
BI-Hyperdoctrines, Higher-order Separation Logic,

and Abstraction∗

BODIL BIERING, LARS BIRKEDAL, and NOAH TORP-SMITH

Department of Theoretical Computer Science

IT University of Copenhagen

We present a precise correspondence between separation logic and a simple notion of predicate BI,

extending the earlier correspondence given between part of separation logic and propositional BI.
Moreover, we introduce the notion of a BI hyperdoctrine and show that it soundly models classical
and intuitionistic first- and higher-order predicate BI, and use it to show that we may easily
extend separation logic to higher-order. We also demonstrate that this extension is important for
program proving, since it provides sound reasoning principles for data abstraction in the presence
of aliasing.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Mainten-
ance—documentation; D.2.8 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Assertions, Logics of programs, Specification techniques

General Terms: Reliability, Theory, Verification

Additional Key Words and Phrases: Separation Logic, Hyperdoctrines, Abstraction

Contents

1 Introduction 3

2 BI Hyperdoctrines 5

2.1 Hyperdoctrines . 5
2.2 BI Hyperdoctrines . 7

3 Separation Logic modeled by BI-hyperdoctrines 11

3.1 The pointer model. 11
3.2 The pointer model as a BI hyperdoctrine. 12
3.3 An intuitionistic model. 14
3.4 The permissions model. 14

4 Some Consequences for Separation Logic 14

4.1 Formalizing Separation Logic . 14

∗ An extended abstract of the present paper appeared in the proceedings of ESOP’05.
Lars Birkedal’s and Noah Torp-Smith’s research was partially supported by Danish Natural Science
Research Council Grant 51–00–0315 and Danish Technical Research Council Grant 56–00–0309.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year

2 · Biering, Birkedal, Torp-Smith

4.2 Logical Characterizations of Classes of Assertions 15
4.3 Predicates via Fixed Points . 17

5 Higher-Order Separation Logic 17

5.1 Program Logic Judgments . 20
5.2 Inference Rules . 22
5.3 Informal Explanation of Rules . 22
5.4 Soundness . 24
5.5 A Derived Rule . 27

6 Data Abstraction via Existential Quantification 27

6.1 Reasoning using Abstract Priority Queues 27
6.2 Implementations of Priority Queues 29

7 Some Applications of Universal Quantification 29

7.1 Polymorphic Types via Universal Quantification 29
7.2 Invariance . 30

8 Related and Future Work 30

A Proof of Proposition 2.8 33

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 3

1. INTRODUCTION

Variants of the recent formalism of separation logic [Reynolds 2002; Ishtiaq and
O’Hearn 2001] have been used to prove correct many interesting algorithms in-
volving pointers, both in sequential and concurrent settings [O’Hearn 2004; Yang
2001; Birkedal etal. 2004]. Separation logic is a Hoare-style program logic, and its
main advantage over traditional program logics is that it facilitates modular rea-
soning, aka. local reasoning, about programs with shared mutable data. Different
extensions of core separation logic [Reynolds 2002] have been used to prove correct
various algorithms. For example, Yang [Yang 2001] extended the core logic with
lists and trees and in [Birkedal etal. 2004] the logic was extended with finite sets
and relations. Thus it is natural to ask whether one has to make a new extension
of separation logic for every proof one wants to make. This would be unfortunate
for formal verification of proofs in separation logic since it would make the enter-
prise of formal verification burdensome and dubious. We argue in this paper that
there is a natural single underlying logic in which it is possible to define the various
extensions and prove the expected properties thereof; this is then the single logic
that should be employed for formal verification.

Part of the pointer model of separation logic, namely that given by heaps (but
not stacks, i.e., local variables), has been related to propositional BI, the logic of
bunched implications introduced by O’Hearn and Pym [O’Hearn and Pym 1999].
In this paper we show how the correspondence may be extended to a precise corre-
spondence between all of the pointer model (including stacks) and a simple notion
of predicate BI. We introduce the notion of a BI hyperdoctrine, a simple extension of
Lawvere’s notion of hyperdoctrine [Lawvere 1969], and show that it soundly models
predicate BI. The notion of predicate BI we consider is different from the one studied
in [Pym 2002; 2004], which has a bunched structure on variable contexts. However,
we believe that our notion of predicate BI with its class of BI hyperdoctrine models
is the right one for separation logic (Pym aimed to model mulitiplicative quanti-
fiers; separation logic only uses additive quantifiers). To make this point, we show
that the pointer model of separation logic exactly corresponds to the interpretation
of predicate BI in a simple BI hyperdoctrine. This correspondence also allows us
to see that it is simple to extend separation logic to higher-order separation logic.
Now we briefly explain this extension and outline why it is important for program
proving.

The force of separation logic comes from both its language of assertions — which
is a variant of propositional BI [Pym 2002] — and its language of specifications, or
Hoare triples. In the present paper, we extend both of these. First, we introduce
an assertion language which is a variant of higher-order predicate BI. The extension
from the traditional assertion language of separation logic simply allows function
types, has a type Prop of proposition, and allows quantification over variables of
all types. Thus the assertion language is higher-order, in the usual sense that it
allows quantification over predicates. Next, we present a specification logic for
a simple second-order programming language. We provide models for both the
new assertion language and the specification logic, and provide inference rules for
deriving valid specifications. As it turns out, it is technically straightforward to do
so; this emphasizes that our notion of higher-order predicate BI is the correct one

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · Biering, Birkedal, Torp-Smith

for separation logic.
Next we consider the expressiveness of higher-order separation logic and argue,

with the use of examples, that it is quite expressive. In particular, we show that
higher-order separation logic can be used in a natural way to model data abstrac-
tion, via existential quantification over predicates corresponding to abstract re-
source invariants. The main formal rule in this development is the following:

∆ ` P̂ :τ

∆, ~x1; Γ ` {P1[P̂ /x]} c1 {Q1[P̂ /x]}
...

∆, ~xn; Γ ` {Pn[P̂ /x]} cn {Qn[P̂ /x]}
∆; Γ, ∃x:τ.({P1}k1(~x1){Q1} ∧ · · · ∧ {Pn}kn(~xn){Qn}) ` {P} c {Q}

∆; Γ ` {P} let k1(~x1) = c1, . . . , kn(~xn) = cn in c end {Q}
x 6∈ FV({P} c {Q}).

Here one may think of x as a predicate describing a resource invariant used by an
abstract data type with operations k1, . . . , kn. If a client c has then been proved
correct under the assumption that such a predicate exists, it is possible to use the
client with any concrete resource invariant P̂ and implementations c1, . . . , cn.

Moreover, we show that, using universal quantification over predicates, we can
prove correct polymorphic operations on polymorphic data types, e.g., reversing a
list of elements described by an arbitrary predicate. For this to be useful, however,
it is clear that a higher-order programming language would be preferable (such
that one could program many more useful polymorphic operations, e.g., the map

function for lists) — we have chosen to stick with the simpler second-order language
here to communicate more easily the ideas of higher-order separation logic.

Before proceeding with the technical development we give an intuitive justifica-
tion of the use of BI hyperdoctrines to model higher-order predicate BI. A power-
ful way of obtaining models of BI is by means of functor categories (presheaves),
using Day’s construction to obtain a doubly-closed structure on the functor cate-
gory [Pym etal. 2004]. Such functor categories can be used to model propositional
BI in two different senses: In the first sense, one models provability, entailment
between propositions, and it works because the lattice of subobjects of the termi-
nal object in such functor categories form a BI algebra (a doubly cartesian closed
preorder). In the second sense, one models proofs, and it works because the whole
functor category is doubly cartesian closed. Here we seek models of provability of
predicate BI. Since the considered functor categories are toposes and hence model
higher-order predicate logic, one might think that a straightforward extension is
possible. But, alas, it is not the case. In general, for this to work, every lattice of
subobjects (for any object, not only for the terminal object) should be a BI algebra
and, moreover, to model substitution correctly, the BI algebra structure should be
preserved by pulling back along any morphism. We show this can only be the case if
the BI algebra structure is trivial, that is, coincides with the cartesian structure (see
Theorem 2.7). Our theorem holds for any topos, not just for the functor categories
just mentioned. Hence we need to consider a wider class of models for predicate
BI than just toposes and this justifies the notion of a BI hyperdoctrine. The intu-
itive reason that BI hyperdoctrines work, is that predicates are not required to be
modeled by subobjects, they can be something more general. Another important

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 5

point of BI hyperdoctrines is that they are easy to come by: given any complete BI
algebra B, there is a canonical BI hyperdoctrine in which predicates are modeled
as B-valued functions; this is explained in detail in Example 2.6.

The rest of the paper is organized as follows. In Section 2, we first recall Law-
vere’s notion of a hyperdoctrine [Lawvere 1969] and briefly recall how it can be
used to model intuitionistic and classical first- and higher-order predicate logic.
More details about this can be found in the handbook chapter [Pitts 2001] and the
book [Jacobs 1999]. We then introduce the concept of a BI-hyperdoctrine and show
that it models BI. In Section 3, we show that the standard pointer model of BI is an
instance of our class of models. The new class of models provides a straightforward
way to give semantics to a higher-order extension of BI, and we discuss ramifica-
tions of this extension for separation logic in Section 4. In Section 5, we introduce
the programming language considered in this paper. It is a simple extension of the
standard programming language of separation logic with simple procedures and
calls to these. We use the higher-order logic just introduced to give a specification
logic for the programming language. In Section 6, we present examples which il-
lustrate how this specification logic can be used to reason about data abstraction,
using existential quantification over predicates. In Section 7 we present some simple
applications of universal quantification over predicates in program proving. In the
last section we discuss related and future work.

This paper is a full version of an extended abstract presented at the ESOP 2005
conference. Compared to the conference version, this paper includes more detailed
proofs, and a much more extensive discussion of applications of higher-order sepa-
ration logic in program proving, in particular for data abstraction.

2. BI HYPERDOCTRINES

We first introduce Lawvere’s notion of a hyperdoctrine [Lawvere 1969] and briefly
recall how it can be used to model intuitionistic and classical first- and higher-
order predicate logic (see, for example, the handbook chapter [Pitts 2001] and
Jacobs’ book [Jacobs 1999] for more explanations). We then define the notion of
a BI hyperdoctrine, which is a straightforward extension of the standard notion of
hyperdoctrine, and explain how it can be used to model predicate BI logic.

2.1 Hyperdoctrines

A first-order hyperdoctrine is a categorical structure tailored to model first-order
predicate logic with equality. The structure has a base category C for modeling
the types and terms, and a C-indexed category P for modeling formulas. Recall
that a Heyting algebra is a bi-cartesian closed partial order, i.e., a partial order,
which, when considered as a category, is cartesian closed (>, ∧, →) and has finite
coproducts (⊥, ∨).

Definition 2.1. Let C be a category with finite products. A first-order hyper-
doctrine P over C is a contravariant functor P : Cop → Poset from C into the
category of partially ordered sets and monotone functions, with the following prop-
erties.

(1) For each object X, the partially ordered set P(X) is a Heyting algebra.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · Biering, Birkedal, Torp-Smith

(2) For each morphism f : X → Y in C, the monotone function P(f) : P(Y) →
P(X) is a Heyting algebra homomorphism.

(3) For each diagonal morphism ∆X : X → X ×X in C, the left adjoint to P(∆X)
at the top element > ∈ P(X) exists. In other words, there is an element =X

of P(X ×X) satisfying that for all A ∈ P(X ×X),

> ≤ P(∆X)(A) iff =X≤ A.

(4) For each product projection π : Γ×X → Γ in C, the monotone function P(π) :
P(Γ) → P(Γ ×X) has both a left adjoint (∃X)Γ and a right adjoint (∀X)Γ:

A ≤ P(π)(A′) if and only if (∃X)Γ(A) ≤ A′

P(π)(A′) ≤ A if and only if A′ ≤ (∀X)Γ(A).

Moreover, these adjoints are natural in Γ, i.e., given s : Γ → Γ′ in C,

P(Γ′ ×X)
P(s×idX)

//

(∃X)
Γ′

��

P(Γ ×X)

(∃X)Γ

��

P(Γ′ ×X)
P(s×idX)

//

(∀X)
Γ′

��

P(Γ ×X)

(∀X)Γ

��
P(Γ′)

P(s)
// P(Γ) P(Γ′)

P(s)
// P(Γ).

The elements of P(X), where X ranges over objects of C, are referred to as
P-predicates.

Interpretation of first-order logic in a first-order hyperdoctrine.. Given a (first-
order) signature with types X , function symbols f : X1, . . . , Xn → X , and relation
symbols R ⊂ X1, . . . , Xn, a structure for the signature in a first-order hyperdoctrine
P over C assigns an object [[X]] in C to each type, a morphism [[f]] : [[X1]] × · · · ×
[[Xn]] → [[X]] to each function symbol, and a P-predicate [[R]] ∈ P([[X1]]×· · ·×[[Xn]])
to each relation symbol. Any term t over the signature, with free variables in
Γ = {x1:X1, . . . , xn:Xn} and of type X say, is interpreted as a morphism [[t]] :
[[Γ]] → [[X]], where [[Γ]] = [[X1]] × · · · × [[Xn]], by induction on the structure of t (in
the standard manner in which terms are interpreted in categories).

Each formula ϕ with free variables in Γ is interpreted as a P-predicate [[ϕ]] ∈
P([[Γ]]) by induction on the structure of ϕ using the properties given in Definition
2.1. For atomic formulas R(t1, . . . , tn), the interpretation is given by

P(〈[[t1]], . . . , [[tn]]〉)([[R]]).

In particular, the atomic formula t =X t′ is interpreted by the P-predicate

P(〈[[t]], [[t′]]〉)(=[[X]]).

The interpretation of other formulas is defined by structural induction. Assume
ϕ,ϕ′ are formulas with free variables in Γ and that ψ is a formula with free variables
in Γ ∪ {x:X}. Then,

[[>]] = >H

[[⊥]] = ⊥H

[[ϕ ∧ ϕ′]] = [[ϕ]] ∧H [[ϕ′]]
[[ϕ ∨ ϕ′]] = [[ϕ]] ∨H [[ϕ′]]
[[ϕ→ ϕ′]] = [[ϕ]] →H [[ϕ′]]

[[∀x:X.ψ]] = (∀[[X]])[[Γ]]([[ψ]]) ∈ P([[Γ]])
[[∃x:X.ψ]] = (∃[[X]])[[Γ]]([[ψ]]) ∈ P([[Γ]]),

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 7

where ∧H ,∨H , etc., is the Heyting algebra structure on P([[Γ]]). Finally, one may
show that [[ϕ[f(x)/y]]] is interpreted by P([[f]])([[ϕ]]), so one should think of P(g)
as the interpretation of substitution.

A formula ϕ with free variables in Γ is said to be satisfied if [[ϕ]] is the top
element of P([[Γ]]). This notion of satisfaction is sound for intuitionistic predicate
logic, in the sense that all provable formulas are satisfied. Moreover, it is complete
in the sense that a formula is provable if it is satisfied in all structures in first-order
hyperdoctrines. A first-order hyperdoctrine P is sound for classical predicate logic
in case all the fibres P(X) are Boolean algebras.

Definition Hyperdoctrine. A (general) hyperdoctrine is a first-order hyper-
doctrine with the following additional properties: C is cartesian closed, and there is
an internal Heyting algebra H (for definition of internal Heyting algebra, see for
example [MacLane and Moerdijk 1994]) and a natural bijection ΘX : Obj(P(X)) '
C(X,H).

Higher-order intuitionistic predicate logic is first-order intuitionistic predicate
logic extended with a type Prop of propositions and with higher types. See, e.g., [Ja-
cobs 1999] for a formal presentation. A hyperdoctrine is sound for higher-order
intuitionistic predicate logic: the Heyting algebra H is used to interpret the type
Prop of propositions and higher types (e.g., PropX , the type for predicates over X),
are interpreted by exponentials in C. The natural bijection ΘX is used to interpret
substitution of formulas in formulas: Suppose ϕ is a formula with a free variable q
of type Prop and with remaining free variables in Γ, and that ψ is a formula with
free variables in Γ. Then [[ψ]] ∈ P([[Γ]]), [[ϕ]] ∈ P([[Γ]] ×H), and ϕ[ψ/q] (ϕ with ψ
substituted in for q) is interpreted by P(〈id,Θ([[ψ]])〉)([[ϕ]]). For more details see,
e.g., the handbook chapter [Pitts 2001].

Again it is the case that a hyperdoctrine P is sound for classical higher-order
predicate logic in case all the fibres P(X) are Boolean algebras.

Example Canonical hyperdoctrine over a topos. Let E be a topos. It is
well-known that E models higher-order, intuitionistic predicate logic. In addition, a
topos also models full subset types and extensionality (see, e.g., [Jacobs 1999]). The
interpretation is given by interpreting types as objects in E, terms as morphisms
in E and predicates as subobjects in E. The topos E induces a canonical E-indexed
hyperdoctrine SubE : Eop → Poset, which maps an object X in E to the poset
of subobjects of X in E and a morphisms f : X → Y to the pullback functor
f∗ : Sub(Y) → Sub(X). Then the standard interpretation of predicate logic in
E coincides with the interpretation of predicate logic in the hyperdoctrine SubE .
Compared to the standard interpretation in toposes, however, hyperdoctrines do not
require that predicates are always modeled by subobjects but can come from some
other universe. This means that hyperdoctrines describe a wider class of models
than toposes do.

2.2 BI Hyperdoctrines

We now present a straightforward extension of (first-order) hyperdoctrines, which
models first and higher-order predicate BI. Recall that a BI algebra is a Heyting al-
gebra, which has an additional symmetric monoidal closed structure (I, ∗, −−∗) [Pym
2002].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · Biering, Birkedal, Torp-Smith

Definition BI Hyperdoctrine.

—A first-order hyperdoctrine P over C is a first-order BI hyperdoctrine in case
all the fibres P(X) are BI algerbras and the reindexing functions P(f) are BI
algebra homomorphisms.

—A BI hyperdoctrine is a first-order BI hyperdoctrine with the additional properties
that C is cartesian closed, and there is a BI algebra B and a bijection ΘX :
Obj(P(X)) ' C(X,B), natural in X. That is, Obj(P(−)) and C(−, B) are

isomorphic as objects in the functor category SetC
op

.

First-order predicate BI is first-order, intuitionistic predicate logic with equality,
extended with formulas I, ϕ∗ψ, ϕ −−∗ ψ satisfying the following rules (in any context
Γ including the free variables of the formulas):

(ϕ ∗ ψ) ∗ θ `Γ ϕ ∗ (ψ ∗ θ) ϕ ∗ (ψ ∗ θ) `Γ (ϕ ∗ ψ) ∗ θ `Γ ϕ↔ ϕ ∗ I

ϕ ∗ ψ `Γ ψ ∗ ϕ

ϕ `Γ ψ θ `Γ ω

ϕ ∗ θ `Γ ψ ∗ ω

ϕ ∗ ψ `Γ θ

ϕ `Γ ψ −−∗ θ

Our notion of predicate BI should not be confused with the one presented in
Pym’s book [Pym 2002]; the latter seeks to include a BI structure on contexts but
we do not attempt to do that here, since this is not what is used in separation logic.
In particular, weakening at the level of variables is always allowed:

ϕ `Γ ψ

ϕ `Γ∪{x:X} ψ
.

We interpret first-order predicate BI in a first-order BI hyperdoctrine simply by
extending the interpretation of first-order logic in first-order hyperdoctrine defined
above by:

[[I]] = IB
[[ϕ ∗ ψ]] = [[ϕ]] ∗B [[ψ]]
[[ϕ −−∗ ψ]] = [[ϕ]] −−∗B [[ψ]],

where IB, ∗B and −−∗B is the monoidal closed structure in the BI algebra P([[Γ]]).
We then have:

Theorem 2.5.

(1) The interpretation of first-order predicate BI given above is sound and complete.

(2) The interpretation of higher-order predicate BI given above is sound and com-
plete.

Proof. Soundness is proved by straightforward induction and completeness is
proved by forming the Lindenbaum-Tarski algebra over each context Γ of variables,
and showing that this gives a first-order BI hyperdoctrine in the first case, and a
BI hyperdoctrine in the second. The proof is a simple extension of the proof of the
corresponding result for intuitionistic predicate logic given in [Jacobs 1999].

Of course, a (first-order) BI hyperdoctrine is sound for classical BI in case all
the fibres P(X) are Boolean BI algebras and all the reindexing functions P(f)
are Boolean BI algebra homomorphisms. Here is a canonical example of a BI

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 9

hyperdoctrine, which we will use later in section 3.2 to show that the pointer model
is actually an instance of a BI hyperdoctrine.

Example BI hyperdoctrine over a complete BI algebra. Let B be a com-
plete BI algebra, i.e., it has all joins and meets. It determines a BI hyperdoctrine
over the category Set as follows. For each set X, let P(X) = BX , the set of func-
tions from X to B, ordered pointwise. Given f : X → Y , P(f) : BY → BX is the
BI algebra homomorphism given by composition with f . For example if s, t ∈ P(Y),
i.e., s, t : Y → B, then P(f)(s) = s ◦ f : X → B and s ∗ t is defined pointwise as
(s ∗ t)(y) = s(y) ∗ t(y). Equality predicates =X in BX×X are defined by

=X (x, x′)
def
=

{

> if x = x′

⊥ if x 6= x′
,

where > and ⊥ are the greatest and least elements of B, respectively. The quantifiers
use set-indexed joins (

∨

) and meets (
∧

). Specifically, given A ∈ BΓ×X one has

(∃X)Γ(A)
def
= λi ∈ Γ.

∨

x∈X

A(i, x) (∀X)Γ(A)
def
= λi ∈ Γ.

∧

x∈X

A(i, x)

in BΓ. The conditions in Definition 2.2 are trivially satisfied (Θ is the identity).

This example can be stated more general, replacing Set with any Cartesian closed
category C and let B be an internal, complete BI algebra, that is, B is a BI algebra
object in C which is complete as an internal Heyting algebra. There are plenty of
examples of complete BI algebras: for any Grothendieck topos E with an additional
symmetric monoidal closed structure, SubE(1) is a complete BI algebra, and for any
monoidal category C such that the monoid is cover preserving with respect to the
Grothendieck topology J , SubSh(C,J)(1) is a complete BI algebra [Biering 2004;

Pym etal. 2004]. For a different kind of example based on realizability, see [Biering
etal. 2006].

The following theorem shows that to get interesting models of higher-order pred-
icate BI, it does not suffice to consider BI hyperdoctrines arising as the canonical
hyperdoctrine over a topos (as in Example 2.3). Indeed this is the reason for intro-
ducing the more general BI hyperdoctrines.

Theorem 2.7. Let E be a topos and suppose SubE : Eop → Poset is a BI hy-
perdoctrine. Then the BI structure on each lattice SubE(X) is trivial, i.e., for all
ϕ, ψ ∈ SubE(X), ϕ ∗ ψ ↔ ϕ ∧ ψ.

Proof. Let E be a topos and suppose SubE : Eop → Poset is a BI hyperdoctrine.
Let X be an object of E and let ϕ, ψ, ψ′ ∈ SubE(X). Furthermore let Y be the
domain of the mono ϕ, and notice that the lattice SubE(Y) can be characterized
by

SubE(Y) = {ψ ∧ ϕ | ψ ∈ SubE(X)}. (1)

Furthermore, notice that the order on SubE(Y) is inherited from SubE(X), i.e.,

For all χ, χ′ ∈ SubE(Y), χ `Y χ′ iff χ `X χ′. (2)

Since ∧ is modeled by pullback which by assumption preserves ∗, the following
equations hold in SubE(Y) (and therefore also in SubE(X)):

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · Biering, Birkedal, Torp-Smith

(ϕ ∧ ψ) ∗Y (ϕ ∧ ψ′) ↔ ϕ ∧ (ψ ∗X ψ′) (3)

and

(ϕ ∧ ψ) −−∗Y (ϕ ∧ ψ′) ↔ ϕ ∧ (ψ −−∗X ψ′). (4)

By assumption, SubE(Y) forms a BI algebra with connectives ∗Y ,−−∗Y and IY , so
using the characterization of subobjects of Y given in (1), yields the following rule
for each χ ∈ SubE(X):

(ϕ ∧ ψ) ∗Y (ϕ ∧ ψ′) `Y χ ∧ ϕ

ϕ ∧ ψ `Y (ϕ ∧ ψ′) −−∗Y (χ ∧ ϕ)

Using (2), (3), and (4) we deduce

ϕ ∧ (ψ ∗X ψ′) `X χ ∧ ϕ

ϕ ∧ ψ `X ϕ ∧ (ψ′ −−∗X χ)

for all ϕ, ψ, ψ′, χ ∈ SubE(X), which implies

ϕ ∧ (ψ ∗X ψ′) `X χ ∧ ϕ

ϕ ∧ ψ `X ψ′ −−∗X χ

(ϕ ∧ ψ) ∗X ψ′ `X χ (5)

Inserting ϕ ∧ (ψ ∗X ψ′) for χ into (5) yields

ϕ ∧ (ψ ∗X ψ′) `X ϕ ∧ (ψ ∗X ψ′)

(ϕ ∧ ψ) ∗X ψ′ `X ϕ ∧ (ψ ∗X ψ′). (6)

Since the entailment above the line in (6) always holds,

(ϕ ∧ ψ) ∗X ψ′ `X ϕ ∧ (ψ ∗X ψ′).

This gives us projections for ∗X by letting ψ be >:

(ϕ ∗X ψ′) a`X (ϕ ∧ >) ∗X ψ′ `X ϕ ∧ (> ∗X ψ′) `X ϕ.

Now, let χ be the subobject (ϕ ∧ ψ) ∗X ψ′, then χ↔ χ ∧ ϕ due to the projections
for ∗X . Using (5) downwards-up, gives

(ϕ ∧ ψ) ∗X ψ′ `X (ϕ ∧ ψ) ∗X ψ′

ϕ ∧ (ψ ∗X ψ′) `X (ϕ ∧ ψ) ∗X ψ′ (7)

By (6) and (7) we conclude that for all ϕ, ψ, ψ′ ∈ SubE(X),

ϕ ∧ (ψ ∗X ψ′) ↔ (ϕ ∧ ψ) ∗X ψ′. (8)

We already noted the projections for ∗X , so >∗X IX `X IX , which entails > ↔ IX .
Let ψ be > in (8), then ϕ ∧ (> ∗X ψ′) ↔ (ϕ ∧ >) ∗X ψ′ and so ϕ ∧ ψ′ ↔ ϕ ∗X ψ′,
as claimed.

In fact, it is possible to make a slight strengthening of Theorem 2.7. We say that
a logic has full subset types [Jacobs 1999] if the following conditions are satisfied.

—For each formula ϕ(x1, . . . , xn), there is a type {x1:τ1, . . . , xn:τn | ϕ(x1, . . . , xn)}.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 11

—For a term N of type {x1:τ1, . . . , xn:τn | ϕ(x1, . . . , xn)}, in a context Γ, there is
a term o(N) of type τ1 × · · · × τn in Γ.

—The rule

Γ, y:{x:X | ϕ} | θ[o(y)/x] ` ψ[o(y)/x]

Γ, x:X | θ, ϕ ` ψ (9)

is valid. Here Γ | ϕ ` ψ is an alternative notation for ϕ `Γ ψ, to make the above
formula more readable.

One can then show

Proposition 2.8. Adding the above rules for full subset types to our notion of
predicate BI, yields a logic where for all formulas ϕ, ψ in a context Γ,

ϕ ∧ ψ a`Γ ϕ ∗ ψ.

The proof may be found in Appendix A. The following is an easy consequence.

Corollary 2.9. Any BI hyperdoctrine which satisfies the rules for full subset
types is trivial.

The BI hyperdoctrine S, which we define below and which corresponds to the
standard pointer model of separation logic, satisfies all of the above except the
downward direction of (9). When this is the case, we say that the logic has subset
types, but not full subset types [Jacobs 1999]. In fact, any BI hyperdoctrine over a
complete BI algebra, i.e., following the recipe of example 2.6 has subset types, but
not necessarily full subset types.

3. SEPARATION LOGIC MODELED BY BI-HYPERDOCTRINES

We briefly recall the standard pointer model of separation logic (for a more thor-
ough presentation see, for instance, [Reynolds 2002]) and then show how it can be
construed as a BI hyperdoctrine over Set.

The core assertion language of separation logic (which we will henceforth also
call separation logic) is often defined as follows. There is a single type Val of values.
Terms t are defined by a grammar

t ::= x | n | t+ t | t− t | · · · ,

where n : Val are constants for all integers n. Formulas, also called assertions, are
defined by

ϕ ::= > | ⊥ | t = t | t 7→ t | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ ∗ ϕ | ϕ −−∗ ϕ | emp | ∀x.ϕ | ∃x.ϕ

The symbol emp is used in separation logic for the unit of BI.
Note that the above is just another way of defining a signature (specification of

types, function symbols and predicate symbols) for first-order predicate BI with a
single type Val, function symbols +,−, . . . : Val,Val → Val, constants n : Val, and
relation symbol 7→ ⊆ Val × Val.

3.1 The pointer model.

The standard pointer model of separation logic is usually presented as follows. It
consists of a set [[Val]] interpreting the type Val and a set [[Loc]] of locations such

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · Biering, Birkedal, Torp-Smith

that [[Loc]] ⊆ [[Val]] and binary functions on [[Val]] interpreting the function symbols
+,−. The set H = [[Loc]] ⇀fin [[Val]] of finite partial functions from [[Loc]] to [[Val]],
ordered discretely, is referred to as the set of heaps. The set of heaps has a partial
binary operation ∗ defined by

h1 ∗ h2 =

{

h1 ∪ h2 if h1#h2

undefined otherwise,

where # is the binary relation on heaps defined by h1#h2 iff dom(h1)∩dom(h2) = ∅.
The interpretation of the relation 7→ is the function [[Val]] × [[Val]] → P (H) given
by h ∈ [[v1 7→ v2]] iff dom(h) = {v1} and h(v1) = v2. To define the standard
interpretation of terms and formulas, one assumes a partial function s : Var ⇀fin

[[Val]], called a stack (also called a store in the literature). The interpretation of
terms depends on the stack and is defined by

[[x]]s = s(x)
[[n]]s = [[n]]
[[t1 ± t2]]s = [[t1]]s± [[t2]]s

The interpretation of formulas is standardly given by a forcing relation s, h |= ϕ,
where FV(ϕ) ⊆ dom(s), as follows

s, h |= t1 = t2 iff [[t1]]s = [[t2]]s
s, h |= t1 7→ t2 iff dom(h) = {[[t1]]s} and h([[t1]]s) = [[t2]]s
s, h |= emp iff h = ∅
s, h |= > always
s, h |= ⊥ never
s, h |= ϕ ∗ ψ iff there exists h1, h2 ∈ H such that h1 ∗ h2 = h and

s, h1 |= ϕ and s, h2 |= ψ
s, h |= ϕ −−∗ ψ iff for all h′, h′#h and s, h′ |= ϕ implies s, h ∗ h′ |= ψ
s, h |= ϕ ∨ ψ iff s, h |= ϕ or s, h |= ψ
s, h |= ϕ ∧ ψ iff s, h |= ϕ and s, h |= ψ
s, h |= ϕ→ ψ iff s, h |= ϕ implies s, h |= ψ
s, h |= ∀x.ϕ iff for all v ∈ [[Val]], s[x 7→ v], h |= ϕ
s, h |= ∃x.ϕ iff there exists v ∈ [[Val]], such that s[x 7→ v], h |= ϕ

Remark 3.1. The pointer model has a single-sorted signature (the only type is
Val), to get a many-sorted or higher-order version of the pointer model, we add
appropriate types to the signature. Variables come with a type x : X, and we
require that s(x : X) ∈ [[X]] for all variables x ∈ dom s. The last two rules of the
forcing relation, becomes typed:

s, h |= ∀x : X.ϕ iff for all v ∈ [[X]], s[x 7→ v], h |= ϕ.

Similar for the exists rule.

We now show how this pointer model is an instance of a BI-hyperdoctrine of a
complete Boolean BI algebra (cf. Example 2.6).

3.2 The pointer model as a BI hyperdoctrine.

Let (H⊥, ∗) be the discretely ordered set of heaps with a bottom element added
to represent undefined, and let ∗ : H⊥ × H⊥ → H⊥ be the total extension of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 13

∗ : H ×H ⇀ H satisfying ⊥ ∗ h = h ∗ ⊥ = ⊥, for all h ∈ H⊥, and h ∗ h′ = ⊥ if
h and h′ are not disjoint. This defines an ordered, commutative monoid with the
empty heap ∅ as the unit for ∗. The powerset of H , P(H) (without ⊥) is a complete
Boolean BI algebra, ordered by inclusion and with monoidal closed structure given
by (for U, V ∈ P(H)):

—I is {∅}

—U ∗ V := {h ∗ h′ | h ∈ U ∧ h′ ∈ V } \ {⊥}

—U −−∗ V :=
⋃

{W ⊆ H | (W ∗ U) ⊆ V }.

It can easily be verified directly that this defines a complete Boolean BI algebra; it
also follows from more abstract arguments in [Pym etal. 2004; Biering 2004].

Let S be the BI hyperdoctrine induced by the complete Boolean BI algebra P(H)
as in Example 2.6. To show that the interpretation of separation logic in this BI
hyperdoctrine exactly corresponds to the standard pointer model presented above
we spell out the interpretation of separation logic in S.

A term t in a context Γ = {x1 : Val, . . . , xn : Val} is interpreted as a morphism
between sets:

—[[xi : Val]] = πi, where πi : Valn → Val is the i’th projection,

—[[n]] is the map [[n]] : [[Γ]] → 1 → [[Val]] which sends the unique element of the
one-point set 1 to [[n]],

—[[t1 ± t2]] = [[t1]] ± [[t2]] : [[Γ]] → [[Val]] × [[Val]] → [[Val]], where [[ti]] : [[Γ]] → [[Val]], for
i = 1, 2.

The interpretation of a formula ϕ in a context Γ = {x1 : Val, . . . , xn : Val} is
given inductively as follows. Let [[Γ]] = [[Val]] × · · · × [[Val]] = [[Val]]n and write v for
elements of [[Γ]]. Then ϕ is interpreted as an element of P(I) as follows:

[[t1 7→ t2]](v) = {h | dom(h) = {[[t1]](v)} and h([[t1]](v)) = [[t2]](v)}
[[t1 = t2]](v) = H if [[t1]](v) = [[t2]](v), ∅ otherwise
[[>]](∗) = H
[[⊥]](∗) = ∅
[[emp]](∗) = {h | dom(h) = ∅}
[[ϕ ∧ ψ]](v) = [[ϕ]](v) ∩ [[ψ]](v)
[[ϕ ∨ ψ]](v) = [[ϕ]](v) ∪ [[ψ]](v)
[[ϕ→ ψ]](v) = {h | h ∈ [[ϕ]](v) implies h ∈ [[ψ]](v)}
[[ϕ ∗ ψ]](v) = [[ϕ]](v) ∗ [[ψ]](v)

= {h1 ∗ h2 | h1 ∈ [[ϕ]](v) and h2 ∈ [[ψ]](v)} \ {⊥}
[[ϕ −−∗ ψ]](v) = [[ϕ]](v) −−∗ [[ψ]](v)

= {h | [[ϕ]](v) ∗ {h} ⊆ [[ψ]](v)}
[[∀x : Val.ϕ]](v) =

⋂

vx∈[[Val]]([[ϕ]](vx, v))

[[∃x : Val.ϕ]](v) =
⋃

vx∈[[Val]]([[ϕ]](vx, v))

Now it is easy to verify by structural induction on formulas ϕ that the interpretation
given in the BI hyperdoctrine S corresponds exactly to the forcing semantics given
earlier:

Theorem 3.2. h ∈ [[ϕ]](v1, . . . , vn) iff [x1 7→ v1, . . . , xn 7→ vn], h |= ϕ.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · Biering, Birkedal, Torp-Smith

As a consequence, we of course obtain the well-known result that separation logic
is sound for classical first-order BI. But, more interestingly, the correspondence
also shows that we may easily extend separation logic to higher-order since the
BI hyperdoctrine S soundly models higher-order BI. We expand on this in the
next section, which also discusses other consequences of the above correspondence.
First, however, we explain that one can also obtain such a correspondence for other
versions of separation logic.

3.3 An intuitionistic model.

Consider again the set of heaps (H⊥, ∗) with an added bottom ⊥, as above. We
now define the order by

h1 w h2 iff dom(h1) ⊆ dom(h2) and for all x ∈ dom(h1). h1(x) = h2(x).

Let I be the set of sieves on H , i.e., downwards closed subsets of H , ordered by
inclusion. This is a complete BI algebra, as can be verified directly or by an abstract
argument [Biering 2004; Pym etal. 2004].

Now let T be the BI hyperdoctrine induced by the complete BI algebra I as
in Example 2.6. The interpretation of predicate BI in this BI hyperdoctrine cor-
responds exactly to the intuitionistic pointer model of separation logic, which is
presented using a forcing style semantics in [Ishtiaq and O’Hearn 2001].

3.4 The permissions model.

It is also possible to fit the permissions model of separation logic from [Bornat
etal. 2005] into the framework presented here. The main point is that the set of
heaps, which in that model map locations to values and permissions, has a binary
operation ∗, which makes (H⊥, ∗) a partially ordered commutative monoid.

Remark 3.3. The correspondences between separation logic and BI hyperdoc-
trines given above illustrate that what matters for the interpretation of separation
logic is the choice of BI algebra. Indeed, the main relevance of the topos-theoretic
constructions in [Pym etal. 2004] for models of separation logic is that they can be
used to construct suitable BI-algebras (as subobject lattices in categories of sheaves).

4. SOME CONSEQUENCES FOR SEPARATION LOGIC

We have shown above that it is completely natural and straightforward to inter-
pret first-order predicate BI in first-order BI-hyperdoctrines and that the stan-
dard pointer model of separation logic corresponds to a particular case of BI-
hyperdoctrine. Based on this correspondence, in this section we draw some further
consequences for separation logic.

4.1 Formalizing Separation Logic

The usefulness of separation logic has been demonstrated in numerous papers be-
fore. It has been shown that it can handle simple programs for copying trees,
deleting lists, etc. The first proof of a more realistic program appeared in Yang’s
thesis [Yang 2001], in which he showed correctness of the Schorr-Waite graph mark-
ing algorithm. Later, a proof of correctness of Cheney’s garbage collection algorithm
was published in [Birkedal etal. 2004], and other examples of correctness proofs of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 15

non-trivial algorithms may be found in [Bornat etal. 2004]. In all of these papers,
different simple extensions of core separation logic were used. For example, Yang
used lists and binary trees as parts of his term language, and Birkedal et. al. in-
troduced expression forms for finite sets and relations. It would seem that it is a
weakness of separation logic that one has to come up with suitable extensions of it
every time one has to prove a new program correct. In particular, it would make
machine-verifiable formalizations of such proofs more burdensome and dubious if
one would have to alter the underlying logic for every new proof.

The right way to look at these “extensions” is that they are really trivial defini-
tional extensions of one and the same logic, namely the internal logic of the classical
BI hyperdoctrine S presented in Section 3. The internal language of a BI hyper-
doctrine P over C is formed as follows: to each object of C one associates a type,
to each morphism of C one associates a function symbol, and to each predicate in
P(X) one associates a relation symbol. The terms and formulas over this signature
(considered as a higher-order signature [Jacobs 1999]) form the internal language
of the BI hyperdoctrine. There is an obvious structure for this language in P .

Let 2 = {⊥,>} be a two-element set (the subobject classifier of Set). There is a
canonical map ι : 2 → P(H) which maps ⊥ to {} (the bottom element of the BI
algebra P(H)) and > to H (the top element of P(H)).

Definition 4.1. Let ϕ be an S-predicate over a set X, i.e., a function ϕ : X →
P(H). Call ϕ pure if ϕ factors through ι.

Thus ϕ : X → P(H) is pure if there exists a map χϕ : X → 2 such that

X
ϕ

//

χϕ

��>
>>

>>
>>

>
P(H)

2

ι

==zzzzzzzz

commutes. This corresponds to the notion of pure predicate traditionally used in
separation logic [Reynolds 2002].

The sub-logic of pure predicates is simply the standard classical higher-order
logic of Set, and thus it is sound for classical higher-order logic. Hence one can use
classical higher-order logic for defining lists, trees, finite sets and relations in the
standard manner using pure predicates and prove the standard properties of these
structures, as needed for the proofs presented in the papers referred to above. In
particular, notice that recursive definitions of predicates, which in the papers [Yang
2001; Birkedal etal. 2004; Bornat etal. 2004] are defined at the meta level, can be
defined inside the higher-order logic itself as detailed in Section 4.3. For machine
verification one would thus only need to formalize one and the same logic, namely
a sufficient fragment of the internal logic of the BI hyperdoctrine (with obvious
syntactic rules for when a formula is pure). The internal logic itself is “too big”
(it can have class-many types and function symbols, e.g.); hence the need for a
fragment thereof, say classical higher-order logic with natural numbers.

4.2 Logical Characterizations of Classes of Assertions

Different classes of assertions, precise, monotone, and pure, are introduced by
Reynolds [Reynolds 2002], who notices that special axioms for these classes of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · Biering, Birkedal, Torp-Smith

assertions are valid. Such special axioms are exploited in the proof of Cheney’s
garbage collector [Birkedal etal. 2004], where pure assertions are moved in and out
of the scope of iterated separating conjunctions, and in the paper [O’Hearn etal.
2004], where properties of precise assertions are crucially applied to verify sound-
ness of the hypothetical frame rule. The different classes of assertions are defined
semantically and the special axioms are validated using the semantics. We show
how the higher-order features of higher-order separation logic allows a logical char-
acterization of the classes of assertions, and logical proofs of the properties earlier
taken as axioms. This is, of course, important for machine verification, since it
means that the special classes of assertions and their properties can be expressed
in the logic.

To simplify notation we just present the characterizations for closed assertions,
the extension to open assertions is straightforward. Recall that closed assertions
are interpreted in S as functions from 1 to P(H), i.e., as subsets of H .

In the proofs below, we use assertions which describe heaps in a canonical way.
Since a heap h has finite domain, there is a unique (up to permutation) way to
write an assertion ph ≡ l1 7→ n1 ∗ . . . ∗ lk 7→ nk such that [[ph]] = {h}.

Precise assertions. The traditional definition of a precise assertion is semantic,
inasmuch as an assertion q is precise if, and only if, for all states (s, h), there is at
most one subheap h0 of h such that (s, h0) |= q. The following proposition logically
characterizes closed precise assertions (at the semantic level, this characterization
of precise predicates has been mentioned before [O’Hearn etal. 2003]).

Proposition 4.2. The closed assertion q is precise if, and only if, the assertion

∀p1, p2 : Prop. (p1 ∗ q) ∧ (p2 ∗ q) ↔ (p1 ∧ p2) ∗ q (10)

is valid in the BI hyperdoctrine S.

Proof. The “only-if” direction is trivial, so we focus on the other implication.
Thus suppose (10) holds for q, and let h be a heap with two different subheaps
h1, h2 for which hi ∈ [[q]]. Let p1, p2 be canonical assertions describing the heaps
h \ h1 and h \ h2, respectively. Then h ∈ [[(p1 ∗ q) ∧ (p2 ∗ p)]], so h ∈ [[(p1 ∧ p2) ∗ q]],
whence there is a subheap h′ ⊆ h with h′ ∈ [[p1 ∧ p2]]. This is a contradiction.

One can verify properties for precise assertions in the logic without using seman-
tical arguments. For example, one can show that q1 ∗ q2 is precise if q1 and q2 are
by the following logical argument: Suppose (10) holds for q1, q2. Then,

(p1 ∗ (q1 ∗ q2)) ∧ (p2 ∗ (q1 ∗ q2)) ⇒ ((p1 ∗ q1) ∗ q2) ∧ ((p2 ∗ q1) ∗ q2))
⇒ ((p1 ∗ q1) ∧ (p2 ∗ q1)) ∗ q2 ⇒ ((p1 ∧ p2) ∗ q1) ∗ q2
⇒ (p1 ∧ p2) ∗ (q1 ∗ q2),

as desired.

Monotone assertions. A closed assertion q is defined to be monotone if, and only
if, whenever h ∈ [[q]] then also h′ ∈ [[q]], for all extensions h′ ⊇ h.

Proposition 4.3. The closed assertion q is monotone if, and only if, the as-
sertion ∀p:Prop. p ∗ q → q is valid in the BI hyperdoctrine S.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 17

This is easily verified, and again, one can show the usual rules for monotone asser-
tions in the logic (without semantical arguments) using this characterization.

Pure assertions. Recall from above that an assertion q is pure iff its interpretation
factors through 2. Thus a closed assertion is pure iff its interpretation is either ∅
or H .

Proposition 4.4. The closed assertion q is pure if, and only if, the assertion

∀p1, p2:Prop. (q ∧ p1) ∗ p2 ↔ q ∧ (p1 ∗ p2) (11)

is valid in the BI hyperdoctrine S.

Proof. Again, the interesting direction here is the “if” implication. Suppose (11)
holds for the assertion q, and that h ∈ [[q]]. For any heap h0, we must show that
h0 ∈ [[q]]. This is done via the verification of two claims.
Fact 1: For all h′ ⊆ h, h′ ∈ [[q]]. Proof: Let p1 be a canonical description of
h′, and p2 a canonical description of h \ h′. Then h ∈ [[q ∧ (p1 ∗ p2)]], so by 11,
h ∈ [[(q ∧ p1) ∗ p2]]. This means there is a split h1 ∗ h2 = h with h1 ∈ [[q ∧ p1]] and
h2 ∈ [[p2]]. But then, h2 = h \ h′, so h1 = h′, and thus, h′ ∈ [[q]].
Fact 2: For all h′ ⊇ h, h′ ∈ [[q]]. Proof: Let p1 and p2 be canonical descriptions of
h and h′ \ h, respectively. Then, h′ ∈ [[(q ∧ p1) ∗ p2]], so by 11, h′ ∈ [[q ∧ (p1 ∗ p2)]],
and in particular, h′ ∈ [[q]], as desired.

Using Facts 1 and 2, we deduce h ∈ [[q]] ⇒ emp ∈ [[q]] ⇒ h0 ∈ [[q]].

4.3 Predicates via Fixed Points

Consider the following predicate clist, taken from [Parkinson and Bierman 2005].
It is required to satisfy the following recursive equation:

clist = λ(x, s).x = null ∨ (∃j, k. x 7→ j, k ∗ P (j, s) ∗ clist(k, s)),

for some specific P . Solutions to such equations are definable in higher-order sepa-
ration logic. Indeed, we may define both minimal and maximal fixed points for any
monotone operator on predicates, using standard encodings of fixed points (due to
Prawitz and Scott, independently). To wit, consider for notational simplicity an
arbitrary predicate

q : Prop ` ϕ(q) : Prop

satisfying that q only occurs positively in ϕ. Then

µq.ϕ(q) = ∀q.(ϕ(q) → q) → q

is the least fixed point for ϕ in the obvious sense that ϕ(µq.ϕ(q)) → µq.ϕ(q) and
∀p.(ϕ(p) → p) → (µq.ϕ(q) → p) holds in the logic. Note that the latter is the
corresponding induction principle. Likewise,

νq.ϕ(q) = ∃q.(q → ϕ(q)) ∧ q

is the maximal fixed point for ϕ.

5. HIGHER-ORDER SEPARATION LOGIC

We present a programming language and use the higher-order assertion language
of the pointer-model BI-hyperdoctrine S to give a specification logic for the pro-
gramming language. The programming language is a simple extension of that of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · Biering, Birkedal, Torp-Smith

standard separation logic with simple call-by-value procedures, and the program
logic includes standard rules for these. The logic is for partial correctness and
absence of pointer errors.

Programming Language. The programming language uses a restricted set of terms
of type Int, referred to as expressions, and uses booleans, which consists of a re-
stricted (heap-independent) set of terms of type Prop. E and B range over these,
and they are generated by the grammars:

E ::= n | x | E + E | E − E | E × E | null
B ::= E = E | E ≤ E | B ∧B | · · ·

Formally, booleans have type Prop in our system, but we sometimes write B : Bool

if they can be generated from this grammar. (In other words, boolean expressions
are pure assertions.) Moreover, officially we always consider expressions and for-
mulas in context and thus write ∆ ` E:Int, ∆ ` B:Bool, and ∆ ` P :Prop for
expressions, booleans, and general assertions. A context ∆ is a pair ∆l; ∆p of con-
texts for logical variables and for program variables (finite maps from variables to
types).

The syntax of the programming language is given by the following grammar.
Here, k ranges over a set of function names, and x ranges over a set of program
variables.

c ::= skip

| x := ki(E1, . . . , Emi
)

| newvar x; c
| x := E
| x := [E]
| [E] := E′

| x := cons(E1, . . . , Em)
| dispose(E)
| if B then c else c fi

| while B do c od

| c; c
| let k1(x1, . . . , xm1

) = c1
...

kn(x1, . . . , xmn
) = cn

in c end

| return e

There are some restrictions on the programs, and a program is called well-formed
if it meets these restrictions. The restrictions include:

—There is always a return at the end of a function body.

—A function name is declared at most once in a let.

—There are the right number of parameters in function calls.

—Function bodies neither modify non-local variables, nor parameters.

The semantics is mostly standard; we specify it formally in the following. Note
that the language includes declaration of new local variables, and operations for

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 19

reading from the heap (x := [E]), for updating the heap [E] := E′, for allocating
new cells in the heap (x := cons(E1, . . . , Em)), and for disposing cells in the heap
(dispose(E)). Functions are first-order and call-by-value.

Function Specifications. There is a judgment

∆ ` γ:FSpec

stating that γ is a well-formed function specification in context ∆.
Function specifications are used to record assumptions about functions used in

programs. The judgment is given by

∆ ` P :Prop ∆ ` Q:Prop

∆ ` {P} k(x1, . . . , xn) {Q}:FSpec

∆ ` γ:FSpec ∆ ` γ′:FSpec

∆ ` γ ∧ γ′:FSpec

∆, x:τ ` γ:FSpec

∆ ` \x:τ. γ:FSpec
where \ ∈ {∃, ∀}

The set of free variables for a function specification is defined as the free variables
in the assertions occurring in it.

Specifications. We introduce syntax for commands and specifications. There is
a judgment ∆ ` c:comm, which asserts that the program c is well-formed in the
context ∆. We omit the formal definition here.

The specifications of higher-order separation logic is given by a judgment

∆ ` δ:Spec,

which asserts that δ is a well-formed specification in the context ∆. This judgment
is given by

∆ ` c:comm ∆ ` P :Prop ∆ ` Q:Prop

∆ ` {P} c {Q}:Spec

∆ ` δ:Spec ∆ ` δ′:Spec

∆ ` δ ∧ δ′:Spec

∆, x:τ ` δ:Spec

∆ ` \x:τ. δ:Spec
\ ∈ {∃, ∀}

The set FV(δ) of free variables of a specification δ is the set of free variables in the
assertions and the variables in the commands occurring in δ. The set Mod(δ) of
modified variables of δ is the set of modified variables in the commands occurring
in δ.

Operational Semantics. The operational semantics of the programming language
is given by a judgment

(Π, c, s, h) ⇓ (s′, h′), (12)

where Π is a well-formed semantic function environment. A semantic function en-
vironment maps function names k to pairs (~x, c), where ~x is a vector of integer
variables and c is a command from the programming language. Such an environ-
ment is well-formed if the function bodies only modify local variables (and ret, by

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · Biering, Birkedal, Torp-Smith

the return command):

Π ok iff ∀(x, c) ∈ cod(Π). Mod(c) = ∅.

We write SemFunEnv for the set of all well-formed semantic function environments.
Intuitively the judgment (12) says that the state (s, h) is transformed to the

state (s′, h′) by the program c. The judgment is given by the clauses in Fig. 1.
We occasionally use ∆p for the domain of s in the definition of the judgment, for
example, in the second rule (for assignment). Furthermore, the notation h−{n} is
used to denote the heap which is like h, but with n taken out of its domain. In the
evaluation of a function call x = k(E), a designated variable ret is used to transfer
the return value of the function call via the stack to x.

The configuration (Π, c, s, h) is called safe if (Π, c, s, h) 6⇓ wrong. A configuration
may either terminate in a state (s′, h′), diverge, or go wrong.

Note that, since this semantics is the same as the operational semantics of the
language of Parkinson and Bierman [Parkinson and Bierman 2005], the properties
needed to prove the frame rule, namely safety monotonicity and the frame prop-
erty [Yang and O’Hearn 2002], are valid for all programs of the language. These
properties are:

Safety Monotonicity. For all well-formed semantic function environments Π, pro-
grams c, stacks s, and heaps h, if (Π, c, s, h) is safe, then for all heaps h′ disjoint
from h, (Π, c, s, h ∗ h′) is also safe.

The Frame Property. For all well-formed semantic function environments Π, pro-
grams c, stacks s, and heaps h, if (Π, c, s, h) is safe and h′ is disjoint from h,
then (Π, c, s, h ∗ h′) ⇓ (s′, h′′), implies that there is h0 disjoint from h′ such that
h′′ = h0 ∗ h′ and (Π, c, s, h) ⇓ (s′, h0).

5.1 Program Logic Judgments

A list Γ of function specifications is called an environment. We shall define the
judgment

∆l; ∆p; Γ |= δ:Spec,

which states that in the context ∆l used for logical variables and the context ∆p

used for program variables, given the assumptions about functions recorded in Γ,
the specification δ holds. This judgment is defined in several straightforward steps.
First, we give the semantics of a triple, relative to a context. The semantics of
[[∆l; ∆p ` δ:Spec]] is a map from SemFunEnv × [[∆l]] to the domain {true, false},
and it is given by (some obvious type annotations are omitted):

[[∆l; ∆p ` {P} c {Q}]](Π, sl) iff ∀sp ∈ [[∆p]].∀h ∈ [[∆l,∆p ` P]](sl, sp).
− (Π, c, sp, h) is safe, and
− (Π, c, sp, h) ⇓ (s′p, h

′) implies h′ ∈ [[∆ ` Q]](sl, s
′
p)

[[∆l; ∆p ` δ ∧ δ′]](Π, sl) iff [[∆l; ∆p ` δ]](Π, sl) and [[∆l; ∆p ` δ′]](Π, sl)

[[∆l; ∆p ` ∃x:τ. δ]](Π, sl) iff [[∆l; ∆p ` δ]](Π, (sl)[x 7→v]) for some v ∈ [[τ]]

[[∆l; ∆p ` ∀x:τ. δ]](Π, sl) iff [[∆l; ∆p ` δ]](Π, (sl)[x 7→v]) for all v ∈ [[τ]].

We call ∆l; ∆p ` δ valid and write ∆l; ∆p |= δ iff [[∆l; ∆p; Π ` δ]](Π, sl) = true for
all Π and all sl ∈ [[∆l]].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 21

(Π, skip, s, h) ⇓ (s, h)

[[∆p ` E:Int]]s = n

(Π, x := E, s, h) ⇓ (s[x 7→n], h)

[[∆p ` E:Int]]s = n

(Π, return E, s, h) ⇓ (s[ret 7→n], h)

[[∆p ` E:Int]]s = n n ∈ dom(h) h(n) = n′

(Π, x := [E], s, h) ⇓ (s[x 7→n′], h)

[[∆p ` E:Int]]s = n [[∆p ` E′:Int]]s = n′ n ∈ dom(h)

(Π, [E] := E′, s, h) ⇓ (s, h[n7→n′])

[[∆p ` E:Int]]s = n n ∈ dom(h)

(Π,dispose(E), s, h) ⇓ (s, h − {n})

[[∆p ` E:Int]]s = n n /∈ dom(h)

(Π,dispose(E), s, h) ⇓ wrong

[[∆p ` E:Int]]s = n n /∈ dom(h)

(Π, x := [E], s, h) ⇓ wrong

[[∆p ` E:Int]]s = n n /∈ dom(h)

(Π, [E] := E′, s, h) ⇓ wrong

{n, n + 1, . . . , n + m} 6∈ dom(h) ([[∆p ` Ei:Int]]s = ni)i=0,...,m

(Π, x := cons(E0, . . . , Em), s, h) ⇓ (s[x 7→n], h[n+i7→ni]i=0,...,m
)

(Π, c1, s, h) ⇓ (s′, h′) (Π, c2, s
′, h′) ⇓ (s′′, h′′)

(Π, c1; c2, s, h) ⇓ (s′′, h′′)

[[∆p ` B:Bool]]s = false (Π, c1, s, h) ⇓ (s′, h′)

(Π, if B then c0 else c1 fi) ⇓ (s′, h′)

[[∆p ` B:Bool]]s = true (Π, c0, s, h) ⇓ (s′, h′)

(Π, if B then c0 else c1 fi) ⇓ (s′, h′)

[[∆p ` B:Bool]]s = false

(Π,while B do c od, s, h) ⇓ (s, h)

[[∆p ` B:Bool]]s = true (Π, c;while B do c od, s, h) ⇓ (s′, h′)

(Π,while B do c od, s, h) ⇓ (s′, h′)

Π(k) = ((x1, . . . , xm), ck)
([[∆p ` Ei:Int]]s = ni)i=1,...,m

(Π, ck, s[xi 7→ ni], h) ⇓ (s′, h′)

(Π, x = k(E1, . . . , Em), s, h) ⇓ (s[x 7→s′(ret)], h
′)

(Π, c, s[x 7→null], h) ⇓ (s′, h′) s(x) = v

(Π,newvar x; c, s, h) ⇓ (s′[x 7→v], h
′)

(Π ∪ (k1 7→ ((x1, . . . , xn1
), c1), . . . , kn 7→ ((x1, . . . , xnk

), cn)), c, s, h) ⇓ (s′, h′)

(Π, let k1(x1, . . . , xn1
) = c1, . . . , kn(x1, . . . , xnn) = cn in c, s, h) ⇓ (s′, h′)

Fig. 1. Operational Semantics of the Programming Language

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · Biering, Birkedal, Torp-Smith

Lemma 5.1. Let δ be a specification, x:τ a variable, and ∆l ` t:τ a term such
that (FV(t) ∪ {x}) ∩ Mod(δ) = ∅. Further, let sl ∈ [[∆l]], and Π be well-formed.
Then,

[[∆l; ∆p ` δ[t/x]]](Π, sl) iff [[∆l; ∆p, x:τ ` δ]](Π, (sl)[x 7→v]),

where v = [[∆l ` t:τ]]s.

There is a similar semantics for function specifications. This semantics is a map

[[∆l; ∆p ` γ:FSpec]] : SemFunEnv × [[∆l]] 7→ {true, false},

and it is given in much the same way as the corresponding map for specifications.
The only difference is the base case, which is given by

[[∆l; ∆p ` {P} km {Q}]](Π, sl) iff [[∆l; ∆
′
p ` {P} cm {Q}]](Π, sl)

where Π(km) = ((x1, . . . , xnm
), cm),

where ∆′
p is ∆p with the xi’s added (with type Int).

As mentioned, an environment is a list of function specifications. The semantics
of an environment is given componentwise:

[[∆l; ∆p ` Γ]](Π, sl) iff [[∆l; ∆p ` γ]](Π, sl) for all γ ∈ Γ.

Finally, the semantics of specifications, relative to a context and an environment,
is defined by

∆l; ∆p; Γ |= δ iff for all well-formed Π and all sl ∈ [[∆l]],
[[∆l; ∆p ` Γ]](Π, sl) implies [[∆l; ∆p ` δ]](Π, sl).

5.2 Inference Rules

We define a judgment

∆l; ∆p; Γ ` δ,

for deriving valid specifications. The inference rules are given in Fig. 2. For brevity,
we have omitted obvious rules for conjunctions of specifications and some structural
rules for weakening and strengthening of variable contexts. We first explain some
of the rules at an intuitive level, and then show soundness.

5.3 Informal Explanation of Rules

The first two rules are the usual rules for skip and assignment from Hoare logic.
The rule for return is similar to the rule for assignment, since return simply
amounts to an assignment to the special variable ret.

The rule

{P} k(~x) {Q} ∈ Γ

∆l; ∆p; Γ ` {P [~E/~x]} y := k(~E) {Q[~E, y/~x, ret]}

for a function call says that in order to call a function, the precondition for the
function must be satisfied. This precondition is recorded in the environment, along
with the corresponding postcondition.

The next four rules which involve the heap-manipulating constructs of the pro-
gramming language, are the standard rules of separation logic, adapted to our

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 23

∆l;∆p; Γ ` {P}skip{P} ∆l;∆p; Γ ` {P [E/x]} x := E {P}

∆l;∆p; Γ ` {P [E/ret]} return E {P}

{P} k(~x) {Q} ∈ Γ

∆l;∆p; Γ ` {P [~E/~x]} y = k(~E) {Q[~E, y/~x, ret]}

∆l;∆p; Γ ` {emp ∧ x = m}x := cons(E1, . . . , En){x 7→ E1[m/x], . . . , En[m/x]}

∆l;∆p; Γ ` {E 7→ −}dispose(E){emp}

∆l;∆p; Γ ` {E 7→ n ∧ x = m}x := [E]{E[m/x] 7→ n ∧ x = n}

∆l;∆p; Γ ` {E 7→ −}[E] := E′{E 7→ E′}

∆l;∆p, ~x1; Γ ` {P1} c1 {Q1}
...

∆l;∆p, ~xn; Γ ` {Pn} cn {Qn}
∆l;∆p; Γ, {P1} k1(~x1) {Q1}, · · · , {Pn} kn(~xn) {Qn} ` {P} c {Q}

∆l;∆p; Γ ` {P} let k1(~x1) = c1, . . . , kn(~xn) = cn in c {Q}

∆l;∆p; Γ ` {P} c1 {P ′} ∆l;∆p; Γ ` {P ′} c2 {Q}

∆l; ∆p; Γ ` {P} c1; c2 {Q}

∆l;∆p, x:Int; Γ ` {P ∧ x = null} c {Q}

∆l; ∆p; Γ ` {P} newvar x in c end {Q}
x /∈ FV(P, Q,Γ)

∆l; ∆p; Γ ` {P ∧ B} c1{Q} ∆l;∆p; Γ ` {P ∧ ¬B} c2{Q}

∆l;∆p; Γ ` {P} if B then c1 else c2 fi {Q}

∆l;∆p; Γ ` {P ∧ B} c {P}

∆l;∆p; Γ ` {P} while B do c od {P ∧ ¬B}

∆l; ∆p ` P ⇒ P ′ ∆l;∆p; Γ ` {P ′} c {Q′} ∆l; ∆p ` Q′ ⇒ Q

∆l;∆p; Γ ` {P} c {Q}

∆l, x:τ ;∆p; Γ, γ ` δ

∆l; ∆p; Γ,∃x:τ. γ ` δ
x 6∈ FV(Γ)

∆l, x:τ ;∆p Γ ` δ

∆l; ∆p; Γ ` ∀x:τ. δ
x 6∈ FV(Γ)

∆l; ∆p; Γ ` {P} c {Q}

∆l;∆p; Γ ` {P ∗ P ′} c {Q ∗ P ′}
Mod(c) ∩ FV(P ′) = ∅

Fig. 2. Program Logic

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · Biering, Birkedal, Torp-Smith

setting. Note that the specifications are “tight” in the sense that they only men-
tion the heap cells that are actually manipulated by the commands. For example,
the rule

∆l; ∆p; Γ ` {emp ∧ x = m}x := cons(~E){x 7→ ~E[m/x]}

for cons produces a new cell when run in an empty heap. Note that this does
not mean that cons can only be executed in an empty heap. The last rule of the
system,

∆l; ∆p; Γ ` {P} c {Q}

∆l; ∆p; Γ ` {P ∗ P ′} c {Q ∗ P ′}
Mod(c) ∩ FV(P ′) = emp,

called the frame rule, implies that one can infer a global specification from a local
specification like the one for cons. Hence, cons can be executed in any heap,
described by the predicate P (in which x does not occur freely), by the following
instance of the frame rule:

∆l; ∆p; Γ ` {emp ∧ x = m}x := cons(~E){x 7→ ~E[m/x]}

∆l; ∆p; Γ ` {P ∧ x = m}x := cons(~E){P ∗ (x 7→ ~E[m/x])}
.

The rule

∆l; ∆p, ~x1; Γ ` {P1} c1 {Q1}
...

∆l; ∆p, ~xn; Γ ` {Pn} cn {Qn}
∆l; ∆p; Γ, {P1} k1(~x1) {Q1}, · · · , {Pn} kn(~xn) {Qn} ` {P} c {Q}

∆l; ∆p; Γ ` {P} let k1(~x1) = c1, . . . , kn(~xn) = cn in c {Q}

for function definitions is the usual one from Hoare logic with procedures [Hoare
1971]. The rules for while and if -then-else are also standard. The rule of conse-
quence is standard, and the rules

∆l, x:τ ; ∆p; Γ, γ ` δ

∆l; ∆p; Γ, ∃x:τ. γ ` δ
x 6∈ FV(Γ)

∆l, x:τ ; ∆p; Γ ` δ

∆l; ∆p; Γ ` ∀x:τ. δ
x 6∈ FV(Γ)

are straightforward adaptations of standard rules of predicate logic. (Note that by
the convention that variables in contexts ∆l; ∆p are all distinct, x /∈ FV(δ) in the
first rule and x /∈ FV(Γ) in the second rule.) They are used later for reasoning
about data abstraction. Note here that x may be of any type τ , including higher
types for predicates, see the examples in Sections 6 and 7.

5.4 Soundness

Theorem 5.2. If a specification

∆l; ∆p; Γ ` δ

can be derived from the rules in Fig. 2, then it is valid.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 25

Proof. By induction. For each rule of form

∆l; ∆p; Γ ` δ

∆′
l; ∆

′
p; Γ

′ ` δ′
,

(13)

we check ∆′
l; ∆

′
p; Γ

′ |= δ′, under the assumption ∆l; ∆p; Γ |= δ. For axioms of the
form

∆l; ∆p; Γ ` δ
,

the proof obligation is to show ∆l; ∆p; Γ |= δ.
Consider the rule for skip:

∆l; ∆p; Γ ` {P} skip {P}

Although trivial, we show soundness of this rule here, to exercise the definitions.
Let Π be a well-formed semantic function environment. It suffices to show

[[∆l; ∆p ` {P} skip {P}]](Π, sl)

for all sl ∈ [[∆l]]. Let sp ∈ [[∆p]] and let h ∈ [[P]](sl, sp). Then,

(Π, skip, sp, h) ⇓ (sp, h),

and clearly, h ∈ [[P]](sl, sp), so this rule is sound.
Soundness of the rule for assignment

∆l; ∆p; Γ ` {P [E/x]} x := E {P}

depends, as usual, on the standard substitution lemma for assertions (not included
in the review in Section 3).

Now consider the rule for function call:

{P} ki(x1, . . . , xni
) {Q} ∈ Γ

∆l; ∆p; Γ ` {P [E1/x1 · · ·Eni
/xni

]} y = ki(E1, . . . , Eni
) {Q[E1/x1 · · ·Eni

/xni
, y/ret]}

To show soundness, suppose {P} ki(x1, . . . , xni
) {Q} ∈ Γ. Let sl ∈ [[∆l]], and let

Π be a well-formed semantic function environment with [[∆l; ∆p |= Γ]](Π, sl). In
particular,

[[∆l; ∆p ` {P} ki(x1, . . . , xni
) {Q}]](Π, sl),

so if Π(ki) = ((x1, . . . , xni
), ci), then [[∆l; ∆p ` {P} ci {Q}]](Π, sl). Now, suppose

sp ∈ [[∆p]] and

h ∈ [[P [E1/x1 · · ·Eni
/xni

]]](sl, sp) = [[P]](sl, (sp)[x1 7→v1,···,xni
7→vni

]),

where vj = [[∆l; ∆p ` Ej :Int]](sl, sp) and j ∈ {1, . . . , ni}, by the substitution lemma.
This means that if

(Π, ci, (sp)[x1 7→v1,···,xni
7→vni

], h) ⇓ (s′p, h
′),

then h′ ∈ [[Q]](sl, s
′
p). Since Π is well-formed, ci does not modify any variables, so

s′p is of the form

s′p = (sp)[x1 7→v1,···,xni
7→vni

,ret7→s′(ret)],

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · Biering, Birkedal, Torp-Smith

and by the substitution lemma, h′ ∈ [[Q[E1/x1 · · ·Eni
/xni

, s′p(ret)/ret]]](sl, sp). By
the operational semantics for function calls,

(Π, y = ki(E1, . . . , Eni
), sp, h) ⇓ ((sp)[y 7→s′

p(ret)], h
′),

and thus, the rule holds.
The first rule for existentials is

∆, x:τ ; ∆p; Γ, γ ` δ

∆l; ∆p; Γ, ∃x:τ. γ ` δ
x /∈ FV(Γ)

Suppose that for all well-formed Π and sl ∈ [[∆l, x:τ]],

[[∆l, x:τ ; ∆p ` Γ, γ]](Π, sl) implies[[∆l, x:τ ; ∆p ` δ]](Π, sl),

and let [[∆l; ∆p ` Γ]](Π, sl) and [[∆l; ∆p ` ∃x:τ. γ]](Π, s). This means [[∆l, x:τ ; ∆p `
γ]](Π, (sl)[x 7→v]) for some v ∈ [[τ]]. Since x /∈ FV(Γ), [[∆l, x:τ ; ∆p ` Γ]](Π, (sl)[x 7→v]).
This implies [[∆l, x:τ ; ∆p ` δ]](Π, (sl)[x 7→v]), and since x /∈ FV(δ), we have [[∆l; ∆p `
δ]](Π, s).

The other rule for existentials is

∆l; ∆p; Γ, ∃x:τ. γ ` δ

∆l, x:τ ; ∆p; Γ, γ ` δ

For soundness, first suppose τ is inhabited and that for all well-formed Π and
sl ∈ [[∆l]],

[[∆l; ∆p ` Γ, ∃x:τ. γ]](Π, sl) implies [[∆l; ∆p ` δ]](Π, sl),

and suppose [[∆l, x:τ ; ∆p ` Γ, γ]](Π, sl). Since τ is inhabited, this means

[[∆l, x:τ ; ∆p ` Γ, γ]](Π, (sl)[x 7→sl(x)]),

and since x /∈ FV(Γ), this implies

[[∆l, x:τ ; ∆p ` Γ, ∃x:τ. γ]](Π, sl),

and thus, [[∆l; ∆p ` δ]](Π, sl), as desired. If τ is an empty type, one can make an
easy case analysis on whether x occurs in γ or not.

Soundness of the downwards rule for universals is easy. For soundness of the
upwards rule:

∆l; ∆p; Γ ` ∀x:τ. δ

∆l, x:τ ; ∆p; Γ ` δ

suppose for all well-formed Π and sl ∈ [[∆l]],

[[∆l; ∆p ` Γ]](Π, sl) implies [[∆l; ∆p ` ∀x:τ. δ]](Π, sl),

and let s′l ∈ [[∆l, x:τ]]. Suppose [[∆l, x:τ ; ∆p ` Γ]](Π, s′l). Since x /∈ FV(Γ),

[[∆l; ∆p ` Γ]](Π, (s′l − x)),

and this implies

[[∆l, x:τ ; ∆p ` δ]](Π, (s′l − x)[x 7→v]), for all v ∈ [[τ]].

This means in particular,

[[∆l, x:τ ; ∆p ` δ]](Π, (s′l)[x 7→s′

l
(x)]),

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 27

which shows the desired result.

5.5 A Derived Rule

There is an important rule abstract function definition that is derivable from the
rules in Fig. 2. The rule is

∆l ` P̂ :τ

∆l; ∆p, ~x1; Γ ` {P1[P̂ /x]} c1 {Q1[P̂ /x]}
...

∆l; ∆p, ~xn; Γ ` {Pn[P̂ /x]} cn {Qn[P̂ /x]}
∆l; ∆p; Γ, ∃x:τ.({P1}k1(~x1){Q1} ∧ · · · ∧ {Pn}kn(~xn){Qn}) ` {P} c {Q}

∆l; ∆p; Γ ` {P} let k1(~x1) = c1, . . . , kn(~xn) = cn in c end {Q}
x 6∈ FV({P} c {Q}).

(14)
Here one may think of x as a predicate describing a resource invariant used by

an abstract data type with operations k1, . . . kn.
We show how this rule can be derived; for simplicity, we assume n = 1 and that

there are no parameters. The proof of the more general case is essentially the same
as for this case. First, by the function definition rule,

∆l; ∆p, y; Γ ` {P1[P̂ /x]} c1 {Q1[P̂ /x]}

∆l; ∆p; Γ, {P1[P̂ /x]} k1(y) {Q1[P̂ /x]} ` {P} c {Q}

∆l; ∆p; Γ ` {P} let k1(y) = c1 in c {Q}
.

The rule for existentials gives us

∆l; ∆p; Γ, ∃x:τ. {P1} k1(y) {Q1} ` {P} c {Q}

∆l, x:τ ; ∆p; Γ, {P1} k1(y) {Q1} ` {P} c {Q}
,

so we need to establish

∆l; ∆p; Γ, {P1[P̂ /x]} k1(y) {Q1[P̂ /x]} ` {P} c {Q}

given

∆, x:τ ; ∆p; Γ, {P1} k1(y) {Q1} ` {P} c {Q}.

But this follows from a substitution lemma, since x is not free in {P} c {Q}.

6. DATA ABSTRACTION VIA EXISTENTIAL QUANTIFICATION

We present an example that demonstrates how one may use the program logic
for reasoning using data abstraction. The example involves two implementations
of a priority queue, and the intention is, of course, that client programs which
use these implementations should be unaware of and unable to exploit details of
the particular implementation used. Data abstraction is modeled via existential
quantification over predicates, corresponding to the slogan “abstract types have
existential type” [Mitchell and Plotkin 1985].

6.1 Reasoning using Abstract Priority Queues

Priority queues are used frequently in programming, for example in scheduling
algorithms for processes in operating systems [Silberschatz and Galvin 1998]. They

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · Biering, Birkedal, Torp-Smith

consist of pairs (p, v), where v is a stored value, and p is the priority associated with
v. In such a structure, one can then enqueue such pairs and extract an element
with the highest priority. Some operations and relations on such queues are needed:

MaxPri(ε) = −1
MaxPri((p, v) ∪Q) = Max(p,MaxPri(Q))
MaxPair(Q, (p, v)) ⇔ (p, v) ∈ Q ∧ p = MaxPri(Q).

We assume a base type PriQ whose values are priority queues, and an operation Set

which, given a priority queue, returns the multiset of pairs occurring in it. These
types and operations are only used in the logic, not in programs. Observe that the
type PriQ is, of course, definable in the higher-order logic.

We now discuss how to reason about client code which uses an abstract priority
queue. First, since client programs cannot modify abstract values, we’ll use a
predicate stating that there is a “handle” to a priority queue. Hence, we introduce
the predicate

repr(q,Q),

which asserts that the integer denoted by q is a handle to the priority queue Q –
but it does not say anything about how Q is represented. Note that the type of
repr is (Int × PriQ) ⇒ Prop, a type of predicates.

This will be used as an abstract predicate in our proofs (and thus plays the role of
x in the abstract function definition rule (14)). Given this predicate, the following
are reasonable specifications for the various operations on a priority queue.

Creating a Queue. There should be an operation which enables a client program
to create a priority queue. Its specification is

{emp} createqueue() {repr(ret, ε)},

which merely states that upon creation of a queue, a handle to an empty priority
queue is returned.

Enqueing. There should be an operation for storing elements in a queue. The
specification is

{repr(q,Q) ∗ v 7→ } enqueue(q, (p, v)) {repr(q, (p, v) ∪Q)}.

Note that the ownership of the cell pointed to by v transfers from the client to the
module.

Dequeing. There should be an operation for dequeing. We make sure not to
dequeue from an empty queue via the specification

{repr(q,Q) ∧Q 6= ε}
dequeue(q)

{∃Q′, p, v.(repr(q,Q′) ∧Q = (p, v)]Q′ ∧ MaxPair(Q, (p, v)) ∧ ret = v) ∗ v 7→ }.

Note that the ownership of the dequeued cell is now transferred back to the client.

Disposing a Queue. The specification for disposing a queue is:

{repr(q,Q)} disposequeue(q) {emp}.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 29

We can now show a specification for a client program c using the abstract speci-
fication of the priority queue:

∃repr : (PriQ × Int) ⇒ Prop.
{emp} createqueue() {repr(ret, ε)} ∧
· · ·
{repr(q,Q)} disposequeue(q) {emp}

`
{Pc}c{Qc}.

Observe that a client may use multiple instances of priority queues unlike in [O’Hearn
etal. 2004], which only considers static modularity.

6.2 Implementations of Priority Queues

One can implement priority queues in many ways. We have verified two imple-
mentations, one using sorted linked lists and one using doubly-linked lists. The
implementations and the proofs make use of some of the properties shown by
Reynolds [Reynolds 2002] and are fairly standard and thus omitted. Of course,
a client may then use either of the two implementations, and we expect that the
behaviour of a client is independent of which implementation of priority queues is
used. The simple model we have devised in this paper cannot be used to prove that
formally; for that we would need a relationally parametric model.

7. SOME APPLICATIONS OF UNIVERSAL QUANTIFICATION

In the previous section we saw how to use existential quantification over predicates
to reason using data abstraction. In this section we present two examples of how to
apply universal quantification over predicates (in addition to the examples involving
fixed points in Section 4.3).

7.1 Polymorphic Types via Universal Quantification

We show that universally quantified predicates may be used to prove correct poly-
morphic operations on polymorphic data types.

The queue module example from [O’Hearn etal. 2004] is parametric in a predicate
P at the meta-level. We show that in higher-order separation logic, the parameter-
ization may be expressed in the logic. To that end, consider the following version
of the parametric list predicate from [O’Hearn etal. 2004].

list(P, β, i) =

{

i = null ∧ emp if β = ε
∃j. i 7→ x, j ∗ P (x) ∗ list(P, β′, j) if β = 〈x〉 · β′

The predicate P is required to hold for each element of the sequence β involved. Dif-
ferent instantiations of P yields different versions of the list, with different amounts
of data stored in the list. If P ≡ emp, then plain values are stored (no ownership
transfer to the queue module in [O’Hearn etal. 2004]), and if P ≡ x 7→ −,−, then
addresses of cells are stored in the queue (ownership of the cells is tranferred in and
out of the queue [O’Hearn etal. 2004]).

Returning to our higher-order separation logic, the definition of list may be for-
malized with

i : Int, β : seqInt, P : PropInt ` list(P, β, i) : Prop.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · Biering, Birkedal, Torp-Smith

Here we have used a type seqInt of sequences of integers, which is easily definable
in higher-order separation logic, and the definition of list(P, β, i) can be given by
induction on β in the logic.

Suppose listRev is the list reversal program given in the introduction of [Reynolds
2002]. Then one can easily show the specification

{list(P, β, i)} listRev {list(P, β†, j)}.

By the introduction rule for universal quantification we obtain the specification

β : seqInt ` ∀P : PropInt. {list(P, β, i)} listRev {list(P, β†, j)},

which expresses that listRev is parametric in the sense that it, roughly speaking,
reverses singly-linked lists uniformly, independently of how much heap storage is
used for each element of the list.

Thus we have one parametric correctness proof of a specification for listRev,
which may then be used to prove correct different applications of listRev (to lists
of different types).

For such parametric operations on polymorphic data types to be really useful,
one would of course prefer a higher-order programming language instead of the
first-order language considered here. Then one could, e.g., program the usual map

function on lists, and provide a single parametric correctness proof for it. See
our joint with Yang [Birkedal etal. 2005] for a proposal of separation logic for a
higher-order language.

7.2 Invariance

In this subsection we briefly consider an example, suggested to us by John Reynolds,
which demontrates that one may use universal quantification to specify that a
command does not modify its input state. We disregard stacks here since they are
not important for the argument.

Suppose that our intention is to specify that some command c takes any heap
h described by a prediate q, and produces a heap (we assume for simplicity that c
terminates), which is an extension of h. We might attempt to use a specification
of the form:

{q} c {q′ ∗ q}. (15)

This does not work, however, unless q is strictly exact [Reynolds 2002], i.e., uniquely
describes the heaps satisfying q, (for example, if q is ∃β:seqInt. list(emp, β, i), then
c may delete some elements from the list in the input heap h).

Instead, we may use the following specification

∀p:Prop.{q ∧ p} c {q′ ∗ p}, (16)

as we see by the following argument. Predicate q describes a set of heaps [[q]]. For
each h ∈ [[q]], let ph = {h}. Suppose c terminates in heap h′. Then h′ = h1 ∗ h, for
some h1. That is, the heap h is invariant under the execution of c, as intended.

8. RELATED AND FUTURE WORK

We have introduced the notion of a BI hyperdoctrine and showed that it soundly
and completely models intuitionistic and classical first- and higher-order BI. We

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 31

showed that the semantics for BI given by separation logic is an instance of our
class of models, and that interesting models for higher-order predicate BI cannot
exist in toposes. Several applications of higher-order BI in program proving, and
in particular separation logic, were illustrated. In particular, we introduced higher-
order separation logic, and gave sound reasoning principles for data abstraction
in the presence of mutable pointer structures, using existential quantification over
predicates.

The idea of using data abstraction to reason about complex data structures goes
back to Hoare [Hoare 1972], who introduced the idea of using abstraction functions,
i.e., functions that map object structures to values of an abstract domain. Modifi-
cations of object structures can then be described in terms of their abstract values
which makes implementation-independent specifications possible. Hoare’s idea has
been extended and applied in a variety of contexts, see, e.g., [Leavans 1988; Liskow
and Guttag 1986; Leino 1995; Müller 2002; Leino and Müller 2004; Barnett etal.
2003; Barnett and Naumann 2004; Leino and Müller 2006; Naumann and Barnett
2006]. In several of these papers, the abstraction functions are captured via so-called
model fields and the data abstraction technique is combined with ownership-based
invariants to deal with mutable pointer structures. The model fields correspond
very closely to (some of) the arguments of our existentially quantified propositions,
for example, the PriQ argument of the repr predicate in Section 6.1. We believe that
our approach to data abstraction using standard higher-order existential quantifi-
cation gives a particularly clear account of data abstraction, by employing standard
logical notions rather than introducing additional new logical concepts. One could
argue, however, that our logical approach to data abstraction comes at a price in
that we move to higher-order logic, which poses difficulties for tool support. More
research is needed to evaluate how much of an issue this is in practise. More research
is also needed to evaluate how useful our approach is for practical verification; the
examples we have considered in this paper merely serve to show that the approach
is viable. In particular, it would be interesting to extend the presented specification
logic to richer programming languages with more of the features found in modern
programming languages. We are currently investigating extensions to higher-order
programming languages [Nanevski etal. 2006; Krishnaswami etal. 2006] and hope
in the future to extend it to object-oriented languages.

In other work, we extended separation logic to a higher-order language [Birkedal
etal. 2005], a version of Algol with immutable variables and with a first-order heap.
The system in loc. cit. doesn’t distinguish the type system from the specification
language: command types can contain preconditions and postconditions written
in separation logic in a fashion similar to refinement types. The assertion logic is
first-order (no quantification over propositions), but includes a powerful kind of hy-
pothetical frame rule, extending the second-order frame rule of [O’Hearn etal. 2004]
to higher-order. We have worked out a simple translation from hypothetical frame
rules to higher-order separation logic, which suggests that all uses of hypothetical
frame rules can be represented in higher-order separation logic, but more work is
needed to make a proper analysis of this conjecture.

As mentioned in Section 6.2 we expect that one should be able to show that
clients cannot detect any differences between different implementations of abstract
data types. Such representation independence (relational parametricity) results

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · Biering, Birkedal, Torp-Smith

have been shown for a Java-like language and for a semantic notion of confinement
by Banerjee and Naumann [Banerjee and Naumann 2005a; 2005b]. It is quite
challenging to develop relationally parametric models for separation logic, even for
a simple first-order programming language as the one considered in this paper. The
reason is that the standard models of separation logic allow the identity of locations
to be observed in the model. This means in particular that allocation of new heap
cells is not parametric because the identity of the location of the allocated cell
can be observed in the model. In very recent work, the second author and Yang,
did, however, succeed in defining a relationally parametric model of separation
logic [Birkedal and Yang 2006]. But the model in loc. cit. was only developed for a
first-order logic with hypothetical frame rules, and thus it is still an open question
how to devise a relationally parametric model for higher-order separation logic.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 33

APPENDIX

A. PROOF OF PROPOSITION 2.8

For a term t with y:Y ` t(y):X we add the following abbreviation

∃t. ϕ(y)
def
= ∃y:Y. t(y) = x ∧ ϕ(y)

The following rule can be deduced

x:X | ∃t. ϕ(y) ` ψ(x)

y:Y | ϕ(y) ` ψ[t(y)/x]
.

In particular for y:{x:X | ϕ} ` o(y):X we have

x:X | ∃o. θ(y) ` ψ(x)

y:{x:X | ϕ} | θ(y) ` ϕ[o(y)/x]
.

Let ϕ, ψ, ψ′, χ be formulas in a context {x:X} (for simplicity we just assume one
free variable, the general case is similar). First we show that

x:X | ϕ ∧ ψ a` ∃o. ψ[o(y)/x]. (17)

This is done by

x:X | ∃o. ψ[o(y)/x] ` ∃o. ψ[o(y)/x]

y:{x:X | ϕ} | ψ[o(y)/x] ` (∃o. ψ[o(y)/x])[o(y)/x]

x:X | ψ ∧ ϕ ` ∃o. ψ[o(y)/x]
,

where the last derivation is the rule for full subset types. For the other direction,
consider

y:{x:X | ϕ} | ψ[o(y)/x] ` ψ[o(y)/x]

x:X | ∃o. ψ[o(y)/x] ` ψ

and
x:X | ϕ ∧ ψ ` ϕ

y:{x:X | ϕ} | ψ[o(y)/x] ` ϕ[o(y)/x]

x:X | ∃o. ψ[o(y)/x] ` ϕ
,

which imply x:X | ∃o. ψ[o(y)/x] ` ϕ ∧ ψ. We also need the following

y:{x:X | ϕ} | χ[o(y)/x] ` ψ[o(y)/x]

x:X | ∃o. χ[o(y)/x] ` ∃o. ψ[o(y)/x]
.

(18)

which is shown by

y:{x:X | ϕ} | χ[o(y)/x] ` ψ[o(y)/x]

x:X | χ ∧ ϕ ` ψ

x:X | χ ∧ ϕ ` ψ ∧ ϕ

x:X | ∃o. χ[o(y)/x] ` ∃o. ψ[o(y)/x]
,

where the last derivation follows from (17). We then have

y:{x:X | ϕ} | ψ[o(y)/x] ∗ ψ′[o(y)/x] ` χ[o(y)/x]

y:{x:X | ϕ} | ψ[o(y)/x] ` ψ′[o(y)/x] −−∗ χ[o(y)/x]
,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · Biering, Birkedal, Torp-Smith

i.e.,

y:{x:X | ϕ} | (ψ ∗ ψ′)[o(y)/x] ` χ[o(y)/x]

y:{x:X | ϕ} | ψ[o(y)/x] ` (ψ′ −−∗ χ)[o(y)/x]
.

By (18) we then get

x:X | ∃o. (ψ ∗ ψ′)[o(y)/x] ` ∃o. χ[o(y)/x]

x:X | ∃o. ψ[o(y)/x] ` ∃o. (ψ′ −−∗ χ)[o(y)/x]
,

which by 17 gives us

x:X | ϕ ∧ (ψ ∗ ψ′) ` ϕ ∧ χ

x:X | ϕ ∧ ψ ` ϕ ∧ (ψ′ −−∗ χ)
.

This entails the following

x:X | ϕ ∧ (ψ ∗ ψ′) ` χ

x:X | ϕ ∧ (ψ ∗ ψ′) ` χ ∧ ϕ

x:X | ϕ ∧ ψ ` ϕ ∧ (ψ′ −−∗ χ)

x:X | ϕ ∧ ψ ` ψ′ −−∗ χ

x:X | (ϕ ∧ ψ) ∗ ψ′ ` χ
.

Letting χ be (ϕ ∧ ψ) ∗ ψ′ respectively ϕ ∧ (ψ ∗ ψ′) we read off the equivalence
x:X | ϕ ∧ (ψ ∗ ψ′) a` (ϕ ∧ ψ) ∗ ψ′. Now, let ϕ and ψ be I and ψ′ be >; this gives
I ∧ (I ∗ >) a` (I ∧ I) ∗ >, that is, I a` >, which in return yields ϕ ∧ (> ∗ ψ′) a`
(ϕ ∧ >) ∗ ψ′, i.e., ϕ ∧ ψ′ a` ϕ ∗ ψ′.

ACKNOWLEDGMENTS

The authors wish to thank Carsten Butz and the anonymous referees of previous
versions of the work in this paper for helpful comments and insights.

REFERENCES

Banerjee, A. and Naumann, D. 2005a. Ownership confinement ensures representation indepen-
dence for object-oriented programs. Journal of the ACM 52, 6, 894–960.

Banerjee, A. and Naumann, D. 2005b. State based ownership, reentrance and encapsulation. In
In Proceedings of European Conference on Object-Oriented Programming 2005. Lecture Notes
in Computer Science, vol. 3586. 387–411.

Barnett, M., DeLine, R., Fähndrich, M., Leino, K., and Schulte, W. 2003. Verification of
object-orietned programs with invariants. In Formal Techniques for Java-like Programs 2003.

Barnett, M. and Naumann, D. 2004. Friends need a bit more: Maintaining invariants over
shared shate. In Proc. of MPC 2004.

Biering, B. 2004. On the logic of bunched implications and its relation to separation logic. M.S.
thesis, University of Copenhagen. M.Sc. Thesis.

Biering, B., Birkedal, L., Butz, C., Hyland, J., van Oosten, J., and Streicher, P. R. T.

2006. Notes on the dialectica topos. Unpublished notes, in preparation.

Birkedal, L., Torp-Smith, N., and Reynolds, J. 2004. Local reasoning about a copying garbage

collector. In Proc. of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL’04). Venice, Italy, 220–231.

Birkedal, L., Torp-Smith, N., and Yang, H. 2005. Semantics of separation-logic typing and
higher-order frame rules. In Proceedings of the Twentieth Annual IEEE Symposium on Logic
in Computer Science (LICS 2005). IEEE Press, Chicago, IL, USA, 260–269.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Higher-order Separation Logic · 35

Birkedal, L. and Yang, H. 2006. Relational parametricity and separation logic. Manuscript.

Bornat, R., Calcagno, C., and O’Hearn, P. 2004. Local reasoning, separation and aliasing. In
Proceedings of SPACE 2004. Venice, Italy.

Bornat, R., Calcagno, C., O’Hearn, P., and Parkinson, M. 2005. Permission accounting in
separation logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’05). ACM, Long Beach, CA, USA.

Hoare, C. A. R. 1971. Procedures and parameters: An axiomatic approach. In Symp. on Se-
mantics of Algorithmic Languages, E. Engler, Ed. Springer-Verlag, Berlin, 102–116.

Hoare, C. A. R. 1972. Proof of correctness of data representations. Acta Informatica 1, 271–281.

Ishtiaq, S. and O’Hearn, P. W. 2001. BI as an assertion language for mutable data structures.
In Proceedings of the 28th Annual ACM SIGPLAN - SIGACT Symposium on Principles of
Programming Languages (POPL’01). London.

Jacobs, B. 1999. Categorical Logic and Type Theory. Studies in Logic and the Foundations of
Mathematics, vol. 141. North-Holland Publishing Co., Amsterdam.

Krishnaswami, N., Birkedal, L., Aldrich, J., and Reynolds, J. 2006. Idealized ML and its
separation logic. Manuscript.

Lawvere, F. 1969. Adjointness in foundations. Dialectica 23, 3/4, 281–296.

Leavans, G. 1988. Verifying object-oriented programs that use subtypes. Ph.D. thesis, MIT.
Published as MIT/LCS/TR-439 in February 1989.

Leino, K. 1995. Toward reliable modular programs. Ph.D. thesis, California Institute of Technol-
ogy.

Leino, K. and Müller, P. 2004. Object invariants in dynamic contexts. In Proc. of ECOOP
2004.

Leino, K. R. M. and Müller, P. 2006. A verification methodology for model fields. In European
Symposium on Programming (ESOP), P. Sestoft, Ed. Lecture Notes in Computer Science, vol.
3924. Springer-Verlag, 115–130.

Liskow, B. and Guttag, J. 1986. Abstraction and Specification in Program Development. MIT
Press.

Mac Lane, S. and Moerdijk, I. 1994. Sheaves in geometry and logic. Universitext. Springer-
Verlag, New York. A first introduction to topos theory, Corrected reprint of the 1992 edition.

Mitchell, J. C. and Plotkin, G. D. 1985. Abstract types have existential type. In Proceedings
of the 12th ACM SIGACT-SIGPLAN symposium on Principles of Programming Languages
(POPL’85). New Orleans, LA, USA, 37–51.

Müller, P. 2002. Modular Specification and Verification of Object-Oriented Programs. Number
2262 in LNCS. Springer-Verlag.

Nanevski, A., Ahmed, A., Morrisett, G., and Birkedal, L. 2006. Abstract predicates and
mutable ADTs in Hoare type theory. Tech. Rep. TR–14-06, Harvard University.

Naumann, D. and Barnett, M. 2006. Towards imperative modules: Reasoning about invariants
and mutable state. Theoretical Computer Science 365, 143–168.

O’Hearn, P. and Pym, D. J. 1999. The logic of bunched implications. Bulletin of Symbolic
Logic 5, 2 (June).

O’Hearn, P. W. 2004. Resources, concurrency and local reasoning. In Proceedings of the 15th
International Conference on Concurrency Theory (CONCUR’04). LNCS, vol. 3170. London,
England, 49–67.

O’Hearn, P. W., Yang, H., and Reynolds, J. C. 2003. Separation and information hiding (work
in progress). Extended version of [O’Hearn etal. 2004].

O’Hearn, P. W., Yang, H., and Reynolds, J. C. 2004. Separation and information hiding. In
Proceedings of the 31st ACM SIGPLAN - SIGACT Symposium on Principles of Programming
Languages (POPL’04). Venice, Italy, 268–280.

Parkinson, M. and Bierman, G. 2005. Separation logic and abstraction. In Proceedings of the
32nd Annual ACM SIGPLAN - SIGACT Symposium on Principles of Programming Languages
(POPL’05). Long Beach, CA, USA, 247–258.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · Biering, Birkedal, Torp-Smith

Pitts, A. M. 2001. Categorical logic. In Handbook of Logic in Computer Science, Volume 5:

Algebraic and Logical Structures, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds.
Clarendon Press, Oxford, Chapter 2.

Pym, D. 2002. The Semantics and Proof Theory of the Logic of Bunched Implications. Applied
Logics Series, vol. 26. Kluwer.

Pym, D. J. 2004. Errata and remarks for the semantics and proof theory of the logic of bunched
implications. Addendum to [Pym 2002].
Available at http://www.cs.bath.ac.uk/̃ pym/.

Pym, D. J., O’Hearn, P. W., and Yang, H. 2004. Possible worlds and resources: the semantics
of BI. Theoretical Computer Science 315, 1, 257–305.

Reynolds, J. C. 2002. Separation logic: A logic for shared mutable data structures. In Proc.
of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02). IEEE Press,
Copenhagen, Denmark, 55–74.

Silberschatz, A. and Galvin, P. 1998. Operating Systems Concepts, Fifth ed. World Student
Series. Addison-Wesley, Reading, MA, USA.

Yang, H. 2001. Local reasoning for stateful programs. Ph.D. thesis, University of Illinois, Urbana-
Champaign.

Yang, H. and O’Hearn, P. 2002. A semantic basis for local reasoning. Springer-Verlag, Grenoble,
France, 402–416. Proceedings of the 5th International Conference on Foundations of Software
Science and Computation Structures (FOSSACS’02).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

