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Abstract
We present a Kripke logical relation for showing the correctness
of program transformations based on a type-and-effect system for
an ML-like programming language with higher-order store and
dynamic allocation.

We show how to use our model to verify a number of interesting
program transformations that rely on effect annotations.

Our model is constructed as a step-indexed model over the
standard operational semantics of the programming language. It
extends earlier work [7, 8] that has considered, respectively, dy-
namically allocated first-order references and higher-order store for
global variables (but no dynamic allocation). It builds on ideas from
region-based memory management [21], and on Kripke logical re-
lations for higher-order store, e.g. [12, 14].

Our type-and-effect system is region-based and includes a
region-masking rule which allows to hide local effects. One of
the key challenges in the model construction for dynamically allo-
cated higher-order store is that the meaning of a type may change
since references, conceptually speaking, may become dangling due
to region-masking. We explain how our Kripke model can be used
to show correctness of program transformations for programs in-
volving references that, conceptually, are dangling.

Categories and Subject Descriptors D.3.1 [PROGRAMMING
LANGUAGES]: Formal Definitions and Theory; F.3.1 [LOGICS
AND MEANINGS OF PROGRAMS]: Specifying and Verifying and
Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Kripke logical relation, ultrametric spaces, step-indexed
model, type and effect system, program transformations, effect
masking, dangling pointers

1. Introduction
A type system for a programming language classifies programs ac-
cording to properties that the programs satisfy. An effect system
is a type system that, in particular, classifies programs according
to which side effects the programs may have. A variety of effect
systems have been proposed for higher-order programming lan-
guages, e.g., [15, 18, 21], see [17] for a recent overview. Effect
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systems can often be understood as specifying the results of a static
analysis, in the sense that it is possible to automatically infer types
and effects. Effect systems can be used for different purposes: they
were originally proposed by Lucassen and Gifford [18] for paral-
lelization purposes but they have also, e.g., been used as the basis
for implementing ML using a stack of regions for memory man-
agement [9, 21]. In a recent series of papers, Benton et. al. have
argued that another important point of effect systems is that they
can be used as the basis for effect-based program transformations,
e.g., compiler optimizations, [5–8]. The idea is that certain pro-
gram transformations are only sound under additional assumptions
about which effects program phrases may, or rather may not, have.
For example, in a higher-order language with references it is only
sound to hoist an expression out a lambda abstraction if it is known
that the expression neither allocates new references, nor reads or
writes references.

While it is intuitively clear that effect information is important
for validating program transformations, it is surprisingly challeng-
ing to develop semantic models that can be used to rigorously jus-
tify effect-based transformations. In earlier work, Benton et. al. de-
veloped semantic relational models of effect systems for a higher-
order language with dynamically allocated first-order references
(ground store) [7] and for a higher-order language with global vari-
ables for higher-order store (but no dynamic allocation) [8].

In this paper we present a Kripke logical relations model of a
region-based effect system for a higher-order language with higher-
order store and dynamic allocation, i.e., with general ML-like refer-
ences. As pointed out in [8], this is a particularly challenging exten-
sion and one that is important for soundness of effect-based trans-
formations for realistic ML-like languages. We now explain what
the main challenges are; in Section 3 we give an intuitive overview
of how we address these challenges.

The main challenge arises from effect masking: Our region-
based effect system includes an effect masking rule that allows one
to hide local uses of effects. This makes it possible to view a com-
putation as pure even if it uses effects locally and makes the ef-
fect system stronger (it can justify more program transformations).
To model effect masking we need to model references that, con-
ceptually speaking, become dangling because they point into a re-
gion that is masked away. We say “conceptually speaking” because
in the real operational semantics there is no deallocation of refer-
ences (the operational semantics is completely standard); but in our
model we have to reason as if regions could actually be allocated
and deallocated.

Here is a simple concrete example: Consider the following
expression e, typed as indicated:

let x = ref� 7 in let y = ref� x in

�z.y := x : 1
{wr�}→ 1, {al�}



The program allocates two references, binds them to x and y, and
then returns a trivial function from unit to unit that assigns x to y.
The types indicate that x will be bound to a location in region �,
say location 0, and that y will be bound to a location in region �,
say location 1. At location 0 the value 7 is stored and at location
1 the location 0 is stored. The so-called latent effect {wr�} of the
function type of the whole expression describes which effects the
function may have when called. Finally the entire expression has
the effect {al�} as it allocates a location in region �. It performs
allocation in region � as well, but this effect has been masked out:
since no � appears in the return type, the expression cannot leak
location 0, and we can, conceptually, deallocate all locations in
region � once the computation has run; this is what the masking
rule captures. This particular example, however, was chosen to
stress test the masking rule, as location 0 is in fact leaked: it is
in the function closure that the expression returns. The function
neither reads not writes location 0, but it does write it to the
heap; our model must be able to cope with such conceptually
dangling pointers. On the level of types, the meaning of the type
ref� int of x changes: after the allocation of values for x and y,
it contains location 0, but what should it contain after region � has
been masked out? If, e.g., ref� int is taken to be empty, then the
function is most likely no longer well-typed. We explain our answer
to this question in Section 3.

Note that the effect annotations in the types are just annotations;
the operational semantics is completely standard and regions only
exist in our semantic model, not in the operational semantics. Fur-
ther note that the issues in the above example do not arise for a
language with only ground store.

Another challenge arises from the fact that since our language
includes dynamically allocated general references, the existence of
the logical relation is non-trivial; in particular, the set of worlds
must be recursively defined. Here we build on our earlier work [12]
and define the worlds as a solution to a recursive metric-space
equation.

One may worry whether our resulting model now becomes
much more complicated than the earlier, already non-trivial, mod-
els of Benton et. al. [7, 8]. As we shall explain in Section 8, that
is not the case. Indeed, our model is arguably a bit simpler even
though it applies to a richer language. Moreover, it also becomes
simpler to verify equivalences using the model.

Our relational model is built directly over the operational se-
mantics, using our metric approach to step-indexing. We could also
have defined the model using a denotational model of the program-
ming language; see the discussion in Section 8 — here we preferred
the operational approach because it is perhaps more widely acces-
sible.

We use our model to validate a number of interesting effect-
based program transformations that, to the best of our knowledge,
have not been proved correct before, see Section 7.

To focus the presentation on the core challenges, we here con-
sider a monomorphically typed higher-order programming lan-
guage with general references, but leave out universal and exis-
tential types as well as recursive types. However, we want to stress
that since our semantic techniques (step-indexed Kripke logical re-
lations over recursively defined worlds) do indeed scale well to uni-
versal, existential, and recursive types, e.g. [12, 14], it is straight-
forward to extend our model to a language with such types.1 We
conjecture that it is also possible to extend our model to richer
effect systems involving region and effect polymorphism, but we
have not done so yet.

1 With type abstractions as values, we would have a latent effect on a
polymorphic type, which would thus be of the form ∀"�.� .

Throughout the paper we aim to explain the underlying intu-
itions of the technical definitions and how the different concepts
interact. In particular, we have included a couple of selected proof
cases, which serve to illuminate central points. A version of the pa-
per with appendices containing more proof cases can be found on-
line at www.itu.dk/people/thamsborg/longcarnival.pdf.

2. Language and Effect System
The expressions and values of our model language are defined in
the grammar below. We use e to range over the set of expressions
ℰ , v to range over the set of values V , l to range over a countably
infinite set of locations ℒ, and n to range over integers.

e ::= x ∣ l ∣ n ∣ () ∣ (e1, e2) ∣ �1 e ∣ �2 e ∣ fix f(x).e ∣ e1e2 ∣
ref e ∣ e1 := e2 ∣ ! e

v ::= l ∣ n ∣ () ∣ (v1, v2) ∣ fix f(x).e

Note that expressions are not explicitly typed (we could also
have worked with an explicitly typed language). The operational
semantics is given by a small-step operational semantics in the
standard way. We omit the full definition; suffice it to say that heaps
ℋ are finite maps from locations to closed values, and, for e ∈ ℰ ,
ℎ ∈ ℋ and j ≥ 0, we write ⟨e, ℎ⟩ j→ ⟨e′, ℎ′⟩ if ⟨e, ℎ⟩ reduces to
⟨e′, ℎ′⟩ in j steps, counting all reduction steps. We write irr⟨e, ℎ⟩ to
state that no further reductions of ⟨e, ℎ⟩ are possible, either because
e is in fact a value or because we are stuck. To make some of the
later proofs a little bit simpler, we assume that the allocation of
a new location by evaluation of ref e is deterministic. Runtime
errors (such as trying to look up a non-existing location or trying
to apply a number as a function) are modelled by the evaluation
getting stuck.

Our effect system ensures that programs are well-typed in the
standard sense of not getting stuck and, moreover, tracks depen-
dencies and side-effects of computations on the heap.

The typing rules for our effect system are given in Figure 1.
Types are defined by the following grammar:

� ::= int ∣ 1 ∣ �1 × �2 ∣ �1
"→ �2 ∣ ref� �,

where � ranges over a countably infinite set of region variablesℛV
and " is ranges over the set of effects. An effect is a finite set of
primitive effects, and a primitive effect is of one of the forms rd�,
wr�, or al�. The primitive effect rd� specifies a read effect on
region �. Likewise wr� specifies a write effect and al� specifies
an allocation effect (that locations may be allocated in region �).

Note that, as usual, the function type �1
"→ �2 includes a latent

effect "; this is the effect that the function may have when called.
The effect type judgement defined in Figure 1 takes the form

Π ∣ Γ ⊢ e : �, ",

with Γ a finite map from program variables to types, e an expres-
sion, � a type, " an effect, and Π a finite set of region variables,
including all the region variables in Γ, � , and ".

The effect system is fairly standard. Note the inclusion of the
effect masking rule T-MASKING; here " − � is defined as " −
{rd�, wr�, al�} and Π, � denotes the union of Π and {�}. We write
FRV(Γ, �) for the region variables in the types of Γ and in � . The
masking rule expresses that to mask out primitive effects on � from
", the region variable � must not be free in Γ, nor in � . The idea
is that in this case the remaining part of the computation cannot
access � and thus we may hide the effects on �.

Also note that there is a standard notion of effect subtyping,
given by finite set inclusion, which also yields a notion of subtyping
(defined by the last three rules in the figure).



Π ∣ Γ, x:� ⊢ x : �, ∅ Π ∣ Γ ⊢ () : 1, ∅ Π ∣ Γ ⊢ n : int, ∅
Π ∣ Γ ⊢ e : ref��, "

Π ∣ Γ ⊢ ! e : �, " ∪ {rd�}

Π ∣ Γ ⊢ e1 : ref��, "1 Π ∣ Γ ⊢ e2 : �, "2

Π ∣ Γ ⊢ e1:=e2 : 1, "1 ∪ "2 ∪ {wr�}
Π ∣ Γ ⊢ e : �, " � ∈ Π

Π ∣ Γ ⊢ ref e : ref��, " ∪ {al�}

Π ∣ Γ ⊢ e1 : �1, "1 Π ∣ Γ ⊢ e2 : �2, "2

Π ∣ Γ ⊢ (e1, e2) : �1 × �2, "1 ∪ "2
Π ∣ Γ ⊢ e : �1 × �2, "
Π ∣ Γ ⊢ �1 e : �1, "

Π ∣ Γ ⊢ e : �1 × �2, "
Π ∣ Γ ⊢ �2 e : �2, "

Π ∣ Γ, f :�1
"→ �2, x:�1 ⊢ e : �2, "

Π ∣ Γ ⊢ fix f(x).e : �1
"→ �2, ∅

Π ∣ Γ ⊢ e1 : �1
"→ �2, "1 Π ∣ Γ ⊢ e2 : �1, "2

Π ∣ Γ ⊢ e1e2 : �2, " ∪ "1 ∪ "2

Π, � ∣ Γ ⊢ e : �, " � /∈ FRV(Γ, �)

Π ∣ Γ ⊢ e : �, "− �
T-MASKING

Π ∣ Γ ⊢ e : �1, "1 Π ∣ �1 ≤ �2 "1 ⊆ "2
Π ∣ Γ ⊢ e : �2, "2

T-SUB

Π ∣ � ≤ �
Π ∣ �1 ≤ � ′1 Π ∣ �2 ≤ � ′2

Π ∣ �1 × �2 ≤ � ′1 × � ′2

Π ∣ � ′1 ≤ �1 Π ∣ �2 ≤ � ′2 "1 ⊆ "2
Π ∣ �1

"1→ �2 ≤ � ′1
"2→ � ′2

Figure 1. Effect System

Consider the example expression e from the introduction. Note
that it is well-typed (let-expressions are definable as usual) since

the judgement {�} ∣ ∅ ⊢ e : 1
{wr�}→ 1, {al�} is derivable in the

effect system. The last rule applied is the T-MASKING rule, which
allows us to hide the local effect on �. Specifically, we apply the
masking rule like this:

{�, �} ∣ ∅ ⊢ e : 1
{wr�}→ 1, {al�, al�}

{�} ∣ ∅ ⊢ e : 1
{wr�}→ 1, {al�}

Thus we hide the allocation and use of the local reference bound to
x.

Effect masking makes it possible to do more optimizations:
Consider the familiar example of an efficient implementation fib of
the fibonacci function using two local references. We can use the
masking rule to give it type and effect int ∅→ int, ∅. This allows
us to view the imperative implementation as pure, and thus, e.g, by
Theorem 7.1 we find that it is sound to optimize two identical calls
to fib into one call. This sounds like a simple optimization, but the
point is that a compiler can perform it automatically, just based on
the effect types — and our model justifies that it is sound to do so.
See [7, 8] for more examples.

Note though, that these earlier works either have ground store
(only integers in memory) or no dynamic allocation, so many non-
trivial uses of memory cannot be expressed. By contrast, we can
write, say, a function that sorts a (functional) list of integers by
doing an internal (imperative) heap sort, i.e., by building a heap in
fresh memory, and returning a sorted list. Using the masking rule,
we could type such a function as a pure function with no effects,
and would know, e.g., that sorting the same list twice serves no
purpose.

3. Overview of the Technical Development
Our point of departure is the Kripke logical relation reading of
types for an ML-like programming langauge that has been explored
extensively by the authors and others [2, 11, 12, 14]. The common
approach is to augment the semantics — be it operational or deno-
tational — with worlds that keep track of the layout of the heap:

it knows the types of values stored at the allocated locations of the
heap.2 We then index type interpretations by worlds; this makes
it possible to interpret ref � as the set of allocated locations that
hold values of type � . A computation has the “precondition” that
all locations hold well-typed values according to the world, and
this property must be re-established after running the computation,
i.e., it also serves as a “postcondition”. As more locations are allo-
cated, the world grows and the interpretation of types is set up to
grow as well: it is a crucial property that interpreting types in future
worlds yields more (or at least no fewer) values, this we refer to as
type monotonicity.

Barring the masking rule, it is a mostly straightforward, if
lengthy, exercise to extend this approach to the present region-
based type-and-effect system. The worlds have to be partitioned
into regions and interpreting ref� � only considers region � of the
world for locations that hold values of type � . Also, computations
now have effects and hence their behavior is more restricted: as
“precondition” they only assume well-typedness of values at loca-
tions in the regions with read effects; as “postcondition” they are
required to have performed only well-typed writes and allocations
and, importantly, only in such regions as permitted, respectively,
by the write and allocation effects.

The masking rule, however, introduces a new dimension to the
development of worlds: in addition to adding new locations with
types to existing regions as sketched above, we may now introduce
new regions as well as mask out existing ones. One can loosely
think of masking out region � as deallocating the locations of
that region. A slightly revised intuition is that we just stop caring
about region �: we expect never to touch it again and so we may
safely relinquish control. On the level of worlds, we discard the
region, i.e., lose the locations and the associated types. Whether
the locations are actually deallocated or just float around in the
surroundings does not matter: from our point of view they are gone.

As argued by example above, this leaves us the issue of dangling
pointers. Phrased more concretely: how should the interpretation of

2 In general, worlds may contain complex invariants of the heap; they
may even vary over time and may thus be represented by state transition
systems [14]. Here, we need only the invariant that values stored at locations
belong to certain types.



types cope with region masking? What is, say, the interpretation of
ref� � in a world where region � has been masked out? A natural
choice is the empty set — after all, we know nothing about region
� so what locations could we possibly choose. We, however, take
a different approach: We generally interpret a type as all values
with the properties you expect from that type. The more properties,
the fever values and vice versa. A value v in ref� � is a reference
to a location that we used to — but no longer — control. The
value at the location may have changed or it may even have been
deallocated: v is conceptually dangling. What can we reasonably
do with a dangling pointer? We can neither read nor write it, indeed,
we can do only things that go for all values, e.g., put it into a
pair, project it out, etc. In other words, we expect no properties
of dangling pointers and correspondingly interpret ref� � as the
set of all values. We take a similar stand on functions: interpreting
a function type that has effects on masked out regions gives the set
of all values; such functions are somehow dangling too. Running
such a function relies on preconditions outside our control, so we
make no promises about the behavior.

This approach goes well with type monotonicity: the interpreta-
tion of types should not shrink under masking and, indeed, mask-
ing out region � enlarges ref� � to hold all values. There is a catch,
though, since future worlds may introduce new regions as well, and
reintroducing region � would not do. This is obvious from type
monotonicity; a more conceptual explanation, however, is this: As-
sume that some function reads region � and that region � holds
location l that stores values of some type. To run the function, we
need to establish the precondition that a value of the proper type
is stored at location l, because the function could very well read l.
We then mask out region �, losing all information about l in the
process, and afterwards reintroduce it. To run the function now, we
verify that all locations in region � hold values of appropriate type
— this is, after all, the precondition of the function — but as l is no
longer in �, we cannot expect proper behavior of the function.

We solve this issue by tracking, in the worlds, the regions
that have been masked out and prohibit their reintroduction. One
viewpoint is that, as the world develops over time, a region goes
through a life-cycle: Initially, it is unknown to the world, but at
some point it gets initialized, joining the set of live regions. With
further development of the world, locations with associated types
are added to the region. This proceeds until the region is masked
out; it loses all content and is moved to the set of dead regions.
And this is a one-way street: once you are gone, you can’t come
back.

Local Reasoning Conceptually, a world does not describe the
entire heap, just the part of it that the program sees or controls. On
the level of definitions, this comes down to a frame property of our
computations: a computation in a world runs in a world-adhering
heap extended with a frame, and the latter remains unchanged. In
addition, a computation may allocate locations that are not tracked
by the ensuing world; these locations are conceptually transferred
to the surroundings, they become part of the frame of the following
computation. This is the fate of locations in regions that are masked
out. In summa, we achieve a form of local reasoning by quantifying
over frames, similarly to models of separation logic for higher-
order languages [10].

4. Metric Spaces and Type-World Circularity
As argued above, we intend to augment our semantics with worlds
that track the layout of the heap; hence we are faced with the
construction of such worlds. Defining them directly will not do
since, loosely, a world holds semantic types whilst semantic types
are parameterized over worlds; this is the type-world circularity
observed already by Ahmed in her thesis [1].

In recent work, Reus, Schwinghammer, Støvring, Yang and the
authors [12] have proposed a general solution to such circularities,
applying metric-space theory. The notion of worlds we require here
is sufficiently simple that this solution is applicable off-the-shelf,
so to speak. So we omit the machinery of the construction here and
just present the worlds that is the result; after all, this is presently
our object of interest. Details are given in the appendix of the long
version of the paper. In addition, we will largely ignore the fact
that we actually deal in metric spaces and not just plain sets. We
emphasize that this is just for presentation purposes, worlds and
types are metric spaces with certain properties; this is necessary
to solve the circularity and must be taken into account, e.g., when
interpreting types, see the appendix of the long version of the paper.

We face an additional challenge here: As described above, we
intend to track dead regions to avoid recycling them. But if an
expression is well-typed by the masking rule, then in terms of the
development of worlds, it initializes and eventually masks out the
very same region on each evaluation, and maybe we would like to
run it more than once. Our solution to this is to introduce a layer of
indirection, following ideas of earlier work [9, 21]: On the level of
syntactic types, we have the region variablesℛV introduced above.
In the worlds, however, we work with a countably infinite set of
region namesℛN . To interpret types we have region environments,
i.e., injective mapsℛV ⇀fin ℛN with adequate domains; on each
evaluation of an expression that performs masking, we then map
the same region variable to a fresh region name. In the textual
explanations below, however, we purposely blur the distinction
between region variables, region names and the regions themselves.

The definition of worlds and types is given in Figure 2; the
ordering on worlds relies on the world transitions given in Figure 3.
Both warrant a few comments. ParBij(X,Y,Z) are finite partial
bijections between X and Y decorated with elements from Z; we
write dom1(P ) for the set of first coordinates and dom2(P ) for
the set of second coordinates. Worlds W have two components:
the first is the live regions, these are partial bijections; the second
the dead regions. No region can be both live and dead, nor can any
location belong to more than one region.

Worlds may develop over time according to the transitions in
Figure 3. The first transition adds a location pair with associated
type to a live region; this corresponds to an actual allocation in the
operational semantics and is a standard notion of world extension.
The second and third transitions are orthogonal to the first. They
give the region dynamics and have no counterpart in the operational
semantics; they are, however, intimately connected to the masking
rule. The first initializes a new empty region, the second masks out
a live one, losing the partial bijection in the process. After being
masked out, a region is considered dead and cannot be initialized
once more.

The reflexive, transitive closure of the transitions is a preorder
on worlds. We require of our types T that they are monotone with
respect to that preorder and the standard set-theoretic inclusion on
URel(V); this is the type monotonicity. For any set X , URel(X)
is the set of indexed, downwards closed relations on X , i.e.,

URel(X) = {R ⊆ ℕ×X ×X ∣
∀(k, x1, x2) ∈ R. ∀j < k. (j, x1, x2) ∈ R}.

The downwards closure is essential, it prevents values from fleeing
types as the operational semantics progresses.3 One minor issue
remains: the types that decorate the partial bijections that are the
regions belong to T̂ and must be coerced into T by the isomor-

3 The set URel(X) has a natural metric [12] and the functions in T are not
only monotone but also non-expansive; see the appendix of the long version
of the paper for details.



ParBij(X,Y,Z) = {P ⊆fin X × Y × Z ∣ ∀(x1, y1, z1), (x2, y2, z2) ∈ P.
(x1 = x2 ⇒ y1 = y2 ∧ z1 = z2) ∧ (y1 = y2 ⇒ x1 = x2 ∧ z1 = z2)}

W = {(', ) ∈ (ℛN ⇀fin ParBij(ℒ,ℒ, T̂))× Pfin(ℛN ) ∣ dom(') ∩  = ∅ ∧
∀r, s ∈ dom('). r ∕= s⇒ dom1('(r)) ∩ dom1('(s)) = ∅ = dom2('(r)) ∩ dom2('(s))}

w ⊑ w′ ⇐⇒ ∃n ∈ ℕ. ∃w0, w1, . . . , wn ∈W. w = w0 ∧ w′ = wn ∧

∀0 ≤ i < n. (∃r ∈ ℛN . ∃l1, l2 ∈ ℒ. ∃� ∈ T̂. wi →al(r,l1,l2,�) wi+1) ∨
(∃r ∈ ℛN . wi →reg(r) wi+1) ∨ (∃r ∈ ℛN . wi →mask(r) wi+1)

T = W→mon URel(V), � : T̂ ∼=
1

2
T

Figure 2. Our semantic footing: worlds and types. The former comes equipped with the preorder that is the reflexive, transitive closure of
the transitions in Figure 3

(', )→al(r,l1,l2,�) ('′,  ) ⇐⇒ r ∈ dom(') ∧ l1 /∈ dom1('(r)) ∧ l2 /∈ dom2('(r)) ∧
dom('′) = dom(') ∧ '′(r) = '(r) ∪ {(l1, l2, �)} ∧
∀s ∈ dom(') ∖ {r}. '′(s) = '(s).

(', )→reg(r) ('′,  ) ⇐⇒ r ∈ ℛN ∖ (dom(') ∪  ) ∧ dom('′) = dom(') ∪ {r} ∧
'′(r) = ∅ ∧ ∀s ∈ dom('). '′(s) = '(s).

(', )→mask(r) ('′,  ′) ⇐⇒ r ∈ dom(') ∧ dom('′) = dom(') ∖ {r} ∧
 ′ =  ∪ {r} ∧ ∀s ∈ dom(') ∖ {r}. '′(s) = '(s).

Figure 3. The three worlds transitions. We have r ∈ ℛN in all of them and additionally l1, l2 ∈ ℒ and � ∈ T̂ in the first. Transitions are,
once parameters are given, partial maps from W to W.

phism � before they can be applied to a world. This isomorphism is
what we get from the solution to the type-world circularity.

A bit of world-related notation will come in handy: For a world
w = (', ) we set dom(w) = dom(') and ∣w∣ = dom(') ∪  ,
i.e., dom(w) is the set of live regions and ∣w∣ is the combined set
of live and dead regions. We write dom1(w) for the union of all
first coordinates of all live regions; dom2(w) is defined similarly.
For r ∈ dom(w) we abuse notation and write w(r) for '(r).

5. Types and the Logical Relation
The relational, world-indexed interpretation of types is given in
Figure 4; the interpretation of function types relies on the inter-
pretation of computations given in Figure 5. It is worthwhile to
comment a bit on this. Note that both the interpretation of types
and computations take a number of parameters, the requirements
on those are given in the captions of the figures.

Overall, we follow the intuition laid out in Section 3. Integer,
unit and product types are standard. Looking at the reference type
there are three cases: If we interpret ref� � in a world where R(�)
is unknown, we get the empty set. This we never do; it is just a
dummy clause that is neutral with respect to type monotonicity, but
we need it since we, for technical convenience, want interpreted
types to be applicable to all worlds. The middle case is the proper
one, here R(�) is a live region and we go through it in search for
location pairs that hold values of a type semantically identical to � .
The quantification over future worlds ensure type monotonicity and
the k-equality is necessary for the step-indexed setup; both are quite
standard. The latter means that the sets we compare are equal if we
restrict to elements with index strictly less than k. In the last case
we look for references to a masked region; these are conceptually

dangling pointers that we make no assumption about, hence we
return all (pairs of) values.

The function type proceeds along the same lines. The middle
case is the proper one and it too is quite standard, except that we
quantify only over future worlds in whichR(FRV(")) remain live.
In worlds where this fails, we make no promise about the behavior.

The interpretations of computations is crucial. Note first that
rds " are all region variables with read effects in ", wrs " and
als " are defined similarly. PR

" w gives the precondition on heaps
that computations running in world w with effects " have: that all
location pairs in all regions with read effects do, in fact, hold values
of the appropriate type. If, now, the precondition holds and the left
hand side terminates, then so does the right hand side, and there
is a future world w′ such that the results are in the desired type
at w′ and the resulting heaps satisfy the postcondition QR

" w,w
′.

The latter states, that any writes to existing locations are of the
correct type and are permitted by a write effect; also any newly
allocated locations tracked by w′ hold well-typed values and are in
regions with an allocation effect. That the postcondition speaks of
the initial heaps as well as the final ones is seen in, e.g., Hoare Type
Theory [19] as well. Also, since we do local reasoning, there may
be parts of the heap outside our control; these are the frames f1

and f2, they must remain unmodified. And the computations may
allocate locations that the future world does not track, these are the
additional frames f ′1 and f ′2.

Finally, it is worthwhile to remark that the region-dynamics of
computations is quite restricted: the future world w′ must have the
same live regions as w. In other words, computations cannot mask
out existing regions and if they initialize any new regions, they
are obliged to mask them out before they terminate. Here we take
inspiration from work on region-based memory management [9,



J1KRw = {(k, (), ()) ∣ k ∈ ℕ} JintKRw = {(k, n, n) ∣ k ∈ ℕ ∧ n ∈ ℤ}

J�1 × �2KRw = {(k, (v1,1, v2,1), (v1,2, v2,2)) ∣ (k, v1,1, v1,2) ∈ J�1KRw ∧ (k, v2,1, v2,2) ∈ J�2KRw}

Jref� �KRw =

⎧⎨⎩
∅ R(�) /∈ ∣w∣{

(k, l1, l2) ∣ ∃� ∈ T̂. (l1, l2, �) ∈ w(R(�)) ∧ ∀w′ ⊒ w. J�KRw′ k= (� �)(w′)
}

R(�) ∈ dom(w)

{(k, v1, v2) ∣ k ∈ ℕ ∧ v1, v2 ∈ V} R(�) ∈ ∣w∣ ∖ dom(w).

J�1
"→ �2KRw =

⎧⎨⎩

∅ R(FRV(")) ⊈ ∣w∣⎧⎨⎩ (k, fix f(x).e1,

fix f(x).e2)

∣∣∣ ∀w′ ⊒ w.R(FRV(")) ⊆ dom(w′)⇒
∀j ≤ k. ∀(v1, v2) ∈ V × V. (j, v1, v2) ∈ J�1KRw′ ⇒

(j, (fix f(x).e1) v1, (fix f(x).e2) v2) ∈ JT" �2KRw′

⎫⎬⎭ R(FRV(")) ⊆ dom(w)

{(k, v1, v2) ∣ k ∈ ℕ ∧ v1, v2 ∈ V} dom(w) ⊉ R(FRV(")) ⊆ ∣w∣.

Figure 4. Interpretation of types. We require R : ℛV ⇀fin ℛN injective with FRV(�) ⊆ dom(R) and get J�KR : W→mon URel(V).

21] where regions are allocated and deallocated following a stack
discipline.

Proposition 5.1. We have J�KR ∈ T, i.e., it is a non-expansive
and monotone map from W to URel(ℋ).

The proof of this proposition is deferred to the appendix of the
long version of the paper.

When interpreting a type, we use region environments with pos-
sibly excessive domains. Clearly, the value of the region environ-
ments outside the region variables of the type does not matter; this
is captured in the following lemma that we need below:

Lemma 5.2 (Environment Extension). Let R1, R2 : ℛV ⇀fin

ℛN be injective with dom(R1) ⊇ FRV(�) ⊆ dom(R2). If we
have R1(�) = R2(�) for all � ∈ FRV(�), then J�KR1 = J�KR2 .

The logical relation on expressions is defined in Figure 6. Π
is a syntactic over-approximation of all region variables; together
with the condition R : Π ↪→ ∣w∣ it ensures that we deal in live
and dead regions only, not unknown ones. As for functions and
computations, we require that the regions of the effects are live.

The logical relation is asymmetrical: the left hand side approx-
imates the right hand side. We write Π ∣ Γ ∣= e1 ∼ e2 : �, " if
the approximation goes both ways and consider the computations
equivalent in that case. Our logical relation and subtyping are sound
in the following, standard, sense:

Theorem 5.3 (Compatibility). The logical relation in Figure 6 is
compatible with the typing rules of Figure 1. That is, the formation
of expressions according to the typing rules respects the logical
relation.

Proposition 5.4. Interpreting subtypes gives subsets, i.e., we have
that Π ∣ �1 ≤ �2 implies J�1KRw ⊆ J�2KRw for any region
environment R : Π ↪→ℛN and any world w ∈W.

The proof of the theorem relies naturally on the proposition. The
proofs are deferred to the next section and the appendix of the long
version of the paper.

We have the Fundamental Lemma as corollary:

Lemma 5.5. (Fundamental)

Π ∣ Γ ⊢ e : �, " =⇒ Π ∣ Γ ∣= e ⪯ e : �, ".

Another standard corollary is contextual equivalence: Two
equivalent computations that are placed inside the same closing,
integer context, will co-terminate with the same value, when run

in any two heaps. Observe, though, that the context must be typed
according to the typing rules here, i.e., with effect annotations.

6. Soundness
In this section, we present some of the cases of the proof of the
Compatibility Theorem stated just above. First off, two lemmas to
handle some of the details, then we give detailed proofs of lookup,
masking, and fixed points. See the appendix of the long version of
the paper for more cases.

Lemma 6.1 (Precondition Strengthening).

" ⊆ "′ =⇒ PR
" w ⊇ PR

"′ w.

Lemma 6.2 (Postcondition Weakening).

" ⊆ "′ =⇒ QR
" w,w

′ ⊆ QR
"′ w,w

′.

Lemma 6.3 (Lookup). Π ∣ Γ ∣= e1 ⪯ e2 : ref� �, " implies
Π ∣ Γ ∣= ! e1 ⪯ ! e2 : �, " ∪ {rd�}.

Proof. We unroll the definition of the logical relation: Let k ∈ ℕ,
w ∈ W, R : Π ↪→ ∣w∣ and 
1, 
2 ∈ V ∣Γ∣ be arbitrary. Assume
R(FRV(" ∪ {rd�})) ⊆ dom(w) and that (k, 
1, 
2) ∈ JΓKRw.
We now must show that

(k, ! e1[
1/Γ], ! e2[
2/Γ]) ∈ JT"∪{rd�} �K
Rw.

We proceed to unroll the definition of computations: Let j ≤
k, e′′1 ∈ ℰ and ℎ1, ℎ2, f1, f2, g

′′
1 ∈ ℋ be arbitrary. Assume

(k, ℎ1, ℎ2) ∈ PR
"∪{rd�} w, that

⟨! e1[
1/Γ], ℎ1 ⋅ f1⟩
j→ ⟨e′′1 , g′′1 ⟩

and irr⟨e′′1 , g′′1 ⟩.
By the operational semantics, there must be 0 ≤ i ≤ j, e′1 ∈ ℰ

and g′1 ∈ ℋ, such that

⟨e1[
1/Γ], ℎ1 ⋅ f1⟩
i→ ⟨e′1, g′1⟩, ⟨! e′1, g′1⟩

j−i→ ⟨e′′1 , g′′1 ⟩
and irr⟨e′1, g′1⟩ holds. The assumption of the lemma and Precondi-
tioning Strengthening gives us w′ ⊒ w with dom(w′) = dom(w)
as well as e′2 ∈ ℰ and g′2, ℎ′1, ℎ′2, f ′1, f ′2 such that

⟨e2[
2/Γ], ℎ2 ⋅ f2⟩
∗→ ⟨e′2, g′2⟩,

with g′1 = ℎ′1 ⋅ f ′1 ⋅ f1, g′2 = ℎ′2 ⋅ f ′2 ⋅ f2 and (k − i, e′1, e
′
2) ∈

Jref� �KRw′ as well as (k − i, ℎ1, ℎ2, ℎ
′
1, ℎ
′
2) ∈ QR

" w,w
′.

Let us ponder the fact (k − i, e′1, e
′
2) ∈ Jref� �KRw′. By

assumption, R(�) ∈ dom(w) = dom(w′) and so we must have



JT"�KRw =
{

(k, e1, e2) ∣

∀j ≤ k. ∀e′1 ∈ ℰ .∀ℎ1, ℎ2, f1, f2, g
′
1 ∈ ℋ.[

(k, ℎ1, ℎ2) ∈ PR
" w ∧

⟨e1, ℎ1 ⋅ f1⟩
j→ ⟨e′1, g′1⟩ ∧ irr⟨e′1, g′1⟩

]
=⇒[

∃w′ ⊒ w.∃e′2 ∈ ℰ .∃g′2, ℎ′1, ℎ′2, f ′1, f ′2 ∈ ℋ.

dom(w) = dom(w′) ∧

⟨e2, ℎ2 ⋅ f2⟩
∗→ ⟨e′2, g′2⟩ ∧

g′1 = ℎ′1 ⋅ f ′1 ⋅ f1 ∧ g′2 = ℎ′2 ⋅ f ′2 ⋅ f2 ∧

(k − j, ℎ1, ℎ2, ℎ
′
1, ℎ
′
2) ∈ QR

" w,w
′ ∧

(k − j, e′1, e′2) ∈ J�KRw′
]}

(k,ℎ1, ℎ2) ∈ PR
" w ⇐⇒

dom(ℎ1) = dom1(w) ∧ dom(ℎ2) = dom2(w) ∧(
∀� ∈ rds ". ∀(l1, l2, �) ∈ w(R(�)).

k > 0⇒ (k − 1, ℎ1(l1), ℎ2(l2)) ∈ (� �)(w)
)

(k,ℎ1, ℎ2, ℎ
′
1, ℎ
′
2) ∈ QR

" w,w
′ ⇐⇒

dom(ℎ1) = dom1(w) ∧ dom(ℎ2) = dom2(w) ∧
dom(ℎ′1) = dom1(w′) ∧ dom(ℎ′2) = dom2(w′) ∧(
∀l1 ∈ dom(ℎ1). ℎ1(l1) ∕= ℎ′1(l1)⇒
∃� ∈ wrs ". ∃(m1, l2, �) ∈ w(R(�)). l1 = m1 ∧
k > 0⇒ (k − 1, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′)

)
∧(

∀l2 ∈ dom(ℎ2). ℎ2(l2) ∕= ℎ′2(l2)⇒
∃� ∈ wrs ". ∃(l1,m2, �) ∈ w(R(�)) ∧ l2 = m2 ∧
k > 0⇒ (k − 1, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′)

)
∧(

∀r ∈ dom(w).∀(l1, l2, �) ∈ w′(r) ∖ w(r). r ∈ R(als ") ∧
k > 0⇒ (k − 1, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′)

)
Figure 5. Interpretation of computations with pre- and postcon-
ditions. There are implicit disjointness requirements on heaps: the
heap compositions must all be well-defined. In all three cases we
have R : ℛV ⇀fin ℛN injective and w ∈ W. For JT" �KRw
we require FRV(", �) ⊆ dom(R) and R(FRV(")) ⊆ dom(w).
PR
" w is defined for FRV(") ⊆ dom(R) and R(FRV(")) ⊆

dom(w), QR
" w,w

′ additionally requires w′ ∈ W and w ⊑ w′

with dom(w) = dom(w′).

Π ∣ Γ ∣= e1 ⪯ e2 : �, "

⇐⇒

∀k ∈ ℕ.∀w ∈W.∀R : Π ↪→ ∣w∣. ∀
1, 
2 ∈ V ∣Γ∣.[
R(FRV(")) ⊆ dom(w) ∧ (k, 
1, 
2) ∈ JΓKRw

]
⇒

(k, e1[
1/Γ], e2[
2/Γ]) ∈ JT" �KRw.

Figure 6. The logical relation. We require FRV(Γ, �, ") ⊆ Π and,
as always, FV(e1, e2) ∈ Γ.

l1, l2 ∈ ℒ and � ∈ T̂ such that e′1 = l1, e′2 = l2, (l1, l2, �) ∈
w′(R(�)) and J�KRw′ k−i= (� �)(w′). Since l1 ∈ dom1(w′) =
dom(ℎ′1) ⊆ dom(g′1) we must have i < j since the alternative
disproves irr⟨e′′1 , g′′1 ⟩. Indeed, we must have i = j − 1 and the
entire left hand side reduction must look like

⟨! e1[
1/Γ], ℎ1 ⋅ f1⟩
j−1→ ⟨! l1, g′1⟩ → ⟨ℎ′1(l1), g′1⟩,

in particular e′′1 = ℎ′1(l1) and g′′1 = g′1. Moreover, since

⟨e2[
2/Γ], ℎ2 ⋅ f2⟩
∗→ ⟨l2, g′2⟩,

and l2 ∈ dom2(w′) = dom(ℎ′2) ⊆ dom(g′2) we get a similar
reduction on the right hand side

⟨! e2[
2/Γ], ℎ2 ⋅ f2⟩
∗→ ⟨! l2, g′2⟩ → ⟨ℎ′2(l2), g′2⟩.

By Postcondition Weakening we are left to verify only that
(k− j, ℎ′1(l1), ℎ′2(l2)) ∈ J�KRw′. Since J�KRw′ k−j+1

= (� �)(w′),
it suffices to prove (k − j, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′). We now
branch on whether (l1, l2, �) ∈ w(R(�)) holds, i.e., whether
locations we look up existed prior to the entire computation
or were allocated along the way. If (l1, l2, �) ∈ w′((R(�)) ∖
w(R(�)), we get (k − j, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′) directly
from (k − i, ℎ1, ℎ2, ℎ

′
1, ℎ
′
2) ∈ QR

" w,w
′. If, on the other hand,

it is the case that (l1, l2, �) ∈ w(R(�)) holds, then we get
(k − 1, ℎ1(l1), ℎ2(l2)) ∈ (� �)(w) from PR

"∪{rd�} because of
the read effect rd�. If the locations are not written during the com-
putation, i.e., if ℎ1(l1) = ℎ′1(l1) and ℎ2(l2) = ℎ′2(l2), we get
(k − j, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′) immediately. If, on the other
hand, they are written, then we still get this, but this time from
(k − i, ℎ1, ℎ2, ℎ

′
1, ℎ
′
2) ∈ QR

" w,w
′.

Lemma 6.4 (Masking). Π, � ∣ Γ ∣= e1 ⪯ e2 : �, " implies
Π ∣ Γ ∣= e1 ⪯ e2 : �, "− � provided that � /∈ FRV(Γ, �).

Proof. We unroll the definition of the logical relation: Let k ∈ ℕ,
w ∈ W, R : Π ↪→ ∣w∣ and 
1, 
2 ∈ V ∣Γ∣ be arbitrary. Assume
R(FRV("− �)) ⊆ dom(w) and that (k, 
1, 
2) ∈ JΓKRw. We
now must show that

(k, e1[
1/Γ], e2[
2/Γ]) ∈ JT"-� �KRw.

We proceed to unroll the definition of computations: Let j ≤ k,
e′1 ∈ ℰ and ℎ1, ℎ2, f1, f2, g

′
1 ∈ ℋ be arbitrary. Assume that

(k, ℎ1, ℎ2) ∈ PR
"−� w, that ⟨e1, ℎ1 ⋅ f1⟩

j→ ⟨e′1, g′1⟩ and that
irr⟨e′1, g′1⟩. We now have to prove a range of things; to do so we
make use of the assumptions of the lemma.

Pick r ∈ ℛN ∖ ∣w∣ and define w′ ∈ W by the transition
w →reg(r) w

′. LetR′ = R[�→ r] be the corresponding extension
of R. We have R′ : Π, � → ∣w′∣, R′(FRV(")) ⊆ dom(w′) and
(k, 
1, 
2) ∈ JΓKR

′
w′, the latter by Environment Extension and

monotonicity of semantic types. But then the assumption of the
lemma buys us that

(k, e1[
1/Γ], e2[
2/Γ]) ∈ JT" �KR
′
w′.

Observe, now, that (k, ℎ1, ℎ2) ∈ PR′
" w′ because of type mono-

tonicity and since w′(R(�)) = ∅. This means, that we have
w′′ ⊒ w′ with dom(w′′) = dom(w′) as well as e′2 ∈ ℰ ,
g′2, ℎ

′
1, ℎ
′
2, f
′
1, f
′
2 ∈ ℋ such that ⟨e2, ℎ2 ⋅ f2⟩

∗→ ⟨e′2, g′2⟩, g′1 =

ℎ′1 ⋅ f ′1 ⋅ f1, g′2 = ℎ′2 ⋅ f ′2 ⋅ f2, (k − j, e′1, e
′
2) ∈ J�KR

′
w′′ and

(k − j, ℎ1, ℎ2, ℎ
′
1, ℎ
′
2) ∈ QR′

" w′, w′′.
Define w′′′ ∈ W by the transition w′′ →mask(r) w

′′′, i.e., we
mask out region r. We have w′′′ ⊒ w by transitivity. Also

dom(w′′′) = dom(w′′) ∖ {r} = dom(w′) ∖ {r} = dom(w).



By Environment Extension and monotonicity we get

(k − j, e′1, e′2) ∈ J�KR
′
w′′ ⊆ J�KRw′′′.

Write ℎ′1 = ℎ†1 ⋅ f
†
1 with ℎ†1, f

†
1 ∈ ℋ and dom(f†1 ) = dom1(w′′′).

And similarly, write ℎ′2 = ℎ†2 ⋅f
†
2 with ℎ†2, f

†
2 ∈ ℋ and dom(f†2 ) =

dom2(w′′′). It remains to prove that (k − j, ℎ1, ℎ2, ℎ
†
1, ℎ
†
2) ∈

QR
"−� w,w

′′′; note that we have transferred to the frame whatever
locations that were allocated in region r.

Take l1 ∈ dom(ℎ1) and assume ℎ1(l1) ∕= ℎ†1(l1). We get
� ∈ wrs " and (m1, l2, �) ∈ w′(R(�)) with l1 = m1 and

k − j > 0⇒ (k − j − 1, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′′).

Since w′(R(�)) = w′(r) = ∅, we conclude � ∕= � and so
� ∈ wrs "− � and (l1, l2, �) ∈ w(R(�)); all that remains is an
application of type monotonicity. Writes to the right hand side heap
is treated similarly. Assume, finally, that there is s ∈ dom(w) and
(l1, l2, �) ∈ w′′′(s) ∖ w(s). Since s ∕= r we have (l1, l2, �) ∈
w′′(s) ∖ w′(s) and so there is s ∈ R(als ") and

k − j > 0⇒ (k − j − 1, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′′).

Since we had s ∕= r = R(�), we must have s ∈ R(als "− �) as
well; type monotonicity takes us the last way if k− j > 0 happens
to hold.

Lemma 6.5 (Fix). Π ∣ Γ, f : �1
"→ �2, x : �1 ∣= e1 ⪯ e2 : �2, "

implies Π ∣ Γ ∣= fix f(x).e1 ⪯ fix f(x).e2 : �1
"→ �2, ∅.

Proof. We unroll the definition of the logical relation: Let k ∈ ℕ,
w ∈ W, R : Π ↪→ ∣w∣ and 
1, 
2 ∈ V ∣Γ∣ be arbitrary. The
assumption R(FRV(∅)) ⊆ dom(w) gives us nothing, but we do
get that (k, 
1, 
2) ∈ JΓKRw. Write e′1 = fix f(x).e1[
1/Γ] and
e′2 = fix f(x).e2[
2/Γ], we must show that

(k, e′1, e
′
2) ∈ JT∅ �1

"→ �2KRw.

As both expressions are, in fact, values it will suffice to show

(k, e′1, e
′
2) ∈ J�1

"→ �2KRw.

Notice first that R(FRV(")) ⊆ ∣w∣. If R(FRV(")) ⊆ dom(w)
fails, then there is nothing left to show. Assume, hence, that the
inclusion holds, we aim to prove by induction that for all 0 ≤ j ≤ k
we have

(j, e′1, e
′
2) ∈ J�1

"→ �2KRw.
The base case is easy, since there is no termination in 0 steps here.
So assume the above for 0 ≤ j < k, we must prove that

(j + 1, e′1, e
′
2) ∈ J�1

"→ �2KRw.

is good too. Pick w′ ⊒ w with R(FRV(")) ⊆ dom(w′). Let
i ≤ j + 1 and (v1, v2) ∈ V × V with (i, v1, v2) ∈ J�1KRw′
be arbitrary. We must show

(i, e′1v1, e
′
2v2) ∈ JT" �2KRw′.

So, let i′ ≤ i, e′′1 ∈ ℰ and ℎ1, ℎ2, f1, f2, g
′′
1 ∈ ℋ be arbitrary and

assume (i, ℎ1, ℎ2) ∈ PR
" w
′ and

⟨e′1v1, ℎ1 ⋅ f1⟩
i′→ ⟨e′′1 , g′′1 ⟩

with irr⟨e′′1 , g′′1 ⟩.
Clearly, i′ > 0, so the reduction must go like

⟨e′1v1, ℎ1 ⋅ f1⟩ → ⟨e1[
1/Γ, e
′
1/f, v1/x], ℎ1 ⋅ f1⟩

i′−1→ ⟨e′′1 , g′′1 ⟩
It is now time to make use of the assumption. Since i′−1 ≤ i−1 ≤
j, we can apply the induction hypothesis to get

(i′−1, e1[
1/Γ, e
′
1/f, v1/x], e2[
2/Γ, e

′
2/f, v2/x]) ∈ JT" �2KRw′.

All that is left is gathering the consequences.

7. Applications
We now show applications of our logical relations model: we verify
four effect-based program transformations. These transformations
are also considered in [7], but only for a language with ground
store.

Theorem 7.1 (Idempotent Computation). A computation with dis-
joint read and write effects and no allocation effects is idempotent.
More precisely, assume that we have

Π ∣ Γ ⊢ e : �, "

with rds " ∩ wrs " = ∅ = als ". Then it holds that

Π ∣ Γ ∣= let x = e in let y = e in (x, y) ∼
let x = e in (x, x) : � × �, ".

Proof. We just prove that the left hand side approximates the right
hand side, the other way round proceeds similarly. Let k ∈ ℕ,
w ∈ W, R : Π ↪→ ∣w∣ and 
1, 
2 ∈ V ∣Γ∣ be arbitrary. Assume
thatR(FRV(")) ⊆ dom(w) and that (k, 
1, 
2) ∈ JΓKRw. We set

e1 = let x = e[
1/Γ] in let y = e[
1/Γ] in (x, y)

and
e2 = let x = e[
2/Γ] in (x, x)

and have to prove (k, e1, e2) ∈ JT" � × �KRw.
We proceed to unroll the definition of computations: Let j ≤ k,

e′′′1 ∈ ℰ and ℎ1, ℎ2, f1, f2, g
′′′
1 ∈ ℋ be arbitrary. Assume that

(k, ℎ1, ℎ2) ∈ PR
" w, that

⟨e1, ℎ1 ⋅ f1⟩
j→ ⟨e′′′1 , g′′′1 ⟩

and that irr⟨e′′′1 , g′′′1 ⟩.
By the definition of the operational semantics there must be

0 ≤ i ≤ j, e′1 ∈ ℰ and g′1 ∈ ℋ such that the above reduction
can be split into

⟨e1, ℎ1 ⋅ f1⟩
i→ ⟨ let x = e′1 in let y = e[
1/Γ] in (x, y), g′1⟩
j−i→ ⟨e′′′1 , g′′′1 ⟩

with

⟨e[
1/Γ], ℎ1 ⋅ f1⟩
i→ ⟨e′1, g′1⟩

and irr⟨e′1, g′1⟩.
From the Fundamental Lemma we get (k, e[
1/Γ], e[
2/Γ]) ∈

JT" �KRw. But then we get w′ ⊒ w with dom(w) = dom(w′) as
well as e′2 ∈ ℰ and g′2, ℎ′1, ℎ′2, f ′1, f ′2 ∈ ℋ such that

⟨e[
2/Γ], ℎ2 ⋅ f2⟩
∗→ ⟨e′2, g′2⟩,

g′1 = ℎ′1⋅f ′1⋅f1, g′2 = ℎ′2⋅f ′2⋅f2, (k−i, ℎ1, ℎ2, ℎ
′
1, ℎ
′
2) ∈ QR

" w,w
′

and (k− i, e′1, e′2) ∈ J�KRw′. The latter implies e′1 ∈ V and so we
must have i < j as the alternative would invalidate irr⟨e′′′1 , g′′′1 ⟩.
Indeed, there must be 0 ≤ i′ ≤ j − i − 1, e′′1 ∈ ℰ and g′′1 ∈ ℋ
such that we can split the last j − i steps further

⟨let x = e′1 in let y = e[
1/Γ] in (x, y), g′1⟩
→ ⟨let y = e[
1/Γ] in (e′1, y), g′1⟩
i′→ ⟨let y = e′′1 in (e′1, y), g′′1 ⟩
j−i−1−i′→ ⟨e′′′1 , g′′′1 ⟩

with

⟨e[
1/Γ], g′1⟩
i′→ ⟨e′′1 , g′′1 ⟩

and irr⟨e′′1 , g′′1 ⟩.
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⟨e[
2/Γ], ℎ2 ⋅ f2⟩ // ⟨e′2, ℎ′2 ⋅ f ′2 ⋅ f2⟩ ⟨e[
2/Γ], ℎ2 ⋅ f2⟩ // ⟨e′2, ℎ′2 ⋅ f ′′2 ⋅ f2⟩

Figure 7. Illustrated proof of the Idempotent Computation Theorem.

Now for something odd: we reset the right hand side to the
initial state. More precisely, we argue that (k − i − 1, ℎ′1, ℎ2) ∈
PR
" w
′, this is the crux of the entire proof: Notice initially, that

not only is it the case that dom(w) = dom(w′), we also have
∀r ∈ dom(w). w(r) = w′(r) since als " = ∅; in particular we get
dom2(w) = dom2(w′). Combining now the facts

∀� ∈ rds ". ∀(l1, l2, �) ∈ w(R(�)).

k > 0⇒ (k − 1, ℎ1(l1), ℎ2(l2)) ∈ (� �)(w)

and

∀l1 ∈ dom(ℎ1). ℎ1(l1) ∕= ℎ′1(l1)⇒
∃� ∈ wrs ".∃(m1, l2, �) ∈ w(R(�)). l1 = m1 ∧
k > 0⇒ (k − 1, ℎ′1(l1), ℎ′2(l2)) ∈ (� �)(w′),

with rds " ∩ wrs " = ∅ buys us

∀� ∈ rds ". ∀(l1, l2, �) ∈ w′(R(�)).

k − i− 1 > 0⇒ (k − i− 2, ℎ′1(l1), ℎ2(l2)) ∈ (� �)(w′).

Loosely speaking, the locations we are permitted to read held
values of the correct type from the beginning and were not changed
by the computation seen so far.

We proceed to use the fact that (k− i− 1, e[
1/Γ], e[
2/Γ]) ∈
JT" �KRw′ by a second application of the Fundamental Lemma.
This yields w′′ ⊒ w′ with dom(w′) = dom(w′′) as well as
e′′2 ∈ ℰ and g′′2 , ℎ′′1 , ℎ′′2 , f ′′1 , f ′′2 ∈ ℋ such that

⟨e[
2/Γ], ℎ2 ⋅ f2⟩
∗→ ⟨e′′2 , g′′2 ⟩,

g′′1 = ℎ′′1 ⋅ f ′′1 ⋅ f ′1 ⋅ f1, g′′2 = ℎ′′2 ⋅ f ′′2 ⋅ f2, (k − i − 1 −
i′, ℎ′1, ℎ2, ℎ

′′
1 , ℎ
′′
2 ) ∈ QR

" w
′, w′′ and (k − i − 1 − i′, e′′1 , e′′2 ) ∈

J�KRw′′. The latter implies e′′1 ∈ V and so we must have i′ <
j − i− 1 since an equality would conflict with irr⟨e′′′1 , g′′′1 ⟩. Even
more precisely, we must have j − i− 1− i′ = 1 and the final step
in the entire reduction ⟨e1, ℎ1 ⋅ f1⟩

j→ ⟨e′′′1 , g′′′1 ⟩ must be

⟨let y = e′′1 in (e′1, y), g′′1 ⟩ → ⟨(e′1, e′′1 ), g′′1 ⟩,

in particular e′′′1 = (e′1, e
′′
1 ) and g′′′1 = g′′1 .

We immediately get

⟨e2, ℎ2 ⋅ f2⟩
∗→ ⟨(e′′2 , e′′2 ), g′′2 ⟩.

In the proof, it now remains to prove (k − j, ℎ1, ℎ2, ℎ
′′
1 , ℎ
′′
2 ) ∈

QR
" w,w

′′ and that (k − j, (e′1, e′′1 ), (e′′2 , e
′′
2 )) ∈ J�KR" w”. Notice

initially, that by the determinism of the operational semantics and
the fact that e′2, e′′2 ∈ V we have e′2 = e′′2 and g′2 = g′′2 .
Since dom2(w′) = dom2(w′′) by als " = ∅ we furthermore get
ℎ′2 = ℎ′′2 and f ′2 = f ′′2 . Also recall k − j = k − i− i′ − 2.

On the first obligation, we take l1 ∈ dom(ℎ1) and assume
that ℎ1(l1) ∕= ℎ′′1 (l1). If also ℎ′1(l1) ∕= ℎ′′1 (l1) then the desired
follows from (k − i − 1 − i′, ℎ′1, ℎ2, ℎ

′′
1 , ℎ
′′
2 ) ∈ QR

" w
′, w′′.

Otherwise, we must have ℎ1(l1) ∕= ℎ′1(l1) = ℎ′′1 (l1), but then
(k− i, ℎ1, ℎ2, ℎ

′
1, ℎ
′
2) ∈ QR

" w,w
′ paves the way. And the second

obligation is met by recalling (k − i, e′1, e′2) ∈ J�KRw′ and (k −
i− 1− i′, e′′1 , e′′2 ) ∈ J�KRw′′.

Theorem 7.2 (Commuting Computations). Two computations
commute if neither reads a region that the other writes, and there is
no region they both write. More precisely, assume that we have

Π ∣ Γ ⊢ e : �, ", Π ∣ Γ ⊢ e′ : � ′, "′

with rds " ∩ wrs "′ = rds "′ ∩ wrs " = wrs " ∩ wrs "′ = ∅. Then
we have the following equivalence:

Π ∣ Γ ∣= let x = e in let y = e′ in (x, y) ∼
let y = e′ in let x = e in (x, y) : � × � ′, " ∪ "′.

Proof. Again we give the details only one way: that the left hand
side approximates the right hand side. Let k ∈ ℕ, w ∈ W,
R : Π ↪→ ∣w∣ and 
1, 
2 ∈ V ∣Γ∣ be arbitrary. Assume that
R(FRV(" ∪ "′)) ⊆ dom(w) and that (k, 
1, 
2) ∈ JΓKRw. Set

e1 = let x = e[
1/Γ] in let y = e′[
1/Γ] in (x, y)

and

e2 = let y = e′[
2/Γ] in let x = e[
2/Γ] in (x, y);

we have to prove (k, e1, e2) ∈ JT"∪" � × � ′KRw.
We proceed to unroll the definition of computations: Let j ≤ k,

e′′′1 ∈ ℰ and ℎ1, ℎ2, f1, f2, g
′′′
1 ∈ ℋ be arbitrary. Assume that

(k, ℎ1, ℎ2) ∈ PR
"∪"′ w, that

⟨e1, ℎ1 ⋅ f1⟩
j→ ⟨e′′′1 , g′′′1 ⟩

and that irr⟨e′′′1 , g′′′1 ⟩.
By the definition of the operational semantics there must be

0 ≤ i ≤ j, e′1 ∈ ℰ and g′1 ∈ ℋ such that the above reduction
can be split into

⟨e1, ℎ1 ⋅ f1⟩
i→ ⟨ let x = e′1 in let y = e′[
1/Γ] in (x, y), g′1⟩
j−i→ ⟨e′′′1 , g′′′1 ⟩

with

⟨e[
1/Γ], ℎ1 ⋅ f1⟩
i→ ⟨e′1, g′1⟩

and irr⟨e′1, g′1⟩.
From the Fundamental Lemma we get (k, e[
1/Γ], e[
2/Γ]) ∈

JT" �KRw. By Precondition Strengthening we get a whole range
of stuff, but we need only the following two facts: that e′1 ∈ V
and that for l1 ∈ dom(ℎ1) such that there is r ∈ R(rds "′) and
(m1, l2, �) ∈ w(r) with m1 = l1 we have g′1(l1) = ℎ1(l1). The
latter is a consequence of wrs " ∩ rds "′ = ∅.

We must have i < j as the alternative would invalidate
irr⟨e′′′1 , g′′′1 ⟩. Indeed, there must be 0 ≤ i′ ≤ j − i − 1, e′′1 ∈ ℰ
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Figure 8. Illustrated proof of the Commuting Computations Theorem. Most of the dashed lines are slightly off, i.e., they do not point at the
exact right subheaps.

and g′′1 ∈ ℋ such that we can split the last j − i steps further into

⟨let x = e′1 in let y = e′[
1/Γ] in (x, y), g′1⟩
→ ⟨let y = e′[
1/Γ] in (e′1, y), g′1⟩
i′→ ⟨let y = e′′1 in (e′1, y), g′′1 ⟩
j−i−1−i′→ ⟨e′′′1 , g′′′1 ⟩

with

⟨e′[
1/Γ], g′1⟩
i′→ ⟨e′′1 , g′′1 ⟩

and irr⟨e′′1 , g′′1 ⟩.
Much as in the previous proof, we now ditch our right hand

side progress, but unlike that, we also lose our new future world.
Notice first that the Fundamental Lemma gives us (k − i −
1, e′[
1/Γ], e′[
2/Γ]) ∈ JT"’ � ′KRw, we would like to apply that.
Write g′1 = ℎ†1 ⋅ℎ∘1 for ℎ†1, ℎ

∘
1 ∈ ℋwith dom(ℎ†1) = dom1(w); the

crucial observation now is that we have (k−i−1, ℎ†1, ℎ2) ∈ PR
"′ w.

Hence we getw′ ⊒ w with dom(w) = dom(w′) as well as e′2 ∈ ℰ
and g′2, ℎ′′1 , ℎ′2, f ′′1 , f ′2 ∈ ℋ such that

⟨e′[
2/Γ], ℎ2 ⋅ f2⟩
∗→ ⟨e′2, g′2⟩,

g′′1 = ℎ′′1 ⋅f ′′1 ⋅f∘1 , g′2 = ℎ′2 ⋅f ′2 ⋅f2, (k−i−1−i′, ℎ†1, ℎ2, ℎ
′′
1 , ℎ
′
2) ∈

QR
"′ w,w

′ and (k − i− 1− i′, e′′1 , e′2) ∈ J� ′KRw′.
Much as we have argued before, we now know that e′′1 ∈ V ,

hence j − i − 1 − i′ = 1 and the entire left hand side reduction
must look like

⟨e1, ℎ1 ⋅ f1⟩
j→ ⟨(e′1, e′′1 ), g′′1 ⟩,

in particular, e′′′1 = (e′1, e
′′
1 ) and g′′′1 = g′′1 .

We have now, in some sense, considered the situation from the
point of view of e′, it is time to turn the tables. There are ℎ†2, f

†
2

with dom(ℎ†2) = dom2(w) such that ℎ′2 = ℎ†2 ⋅ f
†
2 . So we have

(k, ℎ1, ℎ
†
2) ∈ PR

" w by arguments as above, in particular we apply
wrs "′ ∩ rds " = ∅. Now, we still have (k, e[
1/Γ], e[
2/Γ]) ∈
JT" �KRw and so there is w′′ ⊒ w with dom(w) = dom(w′′) as
well as e′′2 ∈ ℰ and g′′2 , ℎ′1, ℎ′′2 , f ′1, f ′′2 ∈ ℋ such that

⟨e[
2/Γ], ℎ†2 ⋅ f
†
2 ⋅ f

′
2 ⋅ f2⟩

∗→ ⟨e′′2 , g′′2 ⟩,

g′1 = ℎ′1 ⋅f ′1 ⋅f1, g′′2 = ℎ′′2 ⋅f ′′2 ⋅f†2 ⋅f ′2 ⋅f2, (k−i, ℎ1, ℎ
†
2, ℎ
′
1, ℎ
′′
2 ) ∈

QR
" w,w

′′ and (k − i, e′1, e
′′
2 ) ∈ J�KRw†. Write ℎ′1 = ℎ†1 ⋅ f

†
1

for f†1 ∈ ℋ, in particular g′1 = ℎ†1 ⋅ f
†
1 ⋅ f ′1 ⋅ f1 and g′′1 =

ℎ′′1 ⋅ f ′′1 ⋅ f†1 ⋅ f ′1 ⋅ f1; this is notation we need soon. Observe first,
though, that we have the right hand side reduction

⟨e2, ℎ2 ⋅ f2⟩
∗→ ⟨(e′2, e′′2 ), g′′2 ⟩.

We now build a world w′′′ with dom(w′′′) = dom(w) and
with both w′′′ ⊒ w′ and w′′′ ⊒ w′′, i.e., a common future world.
The natural choice is for the dead regions of w′′′ to be the dead
regions of both w′ and w′′. For r ∈ dom(w) we set w′′′(r) =

w′(r) ∪ w′′(r), but we must take care not to wreck the partial
bijections nor their mutual disjointness: Let r, s ∈ dom(w) and
take (l′1, l

′
2, �
′) ∈ w′(r)∖w(r) and (l′′1 , l

′′
2 , �

′′) ∈ w′′(s)∖w(s); it
will suffice to show l′1 ∕= l′′1 and l′2 ∕= l′′2 . Now, we know that l′1 ∈
dom1(w′) = dom(ℎ′′1 ), in particular we have l′1 /∈ dom(f†1 ). Also
l′1 /∈ dom1(w) = dom(ℎ†1). But l′′1 ∈ dom1(w′′) = dom(ℎ′1)
and since ℎ′1 = ℎ†1 ⋅ f

†
1 we must have l′1 ∕= l′′1 . Proving l′2 ∕= l′′2

proceeds similarly.
It shall now suffice to show

(k − j, ℎ1, ℎ2, ℎ
′′
1 ⋅ f†1 , ℎ

′′
2 ⋅ f†2 ) ∈ QR

"∪"′ w,w
′′′

as the remaining obligations are discharged already. We have

dom1(w′′′) = dom1(w′) ∪ dom1(w′′)

= dom(ℎ′′1 ) ∪ dom(ℎ†1 ⋅ f
†
1 )

= dom(ℎ′′1 ⋅ f†1 )

and get dom2(w′′′) = dom(ℎ′′2 ⋅ f†2 ) similarly. So take l1 ∈
dom(ℎ1) and assume that ℎ1(l1) ∕= ℎ′′1 (l1). If ℎ†1(l1) ∕= ℎ′′1 (l1)
we get � ∈ wrs "′ and (m1, l2, �) ∈ w(R(�)) with l1 = m1 and
(k − j, ℎ′′1 (l1), ℎ′2(l2)) ∈ (� �)(w′). And since wrs " ∩ wrs " = ∅
we know that ℎ′′2 (l2) = ℎ′2(l1). If, on the other hand, ℎ†1(l1) =
ℎ′′1 (l1) then we must have ℎ1(l1) ∕= ℎ†1(l1) and we get � ∈
wrs " and (m1, l2, �) ∈ w(R(�)) with l1 = m1 and (k − i −
1, ℎ†1(l1), ℎ′′2 (l2)) ∈ (� �)(w′′).

It remains to consider allocation. So take r ∈ dom(w) and
(l1, l2, �) ∈ w′′′(r) ∖ w(r). By the construction of w′′′ we get
(l1, l2, �) ∈ w′(r) ∖ w(r) or (l1, l2, �) ∈ w′(r) ∖ w(r); in both
cases we proceed similarly, so assume the former holds. Then we
know r ∈ R(als "′) and that (k − j, ℎ′′1 (l1), ℎ′2(l2)) ∈ (� �)(w′).
But as l2 /∈ dom2(w) we must have l2 ∈ dom(f†2 ) and so
(ℎ′′2 ⋅ f†2 )(l2) = f†2 (l2) = ℎ′2(l2) and we are done.

In the remaining two applications we can prove only approxima-
tion, not equivalence, because of the possibility of non-termination.
We defer the proofs to the appendix of the long version of the paper.

Theorem 7.3 (Neutral Computation). A computation that per-
forms no writes and has return type unit approximates the trivial
computation. More precisely, having

Π ∣ Γ ⊢ e : 1, "

with wrs " = ∅ implies

Π ∣ Γ ∣= e ⪯ () : 1, ".

Theorem 7.4 (Pure Lambda Hoist). A pure computation evaluated
as part of a function can, up to approximation, be evaluated once
and the result cached. More precisely, having

Π ∣ Γ ⊢ e : �1, ∅, Π ∣ Γ, y : �2, x : �1 ⊢ e′ : �3, ".



gives us

Π ∣ Γ ∣= let x = e in �y. e′ ⪯
�y. let x = e in e′ : �2

"→ �3, ∅

8. Discussion
8.1 Work by Benton et. al
An important point of reference for our work is the relational model
by Benton et. al. [7] of an effect system for a higher-order langauge
with dynamic allocation and ground store, i.e., only integers in the
heap. Indeed, apart from our extension to higher-order store, the
type systems and examples considered are roughly the same.

Having said so, we remark that our take on the issue of masking
is novel; in particular it is different from that of Benton et. al. Their
approach does not scale easily, if at all, to the higher-order store
setting: The pivot is the Masking Lemma [7, Lemma 3], stating that
the interpretation of both types and computations in a world are
preserved up to equality under masking, provided that the region
masked out is not, syntactically, in the type respectively in the
computation. Combined with ground store, this makes short work
of soundness of the masking rule.

The Masking Lemma, however, does not scale easily to a
higher-order store setting. Consider the computation from the in-
troduction: The returned function has latent effect {wr�} and cor-
respondingly writes to location 1 in region �. But the values stored
at location 1 must be of type ref� int, and that depends on the
type int associated with location 0 in region �. In other words,
the interpretation of a type may depend on regions that do not oc-
cur syntactically in the type; this is the antithesis to the Masking
Lemma.

As described above, we take the different approach that inter-
pretations of types should grow (or at least not shrink) under any
application of masking, and only when we actually perform reads,
writes and allocations do we require that the regions in question are
still live. This also means that we can get by without a silent region
[7, Sections 5 and 6]. This is a designated region of the world that
tracks inaccessible parts of the heap in an untyped way; in loc.cit.
it is necessary for the Masking Lemma to hold for computations.

That we have no silent region is not just a technical convenience:
it means that our model permits any action on locations that have
been masked out, including garbage collection or ownership trans-
fer. The locations have left the world and we make no further as-
sumptions on them, whatsoever. By contrast, locations in a silent
region are still in the world and computations may assume that
they remain allocated, even if the stored value cannot be changed.
Indeed, computations may actually access such locations in exten-
sionally invisible ways: we could, say, read a location in the silent
region as long as we make no use of the read value.

Benton et. al.: Higher Order Store In more recent work, Benton
et. al. [8] have given a relational model for a language with higher
order store. The language has no dynamic allocation though, nor is
there any masking rule.

Unlike our approach, however, they work with a denotational
semantics of the language; in particular they prove existence of
the logical relation by solving a non-trivial mixed-variance domain
equation, extending the standard technique by Pitts [20] to do
so. One advantage is transitivity of their logical relation; that is
something we do not get. This is a general issue with step-indexed
models observed first by Ahmed [3]; there are fixes, but a more
proper take is to reason in a logic suited for step-indexing as done,
e.g., by Dreyer et. al. [13]. We are convinced, however, that using
the techniques developed by Støvring and the authors [11], we
could also define a model based on a denotational semantics of the
programming language, hence achieving transitivity.

Preservation of All Store Relations Throughout their work, Ben-
ton et. al. interpret computations by requiring preservation of all
relations on heaps that respect the effects of the computations, i.e.,
that ensure well-typed reads at locations with read effects and is
closed under well-typed writes to locations with write effects. Our
approach is more simple-minded; we do, in some sense, just pre-
serve one relation. But it is unclear what the additional relations
buys, we know of no equivalences that fail due to our approach;
indeed the two alternatives may very well be equivalent. What is
clear, however, is that losing the many relations, as well as the
absence of a silent region, simplify proofs considerably: writing
out all details, as we do, obviously generates some mileage but in
essence one may argue in simple diagrams as illustrated.

8.2 On Expressiveness
Consider the following variant of the so-called awkward example,
discussed in detail in [14]. Let � = (1

"0→ 1)
"1→ int with

"0 = {rd�, wr�} and "1 = {rd�, wr�, rd�, wr�} and define
expressions e1 and e2, which both have type � and effect {al�},
by

e1 = let x = ref� 0 in
�f.(x := 0; f();x := 1; f(); !x)

e2 = let x = ref� 0 in
�f.(f(); f();x := 1; !x).

We have used the subscript � to indicate that x will have the type
ref� int. Since � and � are distinct, f cannot read / write the
reference bound to x; this ensures that both the left and the right
hand side functions always return 1. Indeed we can show that e1

and e2 are contextually equivalent. We remark that if, on the other
hand, we had typed e1 and e2 with the same region variable instead
of two distinct region variables, then our semantic model would
not be expressive enough to show that e1 and e2 are contextually
equivalent. For that, we could extend our model using ideas from
the model for non-effect-annotated types in [14]. In summa, effect
information can be used to restrict the applicable contexts and
can thus make it easier to show two expressions equivalent (for
those restricted contexts). Note that a standard unification-based
algorithm for inferring effects, would infer the type � for e1 with �
and � distinct.

9. Conclusion and Future Work
We have presented a solution to the open problem of constructing a
relational model for an effect system for a higher-order language
with dynamically allocated higher-order store. We have demon-
strated that the model can be used to rigorously justify effect-based
program transformations.

Future work includes extending the model to region and ef-
fect polymorphism, as found, e.g., in [21]. Moreover, we think our
model could be adapted to a situation where the conceptual regions
do not necessarily follow a stack-discipline [4, 16] by a slight modi-
fication of the interpretation of computations. In this paper we have
focused on a relational model for verifying effect-based program
transformations. We believe that the ideas of our model construc-
tion can also be used to construct models for other applications of
effect systems for languages with higher-order store.
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