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Abstract. We present impredicative concurrent abstract predicates –
iCAP – a program logic for modular reasoning about concurrent, higher-
order, reentrant, imperative code. Building on earlier work, iCAP uses
protocols to reason about shared mutable state. A key novel feature of
iCAP is the ability to define impredicative protocols; protocols that are
parameterized on arbitrary predicates, including predicates that them-
selves refer to protocols. We demonstrate the utility of impredicative
protocols through a series of examples, including the specification and
verification, in the logic, of a spin-lock, a reentrant event loop, and a
concurrent bag implemented using cooperation, against modular specifi-
cations.

1 Introduction

It is well-known that modular specification and verification of concurrent higher-
order imperative programs is very challenging. Recently good progress has been
made on reasoning about subsets of these language features. For instance, con-
current abstract predicates [8] has proved useful for reasoning about shared
mutable data structures in a concurrent setting and state transition systems [10]
have proved useful for reasoning about higher-order functions and shared muta-
ble data structures and, very recently, also concurrency [23].

Internal and external sharing. The logics referred to above extend rely-
guarantee versions of separation logic [24, 11] with protocols governing access to
shared mutable state. These logics are sufficiently expressive to verify implemen-
tations of abstract data structures that use sharing internally against abstract
specifications that hide this internal sharing. However, in practice programmers
often also use shared mutable data structures to facilitate external sharing –
the sharing of a mutable data structure through another shared mutable data
structure. A lock is the canonical example of a data structure used to facilitate
external sharing. In higher-order separation logic we can easily express specifi-
cations that support reasoning about external sharing, by parameterizing our
specifications with assertions that describe the external resources shared through
the data structure. However, without imposing severe predicativity restrictions
(as in our earlier [21]), verifying implementations against such higher-order spec-
ifications in the logic is currently impossible!

To illustrate, consider a simple lock. We can specify a lock in higher-order
separation logic by parameterizing our lock specification with a resource invari-
ant R that describes the resources protected by the lock (the externally shared



resources):

{R} new Lock() {isLock(R, ret)}
{isLock(R, x)} x.Acquire() {locked(R, x) ∗ R}

{locked(R, x) ∗ R} x.Release() {isLock(R, x)}
isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x)

Here isLock and locked are abstract predicates; isLock(R, x) expresses that x is a
lock protecting the resource invariant R and locked(R, x) expresses that the lock
x is indeed locked. Acquiring the lock grants ownership of R, while releasing the
lock requires the client to relinquish ownership of R. Since the resource invariant
R is universally quantified, this is a very strong specification; in particular, the
client is free to instantiate R with any assertion, including assertions about other
shared resources or even the lock itself. In Section 2.2 we will see that resource
invariants that refer to the lock itself are useful for reasoning about reentrancy.

There has been some previous work on logics for languages with built-in
locks [12, 14]. In [14] the built-in locks were shown to satisfy a similar higher-
order specification, as part of the logic’s soundness proof. However, to reason
about libraries in general (not just built-in locks), we, of course, need to able to
verify that implementations satisfy such specifications in the logic.

Our first contribution is a new program logic, impredicative Concurrent Ab-
stract Predicates or iCAP, that is sufficiently expressive to support modular
reasoning about both internal and external sharing. It is the first logic that can
verify implementations of synchronization primitives, such as locks, against such
higher-order specifications in the logic.

Layered and recursive abstractions. One of the main objectives of iCAP
is to support modular reasoning about libraries consisting of concurrent, higher-
order, reentrant, imperative code. In iCAP we have focused on two types of
modularity that are both important in programming practice. The first type is
simply the ability to build layers of abstractions; for instance, we want to be
able to reason about a hashtable library implemented using a linked list library
through an abstract linked list specification and hide this internal use of the
linked list abstraction in the abstract hashtable specification. The second type
of modularity is more challenging, namely the ability to build recursive abstrac-
tions; for instance, we want to be able to verify reentrant libraries against an
abstract specification that allows clients to register callbacks that can themselves
use the abstract library specification to reason about calls into the library.

To illustrate the problem of modular reasoning about reentrant libraries,
consider an event loop library satisfying the interface given below.1

public delegate void handler();

interface IEventLoop {
void loop();

1 The first line declares a delegate type (a type-safe function pointer type) by the name
handler for delegates that do not take any arguments and do not return anything.



void signal();
void when(handler f);
}

This library allows clients to emit an event using the signal method, to register
an event handler using the when method and start the event loop using the loop

method. Crucially, this library explicitly allows event handlers to emit events
and thereby schedule themselves for execution once again! We have simplified
this example to focus on the main difficulty introduced by reentrancy – namely
that clients can tie Landin’s knot through the library – however, this pattern
is ubiquitous in the real world. For instance, event-driven code is ubiquitous
in GUI applications and high-performance network applications as a way of
implementing asynchronous I/O [1, 18].

To support modular reasoning about such examples and in particular the
event loop, we need a logic that is sufficiently expressive to (1) define an abstract
event loop specification that allows clients to register callbacks that emit events
and reason about these callbacks using the same abstract specification and (2)
allow implementors to verify an implementation of the event loop against the
abstract event loop specification.

In Section 2.2 we explain how to verify an implementation against such an
abstract specification, by defining the memory footprint of the event loop im-
plementation recursively. In iCAP we achieve this using guarded recursion. One
of the implementations we consider uses the lock module and thus, as we shall
see, the recursively defined predicate involves the abstract isLock predicate. To
the best of our knowledge, iCAP is the first program logic that supports such
modular reasoning about layered and recursive abstractions, and a key techni-
cal contribution of our work is the model used to show the soundness of this
expressive logic, in particular, the ability to define predicates recursively across
abstraction boundaries.

Fine-grained concurrency. Fine-grained concurrent ADTs allow multiple
threads to interleave memory operations on the underlying data representation,
with the goal of reducing critical sections as much as possible, often down to basic
compare-and-swap operations. Sophisticated fine-grained concurrent ADTs also
employ cooperation [23] among threads and in particular the technique of helping,
where one thread may help another complete its operation [13].

Conceptually, separation logic achieves modular reasoning about shared mu-
table state through the notion of resources that describe information about some
part of the state and assert certain rights to modify this part of the state. To sup-
port modular reasoning about ADTs we need abstract specifications that allow
clients to define high-level ADT resources with a notion of rights expressed in
terms of the operations provided by the ADT rather than rights to modify the
underlying data representation. Previous CAP-based techniques for reasoning
about fine-grained concurrent data structures have either not scaled to handle
implementations that employed helping [21], or have verified implementations
with helping against non-modular specifications [8] that imposed a fixed notion
of rights – choosen by the module implementor – on clients.



In iCAP, using impredicative protocols, we can verify fine-grained concur-
rent ADTs implemented with helping against modular specifications that allow
clients to define high-level ADT resources. In Section 2.3 we present an example
to show how this is done.

Details and proofs can be found in the accompanying appendix and technical
report available at:

https://bitbucket.org/logsem/public/wiki/icap

1.1 Summary of contributions

In summary, our contributions include the design of a new sound program logic,
iCAP, for modular reasoning about concurrent, higher-order, reentrant, imper-
ative programs. In particular, iCAP supports modular reasoning about internal
and external sharing, layered and recursive abstractions, and fine-grained coop-
erative implementations of concurrent data structures.

iCAP’s expressiveness derives from the fact that it is a higher-order logic
supporting guarded recursion and impredicative protocols. The presence of these
features means that soundness of iCAP is non-trivial. Thus a key technical con-
tribution of our work is our soundness proof of iCAP, which uses a novel model
construction that we explain in Section 3.

2 Examples

2.1 Internal and external sharing – a lock

Following concurrent separation logic and its descendants [16, 12, 14], assertions
in iCAP describe resources that may potentially be shared between several
threads according to some protocol. A key feature of iCAP is that it supports
full higher-order quantification over assertions in specifications. This means that
we can give the following general abstract specification for a lock, which we
explained informally in the introduction.

∃isLock, locked : Prop× Val→ Prop. ∀R : Prop. stable(R) ⇒
{R}new Lock(−) {ret. isLock(R, ret)}

∧ {isLock(R, x)}x.Acquire(−) {locked(R, x) ∗ R}
∧ {locked(R, x) ∗ R}x.Release(−) {ret. emp}
∧ valid(∀x : Val. isLock(R, x)⇔ isLock(R, x) ∗ isLock(R, x))

∧ ∀x : Val. stable(isLock(R, x)) ∧ stable(locked(R, x))

In this formal specification Prop is the type of iCAP assertions, which includes
assertions about shared resources. The specification thus explicitly requires the
resource invariant R to be stable (invariant under any changes to the state
the environment is permitted to make). The existentially quantified predicates



isLock and locked are used to support modular reasoning about internal shar-
ing, whereas the universally quantified predicate R is used to support modular
reasoning about external sharing.

This specification asserts the existence of a lock representation predicate that
is parametric in the resource invariant R. This allows us to use the lock repre-
sentation predicate itself when defining resource invariants and thus to define
recursive resource invariants. Had we simply asserted that for each resource in-
variant R, there exists a non-parametric lock representation predicate isLockR,
this would not be possible! As we will see in Section 2.2, the above third-order
lock specification and the ability to define recursive resource invariants is critical
for reasoning about the reentrancy of a multi-threaded event loop.

To verify an implementation against this specification we have to provide con-
crete instantiations for the parametric isLock and locked predicates and prove
that the implementation satisfies the specification with these concrete instantia-
tions. Since this specification explicitly allows clients to define recursive resource
invariants, most of the difficulty in verifying an implementation boils down to
defining the parametric isLock and locked predicates. In iCAP this is trivial using
impredicative protocols.

A spin-lock. The implementation we have in mind is a simple spin-lock; it
maintains a single boolean field, locked, which is true if and only if the lock is
currently held. When the lock is unlocked, the lock owns the resource invariant
R. Once the lock has been locked, only the exclusive owner of the locked resource
is allowed to unlock the lock! We can express this protocol formally using iCAP.

iCAP extends separation logic with shared regions. Resources in shared re-
gions are — as the name implies — shared between all clients. Upon allocation
of a new shared region, we can pick a protocol of our choice, describing what
resources the shared region must own. A protocol consists of a labelled transition
system, labelled with action identifiers, and an assertion for each abstract state
in the transition system that describes the resources the shared region must own
in the given state. The transitions then specify how the abstract states of the
region are allowed to evolve and the labels how different clients are allowed to
evolve the states. In particular, for a client to change the state from s1 to s2,
the client must own permissions to labels along a path from s1 to s2.

In the case of the spin-lock, for each instance of the spin-lock, we introduce
a new shared region that governs that spin-lock and the resources protected by
that lock. The labelled transition system that governs a spin-lock is very simple:
it contains two abstract states — locked (L) and unlocked (U) — and the two
obvious transitions:

LU

Rel

Acq

The next step is to define an assertion for each abstract state describing the
resources owned by the spin-lock region (conceptually, the lock) in the given
state. This is mostly straightforward. When the lock is locked, the lock owns the



locked field, which contains true. However, when the lock is unlocked, the lock
owns both the locked field, which contains false, and the resource invariant R:

I(n,R, x)(L)
def
= x.locked 7→ true I(n,R, x)(U)

def
= x.locked 7→ false ∗ R ∗ [Rel]n1

To capture that only the owner of the locked resource is allowed to unlock the
lock, we also let the lock take full ownership of the Rel transition for the given
region, when the lock is unlocked. Formally this is expressed using an action
assertion, [α]nπ. Here π is a fraction between 0 and 1, and [α]nπ asserts π-ownership
of the α action on region n. When the client locks the lock, the client can thus
take ownership of both the resource invariant R and the exclusive (1) permission
to transition the shared region back into the unlocked state. Note that this spin-
lock protocol is parameterized over an arbitrary resource invariant R provided
by the client and is thus an impredicative protocol.

With these ingredients we are now ready to instantiate isLock. The isLock
predicate asserts that there exists a shared region governed by the above spin-
lock protocol, that is either in the unlocked or locked state; and furthermore, it
asserts non-exclusive permission to the Acq action. Formally, this is expressed
as follows (where Tlock refers to the labelled transition system above):

isLock(R, x)
def
= ∃n : RId. [Acq]n ∗ rintr(I(n,R, x), n) ∗ region({L,U}, Tlock, n)

The region assertion, region(X,T, n), asserts that there exists a region with re-
gion identifier n, whose labelled transition system is T and that the current
abstract state of region n is a member of the set X. The labelled transition sys-
tem T is represented as a function from action identifiers to relations on abstract
states; see the appendix for details. To specify the spin-lock protocol we also need
to specify what resources the spin-lock must own in the different abstract states.
This is expressed using the region interpretation assertion, rintr(I, n), which takes
as argument a predicate I, indexed by the abstract states of the given region.
We use [α]n as shorthand for ∃π. [α]nπ to express non-exclusive ownership of an
action α.

This illustrates the use of iCAP’s impredicative protocols for defining the
concrete instantion of isLock for a spin-lock. Now that isLock has been defined,
the actual verification of the spin-lock implementation with this concrete instan-
tiation follows the structure of the original CAP proof of a spin-lock [8]. One
crucial difference is that iCAP features enough proof rules to carry out the proof
in the logic, including stability proofs. In the appendix, we show in detail how
to verify the spin-lock implementation with this concrete instantiation using the
formal iCAP proof system.

Compared to earlier work on concurrent abstract predicates [8, 9, 21], in iCAP
we simplify the description of protocols, by describing them using state transi-
tion systems. This presentation is inspired by earlier work by Dreyer et. al. on
protocols for reasoning about local state in higher-order programs [10]. We be-
lieve this description of protocols is a useful conceptual simplification compared
to the original CAP presentation [8], in particular since protocols can now eas-
ily be drawn. However, we stress that this presentation also simplifies stability



proofs in the program logic, since they only have to refer to abstract states in
the transition system. The iCAP stability obligations for the verification of the
spin-lock are thus significantly easier to prove that the corresponding stability
obligations from the original spin-lock CAP proof.

2.2 Layered and recursive abstractions – an event loop

The previous example illustrated how iCAP’s impredicative protocols allow mod-
ular reasoning about internal and external sharing. In this section we illustrate
how higher-order logic and guarded recursion allow modular reasoning about
layered and recursive abstractions.

A single-threaded event loop. Recall the reentrant event loop library
from the introduction. We can express an abstract event loop specification for
single-threaded event loops that explicitly allows clients to reason about event
handlers using the same event loop specification as follows:

∃eloop : Val→ Prop.

{emp}new EventLoop(−) {ret. eloop(ret)}
∧ {eloop(x)}x.loop(−) {eloop(x)}
∧ {eloop(x)}x.signal(−) {eloop(x)}
∧ {eloop(x) ∗ f 7→ {eloop(x)}{eloop(x)}}x.when(f) {eloop(x)}

This specification asserts the existence of an abstract event loop resource, eloop,
which is created by creating a new event loop instance and preserved by all event
loop methods. The when method for registering event handlers requires that the
given event handler satisfies the nested Hoare triple

f 7→ {eloop(x)}{eloop(x)},

thereby explicitly allowing event handlers to use the abstract eloop resource to
emit events. In a sense this is a very weak specification, in that it only allows
us to reason about memory safety of our clients. However, in the presence of
reentrancy, verifying an implementation against this simplified specification is
highly non-trivial and beyond almost all current program logics.2

To define a concrete eloop resource, imagine a concrete implementation that
maintains a set of pending events and a set of registered handlers, as sketched
below.

class EventLoop : IEventLoop {
private Set<event> signals;
private Set<handler> handlers;
...
}

2 The exception being our own HOCAP [21], which, however, had other severe restric-
tions compared to iCAP.



To allow the event loop to call registered event handlers, the eloop resource must
assert that the registered event handlers satisfy some specification. To allow event
handlers to emit events, this specification must itself refer to the eloop resource.
In iCAP we can express this recursion by guarding the recursive occurence of
the eloop resource and defining eloop by guarded recursion (note the use of the
“later” (.) connective, which serves as a guard):

eloop = fix(λeloop : Val→ Prop. λx : Val. ∃y, z : Val. ∃A,B : Pfin(Val).

x.signals 7→ y ∗ x.handlers 7→ z ∗ set(y, A) ∗ set(z, B) ∗
∀b ∈ B. . b 7→ {eloop(x)}{eloop(x)})

This event loop resource asserts exclusive ownership of the signals field, the
handlers field, the set of pending events, the set of registered handlers, and that
all registered handlers satisfy the specification f 7→ {eloop(x)}{eloop(x)}, one
step later.

In our operational semantics each atomic statement takes one step to execute
and executing a method or delegate call executes one atomic statement before the
body of the method or delegate is executed. Hence, to verify a call to a method
or delegate, it suffices to know the specification of the method or delegate body,
one step later. We can thus verify calls from the event loop to the registered
event handlers using the guarded eloop resource defined above.

Note that eloop is not definable by induction, as the recursive argument is not
applied to a structurally smaller argument, nor by Tarski’s fixed-point theorem,
as nested Hoare triples are contravariant in the pre-condition and covariant in
the postcondition.

As with the lock example, the interesting part of the verification of a reen-
trant event loop is the definition of the event loop resource. Once the event
loop resource has been defined, the verification is routine. The real challenge is
defining a logic and accompanying model that supports such recursive resource
definitions!

A multi-threaded event loop. The single-threaded event loop example
illustrated the use of guarded recursion for reasoning about recursive abstrac-
tions. To make the example even more challenging and truly illustrate the power
of impredicative protocols, let us now consider a multi-threaded reentrant event
loop library. The abstract event loop specification remains the same, expect with
the added axiom that the abstract event loop resource is freely duplicable (thus
allowing any number of clients to use the event loop concurrently):

valid(∀x : Val. eloop(x)⇔ eloop(x) ∗ eloop(x))

As for the implementation, imagine a lock-based implementation that extends
the previous implementation with a lock that protects the set of pending events
and the set of registered event handlers. Conceptually, we thus have a library
that allows clients to tie Landin’s knot through a reference protected by a lock.
To verify the single-threaded implementation, we needed to refer to eloop to
specify the registered handlers when defining eloop. Likewise, now eloop must



assert the existence of a lock that protects the registered event handlers that are
again specified in terms of eloop (note the use of isLock):

eloop = fix( λeloop : Val→ Prop. λx : Val. ∃l : Val. x.lock 7→ l ∗
isLock(l, ∃y, z : Val. ∃A,B : Pfin(Val).

x.signals 7→ y ∗ x.handlers 7→ z ∗ set(y, A) ∗ set(z, B) ∗
∀b ∈ B. . b 7→ {eloop(x)}{eloop(x)}))

This definition is extremely interesting! First of all, it illustrates the true power
of the third-order lock specification to define recursive resource invariants that
refer back to the lock itself. This is only possible because the abstract lock spec-
ification asserts the existence of a parameterized lock representation predicate;
thus allowing us to define the resource invariant in terms of the lock itself (the
resource invariant we use for the lock is the argument given to isLock, which
refers to eloop, which again refers to isLock).

This example also illustrates the ability of iCAP to combine layered and
recursive abstractions; in this example we are reasoning about the recursive
event loop abstraction in terms of the lock abstraction defined in Section 2.1.
In particular, the eloop representation predicate is defined in terms of an ab-
stract isLock representation predicate. To ensure that eloop is well-defined we
thus have to prove guardedness across an abstraction boundary (i.e., that the
recursive occurence of eloop inside the abstract isLock assertion is guarded). This
is automatically enforced in iCAP (!), and thus iCAP supports modular reason-
ing about guardedness. Semantically, this is enforced in the interpretation of the
iCAP function space, which intuitively does not consist of all set-theoretic func-
tions, but only those functions that are suitably non-expansive. Note that these
intracies in the model are abstracted away by the iCAP logic and the proof in
iCAP of the well-definedness of the eloop predicate above is completely trivial
and just follows from the fact that the recursive occurrence of eloop is under a
. guard.

These two event loop examples illustrate how we can reason about recursive
abstractions in iCAP and also exemplify the power of impredicative protocols.
For presentation purposes we considered the core part of a simple example —
we emphasize that this style of reasoning also scales to full functional verifi-
cation of complicated examples such as the joins library [19], which combines
layered and recursive abstractions with internal and external sharing in a higher-
order, concurrent, reentrant, imperative library. We have previously verified a
lock-based joins implementation in HOCAP against an abstract joins specifica-
tion with an explicit predicative stratification [20]. In iCAP, using impredicative
protocols, we can verify the joins implementation against a much simpler and
more expressive joins specification. Furthermore, in HOCAP we could not verify
a fine-grained implementation of the joins library; in iCAP this is now possible
using the techniques explained in the following.



2.3 Fine-grained concurrency – a concurrent bag

In this section we illustrate how iCAP supports modular reasoning about ad-
vanced concurrent ADTs by verifying a fine-grained implementation of a con-
current bag, implemented using helping, against a modular ADT specification.

We start by recalling our specification pattern from HOCAP [21] for express-
ing modular ADT specifications that allow clients to define a high-level ADT
resources with a notion of rights that matches the client’s intended use. Next,
we sketch how to verify a fine-grained implementation with helping of a concur-
rent bag against an abstract bag specification expressed using this specification
pattern. See the associated technical report for the full proof.

A modular ADT specification. Recall that in a sequential setting, one
typically specifies data structure operations by relating an abstraction of the
initial and terminal state of the operation through an abstract representation
predicate. For instance, we might specify a Push method for an unordered bag
as follows:

{bag(x, A)} x.Push(y) {bag(x, A ∪ {y})}

This says that if, initially, the bag contains the elements in the multiset A, then,
upon termination, the bag contains the elements in A and y. Crucially, this
specification relates the abstract initial and terminal effects of the entire Push
method.

In a concurrent setting we can reason modularly about implementations that
satisfy that for each intermediate state in its execution, there exists some abstract
state describing the concrete state and the method contains zero or more atomic
instructions that modify the abstract state. Following our earlier work [21], the
idea now is to allow clients to reason about the abstract initial and terminal state
for each of these atomic instructions, rather than the abstract initial and termi-
nal state of the entire method. By allowing clients to reason about the atomic
instructions that modify the abstract state, clients can define their own high-
level ADT resources with a notion of rights expressed in terms of the abstract
state.

Technically, we achieve this using a phantom field, shared between the concur-
rent ADT and any clients, that stores the current abstract state of an instance.
Phantom fields play a similar role as ghost/auxiliary variables [17], in that they

are fields used only for specification purposes. We use xf
π7→ v to assert fractional

ownership of phantom field f on object x with fraction π. By splitting owner-
ship of the phantom field we ensure that the concurrent ADT and any clients
agree on the current abstract state. To allow clients to reason about the atomic
instructions that modify the abstract state (and thus the phantom field), we fur-
ther parameterize the specification of each method with a view shift. View shifts
describe updates to the instrumented state that do not affect the concrete state.
View shifts can thus be used to update phantom fields, allocate new regions and
change the abstract state of a region, potentially transferring ownership of some
resource in the process. We use P v Q to express that P can be view shifted to
Q. See the appendix for proof rules relating to phantom fields and view shifts.



A modular bag specification. We present part of the bag specification in
Figure 1; we now explain it. We only include an operation to create the bag and
a push operation, the specification for a pop method is similar and omitted.

∃bag : RId× Val→ Prop.

{emp} new Bag(−) {ret. ∃n : RId. bag(n, ret) ∗ retcont
1/27→ ∅}

∀P,Q : Val× Val→ Prop. ∀n : RId.

(∀X : Pm(Val). ∀x, y : Val.

xcont
1/27→ X ∗ P(x, y) vRId\{n} xcont

1/27→ (X ∪ {y}) ∗ Q(x, y)) ⇒
{bag(n, x) ∗ P(x, y)} x.Push(y) {bag(n, x) ∗ Q(x, y)}

Fig. 1. Part of a modular bag specification

In the case of the Push method, assuming it only contains a single atomic
instruction that “commits” the push, we can express this formally by relating the
effects of the Push method with an arbitrary “push” view shift provided by the
client, see Lines 3–6 in Figure 1. The view shift expresses what should happen
at the client side when the abstract state of the push operation takes place.

The assertion xcont
1/27→ X asserts half-ownership of the phantom field cont, which

contains the current abstract state of the bag. By letting the data structure own
half and clients share the other half (clients get the other half by calling the
new method), clients can impose a protocol on the abstract state that matches
their intended notion of rights through their half of the phantom field. Since
updating the phantom field requires both halves, this forces clients to prove that
the abstract effects of any call to the Push method satisfies any protocols clients
may have imposed.

We call the view shift in the premise of the above rule a “push” view shift
because it requires the client to update the initial abstract state from X to
X∪{y}, for any abstract state X. Conceptually, this view shift is thus an atomic
“push” method at the instrumented level and the push specification expresses
that the Push method simulates any such “push” view shift provided by the
client. The universally quantified predicates P and Q allow the client to relate its
local state with the abstract initial and terminal state of the atomic instruction
that “commits” the push. We refer to P and Q as synchronization pre- and
postconditions.

In [21] we had to impose severe restrictions on P and Q due to the lack of
impredicative protocols, but with iCAP, there are no restrictions on P and Q,
resulting in much simpler and more expressive refinable specifications.

Finally we comment on the superscript on the view shifts and the region
identifier n argument to the bag predicate, bag(n, x). In iCAP, when reasoning
about an atomic instruction, we can “open” a shared region and move the shared
resources into our local state for the duration of the atomic instruction, provided
we obey the protocol imposed by the region. Clearly, it is only sound to “open”
each region once for each atomic instruction (opening a region twice results in



two local copies of the shared region’s resources).3 Since the “push” view shifts
provided by the client are used during the atomic instruction that “commits” the
push, we have to ensure that the client does not “open” the module’s region with
its view shifts. We thus parameterize the bag predicate with a region identifier
n to reveal that the bag module may use region n. As discussed in the appendix,
this allows us to express, qua the superscript on the view shift, that the view
shift provided by the client should not open the region n.

Now we have explained how to give a modular, refinable, specification to
a concurrent data structure. We now sketch how iCAP can be used to verify
that a sophisticated fine-grained concurrent implementation using cooperation
actually meets the modular bag specification. iCAP is the first program logic
that supports verification of such sophisticated implementations against such
modular specifications (in particular, in our earlier work [21] we could not deal
with implementations using cooperation).

To reduce contention on the main data structure used to implement the
bag, a thread seeking to push an element (the “pusher”) may offer the push
operation to other threads, using a side-channel. If a thread seeking to pop (the
“popper”) then comes along, it may notice and accept the push-offer, without
touching the main data structure at all. By accepting the push-offer the popper
also completes the operation of the pusher, and in that sense it has helped the
pusher. The heart of the verification is the protocol used for handling offers. In
our case, that protocol can be described using the following labelled transition
system, denoted Toffer:

pendingacceptedack’ed revoked
Accept RevokeAck

Intuitively, pending means that an offer has been made and it is waiting for
somebody to accept it, accepted means that the offer has been accepted, ack’ed
means that we have acknowledged that somebody has accepted the offer, and
revoked is used for the case where we revoke the offer (since no one accepted it
and now we will re-attempt to push).

The interpretation of the states of Toffer are as follows:

Ioffer(n,P,Q, b, x, y)(pending)
def
= x.state 7→ 0 ∗ P(b, y) ∗

spec(∀X : Pm(Val). ∀x, y : Val.

xcont
1/27→ X ∗ P(x, y) vRId\{n} xcont

1/27→ (X ∪ {y}) ∗ Q(x, y))

Ioffer(n,P,Q, b, x, y)(accepted)
def
= x.state 7→ 1 ∗ Q(b, y)

Ioffer(n,P,Q, b, x, y)(revoked)
def
= x.state 7→ 2

Ioffer(n,P,Q, b, x, y)(ack’ed)
def
= x.state 7→ 1

3 See the appendix for a concrete counterexample.



Here b refers to the bag, x refers to the offer, y is the value on offer, and P and
Q are the pusher’s synchronization pre- and postconditions.

The interpretations of the states contain information about the value of pro-
gram variable state, which is used by the implementation to keep track of which
state the offer is in. The point to notice, however, is that the pending state con-
tains both the pusher’s synchronization precondition, P(b, y), and the pusher’s
“push” view shift, and the accepted state contains the pusher’s synchronization
postcondition, Q(b, y). To accept an offer (transition the abstract state from
pending to accepted) the popper thus has to perform the pusher’s “push” view
shift. Conceptually, the offer protocol “transfers” the pusher’s view shift to the
popper.

Note how the combination of view shifts and impredicative protocols together
allows us to prove that the fine-grained implementation with helping meets the
modular bag specification.

See the accompanying technical report for the full proof.

3 Model

In this section we present a model of iCAP. Soundness of iCAP is non-trivial.
Indeed, in our earlier work on HOCAP [21], we discovered that a recent proposal
for a higher-order variant of concurrent abstract predicates [9] was unsound.
This led us to consider only predicative protocols in [21], which simplified the
construction of a sound model, but also resulted in much weaker and more
complicated specifications and proofs. Here instead, we follow ideas from models
of impredicative type systems with higher-order store, e.g. [2, 4], and define our
model of iCAP using a guarded-recursively defined space of protocols. We define
our model in the type theory and logic of the topos of trees [4]. This has the
advantage that most of the model construction is done as if we were working with
ordinary sets, except for those places where we need to guard some recursive
definitions for well-definedness. More importantly, it makes it straightforward
to define a higher-order logic, since the recursively defined space of protocols
is now simply a type in the type theory of the topos of trees, which already
includes function and powerset types! The resulting program logic includes the
later operator from the ambient type theory. As we have already seen, we use this
later operator to define guarded-recursive assertions and protocols. It can also
be used to define guarded-recursive specifications. We emphasize that readers
need not be familiar with [4] in order to understand the present paper.

Topos of Trees. The internal language of the topos of trees is an intu-
itionistic higher-order logic over a simply-typed term language extended with
subset types and guarded-recursive types. This internal language features a new
type former I, pronounced later, for defining guarded-recursive types, and a
new logical connective ., also pronounced later, for defining guarded-recursive
predicates. (For readers who are familiar with the use of theorem provers, such
as Coq, for formalizing models of logics or programming languages, it may be
helpful to think of the type theory of the topos of trees as playing the rôle of the



Coq type theory.) The point of using the guarded type theory and logic is that
it makes it easy to define the space of protocols, which needs to be recursively
defined. Crucially, this results in a type in the guarded type theory, and thus,
since that type theory includes higher function types, we can then easily define
the interpretation of the function spaces in iCAP.4 The guarded type theory
also includes types of the form ∆X, for any ordinary set X. Such types ∆X are
referred to as constant sets. We define the non-recursive part of the model in the
category of sets and use these as constant sets to construct the recursive part of
the model in the topos of trees.

The presentation of the iCAP model is inspired by the Views framework [7]
and models of impredicative type systems, e.g., [5], with higher-order store.

The Views framework provides a general way of relating a concrete semantics
with an instrumented semantics and constructing a separation logic over the
instrumented semantics. In our case the concrete semantics is a subset of C#
with an interleaving semantics. The instrumented semantics extends the concrete
C# states with phantom fields, shared regions, and protocols and enforces that
clients respect the protocols governing shared resources.

The model of iCAP is defined in Figure 2, and is defined over countably
infinite and disjoint set of action identifiers, AId, state identifiers, SId, object
identifiers, OId, closure identifiers CId, region identifiers RId, class names CN,
field names FN, and method names MN.

Instrumented states (m ∈ M) are tuples consisting of three components: a
local state, a shared state and an action model. We use m.l,m.s and m.a to
refer to the first, second and third component of m. The local state (l ∈ LS)
consists of a partial C# heap, a partial phantom heap and a capability map. The
partial C# heap and phantom heaps specify the current value and permissions to
heap cells and phantom fields, respectively. The capability map specifies action
permissions on shared regions. In particular, it records the fractional permission
the client owns on each region and action identifier. The shared state (s ∈ SS)
specifies the current abstract state of each allocated region and the labelled
transition system governing the given region. We use s(r).s and s(r).p to refer
to the state and labelled transition system of region r of a shared state s. The
set of abstract states, AS, consists of pairs of local and shared state. Finally,
the action model (ς ∈ AMod) specifies the interpretation of the abstract states
of each allocated region. Since the interpretation of each abstract state is given
by a general assertion, which is itself a subset of instrumented states, a naive
definition of AMod in set theory is not well-defined. Instead, we let RIntr (the
type of interpretations of abstract states for a single region) denote a solution
to the following guarded-recursive equation

RIntr ∼= I((∆SId× (∆RId ⇀fin RIntr))→mon P↑(∆AS))

4 If we had worked in the category of sets and used step-indexing directly, we would
have had to define an appropriate notion of function space between the resulting
indexed space of protocols and itself, and that would essentially amount to unrolling
the definition from the topos of trees model.



Semantic domains in the category of Sets

Cap
def
= {f : (RId×AId)→ [0, 1] | ∃R ⊆fin RId. ∀r ∈ RId \R. ∀α ∈ AId. f(r, α) = 0}

Heap
def
= (OId× FN⇀fin Val)× (OId⇀fin CN)× (CId⇀fin OId×MN)

PHeap
def
= {(pc, ph) ∈ (OId× FN→ [0, 1])× (OId× FN⇀fin Val) |

∀o ∈ OId. ∀f ∈ FN. pc(o, f) = 0⇒ (o, f) 6∈ dom(ph)}

l ∈ LS
def
= PHeap×Heap× Cap LTS

def
= AId→ P(SId× SId)

s ∈ SS
def
= RId⇀fin (SId× LTS) AS

def
= LS× SS

Semantic domains in the topos of trees

RIntr ∼= I((∆SId× (∆RId⇀fin RIntr))→mon P↑(∆AS)) s ∈ Spec
def
= Ω

ς ∈ AMod
def
= ∆RId⇀fin RIntr m ∈M def

= ∆LS×∆SS×AMod p ∈ Prop
def
= P↑(M)

where the ordering on M is RRId and the ordering on ∆AS is

m1 ≤ m2 iff m1.l ≤ m2.l ∧m1.s ≤ m2.s ∧m1.a ≤ m2.a

Interference relation

acts(l, r)
def
= {α | π3(l)(r, α) < 1}

upds(l, r, p)
def
= {(s1, s2) | ∃α ∈ acts(l, r). (s1, s2) ∈ p(α)}

RA
def
= {((l1, s1), (l2, s2)) | l1 ≤ l2 ∧ ∀r ∈ dom(s1).

((r ∈ A ∧ (s1(r).s, s2(r).s) ∈ upds(l1, r, s1(r).p))

∨ s1(r).s = s2(r).s) ∧ s1(r).p = s2(r).p}

where (−) denotes the transitive, reflexive closure.

Orderings l1 ≤ l2 iff ∃l3. l2 = l1 •LS l3

s1 ≤ s2 iff ∀r ∈ dom(s1). r ∈ dom(s2) ∧ s1(r) = s2(r)

ς1 ≤ ς2 iff ∀r ∈ dom(ς1). r ∈ dom(ς2) ∧ ς1(r) = ς2(r)

Composition

x •= y
def
= x if x = y f •+ g

def
= λx. f(x) + g(x) if ∀x. f(x) + g(x) ≤ 1

f •∪ g
def
= f ∪ g if dom(f) ∩ dom(g) = ∅

f •? g
def
= f ∪ g if ∀x ∈ dom(f) ∩ dom(g). f(x) = g(x)

•Heap
def
= •∪ × •= × •= •PHeap

def
= •+ × •?

•LS
def
= •PHeap × •Heap × •+ •M

def
= •LS × •= × •=

Erasure b(s, ς)cr
def
= {l ∈ LS | (l, s) ∈ app(ς(r))(s(r).s, ς)}

b(l, s, ς)cA
def
= {h ∈ Heap | ∃l′, sr : dom(s) ∩A→ LS.

h = l′.h ∧ l′ = l •Πr∈dom(s)∩Asr(r) ∧
∀r ∈ dom(s) ∩A. sr(r) ∈ b(s, ς)cr}

Fig. 2. Model of iCAP.



Here ∆SId is the constant set of state identiers, ∆RId is the constant set of region
identifiers, ∆AS is the constant set of abstract states, and P↑(∆AS) consistst
of the upwards-closed subsets of ∆AS with respect to the ordering shown in
Figure 2. Note the use of the I operator, which acts as a guard, and ensures
that RIntr is well-defined (unique up to isomorphism). Using RIntr we can then
define the type of action models as the type of finite functions from region

identifiers to region interpretations: AMod
def
= ∆RId ⇀fin RIntr. From the above

isomorphism we can define the following abstraction and application functions
to fold and unfold elements of RIntr:

lam : (∆SId×AMod→mon P↑(∆AS))→ RIntr

app : RIntr→ (∆SId×AMod→mon P↑(∆AS))

Crucially, because of the guard, if we unfold a folded element x, we get back the
element x, one step later: app ◦ lam = ., where . refers to the pointwise lifting
of . to function spaces.

Assertions in iCAP are modeled as upwards-closed subsets of instrumented
states (see the definition of Prop in Figure 2), where the upwards-closure ex-
presses that assertions should be closed under allocation of new regions and
extensions of the local state. Assertions in the specification logic are simply
modeled as assertions in the topos of trees. The function types of iCAP are sim-
ply modeled using the function space in the guarded type theory! (We emphasize
again that this is one of the advantages of using the topos of trees as the ambient
theory in which to define the model of iCAP; if we had worked in ordinary sets,
then iCAP types could not simply be interpreted as sets,5 they would have to
be indexed families of sets, and then the iCAP function space would also have
to be appropriate families of functions satisfying certain naturality conditions.

Interference relation & stability. The interference relation, RA, specifies
how the environment is allowed to modify the abstract state of shared regions.
The interference relation is indexed by a set of region identifiers, A, of regions
that are allowed to change. RRId thus allows the environment to change the
abstract state using any path in the labelled transition system governing the
region, along actions not exclusively owned by the client. RA is defined in Figure
2 in terms of two functions, acts and upds. The acts function specifies the actions
not exclusively owned by the client and the upds function specifies the set of
transitions labelled with actions not exclusively owned by the client.

Unlike previous models of CAP, this interference relation is expressed entirely
in terms of abstract states and is completely independent of the interpretation
of these abstract states. This is why stability in iCAP is also expressed at the
abstract level and why it is much simpler than previous versions of CAP. An
assertion is A-stable if it is closed under RA:

stableA(p)
def
= (RA × idAMod)(p) ⊆ p

5 Why? Because then we could not guarantee the existence of guarded recursive predi-
cates involving higher-order functions (such as the eloop predicate from Section 2.2).



where R(p) = {m′ ∈ M | ∃m ∈ p. (m,m′) ∈ R}. Intuitively, an assertion is
A-stable if it is closed under interference from the environment on regions in A.
An assertion is thus stable if it is RId-stable.

Erasure. The relation between the instrumented semantics and the con-
crete semantics is expressed through an erasure function, b−cA, that maps in-
strumented states to sets of concrete states. Like the interference relation, the
erasure is indexed by a set of region identifiers, A, of regions to erase. The era-
sure works by picking a concrete state lr for each allocated region r ∈ A that
satisfies the interpretation of the current abstract state of the given region, and
composing all these states with the current local state. The erasure is defined
in terms of a single-region erasure, b−cr, that defines the set of concrete states
satisfying the interpretation of the current abstract state of region r. Note that
this is expressed in terms of the application function, app, introduced earlier for
unfolding a region interpretation.

View shifts describe changes at the instrumented level that preserves the
state at the concrete level. An A-view shift p vA q describes a view shift that is
only allowed to modify regions in A. We can express this formally (and build-in
framing) by requiring the view shift to preserve all A-stable frames r:

p vA q def
= ∀r ∈ Prop. stableA(r)⇒ bp ∗ rcA ⊆ bq ∗ rcA

The operational semantics of the underlying programming language is defined in
terms of a labelled thread pool evaluation relation,

a→ , and an action semantics,
[[−]]. The labelled thread pool evaluation relation,

a→, defines the local effects
(i.e., stack effects) of executing a single thread for one step of execution, while
the action semantics defines the global effects (i.e., heap effects) of executing an
atomic action. Atomic satisfaction expresses what it means for an atomic action
a to satisfy a given Hoare specification:

a satA {p} {q} def
= ∀r ∈ Prop. ∀m ∈M. ∀h, h′ ∈ Heap.

m ∈ p ∗ .r ∧ h ∈ bmcA ∧ h′ ∈ [[a]](h) ∧ stableA(r)

⇒ ∃m′ ∈M. . (m′ ∈ q ∗ r ∧ h′ ∈ bm′cA)

This is the case, if, executing a from any initial concrete state h in the erasure
of p there exists an abstract state in q that erases to the terminal concrete state
h′ ∈ [[a]](h), and preserves .r, for all stable frames r. Intuitively, the . operator
expresses that executing an atomic action corresponds to one step of execution
in the operational semantics.

Safety, safe(s, p, q), extends satisfaction from atomic actions to statements
s. Intuitively, it expresses that every step of s at the concrete level has a cor-
responding step at the abstract level. Formally, safe is defined using guarded
recursion to establish the connection between steps in the underlying opera-
tional semantics and steps in the topos of trees. See the accompanying technical
report for the formal definition.

Interpretation. Most of the interpretation of iCAP is fairly straightforward
and reduces directly to the topos of trees. For instance, conjunction in iCAP is



interpreted using conjunction in the topos of trees: p∧q def
= {m ∈M | m ∈ p∧m ∈

q}. The most interesting case is the interpretation of the region interpretation
assertion, rintr(−):

rintr(I, r)
def
= {(l, s, ς) ∈M | r ∈ dom(ς) ∧ ∀x ∈ ∆(SId).

∀ς ′ ≥ ς. app(ς(r))(x, ς ′) = .(λ(l, s). I(x)(l, s, ς ′))}

Readers familiar with models of ML references may understand this region in-
terpretation assertion by analogy to the ref type constructor of ML, which can
be modelled by a similar equation [2, 4].6 The reference type in ML describes a
simple invariant for a single location, which expresses that the values stored at
that location are always of the given type. With iCAP we can describe invariants
given by a protocol and covering a region of memory (varying according to the
protocol).

4 Logic

In the accompanying appendix we introduce a formal proof system for iCAP
and in the accompanying technical report we present the entire proof system.
We stress that the logic contains sufficient proof rules for proving all the examples
sketched in this paper, including all stability proofs and all proofs about atomic
instructions!

In the accompanying technical report we prove that iCAP is sound with
respect to the model described in the previous section. As a corollary of this
soundness theorem it follows that if Γ | − ` (∆).{P}s{Q}, then

∀ϑ ∈ [[Γ ]]. safe(s, [[Γ ;∆ ` P : Prop]](ϑ), [[Γ ;∆ ` Q : Prop]](ϑ)).

5 Discussion

We have presented iCAP, the first program logic for modular reasoning about
higher-order concurrent imperative programs that supports full impredicative
quantification over general predicates, including predicates describing protocols
over shared regions of memory. We have presented examples illustrating how
iCAP supports modular reasoning about internal and external sharing, layered
and recursive abstractions, and fine-grained concurrent ADTs implemented using
helping, entirely in the logic.

We have discussed related work on program logics along the way. As an al-
ternative to program logics, there has also been several recent advances on using
relational models for reasoning about concurrent programs. In particular, Liang
et. al. [15] presented a simulation relation based on rely-guarantee to verify pro-
gram transformations for a first-order concurrent imperative language; Birkedal

6 Think of ς as the world in models of references; then the equation says that, for all
future worlds, the interpretation of the region recorded in the world agrees with the
interpretation given by I.



et. al. [5] presented a logical relations model for verifying effect-based program
transformations for a higher-order concurrent imperative language, and Turon et.
al. [23, 22] extended [5] with an extension of the protocols of Dreyer et. al. [10]
to allow for relational refinement proofs of sophisticated fine-grained concurrent
algorithms, including cooperation. To reason about cooperation, the model and
logic of Turon et. al. [23, 22] uses specification code (i.e., an expression of the
programming language) as a transferrable resource. This is similar to how view
shifts are transferred here to reason about cooperation; the difference is that
here we do not use code (since we are not proving refinement), but allow for
transfer of more abstract specifications given by view shifts. The model in [23]
is defined using step-indexing and involves an indexed definition of what essen-
tially amounts to a recursively defined space of protocols, similar in spirit to
the one we are using in this paper. However, the model in [23] does not support
impredicative protocols, technically since island predicates (corresponing to re-
gion predicates) in loc. cit. have a restriction on how they can be parameterized.
It is probably possible to lift this restriction, but one would still need a richer
notion of model in order to model impredicative higher-order logic, essentially
since constant sets would no longer suffice. As explained earlier, we use the type
theory of the topos of trees as our metatheory for that purpose.

In this paper we have focused on the foundational issue of establishing sound-
ness of a new very expressive logic for reasoning about higher-order concurrent
imperative programs. Future work includes implementing a tool for interactive
verification of programs using iCAP. We plan to do so in Coq, following the
approaches of the Bedrock [6] and Charge! [3] tools, which have been successful
in using Coq tactics to automate large parts of formal reasoning.
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