are aiming
to show here is that the code is safe, i.e., that the assertions3 succeed:
the branch with assert(false) will never get executed, and in the
final branch, n will always equal m. In Iris, Hoare triples imply
safety, so we do not need to impose any further conditions.

As is common for Hoare triples about functional programs, the
postconditions have a binder to refer to the return value. We will
omit the binder if the result is always unit.

We use nested Hoare triples to express that mk_oneshot returns
closures: Since Hoare triples are just assertions, we can put them
into the postcondition of mk_oneshot to describe what the client
can assume about c. Furthermore, since Iris is a concurrent program

2 Actually, many of the connectives given in this grammar are defined as
derived forms in Iris, and this flexibility is an important aspect of the logic.
For more details on this, see [24, 1].
3 Our semantics here is that assert(e) gets stuck if e evaluates to false.

mk_oneshot , λ . let x = ref(inl(0)) in

{ tryset = λn. CAS(x, inl(0), inr(n)),

check = λ . let y = !x in λ .

match y, !x with
inl() , ⇒ ()

| inr(n), inl() ⇒ assert(false)

| inr(n), inr(m) ⇒ assert(n = m)

end }

{True} mk_oneshot()

{c. ∀v. {True} c.tryset(v) {w. w ∈ {true, false}} ∗
{True} c.check() {f. {True} f() {True}} }
Figure 2. Example code and specification

logic, the specification for mk_oneshot actually permits the client
to call tryset and check, as well as the f returned by check,
concurrently from multiple threads and in any combination.

High-level proof structure. To perform this proof, we need to
somehow encode the fact that we are only performing a oneshot
update to x. To this end, we will allocate a ghost location γ which
mirrors the current state of x. This may at first sound rather pointless;
why should we record a value in the ghost state that is exactly the
same as the value in a particular physical location?

The reason we do this is so that we can control what kind
of sharing is possible on the location. For a physical location `,
the assertion ` 7→ v expresses full ownership of ` (and hence the
absence of any sharing of it). In contrast, Iris permits us to choose
whatever kind of structure and ownership we want for our ghost
location γ; in particular, we can define it in such a way that, although
the contents of γ mirror the contents of x, we can freely share
ownership of γ once it has been initialized (by a call to tryset).
This in turn will allow the closure returned by check to own a piece
of γ witnessing its value after initialization. We will then have an
invariant tying the value of γ to the value of x, so we know which
value that closure is going to see when it reads from x, and we know
that that value is going to match y.

With this high-level proof structure in mind, we now explain
how exactly ownership and sharing of ghost state can be controlled.

2.1 Ghost State in Iris: Resource Algebras
The key properties of ownership of ghost state in concurrent separa-
tion logics are:

• Ownership of different threads can be composed.
• Composition of ownership is associative and commutative,

mirroring the associative and commutative semantics of parallel
composition.
• Combinations of ownership that do not make sense are ruled out,

e.g., multiple threads claiming to have exclusive ownership of
the same piece of ghost state.

For these reasons, partial commutative monoids (PCMs) have
become a canonical structure for representing ghost state in separa-
tion logics. Iris 1.0 was parameterized by an arbitrary PCM, so that
the structure of the ghost state was entirely up to the user.

In Iris 1.1, we are deviating slightly from this, using our own
notion of a resource algebra (RA), whose definition is in Figure 3.
As we will see in our example, the additional flexibility afforded by
RAs results in additional logical expressiveness.

3

A resource algebra (RA) is a tuple
(M,V ⊆M, |−| : M →M?, (·) : M ×M →M) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (RA-ASSOC)

∀a, b. a · b = b · a (RA-COMM)

∀a. |a| ∈M ⇒ |a| · a = a (RA-CORE-ID)

∀a. |a| ∈M ⇒ ||a|| = |a| (RA-CORE-IDEM)

∀a, b. |a| ∈M ∧ a 4 b⇒ |b| ∈M ∧ |a| 4 |b|
(RA-CORE-MONO)

∀a, b. (a · b) ∈ V ⇒ a ∈ V (RA-VALID-OP)

where M? ,M] {ε} a? · ε , ε · a? , a?

a 4 b , ∃c ∈M. b = a · c (RA-INCL)

Figure 3. Resource algebras

There are two key differences between RAs and PCMs:

1. The composition operation on RAs is total (as opposed to
the partial composition operation of a PCM), but there is a
specific subset V of valid elements that is compatible with the
composition operation (RA-VALID-OP).
We will see in §3.2 that this take on partiality is necessary when
defining the structure of higher-order ghost state.

2. Instead of a single unit that is an identity to every element,
we allow for an arbitrary number of units, via a function |−|
assigning to an element a its (duplicable) core |a|, as demanded
by RA-CORE-ID. We further demand that |−| is idempotent (RA-
CORE-IDEM) and monotone (RA-CORE-MONO) with respect to the
extension order, defined similarly to that for PCMs (RA-INCL).
Notice that the domain of the core is M?, a set that adds a
dummy element ε to M . Thus, the core can be partial: not all
elements need to have a unit. We use the metavariable a? to
indicate elements of M?. We also lift the composition (·) to M?.
As we will see in §2.5, partial cores help us to build interesting
composite RAs from smaller primitives.
Notice also that the core of an RA is a strict generalization of
the unit that any PCM must provide, since |−| can always be
picked as a constant function.

A resource algebra for our example. We will now define the RA
that can be used to verify our example, which we call the oneshot RA.
This RA appropriately mirrors the state of the physical location x.
The carrier is defined using a datatype-like notation as follows:

M , pending | shot(n : Z) | ⊥
V , {pending} ∪ {shot(n) | n ∈ Z}

The two important states of the ghost location are: pending, to
represent the fact that the single update has not yet happened, and
shot(n), saying that the location has been set to n. We need an
additional element ⊥ to account for partiality.

The most interesting piece of data of an RA is of course its
composition: What happens when ownership of two threads is
combined? For our example, we are most interested in the behavior
of pending and shot:

pending · pending , ⊥
pending · shot(n) , shot(n) · pending , ⊥

shot(n) · shot(m) ,

shot(n) if n = m

⊥ otherwise

GHOST-OP

a · b γ ⇔ a
γ ∗ b γ

GHOST-VALID

a
γ ⇒ a

γ ∗ V(a)

GHOST-ALLOC
V(a)

TrueV ∃γ. a γ

GHOST-UPDATE
a b

a
γ
V b

γ

PERSISTENT-GHOST
|a| = a

persistent(a
γ
)

where a b , ∀a?f ∈M?. a · a?f ∈ V ⇒ b · a?f ∈ V

INV-ALLOC

I V I
ι

INV
(side conditions on ι and I omitted)
{I ∗ P } e {v. I ∗Q} atomic(e)

I
ι ` {P } e {v. Q}

CSQ

P V P ′ {P ′} e {v. Q′} ∀v. Q′ V Q

{P } e {v. Q}

PERSISTENT-DUP
persistent(P)

P ⇔ P ∗ P

PERSISTENT-HOARE
Q ` {P } e {v. R}
{P ∗Q} e {v. R}

persistent(Q)

Figure 4. Some Iris 1.1 proof rules

As a result of this definition, if we own pending, we know
that no other thread can own anything about this location, since
the composition with that other piece of ownership would be
invalid (i.e., ⊥). Furthermore, if we own shot(n), we know that
the only ownership any other thread can have is also shot(n), since
everything else is incompatible with our own ownership. However,
since shot(n)·shot(n) = shot(n), we can also duplicate ownership
of the location as much as we want, once it has been set to some n.
This gives rise to the sharing that we need.

In defining the duplicable core, we make sure that we keep as
much ownership as possible while satisfying RA-CORE-ID:

|pending| , ε |shot(n)| , shot(n) |⊥| , ⊥

Note that, since ownership of pending is exclusive, it has no
suitable unit element, so we assign it the “dummy core” ε. It is
now straightforward to verify that the RA for our example satisfies
the RA axioms.

Proof rules for ghost state. Resource algebras are embedded into
the logic using the assertion a

γ
, which asserts ownership of a piece

a of the ghost location γ.4 The proof rule GHOST-ALLOC in Figure 4
can be used to allocate a new ghost location, with an arbitrary but
valid initial state a. The assertion V(a) reflects validity of a into
the logic, i.e., it corresponds to a ∈ V on the meta-level. TheV in
GHOST-ALLOC is a view shift, also known as a ghost move: P V Q
says that, starting in a (ghost and physical) state satisfying P , we
can do updates to the ghost state only and arrive in a state satisfying
Q. The rule of consequence (CSQ) says that we can apply view shifts
in the pre- and postconditions of Hoare triples.

The rule GHOST-OP says that ghost state can be separated (in the
sense of separation logic) following the composition operation (·)
defined for the RA. And GHOST-VALID encodes the fact that only
valid RA elements can ever be owned.

Finally, we need a way to update ghost locations. Updates to
ghost locations are called frame-preserving updates and can be

4 The notation γ ↪→ e used in §1.1 is defined in terms of the more general
a
γ

(see §4.2).

4

performed using the rule GHOST-UPDATE. We can perform a frame-
preserving update a b on a ghost location γ, if the update ensures
that no matter what assumptions the rest of the program is making
about the state of γ, if these assumptions were compatible with a,
they should also be compatible with b. Or in other words, we have
to make sure that the assumptions the rest of the program is making
about γ will not be invalidated by the update.

We only need one frame-preserving update for our example:

pending shot(n) (ONESHOT-SHOOT)

This property follows from the fact that no frames are compatible
with pending. That is, by the definition of (·), we know that
pending · a?f ∈ V can only hold for the dummy frame a?f = ε.

2.2 Invariants
Now that we have set up the structure of our ghost location γ, we
have to connect the state of γ to x. This is done using an invariant.

In Iris, invariants are provided in the form of the assertion P
ι
,

which asserts that P is maintained as an invariant on the global
(ghost and physical) state. In order to identify invariants, every
invariant has a name ι. We need to do some bookkeeping with these
names to avoid reentrancy, which in the case of invariants means
avoiding “opening” the same invariant twice in a nested fashion.
However, we omit the bookkeeping for this paper, as it is orthogonal
to our focus; see the original Iris paper for details [24].

Notice that P
ι

is just another kind of assertion, and can be used
anywhere that normal assertions can be used—including the pre-
and postconditions of Hoare triples, and invariants themselves. The
latter property is sometimes referred to as impredicativity.

Invariants are created using the INV-ALLOC rule (Figure 4):
Whenever an assertion P has been established, it can be turned
into an invariant. Allocating an invariant is another example of a
view shift, since only ghost state is changed to record that this
invariant will henceforth be maintained.

2.3 Persistent Assertions
Before we come to the actual proof of Figure 2, we have to talk about
the notion of a persistent assertion. These are assertions that, once es-
tablished, will remain valid for the rest of the verification. Examples
of persistent assertions are invariants P

ι
, validity V(a), equality

t = u, Hoare triples {P } e {v. Q} and view shifts P V Q. Persis-
tent assertions can be freely duplicated (PERSISTENT-DUP) and can be
moved in and out of the precondition of Hoare triples (PERSISTENT-
HOARE). This differentiates them from ephemeral assertions like
` 7→ v and a

γ
, which could be invalidated in the future by actions

of the program or the proof, and for which the above properties thus
do not hold.

Another example of a persistent assertion is ghost ownership of
a core: |a| γ is persistent (PERSISTENT-GHOST). This possibility of
having persistent ghost ownership is a novel concept of Iris 1.1 that
cannot be expressed in a PCM-based logic. In the proof of check,
we will see this concept in action.

A closely related concept is the notion of duplicable assertions,
i.e., assertions P for which one has P ⇔ P ∗ P . This is a strictly
weaker notion, however: not all duplicable assertions are persistent.
For example, ∃q. ` q7−→ v is duplicable (which follows from halving
the fractional permission q), but is not persistent.

2.4 Proof of the Example
Proof of mk_oneshot. In order to verify mk_oneshot, we will
first allocate a new ghost location γ with the structure of the oneshot
RA defined above, picking the initial state pending. Then, we will
establish and allocate the following invariant:

I , (x 7→ inl(0) ∗ pending
γ
) ∨ (∃n. x 7→ inr(n) ∗ shot(n)

γ
)

Since x is initialized with inl(0), the invariant I initially holds.

Proof of tryset. How exactly can invariants be used? This is
described by INV, which allows us to open the invariant for the
verification of e. That is, we can assume that the invariant holds in
the precondition, and then we have to reestablish that it holds in
the postcondition. Crucially, we require that e is physically atomic,
meaning that it is guaranteed to evaluate to a value in a single step of
computation. This side condition is essential for soundness: within
the verification of e the invariant I might be temporarily broken, but
by restricting e’s execution to a single instruction we ensure that no
other thread can observe that I has been broken. In our language,
reading from memory (!e), assigning to memory (e1 ← e2), and
CAS are all physically atomic operations.

In the case of tryset, we have to open the invariant to justify
safety of the CAS. The invariant always provides x 7→ , so safety of
the memory operation is justified. In case the CAS fails, no change
is made to x, so reestablishing the invariant is immediate.

The case in which the CAS succeeds is more subtle. Here, we
know that x originally had value inl(0), so we obtain the invariant
in its left disjunct. Thus, after the CAS, we have the following:

x 7→ inr(n) ∗ pending
γ

How can we reestablish the invariant I after this CAS? Clearly,
we must pick the right disjunct, since x 7→inr(n). Hence we have
to update the ghost state to match the physical state. To this end,
we apply GHOST-UPDATE with the frame-preserving update ONESHOT-
SHOOT, which allows us to update the ghost location to shot(n) if
we own pending. We then have I again and can finish the proof.

Notice that we could not complete the proof if tryset would
ever change x again, since ONESHOT-SHOOT can only ever be used
once on a particular ghost location. We have to be in the pending
state if we want to pick the n in shot(n). This is exactly what we
would expect, since check indeed relies on x not being modified
once it has been set to inr(n).

Proof of check. What remains is to prove correctness of check.
We open our invariant I to justify safety of !x, which is immediate
since I always provides x 7→ , but we will not immediately close I
again. Instead, we will have to acquire some piece of ghost state that
shows that if we read an inr(n), then x will not change its value.
At this point in the proof, we have the following assertion:

x 7→ y ∗ ((y = inl(0) ∗ pending
γ
) ∨

(∃n. y = inr(n) ∗ shot(n)
γ
))

We use the identity shot(n) = shot(n) · shot(n) with GHOST-OP

to show that this logically implies:

x 7→ y ∗ ((y = inl(0) ∗ pending
γ
) ∨

(∃n. y = inr(n) ∗ shot(n)
γ ∗ shot(n)

γ
))

which in turn implies:

I ∗ (y = inl(0) ∨ (∃n. y = inr(n) ∗ shot(n)
γ
)︸ ︷︷ ︸

P

)

We can then reestablish the invariant, but we keep P , the information
we gathered about y. The plan is to use this in the proof of the closure
that we return to justify that the assertion will hold.

To do so, we have to show that P is persistent. Technically,
this is mandated by PERSISTENT-HOARE; intuitively, it is needed
because the client could call the closure returned by check in an
arbitrary future state of the program, and we have to make sure
that it is always safe to do so. The reason P is persistent is that,
thanks to shot(n) = |shot(n)| and PERSISTENT-GHOST, shot(n)

γ

is persistent. This matches the intuition that, once we observe that x
has been set, we can then forever assume it will not change again.

5

To finish this proof, let us look at the closure returned by check
in more detail: Again, we will open our invariant to justify safety of
!x. Our assertion then is I ∗ P , which unfolds to:

((x 7→ inl(0) ∗ pending
γ
) ∨ (∃m. x 7→ inr(m) ∗ shot(m)

γ
)) ∗

(y = inl(0) ∨ (∃n. y = inr(n) ∗ shot(n)
γ
))

In order to proceed, we do 4-way case distinction over the values
of x and y. Our goal is to prove that the assertions do not fail, so we
have to show the following:

1. Goal: It cannot be the case that y = inr(n) and x 7→ inl().
In this case, we would have pending · shot(n)

γ
and hence ⊥ γ

,
which according to GHOST-VALID is a contradiction.

2. Goal: In the case that y = inr(n) and x 7→ inr(m), we
have shot(n) · shot(m)

γ
. The following lemma shows that the

assertion cannot fail:

shot(n) · shot(m)
γ ⇒ n = m (ONESHOT-AGREE)

The lemma holds by GHOST-VALID, which yields V(shot(n) ·
shot(m)), implying shot(n) · shot(m) 6= ⊥, and thus n = m.

2.5 RA Constructions
One of the key features of Iris is that it leaves the structure of ghost
state entirely up to the user of the logic, so if there is the need for
some special-purpose RA, the user has the freedom to directly use
it. However, it turns out that many frequently needed RAs can be
constructed by composing smaller, reusable pieces—so while we
have the entire space of RAs available when needed, we do not have
to construct custom RAs for every new proof.

For example, looking at the oneshot RA from §2.1, it really does
three things:

1. It separates the allocation of an element of the RA from the
decision about what value to store there (ONESHOT-SHOOT).

2. While the oneshot location is uninitialized, ownership is exclu-
sive, i.e., at most one thread can own the location.

3. Once the value has been decided on, it makes sure everybody
agrees on that value (ONESHOT-AGREE).

We can thus decompose the oneshot RA into the sum, exclusive
and agreement RAs as described below. (In the definitions of all the
RAs, the omitted cases of the composition and core are all ⊥.)

Sum. The sum RA M1 +⊥ M2 for any RAs M1 and M2 is:

M1 +⊥ M2 , inl(a1 : M1) | inr(a2 : M2) | ⊥
V ,

{
inl(a1)

∣∣a1 ∈ V ′} ∪ {inr(a2)
∣∣a2 ∈ V ′′}

inl(a1) · inl(b1) , inl(a1 · b1)

|inl(a1)| ,

ε if |a1| = ε

inl(|a1|) otherwise

The composition and core for inr are defined symmetrically. Above,
V ′ refers to the validity of M1, and V ′′ to the validity of M2.

Exclusive. Given a set X , the task of the exclusive RA EX(X) is
to make sure that one party exclusively owns a value x ∈ X . We
define EX by essentially dropping shot from the oneshot RA, and
generalizing the carrier:

EX(X) , ex(x : X) | ⊥
V , {ex(x) | x ∈ X}

|ex(x)| , ε
Composition is always ⊥ to ensure that ownership is exclusive.

a · b ⇔ a ∗ b a ⇒ V(a)
a b

a V b

Figure 5. Primitive rules for ghost state

Agreement. Given a set X , the task of the agreement RA AG(X)
is to make sure multiple parties can agree upon which value x ∈ X
has been picked. We define AG by essentially dropping pending
from the oneshot RA and generalizing the carrier:

AG(X) , ag(x : X) | ⊥
V , {ag(x) | x ∈ X}

ag(x) · ag(y) ,

ag(x) if x = y

⊥ otherwise

|ag(x)| , ag(x)

Oneshot. We can now define the general idea of the oneshot RA
as ONESHOT(M) , EX(1) +⊥ M , and recover the RA for the
example as ONESHOT(AG(Z)). Notice that the decomposition of
ONESHOT into a sum relies crucially on the fact that one summand,
namely EX(1), has a partial core. The following generalization of
ONESHOT-SHOOT can be shown in general for ONESHOT:

inl(ex()) inr(a)

This update relies on the fact that ex() has no frame. If there was a
unit |ex()| for ex(), then inl(|ex()|) would be a frame compatible
with inl(ex()), and the frame-preserving update would not hold.
Obtaining usable frame-preserving updates for sums is one of our
key motivations for making the core a partial function.

Joining existentials. The general construction ONESHOT(−)
comes in handy, because it is exactly the RA that we need for
the challenge of splitting and joining existentials as described in
§1.1. Remember that there, too, we want to allocate ghost state
before it is known what will be stored there.

Now, it may seem that we are already equipped to solve the
challenge posed in §1.1, but that is not the case. To prove that
example, we need the ghost state to be M , ONESHOT(AG(T)),
where T may depend on iProp (the type of Iris assertions). However,
the structure of the ghost state is a parameter of Iris, so iProp is
actually defined in terms of M—which means we cannot define M
in terms of iProp. We have to do some interesting work in the model
of Iris to resolve this cycle, as we will describe in §3.

2.6 Derived Forms and the Global Ghost State
In Iris, there is a strong emphasis on only providing a minimal core
logic, and deriving as much as possible within the logic rather than
baking it in as a primitive [24]. For example, both Hoare triples and
assertions of the form l 7→ v are actually derived forms. This has
the advantage that the model can be kept simpler, since it only has
to justify soundness of a minimal core logic.

In this section we discuss the encoding of the assertion a
γ

for
ghost ownership, which is not a baked-in notion. Instead, the idea of
having a heap of ghost variables, which can be individually allocated
and updated, is derived within the logic. Although this construction
did not fundamentally change since Iris 1.0 [24], it is important for
understanding the model construction in §3.

As a primitive, Iris provides the construct a , which asserts
ownership of a piece a of the entire global ghost state, rather than
ownership of a piece of an individual ghost variable. The structure
of the global ghost state is a single RA picked by the user, and the
rules governing global ghost state are given in Figure 5.

6

Objects: tuples (T, (
n
= ⊆ T × T)n∈N) satisfying:

∀n. (n=) is an equivalence relation (COFE-EQUIV)

∀n,m. n ≥ m⇒ (
n
=) ⊆ (

m
=) (COFE-MONO)

∀x, y. x = y ⇔ (∀n. x n
= y) (COFE-LIMIT)

(Completeness axiom omitted)

Arrows: non-expansive functions f : T
ne−→ U satisfying:

∀x, y. x n
= y ⇒ f(x)

n
= f(y) (COFE-NONEXP)

Figure 6. Objects and arrows of the category COFE of COFEs

In practice, however, the end-user typically wants to use multiple
ghost variables of multiple RAs, in particular when combining
different proofs. We apply a general construction facilitating this:
We assume a family of RAs (Mi)i∈I for some index set I, and
then define the RA M of the global ghost state to be the indexed
(dependent) product over “heaps of Mi” as follows:

M ,
∏
i∈I

N fin−⇀Mi

In this construction, we use the natural point-wise lifting of the
RA operations from each Mi through the finite maps and products
all the way to M , so that M is an RA itself.

This allows us (a) to use all the Mi in our proofs, and (b) to treat
ghost state as a heap, where we can allocate new instances of any
of the Mi at any time. We define local ghost ownership of a single
location as:

a : Mi
γ
, λj.

[γ 7→ a] if i = j

∅ otherwise

In other words, a : Mi
γ

asserts ownership of the singleton heap
[γ 7→ a] at position i in the product. We typically leave the concrete
Mi implicit and write just a

γ
. The rules given in Figure 4 can then

be derived from those shown in Figure 5.

3. A Model for Higher-Order Ghost State
In this section, we explain how to solve the problem outlined at the
end of §2.5 by changing the semantic model of Iris assertions to
account for higher-order ghost state. We start by giving a model
for Iris 1.1. This is essentially a review of how the model of Iris
1.0 was built; the differences are minuscule. Next we show why
the agreement construction AG as defined in §2.5 does not scale to
higher-order ghost state, and give a refined version that does scale.
Finally, we show how to evolve the model to Iris 2.0 in order to
solve the challenge posed in §1.1 in a generic and foundational way.

3.1 The Iris Model
Proving soundness of Iris involves giving a model to all its primitive
assertions in an appropriate semantic domain, and then verifying
correctness of every primitive rule with respect to that model.

The main difficulty here is to come up with a semantic domain
that is sufficient to model Iris’s assertions. This domain, which we
call iProp, should satisfy (roughly) the following equations:

iProp = World mon−−→ Res mon−−→ Prop (IRIS-1.0)

where World , N fin−⇀ iProp

Res ,M × EX(PhyState)

Let us look at the individual pieces: M is the RA of ghost state
as picked by the user. Physical states PhyState are equipped with

Step-indexed Assertions:

SProp , {X ∈ ℘(N) | ∀n ≥ m. n ∈ X ⇒ m ∈ X}

X
n
= Y , ∀m ≤ n. m ∈ X ⇔ m ∈ Y

Discrete: ∆X , X

x
n
= y , x = y

Later: IT , {next(x) | x ∈ T}

next(x)
n
= next(y) , n = 0 ∨ x n−1

= y

Figure 7. The COFEs used as part of the Iris model

the exclusive RA structure defined in §2.5, so that Res becomes the
RA of resources (logical and physical) that can be owned. Prop is
the domain of meta-level propositions (e.g., Coq’s Prop).

Res mon−−→ Prop is a predicate over resources, the usual model
of assertions in separation logic. Iris is an intuitionistic separation
logic, which gives rise to the monotonicity requirement—owning
more resources makes more assertions true.5 We can easily model
ghost ownership a in this domain of resource predicates.

The World keeps track of the invariants that have been created.
We index the resource predicate over “possible worlds”. The invari-
ant assertion P

ι
is thus modeled as asserting the existence of an

invariant named ι in the current world. Worlds are ordered by the
extension order, i.e., allocating new invariants “grows” the world.
It is crucial to demand monotonicity of assertions with respect to
that order, so that assertions cannot be invalidated by new invariants
being added.

Notice that the above equations are circular: World depends on
iProp, which depends contravariantly on World.

Step-indexing to the rescue. To solve the circularity in the pro-
posed definition of iProp, we use step-indexing [3] to stratify the
recursive domain equation. Following Birkedal et al. [7], we do this
in an abstract way by working in the category COFE of Complete
Ordered Family of Equivalences (COFEs), as defined in Figure 6.

The key intuition behind COFEs is that elements x and y are
n-equivalent, written x n

= y, if they are equivalent for n steps
of computation, i.e., if they cannot be distinguished by a program
running for no more than n steps. It follows that, as n increases, n=
becomes more and more refined (COFE-MONO). In the limit, it agrees
with plain equality (COFE-LIMIT). In order to solve the recursive
domain equation it is essential that COFEs are complete, i.e., that
any chain has a limit. See [7, 1] for more details.

An arrow f : T
ne−→ U between two COFEs is a non-expansive

function. Such functions preserve the structure defined by (
n
=) (COFE-

NONEXP). In other words, applying such a function to some data will
not suddenly introduce differences between seemingly equal data.
Elements that cannot be distinguished by programs within n steps
remain indistinguishable after applying f .

The COFEs that are essential to the Iris model are defined in
Figure 7. The COFE of step-indexed assertions SProp represents
assertions that are true for some number of steps, or forever. (SProp
corresponds to the set of ordinals up to ω.) The discrete COFE
∆X turns any set X into a COFE by assigning the degenerate
step-indexed equivalence. Finally, the later COFE IT moves the
step-indexed equivalence of a COFE T up by one, thus making
everything “one level more equal” than in T .

5 In other words, the function has to be monotone with respect to the
extension order 4 (defined in Figure 3) and implication on Prop.

7

It turns out that, within the category COFE , the following
recursive domain equation can be solved up to isomorphism using
America and Rutten’s theorem [2]:

iProp ≈ World mon−−→ ∆Res mon−−→ SProp (IRIS-1.1)

where World , N fin−⇀ IiProp

Res ,M × EX(PhyState)

An Iris assertion is hence indexed by a world w ∈ World, by a
resource r ∈ Res, and by a step-index n ∈ N.

Compared to IRIS-1.0, the key differences are the use of SProp
instead of Prop, and the I in front of the recursive occurrence of
iProp. The I serves as a guard that introduces a stratification step.
This is needed to ensure that the recursive domain equation reaches
a fixed point. It is also the reason that the proof rule INV needs a side-
condition about I: Due to World actually containing IiProp rather
than iProp, INV only holds for assertions that do not depend on the
step-index, such as ghost ownership a

γ
. We call such assertions

timeless. There is a stronger version of INV [1] that works for any
assertion, but it needs more care because we have to deal with the
fact that I only holds at the next step-index (which is written as .I).

Since the equation IRIS-1.1 only holds up to isomorphism, we
have to be careful not to perform operations that are not preserved
by the isomorphism. Basically, we have to make sure that we stay
inside the category COFE , which in particular means that every
function must be non-expansive.

However, the end user of Iris 1.1 does not have to bother much
about this: Since we use the discrete COFE ∆ for Res, all functions
on Res—and in particular the RA operations for composition and
core—are trivially non-expansive.

3.2 Higher-Order Agreement
With the framework of the model—in particular the category
COFE—set up, let us now look again at the agreement RA de-
fined in §2.5. Remember that ultimately we would like to obtain
AG(T) for some T that may depend on iProp.

Ignoring the circularity that came up in §2.5, there is another
problem with the definition of AG in that section: when the AG(T)
construction is generalized to range over a non-discrete COFE T ,
such as iProp, the composition operator (·) is not non-expansive.
That is, given P and Q that are equal up to n steps, but not equal
for all steps, i.e., P n

= Q for some n while P 6= Q, we have:

ag(P) · ag(Q) = ⊥
n

6= ag(P) = ag(P) · ag(P)

For (·) to be non-expansive, we should have ag(P) · ag(P)
n
=

ag(P) · ag(Q), which is clearly not the case. This is not entirely
surprising: agreement composition was defined in terms of equality
rather than step-indexed equality.

In order to make sense of the idea of agreement over COFEs,
we have to drop absolute terms like the elements being (exactly)
equal and composition being (completely) defined, and instead use
step-indexed versions of those terms. This is achieved by keeping
track of how valid an RA element is, which we can then relate to
how equal the operands of the composition were. So, we re-define
AG(T) for any COFE T :

AG(T) , {(x, V) ∈ T × SProp} / ∼
where a ∼ b , a.V = b.V ∧ ∀n ∈ a.V . a.x n

= b.x

a
n
= b , (∀m ≤ n. m ∈ a.V ⇔ m ∈ b.V) ∧

(∀m ≤ n. m ∈ a.V ⇒ a.x
m
= b.x)

Vn , {a ∈ AG(T) | n ∈ a.V }

a · b ,
(
a.x,

{
n
∣∣∣ n ∈ a.V ∧ n ∈ b.V ∧ a n

= b
})

A CMRA is a tuple (M : COFE , (Vn ⊆M)n∈N,

|−| : M ne−→M?, (·) : M ×M ne−→M) satisfying:

∀n, a, b. a n
= b ∧ a ∈ Vn ⇒ b ∈ Vn (CMRA-VALID-NE)

∀n,m. n ≥ m⇒ Vn ⊆ Vm (CMRA-VALID-MONO)

∀a, b, c. (a · b) · c = a · (b · c) (CMRA-ASSOC)

∀a, b. a · b = b · a (CMRA-COMM)

∀a. |a| ∈M ⇒ |a| · a = a (CMRA-CORE-ID)

∀a. |a| ∈M ⇒ ||a|| = |a| (CMRA-CORE-IDEM)

∀a, b. |a| ∈M ∧ a 4 b⇒ |b| ∈M ∧ |a| 4 |b|
(CMRA-CORE-MONO)

∀n, a, b. (a · b) ∈ Vn ⇒ a ∈ Vn (CMRA-VALID-OP)

∀n, a, b1, b2. a ∈ Vn ∧ a
n
= b1 · b2 ⇒

∃c1, c2. a = c1 · c2 ∧ c1
n
= b1 ∧ c2

n
= b2

(CMRA-EXTEND)

where

a 4 b , ∃c. b = a · c (CMRA-INCL)

Figure 8. CMRA operations and axioms

Elements a ∈ AG(T) now consist of an a.x ∈ T (the actual
data represented by a) and a set a.V defining how valid a is. The
set contains those n such that a is valid for n steps of computation.
Finally, the quotient by ∼ ensures that elements of AG(T) are only
equated for the number of steps for which they are valid.

In this construction, validity of a is generalized from a “plain”
assertion a ∈ V to a step-indexed assertion a ∈ Vn. Recall that
validity in RAs corresponds to partiality in PCMs—we obtain a
notion of two elements being composable or not. With step-indexed
validity, we have a notion of elements being n-composable. You can
think of this as “step-indexed partiality”.

The step-indexed equality on AG(T) propagates the one on T .
This makes composition a non-expansive operation: For a1

n
= a2, it

is easy to see that a1 · b
n
= a2 · b (and likewise if b changes).

In order to explain how we use AG, we first define an injection
ag : T → AG(T) as follows:

ag(x) , (x,N)

Now imagine we start with two elements x, y ∈ T . You can see that
ag(x) · ag(y) is n-valid if and only if x n

= y—in other words, the
composition of two elements is as valid as the elements are equal.
This gives rise to the following property:

V(ag(x) · ag(y))⇒ x = y (AG-VALID)

Note that this is a statement in Iris, not in the meta-logic. Both
validity and equality are actually step-indexed assertions, namely,
Vn and (

n
=). This implication has to be shown once and for all when

defining AG; it can then be used in Iris proofs.
There is one last technical step that we have to take: AG(T) as

defined in this section does not satisfy the completeness axiom of
COFEs (see Figure 6). To turn AG(T) into an actual COFE, we
perform a Cauchy completeness construction (by considering chains
of elements). This technical step is detailed in the appendix [1] and
fully formalized in Coq, as are all the constructions in this paper.

3.3 CMRAs
The AG(T) construction as defined in the previous section is no
longer just an RA—we had to define Vn, and we had to prove non-
expansiveness of the operations. In this section we introduce the

8

algebraic structure of CMRAs (“cameras”) to abstractly characterize
such “step-indexed RAs”. You can find its definition in Figure 8.
The differences from RAs are as follows:

• The carrier needs to be a COFE, and the core and composition
operations have to be non-expansive.
• The set of valid elements Vn is step-indexed. The rule CMRA-

VALID-OP expresses that we need decomposition to preserve
validity at every step-index. The rule CMRA-VALID-NE demands
that Vn must not make a distinction between n-equal elements
(this is a form of non-expansiveness), and CMRA-VALID-MONO

declares that at smaller step-indices, more elements are valid.
As discussed in the previous section, Vn encodes “step-indexed
partiality”, which is more general than using a partial function for
composition. For consistency, we decided that partiality should
be handled the same for RAs and CMRAs, which is why RAs
use a validity predicate as well.
• The extension axiom CMRA-EXTEND roughly states that decom-

position must commute with step-indexed equivalence. This is
discussed in more depth in our technical appendix [1].

Notice that every RA can be trivially turned into a CMRA by
equipping it with the discrete COFE ∆ and making Vn just ignore
the step-index, so that validity is the same at every n.

We can easily generalize existing RA constructions to CMRA
constructions by lifting the step-indexed validity. For example, for
+⊥ from §2.5, this is done as follows:

Vn ,
{
inl(a1)

∣∣ a1 ∈ V ′n} ∪ {inr(a2)
∣∣ a2 ∈ V ′′n}

3.4 The Model of Iris 2.0
We now have everything set up to generalize Iris to higher-order
ghost state. Instead of the user picking a fixed RA R, they can pick
an arbitrary CMRA M that can depend on iProp. Formally, this
dependency is expressed by a function F : COFE → CMRA:

iProp ≈ World mon−−→ Res mon−−→ SProp (IRIS-PRE-2.0)

where World , N fin−⇀ IiProp

Res , F (iProp)×∆EX(PhyState)

Notice that this is very similar to IRIS-1.1. The only difference
is that Res is no longer discrete, but rather defined in terms of F .
Similar to the case of the I in World, every recursive occurrence of
iProp in F needs to be guarded by a I to ensure the existence of a
fixed point of the recursive domain equation. (Formally that means
F should be locally contractive [2, 7].)

In order to solve the challenge outlined in §1.1, recall that we
wish to obtain an instantiation of Iris where the ghost state is a heap
of oneshots of type T , where T may depend on iProp. Let us rewrite
it as T = G(iProp) to factor out the dependency on iProp. We can
then choose the following function for the ghost state:

F (X) , N fin−⇀ ONESHOT(AG(IG(X)))

We will see in §4.2 that this suffices to prove the correctness of the
client from §1.1.

Since F is a function between types in a category, we require it
to be a bifunctor from COFE to CMRA.6 This is typically easy
to show. Using bifunctors, we can handle both co- and contravariant
occurrences of F ’s argument, e.g., if the type T is iProp→ iProp,
in which case G(X) , X

ne−→ X . Of course, if all you need is
first-order ghost state, you can easily pick the constant functor

6 The arrows of CMRA are monotone, non-expansive functions—for
further details, see our technical appendix [1].

F (_) = M for any CMRA or RA M . In this case, there are no
further proof obligations; F trivially satisfies all the functor laws.

So, to sum this up: Iris 2.0 is parameterized over a user-selected
locally contractive bifunctor F . Within the logic, the user then has
F (iProp) available for the ghost state, which gives rise to arbitrary
higher-order ghost state in a canonical and principled way.

Unifying worlds and resources. There is one final change in
the model of Iris 2.0, compared to IRIS-1.1. Looking at IRIS-PRE-
2.0, we see that World and Res are recursively referring to iProp.
By equipping worlds with an appropriate CMRA structure, we
can merge worlds into the resources, which means we can make
resources comprise physical state, ghost state, and worlds.

What we need for this is a CMRA structure on World—but it
turns out that we have already defined the right CMRA, namely,
AG. One important property of invariants is that everybody involved
agrees on what the invariant with a particular name is; the agreement
CMRA ensures that this is the case.

This leads us to the following equation for defining the semantic
model of Iris:

iProp ≈ Res mon−−→ SProp (IRIS-2.0)

where Res , World× F (iProp)×∆EX(PhyState)

World , N fin−⇀ AG(IiProp)

Ignoring the AG, this is just the uncurried form of IRIS-PRE-2.0.
However, as a consequence of this, iProp is now just a predicate over
a CMRA. Practically speaking, this means that most Iris connectives
can be modeled independently of worlds. Almost all connectives can
be interpreted in M mon−−→ SProp, completely generic in the choice
of the CMRA M . This kind of abstraction and unification simplifies
proving soundness of the logical rules.

Note that IRIS-2.0 brings us very close to the canonical model of
traditional separation logic—using a predicate over PCMs—the core
difference being step-indexing. This goes to show that even the most
complicated of concurrent impredicative higher-order separation
logics can be semantically reduced to the same fundamental idea.
In that sense, equipping Iris with generic higher-order ghost state
actually simplifies its model.

4. Case Study: Barrier
In this section, we will show how to implement and verify the
example from §1.1 using a synchronization primitive called a barrier
(which one can also think of as a “oneshot channel”). We follow
the implementation and specification of this primitive as presented
in Dodds et al. [15]. As we will see, higher-order ghost state is
crucially useful both in our use of the barrier and in verifying the
correctness of the barrier itself.

A barrier is a synchronization primitive offering two actions:

• Clients can wait on the barrier, which will block these processes
until the barrier is triggered.
• A client can signal the barrier, which will cause all waiting

clients to resume execution.

You can find the code implementing a barrier in Figure 9. This
implementation is fairly straightforward: A waiting client is in a
busy loop until it sees the location x updated to 1. So, all that signal
has to do is set the location to 1, and all current and future waiting
clients will leave their busy loop.

The example client in Figure 11 shows how a barrier can be
used to implement the pattern described in §1.1. Notice that we are
actually using the same barrier to communicate with both worker
threads, which is possible because a barrier can trigger multiple
threads when signaled. In fact, the client given here is even more
general than the one sketched in §1.1, since the worker threads

9

newbarrier , λ . ref(0)

signal , λx. x← 1

wait , rec wait(x) = if !x = 1 then () else wait(x)

Figure 9. Implementation of a barrier

NEWBARRIER
{True} newbarrier() {`. send(`, P) ∗ recv(`, P)}

SIGNAL
{send(`, P) ∗ P } signal(`) {True}

WAIT
{recv(`, P)} wait(`) {P }

RECV-MONO
P ` Q

recv(`, P) ` recv(`,Q)

RECV-SPLIT
recv(`, P1 ∗ P2)V recv(`, P1) ∗ recv(`, P2)

Figure 10. Barrier specification

are transforming their Pi into Qi, and the main thread later joins
these two together to obtain Q. Before we go into details about the
verification of the client, let us have a closer look at specifying the
interface provided by the barrier library.

4.1 Barrier Specification
The behavior of the barrier is specified in Figure 10. When initial-
izing a barrier using newbarrier(), the resources recv(`, P) and
send(`, P) are created, which can then be used by the waiting thread
and signaling thread, respectively. The assertion P describes the
resources the barrier has to transfer, so when calling signal(`), the
resource P has to be given up and is transferred to the waiting client.
Conversely, when wait(`) returns, the waiting client receives P .

Notice that newbarrier works for any assertion P , without the
caller having to establish P or give up any resources on initialization
of the barrier. In the example shown in Figure 11, the assertion P is
in fact only established by the “expensive computation”, long after
the barrier has been created.

The predicates recv(`, P) and send(`, P) are impredicative
higher-order abstract predicates. This means that they are pred-
icates describing any assertion P (higher-order), which can include
occurrences of recv and send itself (impredicative), as well as e.g.,
Hoare triples. It is thus for example possible to send the permission
for code pointers through the barrier. Finally, these predicates are
defined by the implementation of the barrier, but their details are not
exposed to the client (abstract).

The rule RECV-SPLIT plays an important role in proving the
correctness of the client in Figure 11. The client has two threads
that both call wait, and thus both need a recv resource, whereas
after initialization of the barrier we have just one such resource. If
we can split P into two pieces P1 and P2, then we can use RECV-
SPLIT to split recv(`, P) into recv(`, P1) and recv(`, P2). Splitting
makes it possible to move the resources recv(`, P1) and recv(`, P2)
to different threads, which then can both call wait to obtain their
piece of the resource transmitted through the barrier.

4.2 Splitting and Joining the Existentials
For the verification of the example client in Figure 11, we assume
that we have the following Hoare triples for the main thread M and
the workers Wi for i ∈ {1, 2}:

{P ′} e {∃x:T. P } ∀x:T. {Pi} ei {Qi}

Here and below, the assertions P , Pi, Qi and Q range over a
variable x of type T = G(iProp) for some bifunctor G (cf. §3.4).
We furthermore assume that resources can be split and merged.

∀x:T. P ⇒ P1 ∗ P2 ∀x:T. Q1 ∗Q2 ⇒ Q

Oneshot ghost variables. The functor that we need to implement
oneshot ghost variables is F (X) , ONESHOT(AG(IG(X))), so
the ghost state is of type F (iProp) = ONESHOT(AG(IT)). We
encode oneshot ghost locations as follows:

γ ↪→ pending , inl()
γ

γ ↪→ x , inr(ag(next(x)))
γ

for x : T

Notice that γ ↪→ x is a persistent assertion stating that the oneshot
location has been initialized. The state of location γ is obtained by
injecting x into ONESHOT(AG(IT)).

From generic properties of the oneshot and agreement CMRA
we obtain the following proof rules to initialize a previously unini-
tialized location, and to encode that a location, once initialized, will
not change its value:

γ ↪→ pendingV γ ↪→ x (ONESHOT-INIT)
γ ↪→ x ∗ γ ↪→ y ⇒ .(x = y) (ONESHOT-AGREE-LATER)

We will now prove the latter rule (ONESHOT-AGREE-LATER) to show
that it is indeed a derived rule. First of all, observe that owning
γ ↪→ x ∗ γ ↪→ y is logically equivalent to (using GHOST-OP):

inr(ag(next(x)) · ag(next(y)))
γ

By GHOST-VALID we know that we can only own valid ghost CMRA
elements. In combination with AG-VALID, we thus obtain

next(x) = next(y)

Finally, we use the following general property of the later construc-
tion IT to complete the proof of ONESHOT-AGREE-LATER:

next(x) = next(y)⇔ .(x = y)

Remember that .(x = y) means that x and y are equal at the
next step-index. This is not a problem, since we can get rid of the .
when the program performs a physical step of execution.

Verification of the worker threads. We decorated Figure 11 with
verification conditions to document resources available at any
particular point in the code. To obtain the resources needed for the
worker threads, we want to split the recv using RECV-SPLIT, which
first requires us to weaken the barrier assertion with RECV-MONO:

(∃x:T. γ ↪→ x ∗P)⇒ (∃x:T. γ ↪→ x ∗P1) ∗ (∃x:T. γ ↪→ x ∗P2)

It is straightforward to verify correctness of the worker threads.

Joining the existentials. What is left to justify is the last line of
Figure 11: How can the two existentials be joined together? The core
lemma for this step of the proof is ONESHOT-AGREE-LATER. From
there, we easily obtain:

(∃x:T.γ ↪→ x∗Q1)∗(∃x:T.γ ↪→ x∗Q1)⇒ .(∃x:T.γ ↪→ x∗Q)

The . on the right hand side is then consumed by the parallel
composition, when it performs a physical step of computation to
join the threads back together.

This completes the verification: We demonstrated that, using the
higher-order ghost state as defined in §3, we can solve the challenge
posed in §1.1 for existential quantification over arbitrary types.

4.3 Verifying the Barrier Specification: Saved Propositions
As has been discussed in [15], it is very difficult to prove a specifi-
cation for a barrier that includes the splitting axiom. Intuitively, the
reason for this is as follows: When a thread calls send to give up

10

let b = newbarrier() in{
γ ↪→ pending ∗ P ′ ∗ send(b,∃x : T. γ ↪→ x ∗ P) ∗ recv(b, ∃x : T. γ ↪→ x ∗ P)

}{
γ ↪→ pending ∗ P ′ ∗ send(b, ∃x : T. γ ↪→ x ∗ P) ∗ recv(b, ∃x : T. γ ↪→ x ∗ P1) ∗ recv(b, ∃x : T. γ ↪→ x ∗ P2)

}
[W1] [M] [W2]

{recv(b, ∃x : T. γ ↪→ x ∗ P1)}
{
γ ↪→ pending ∗ P ′ ∗ send(b, ∃x : T. γ ↪→ x ∗ P)

}
{recv(b,∃x : T. γ ↪→ x ∗ P2)}

wait(b); [expensive computation] e; wait(b);

{∃x : T. γ ↪→ x ∗ P1} {∃x : T. γ ↪→ x ∗ P ∗ send(b, ∃x : T. γ ↪→ x ∗ P)} {∃x : T. γ ↪→ x ∗ P2}
[work on P1] e1 signal(b) [work on P2] e2

{∃x : T. γ ↪→ x ∗Q1} {∃x : T. γ ↪→ x ∗Q2}
[After joining] {∃x : T. γ ↪→ x ∗Q}

Figure 11. Example client of a barrier

resources P , it has to prove that P matches the separating conjunc-
tion of the resources that all waiting clients are expecting to receive.
But how should signal know how the resources should be split
among the waiting clients? The splitting may have happened after
the call to newbarrier, and yet it must be somehow communicated
to signal.

To our knowledge, the only way to do this is to record the desired
splitting in the global ghost state, which is accessible to both the
thread that performs the splitting and to signal. This immediately
means that we need to be able to have ghost state that depends on
propositions—that is, arbitrary propositions of the logic (iProp), not
just meta-level propositions (Prop).

One convenient way of actually going about this proof is to apply
saved propositions [15]. In Iris, the interface of saved propositions
is as follows:

∀P. TrueV ∃γ. γ ⇒ P (SPROP-ALLOC)
∀γ, P,Q. (γ ⇒ P ∗ γ ⇒ Q)⇒ .(P ⇔ Q) (SPROP-AGREE)

The first rule says that we can allocate a new saved proposition P at
a fresh ghost location γ. Notice that to establish a saved proposition,
we do not actually have to establish that assertion. The allocated
assertion γ ⇒ P is persistent. The second rule then allows us to
derive, given two assertions about the same location, that they must
be about the same proposition.

It is not coincidental that these rules look very similar to GHOST-
ALLOC and ONESHOT-AGREE: the oneshot locations described in §4.2
are strictly more general than saved propositions. However, it is
easy enough to directly encode saved propositions by defining
F (X) , AG(IX) to obtain ghost state of the form AG(IiProp).

The full proof of the barrier specification in Iris is carried out in
our technical appendix [1] and is formalized in Coq.

5. Coq Formalization
Adequacy and soundness for Iris 2.0, many derived constructions,
and all specifications and proofs in this paper have been fully formal-
ized using Coq. We discuss important aspects of the formalization,
features of Coq that were essential, and the key differences between
the formalization of Iris 1.0 and Iris 2.0.

5.1 Algebraic Structures
The main challenge of formalizing the Iris logic is that it lives
in the category of COFEs instead of the conventional category of
Coq Types. So, instead of using plain Coq Types, we use types
equipped with an ordered family of equivalences, and instead of
plain Coq functions, we use non-expansive functions. This poses
some interesting challenges:

• In Iris we use large nested COFE constructions composed from
smaller COFEs (see for example the construction IRIS-2.0).
Coq should be able infer the COFE structure on these nested
constructions automatically without considerable overhead.
• Defining non-expansive functions should be lightweight. Most

importantly, just to write down a ∀x:T. P x or ∃x:T. P x

quantification in the logic (where P : T
ne−→ iProp), there should

be no proof obligations.

• Rewriting with the equivalence relations n
= of COFEs should

work fast and reliably. Note that rewriting with n
= is only possible

in the context of non-expansive functions, and thus requires Coq
to derive facts about non-expansiveness. In Coq, rewriting with
user-defined equivalence relations is called setoid rewriting.

The Coq formalization of Iris 1.0, which used the ModuRes
library [32], did not meet any of these challenges. Dealing with large
COFE constructions made Coq very slow, setoid rewriting worked
unreliably, and proofs of non-expansiveness cluttered definitions.
The Coq formalization of Iris 2.0 has been implemented from
scratch, and we have improved on all of these points.

In order to emphasize the difficulties involved, let us describe
the two most commonly used patterns of representing algebraic
structure (like COFEs and CMRAs in our case) in Coq.

• The bundled approach consists of representing algebraic struc-
tures as dependently typed records containing the carrier, the
operations, and proofs. COFEs would thus be formalized as:

Record cofeT := {
cofe_car :> Type;
cofe_dist : nat → relation cofe_car;
cofe_dist_equivalence : ∀ n,

Equivalence (cofe_dist n);
(* ... *)

}.

• The unbundled approach consists of representing algebraic
structures as predicates over the carrier, the operations, and
proofs. COFEs would thus be formalized as:

Record cofeT {A} (d : nat → relation A) := {
cofe_dist_equivalence : ∀ n,

Equivalence (cofe_dist n);
(* ... *)

}.

11

In order to automatically infer algebraic structures given the
Type of the carrier, Coq supports two similar mechanisms: canonical
structures and type classes. Canonical structure search is guided by
the fields of a record, and is thus commonly used in combination
with the bundled approach [19]. Type class search, on the other hand,
is guided by the parameters of a record, and is thus commonly used
in combination with the unbundled approach [34].

Iris 1.0 used the unbundled approach to represent COFEs, which
is known to suffer from an exponential blow-up in term size when
nesting instances of algebraic structures. In order to remedy this
shortcoming, Iris 2.0 uses a bundled approach using canonical
structures inspired by Ssreflect’s [19].

Iris 1.0 demanded proofs of non-expansiveness of functions a
priori pretty much everywhere. We changed this in Iris 2.0 such that
for example the predicates in universal and existential quantification,
and the post-condition of Hoare triples, do not a priori have to
be non-expansive. This allows us to reuse Coq’s functions and
notation when writing down formulas in the Iris logic. Proofs of non-
expansiveness are only needed for setoid-rewriting and constructing
recursive definitions, but not for validity of the proof rules, and
can thus be established a posteriori. This approach matches well
with Coq’s setoid machinery, which uses type classes to register
compatibility with equivalence relations a posteriori [33].

Although Iris 2.0 made considerable progress on the formal-
ization challenges we posed, we do not consider these challenges
to be solved. Since we need the combination of bundled algebraic
structures and setoid rewriting, we are using a mixture of canonical
structures and type classes, whose interaction is somewhat fragile.
Most notably, many Coq tactics, including the rewrite tactic and
the type class machinery, are very sensitive to terms that are only
equal up to conversion (e.g., unfolding of canonical structure pro-
jections), and they often fail to infer type class arguments. In order
to work around these problems, we are using the Ssreflect rewrite
tactic, which deals better with these issues.

We thus welcome some machinery that unifies type classes and
canonical structures in a streamlined way. Unification hints may be
a step in this direction [5].

5.2 Programming Language
Similar to Iris 1.0, the Coq formalization of Iris 2.0 is parameterized
by the programming language that one wishes to reason about.
For the purpose of this paper, we have instantiated Iris with a
deeply embedded untyped ML-like language with higher-order store
and the concurrency primitives fork and CAS (compare-and-swap).
This improves on the Iris 1.0 formalization, which has not been
instantiated with an actual programming language.

The main goal of the Iris 2.0 Coq formalization is verification
of actual code, and as such, readability of programs written in the
deeply embedded language becomes important. In particular:

1. We want to be able to write programs in a syntax that resembles
ML, and we want programs to be pretty printed similarly to how
they appear when being interactively verified.

2. Variable binding should be human-readable, hence a “machine
oriented” approach like De Bruijn indexes does not suffice.

3. All programs should be closed, i.e., they should not contain free
variables. The language formalization should ensure closedness
of programs automatically.

We make use of Coq’s expressive notation mechanism to ob-
tain an ML-like notation for our language, we make use of named
variables to make binding human-readable, and we make use of de-
pendent types to ensure closedness of programs. Our representation
of programming language expressions is roughly as follows:

Class VarBound (x : string) (X : list string) :=
var_bound : if decide (x∈X) then True else False.

Inductive expr (X : list string) : Type :=
| Var x : VarBound x X → expr X
| App : expr X → expr X → expr X
| Lam x : expr (x :: X) → expr X.

Coercion App : expr >-> Funclass.
Notation "’ x" := (Var x _).
Notation "λ: x .. y , e" := (Lam x .. (Lam y e) ..).

The type expr X represents expressions whose free variables
are a subset of X, and as such, expressions of type expr [] are
guaranteed to be closed. An important part of this definition is
that the condition x∈ X for variables is decidable, and can thus be
inferred by computation while type checking concrete programs.
This is achieved by instrumenting the type class mechanism with a
hint to solve VarBound constraints by computation:

Hint Extern 0 (VarBound _ _) =>
vm_compute; exact I : typeclass_instances.

Notice that we can use a named approach to variable binding
without having to worry about variable capture because our language
has weak reduction—i.e., we do not reduce under λs.

Example. The Coq version of the code of the barrier implementa-
tion is as follows:7

Definition newbarrier : val := λ: <>, ref #0.
Definition signal : val := λ: "x", ’"x" <- #1.
Definition wait : val :=

rec: "wait" "x" :=
if: !’"x" = #1 then #() else ’"wait" ’"x".

5.3 Notable Formalization Aspects
Weakest precondition. The Hoare triples of Iris are defined in
terms of a more primitive weakest precondition judgment. Since the
weakest preconditions are better suited for interactive proving, we
use them in our Coq proofs. Hoare-triple-based specifications—such
as those in §2 and §4.1—are only established at the end.

Non-expansive functions. We have implemented a tactic to prove
that functions are non-expansive by repeatedly applying congruence
properties. Contrary to Coq’s solve_proper, our tactic is more
efficient and handles match constructs.

Combining functors. A core feature of Iris is that the structure
of the ghost state can be chosen by the user. This is achieved by
parameterizing the logic by a functor F (§3.4). However, when
verifying programs that consist of multiple program modules, it
is likely that different program modules are in need of different
functorsGi. We have used Coq’s type class machinery to implement
infrastructure that automatically combines these Gi to form the
global functor F , so the modules can be combined in one proof.

5.4 Overview
The Coq development, which is entirely constructive and axiom-
free, consists of the parts described in Figure 12. Line counts
exclude whitespace and comments. We used a support library by
Krebbers [25] that contains many definitions and theorems about
data structures such as lists, finite sets, and finite maps.

The compilation times of Iris 2.0 have improved by an order of
magnitude: Compilation of the components ‘Algebra’ and ‘Program
logic’ takes less than 2 minutes for Iris 2.0 vs. 23 minutes for Iris
1.0 (using an Intel Core i5-2450M, 4 threads, 2 cores).

7 In this code, <> denotes an anonymous binder.

12

Component What else LOC

Algebra Solver for domain equations 5.444
Program logic Model, adequacy, derived notions 2.385
Heap language Derived rules, automation 1.591
Barrier Higher-order client (see [1]) 433
Examples Examples from §2 and §4.2 239
Total 10.092

Figure 12. Overview of the Coq development

6. Related Work
User-defined higher-order ghost state. Several prior logics sup-
port custom (user-defined) ghost state, via Concurroids [27] or
PCMs [24, 39]. However, these logics are all restricted to first-order
ghost state, since the structure of the ghost state is defined and fixed
before the logic is instantiated.

Some logics do have a model that can be considered to involve
second-order ghost state, e.g., to justify their use of dynamically
allocated locks [20, 21, 8], regions [35], or invariants [24]. However,
this ghost state has a fixed structure, rather than being an instance
of a generic algebraic structure like CMRAs.

In some of these prior logics, even though the structure of ghost
state is fixed, it can sometimes be adapted cleverly to support a
range of proof patterns. For example, Dodds et al. [15] showed
that the built-in “protocol” mechanism of the iCAP logic [35] can
be repurposed to encode saved propositions (§4.3), a functionality
for which it was not originally intended. However, the encoding is
somewhat artificial, must be verified by direct appeal to the model
of iCAP, and does not scale to support general higher-order ghost
state (such as we relied on in proving the example from §1.1).

The Verified Software Toolchain (VST) of Appel et al. [4]
provides a general framework for defining higher-order logics via
“indirection theory” [22]. Although VST has been demonstrated to
support particular forms of second-order ghost state, it is not yet
clear how precisely indirection theory compares with the categorical
COFE-based approach. We believe that VST can potentially be
generalized to support more general higher-order ghost state in
the manner of Iris 2.0. Notably, VST has a notion of PCM-like
structures that are compatible with aging (step-indexing) and seem
to loosely correspond to CMRAs. However, logics built using the
VST typically fix a particular ghost state for their purpose and
provide primitive rules for this particular ghost state, whereas Iris is
designed for such proof rules to be derived inside a single logic from
a few fundamental proof rules. As a result, Iris proofs using different
CMRAs can be safely composed (§2.6), whereas proofs carried out
in different VST logics do not necessarily interoperate. Furthermore,
VST has so far only been applied to sequential and coarse-grained
concurrent code, not to fine-grained concurrent algorithms.

PCMs with a (duplicable) core. There have been several presen-
tations of variants of PCMs that have “multiple units” or include a
notion of a “duplicable core”.

Dockins et al. introduced multi-unit separation algebras [14],
which, unlike PCMs, only demand the existence of a possibly
different unit ua with ua · a = a for any element a. A crucial
difference between multi-unit separation algebras and RAs is that
we present the monoidal operation and core as a function, whereas
they represent these as relations.

The terminology of a (duplicable) core has been adapted from
Pottier, who introduced it in the context of monotonic separation
algebras [30]. However, the axioms of Pottier’s cores, as well as
those of related notions in other work [39, 4], are somewhat different

from the axioms of our RAs. Some common properties appear
consistently (either as axioms, or as admissible rules): The core
must produce a unit (RA-CORE-ID), be idempotent (RA-CORE-IDEM),
and be a homomorphism, i.e., be compatible with composition:
|a · b| = |a| · |b|. The last property is stronger than our monotonicity
axiom (RA-CORE-MONO), and as such, the axioms of RAs are weaker
than those demanded by prior work. In fact, RAs are strictly weaker.
One of our most important RA constructions, the state-transition
system (STS),8 has a core that is not a homomorphism. This shows
that demanding the core to be a homomorphism, as prior work has
done, rules out useful instances.

Another difference is the fact that our core may be partial,
whereas in prior work it was always a total function. As discussed
in §2.5, partial cores make it easier to compose RAs out of simpler
constructions like sums.

Coq formalizations. Over the past decade, there has been tremen-
dous progress on formalization of program logics in proof assis-
tants, with focus on supporting strong proof automation, as well as
the ability to deal with realistic programming languages (see, e.g.,
[4, 31, 6, 23, 9, 25, 39, 37]).

However, with the exception of the aforementioned VST, these
formalized program logics do not support impredicative invariants
(§2.2), let alone higher-order ghost state.

7. Conclusion
We have introduced higher-order ghost state and have shown that
it is a useful extension of higher-order concurrent separation logic.
Moreover, we have presented Iris 2.0, an extension of the original
Iris program logic with support for higher-order ghost state.

Soundness of Iris 2.0 is proven using a new model construction,
which, in addition to supporting higher-order ghost state, also unifies
two of the core model concepts, worlds and resources, that were
distinct before. This simplifies the meta-theory, which is important
not only conceptually, but also when formalizing the meta-theory
of Iris in a proof assistant. We have formalized Iris 2.0 in Coq, and
the formalization itself is a strong improvement over the earlier
formalization of Iris 1.0.

In ongoing work, we are using the new Iris 2.0 formalization to
conduct larger experiments with Iris. To support such experiments,
we are in the process of developing tactic support for reasoning
about concurrent higher-order programs.

In order to facilitate interactive reasoning in Iris using Coq, we
have extended Coq with support for the linear context of separation
logic. This extension provides named assumptions and tactical sup-
port for introduction and case analysis of these linear assumptions.
Initial experiments are promising and show a significant improve-
ment in ergonomics compared to using the rules of Iris manually.

In addition, we plan to develop tactics to reason fully automati-
cally about client code. This will probably be done using Malecha
and Bengtson’s recent reflective tactics [26].

Acknowledgments
We wish to thank Jacques-Henri Jourdan for suggesting the notion
of a partial core, and Kasper Svendsen for his help with clarifying
details concerning COFEs and saved propositions in iCAP.

This research was supported in part by a European Research
Council (ERC) Consolidator Grant for the project “RustBelt”,
funded under the European Union’s Horizon 2020 Framework Pro-
gramme (grant agreement no. 683289); and by the ModuRes Sapere
Aude Advanced Grant from The Danish Council for Independent
Research for the Natural Sciences (FNU).

8 The RA of STSs, as well as the example demonstrating that the core is not
a homomorphism, is described in our technical appendix [1].

13

References
[1] Higher-Order Ghost State: Appendix and Coq development. Available

on the Iris project website at http://plv.mpi-sws.org/iris/.

[2] P. America and J. Rutten. Solving reflexive domain equations in a
category of complete metric spaces. JCSS, 39(3):343–375, 1989.

[3] A. Appel and D. McAllester. An indexed model of recursive types for
foundational proof-carrying code. TOPLAS, 23(5):657–683, 2001.

[4] A. W. Appel, editor. Program Logics for Certified Compilers. Cam-
bridge University Press, 2014.

[5] A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. Hints in unification.
In TPHOLs, volume 5674 of LNCS, pages 84–98, 2009.

[6] J. Bengtson, J. B. Jensen, and L. Birkedal. Charge! - A Framework for
Higher-Order Separation Logic in Coq. In ITP, volume 7406 of LNCS,
pages 315–331, 2012.

[7] L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic
solution of recursive metric-space equations. TCS, 411(47):4102–4122,
2010.

[8] A. Buisse, L. Birkedal, and K. Støvring. Step-indexed Kripke model
of separation logic for storable locks. ENTCS, 276:121–143, 2011.

[9] A. Chlipala. The Bedrock structured programming system: combining
generative metaprogramming and Hoare logic in an extensible program
verifier. In ICFP, pages 391–402, 2013.

[10] E. Cohen, E. Alkassar, V. Boyarinov, M. Dahlweid, U. Degenbaev,
M. Hillebrand, B. Langenstein, D. Leinenbach, M. Moskal, S. Obua,
W. Paul, H. Pentchev, E. Petrova, T. Santen, N. Schirmer, S. Schmaltz,
W. Schulte, A. Shadrin, S. Tobies, A. Tsyban, and S. Tverdyshev.
Invariants, modularity, and rights. In PSI, volume 5947 of LNCS,
pages 43–55, 2009.

[11] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A logic
for time and data abstraction. In ECOOP, pages 207–231, 2014.

[12] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and
H. Yang. Views: Compositional reasoning for concurrent programs.
In POPL, 2013.

[13] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP, pages
504–528, 2010.

[14] R. Dockins, A. Hobor, and A. W. Appel. A fresh look at separation
algebras and share accounting. In APLAS, pages 161–177, 2009.

[15] M. Dodds, S. Jagannathan, M. J. Parkinson, K. Svendsen, and
L. Birkedal. Verifying custom synchronization constructs using
higher-order separation logic. TOPLAS, 38(2):4, 2016.

[16] X. Feng. Local rely-guarantee reasoning. In POPL, pages 315–327,
2009.

[17] X. Feng, R. Ferreira, and Z. Shao. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In ESOP,
pages 173–188, 2007.

[18] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about
optimistic concurrency using a program logic for history. In CONCUR,
pages 388–402, 2010.

[19] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging
mathematical structures. In TPHOLs, volume 5674 of LNCS, pages
327–342, 2009.

[20] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In APLAS, pages 19–37,
2007.

[21] A. Hobor, A. Appel, and F. Zappa Nardelli. Oracle semantics for
concurrent separation logic. In ESOP, pages 353–367, 2008.

[22] A. Hobor, R. Dockins, and A. Appel. A theory of indirection via
approximation. In POPL, 2010.

[23] J. B. Jensen, N. Benton, and A. Kennedy. High-level separation logic
for low-level code. In POPL, pages 301–314, 2013.

[24] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer. Iris: Monoids and invariants as an orthogonal basis for
concurrent reasoning. In POPL, pages 637–650, 2015.

[25] R. Krebbers. The C standard formalized in Coq. PhD thesis, Radboud
University, 2015.

[26] G. Malecha and J. Bengtson. Easy and efficient automation through
reflective tactics. In ESOP, 2016.

[27] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco. Communi-
cating state transition systems for fine-grained concurrent resources.
In ESOP, pages 290–310, 2014.

[28] P. O’Hearn. Resources, concurrency, and local reasoning. TCS,
375(1):271–307, 2007.

[29] S. Owicki and D. Gries. Verifying properties of parallel programs: An
axiomatic approach. CACM, 19(5):279–285, 1976.

[30] F. Pottier. Syntactic soundness proof of a type-and-capability system
with hidden state. JFP, 23(1):38–144, 2013.

[31] I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of
fine-grained concurrent programs. In PLDI, pages 77–87, 2015.

[32] F. Sieczkowski, A. Bizjak, and L. Birkedal. ModuRes: A Coq
library for modular reasoning about concurrent higher-order imperative
programming languages. In ITP, volume 9236 of LNCS, pages 375–
390, 2015.

[33] M. Sozeau. A new look at generalized rewriting in type theory. JFR,
2(1):41–62, 2009.

[34] B. Spitters and E. van der Weegen. Type classes for mathematics in
type theory. MSCS, 21(4):795–825, 2011.

[35] K. Svendsen and L. Birkedal. Impredicative concurrent abstract
predicates. In ESOP, pages 149–168, 2014.

[36] K. Svendsen, L. Birkedal, and M. J. Parkinson. Modular reasoning
about separation of concurrent data structures. In ESOP, pages 169–
188, 2013.

[37] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic.
In POPL, pages 97–108, 2007.

[38] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, pages
377–390, 2013.

[39] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: navigating weak memory
with ghosts, protocols, and separation. In OOPSLA, pages 691–707,
2014.

[40] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR, pages 256–271, 2007.

14

http://plv.mpi-sws.org/iris/

	1 Introduction
	1.1 Illustrative Example: Splitting and Joining Existentials
	1.2 Contributions

	2 Iris Primer
	2.1 Ghost State in Iris: Resource Algebras
	2.2 Invariants
	2.3 Persistent Assertions
	2.4 Proof of the Example
	2.5 RA Constructions
	2.6 Derived Forms and the Global Ghost State

	3 A Model for Higher-Order Ghost State
	3.1 The Iris Model
	3.2 Higher-Order Agreement
	3.3 CMRAs
	3.4 The Model of Iris 2.0

	4 Case Study: Barrier
	4.1 Barrier Specification
	4.2 Splitting and Joining the Existentials
	4.3 Verifying the Barrier Specification: Saved Propositions

	5 Coq Formalization
	5.1 Algebraic Structures
	5.2 Programming Language
	5.3 Notable Formalization Aspects
	5.4 Overview

	6 Related Work
	7 Conclusion

