.-ﬂ
=

The IT University

of Copenhagen

A Realizability Model for Impredicative Hoare Type
Theory

Rasmus Lerchedahl Petersen& Lars Birkedal

IT University of Copenhagen, {rusmus | birkedal } @itu.dk
Aleksandar Nanevski& Greg Morrisett

Harvard University, {aleks| greg} @eecs.harvard.edu

IT University Technical Report Series TR-2007-XX
ISSN 1600-6100 09 2007

Copyright (© 2007, Rasmus Lerchedahl Petersen& Lars Birkedal
IT University of Copenhagen, {rusmus | birkedal } @itu.dk
Aleksandar Nanevski& Greg Morrisett
Harvard University, {aleks| greg} @eecs.harvard.edu

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600-6100

ISBN ISBN-NO

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7,
DK-2300 Kgbenhavn S
Denmark

Telephone: +4572 18 50 00
Telefax: +45 72 18 50 01
Web www. 1 tu. dk

A Realizability Model for Impredicative Hoare Type Theory

Rasmus Lerchedahl Petersen& Lars Birkedal
IT University of Copenhager{rusmusg| birkedall @itu.dk
Aleksandar Nanevski& Greg Morrisett
Harvard University{aleks| gregt@eecs.harvard.edu

Abstract

We present a denotational model of impredicative Hoare Tilpeory, a very expressive dependent
type theory in which one can specify and reason about mugdigiact data types.

The model ensures soundness of the extension of Hoare Tygmytvith impredicative polymor-
phism; makes the connections to separation logic clearpemddes a basis for investigation of further
sound extensions of the theory, in particular equationsdeh computations and types.

1 Introduction

Dependent types provide a powerful form of specificatiorhigher-order, functional languages. For exam-
ple, using dependency, one can specify the signature ofaysubscript operation asib : Va.Ilz:a ar r ay.Ily:{i:nat |
i < x.si ze}.a, Where the type of the third argument, refines the underlying typeat using a predicate
that ensures thatis a valid index for the array.

Dependent types have long been used in the developmentroffonathematics, but their use in prac-
tical programming languages has proven challenging. Ortleeomain reasons is that the presence of any
computational effects, including non-termination, exe®ys, access to store, or I/O — all of which are in-
dispensable in practical programming — can quickly rendiz@endent type system unsound.

The problem can be addressed by severely restricting depeias to only effect-free terms (as in for
instance DML [25]). But the goal of our work is to try to reaizhe full power of dependent types for
specification of effectful programs. To that end, we havenlwseloping the foundations of a language that
we callHoare Type Theorgr HTT [18, 17], which we intend to be an expressive and ekpliannotated
internal language, providing a semantic framework for @abng more practical external languages.

HTT starts with a pure, dependently typed core language agohants it with an indexed monadic type
of the form{P}z: A{Q}. This type encapsulates and describes effectful compuotathat may diverge or
access a mutable store. The type can be read as a Hoare+filed garrectness specification, asserting that
if the computation is run in a heap satisfying the pre-coodif, then if it terminates, it will return a value
z of type A and leave a heap described®y Through Hoare types, the system can enforce soundness in th
presence of effects. The Hoare type admits small footpasts separation logic [21, 19], where the pre-
and postconditions only describe the part of the store tieptogram actually uses; the unspecified part is
automatically assumed invariant.

The most distinguishing feature of HTT in comparison withestrecent proposals for Hoare and separa-
tion logics for higher-order languages [5, 15, 26, 16] ig #pecifications in HTT arantegrated with types
In Hoare logic, it is not possible to abstract over specificet in the source programs, aggregate the logical

invariants of the data structures with the data itself, cat@pvith such invariants, or nest the specifications
into larger specifications or types. These features ar@eakmgredients for data abstraction and informa-
tion hiding, and, in fact, a number of works have been propdseards integrating Hoare-like reasoning
with type checking. Examples include tools and languades3ipec# [3], SPLint [13], ESC/Java [12], and
JML [10].

Our prior work on HTT [18, 17] addresses several of the magillehges for languages for integrated
programming and verification [10]: (1) we allow effectfuld®in specifications by granting such code
first-class status, via the monad for Hoare triples; (2) watrod pointer aliasing, by employing the small
footprint approach of separation logic; and (3) we use higinder logic to allow for a uniform approach
to programming and verification of imperative modules (akaahle abstract data types), as suggested for
separation logic in [6, 7]. In our earlier work on HTT we prdveoundness of the type theory via mostly
operational methods, by proving progress and type pretsen@sults. The operational proof was combined
with a very crude denotational model, which just served tstihat the assertion logic of HTT was sound.
To deal with dependent types the operational proofs releakity on sophisticated techniques involving
so-called hereditary substitutions [24].

In this paper we define a realizability model for an extensibiloare Type Theory with impredica-
tive polymorphism. Apart from the inherent interest in dbitdag a denotational model, which provides an
alternative more abstract conceptual understanding dahéay, the model serves the following purposes:

e Using the model we can prove soundness of an extension oeHgge Theory witimpredicative
polymorphism. Impredicative polymorphism is important diata abstraction (we show an examples
below) and for representing certain compiler transfororesj such as closure conversion, in HTT. It
is well-known that the operational methods involving héeseg substitutions mentioned above do not
easily scale to impredicative polymorphism.

e The model makes the connections to separation logic monsgesient. Indeed, to bring out the
connections very clearly, we have decided to present thettygory using a syntax for computations,
which is fairly close to the one employed in separation logic

e The model can be used to investigate which equality rulesdorputations the theory can soundly be
extended with. We present some simple examples in Section 4.

It is non-trivial to construct sound models of sophisticateependent type theories such as HTT. Models
for various fragments of dependent type theories have beied intensively in categorical type theory;
see, e.g., [14] and the references therein. Thus we shak ok of results from categorical type theory to
provethat we construct a sound model of impredicative HTT, but hadlsalways write out the definitions
in explicit terms so as to make the paper reasonably seltowd. Before proceeding with the technical
development proper we now give an intuitive overview of tegedopment.

HTT is a dependent type theory with types and kinds, wheresype included in the kinds, and where
types and kinds can both depend on kinds. Thus conleassign kinds to variables and there are judgments
'k 7: Typeandl’ F A : Kind to conclude that is a well-formed type in context and thatA is a well-
formed kind in context’. Type and kind formers include dependent prodiliftgnd dependent surixj. In
the extension with impredicative polymorphism that we ddasin this paper, we have thdpe is a kind.
Thus this part of pure impredicative HTT is what is sometiroaited (weak) Full Higher-order Dependent
Type Theory (FhoDTT) [14]. In addition to types and kinds, Halso includes a logic for reasoning about
terms in context. Thus there is a judgménit P : Prop for concluding thatP is a well-formed proposition
and a judgment' | P,..., P, I P for logical entailment. The logic is higher-order, Boop is a kind. In

Jacobs’s terminology we thus have a Higher-order Deperittexlicate Logic over (weak) Full Higher-order
Dependent Type Theory [14]. The characteristic feature DT ki that it includes a type for computations
I' = {P} z:7 {Q} : Type. HereP and(are propositions in conteXt andI',z : 7, respectively.
The intuition is that elements of this type consist of comatiohs, which, given a heap satisfyidgjeither
diverges or produces a value of typeand a heap ir). Note that computations can diverge; term formers
for computations include a fixed point term.

The great benefit of impredicative polymorphism is that foy &ype 7, Ila : Type.7 is also a type,
even ifr depends om. Thus terms of this polymorphic type can be returned by cdatjmns and stored in
memory.Prop is also a kind. So agailll P : Prop.7 is a type where- may depend o®. This enables us to
abstract over predicates in computation types. Usingdtfat Prop.T is a type, we can pack computations
with abstract invariants and hide implementation det&itsan illustration of both of these features consider
the following type of abstract stacks:

stacktype =
Ila : Type. X : Type.Xinv : 8 X alist — Prop.

/*newx/ (—).{emp}s: B{inv(s,[])} x
/*pushx*/ Ils: pllz: a.

(I : alist).{inv(s,)}u : Yinv(s,z 2 1)} x
/xpopx/ Ils:p.

(z:a,l: alist).

{inv(s,z = 1)}y : afinv(s,l) Ny =4 z} X

/xdelx/ Ils:[.

(I : alist).{inv(s,])}u : {emp}

The contexts before the precondition in the computatioedye.g.{! : «list) for push, universally binds
auxiliary / logical variables used in the specifications. et of typestacktype accepts a typex and
produces a stack of elements of this type. Such a stack toosis

e (3, an abstract type to be thought of@stack.

e inv, an abstract invariant that expresses that objects of fiypgpresents functional stacks (as de-
scribed by list).

e Operationsew, push, pop, anddel. Notice, thatpush, pop, anddel require an element of type,
and that the only way to obtain one such is to invake.

Sincestacktype is itself a type due to impredicativity, we can have stackstatks. Note that in separation
logic parlance the types atight. For instance, the precondition faew is simply emp, which means that
new does not rely on the input heap; the frame rule ensuresathatan also be used with the following
type (—).{emp * R}s : pB{inv(s,[]) * R}, for any R. Further observe that implementors of the above
abstract stack type are free to choose both the representgpie 5 and the representation predicate.

For example, an implementation using linked lists coulatako beNat (since we us&Nat as the type of
locations) andnu(s, 1) to be the predicate that holdssipoints to a linked list representation lofA simple
example client that creates a nélat stack, pushes 4, pops it again to return it and deletes thk wiauld

then look like this:

C = \S : stacktype.
do Snat < ret S(Nat) in
unpack Snat @s (3, inv, new, push, pop,del) in
do s «+— new in
do s4 < push(s)(4) in
do ny < pop(ss) in
del(sy);ret ny

ThenC has typdlS : stacktype.(—).{emp}n : Nat{emp A n =nat 4}.

Computations are not only needed for accessing the storalsmfor nontermination as the pure frag-
ment does not include fixed points. As an example of a simpéelfpoint computation (not using the store),
consider the factorial functioffiac : 7', whereT' = IIn : Nat.(—).{emp}m : Nat{emp A m =na¢ n!}:

fac=1£fix f(n) in case n of
zero = ret 1 or

succy = dom « f(y) inret m X succy

We will show in detail why it has the claimed type in Sectiod2We can implement another version of
factorial using the store but with the same type, in the Witk manner. First we define a terfiacg : T,
whereTs =11l : Nat.(n : Nat).{l —Nat n}u : {I —nat n!}:

facs = fix f(l) in let t =Inatl in
caset of
zero = [:=nat 1 OT
succy = dol, < allocNat ¥ in
f(ly);do ty «—INatly in
[:=Nat ty X succ y;deallocl,

Given this we can implement the factorial function as

facd = An : Nat.do! + allocya; 1 in

facs(l);do r «INatl in dealloc l;ret r

Now fac’ has the same tygE as fac. Using the model, we can prove théic =1 fac (see Section 4), so
we can use them interchangeably when reasoning in the [dbis.could not be done in earlier versions of
HTT.

Our model is a realizability model, built over a universafrdon V', which is sufficiently rich to model
divergent computations. The domdihalso includes a subdomain of computations, calléd’).

The model for the weak FhoDTT part of HTT is mostly standaree(se.g.,[14, Examples 11.6.5
and 11.6.7]): types are interpreted as chain-completdapaduivalence relations (complete pers) over
V and kinds are interpreted as so-called assembliesu{adets) overl’. The category of assemblies is an
extension of the category of sets and functions which costtie category of complete pers as a full sub-
category. The latter ensures that we soundly model thastgpeincluded among the kinds. Moreover, the

4

collection of all complete pers form a set and hence an adgeari thus we model thattype is aKind.
Terms with typellz : 7.0 are modeled as set-theoretic functions between the seuofadence classes for
the pers interpreting ando which arerealizedby an element irV/. That is, there is a continuous function
from V' to V' that maps related elements in the first per to related elemeriie second per. In reality, the
model is a bit more complicated since we have to deal feithiliesof types and kinds to model that types
and kinds depend on kinds. Hence everything is indexeddfibver the category of assemblies.

The propositions in HTT correspond to what is often calleskdfons in Hoare and separation logic.
Hence we model propositions using the power set of heaps,standard in separation logic. It is a model
of classical logic. Formally, we prove that the standardhBperdoctrine [6] oveBSet can be extended to
one over assemblies, and this guarantees that we get a samdwe af the higher-order assertion logic of
separation logic (now for dependent types and kinds). Weswerit the interpretation in concrete terms.

Finally, computation types are modeled roughly as follows.computation typel’ - (A).{P}x :
7{Q} : Type is modeled as aadmissibleper of continuous functions froeap to V' x Heap (or, rather,
as a family of such, indexed over the interpretationfpf A per is admissible if it relates the bottom
element to itself and is complete. Admissibility is needed ihterpreting fixed points. An interesting
issue is what per one should use on heaps. We have decided topgs which equates two heaps if they
have the same domain. This ensures that allocation of new ¢&lls, modeled here as taking the least
unallocated address, will preserve the partial equivaertation (see Section 3.5 for a discussion of this
choice). This description is a bit rough for the followingasens. First, the interpretation ensures that
computations can only access memory that is either deschipehe precondition” or allocated during
the computation. Second, the interpretation uses the -clwemplete closure of the post-conditigh This
ensures that the computation type really is interpretechaalanissible per. Taking the admissible closure
is an alternative to restricting propositions to a fragntbat always generates admissible pers or using test-
functions/biorthogonality [9] to force admissibility. ird, the interpretation builds in the frame rule from
separation logic, essentially by interpretiig- (A).{P}z : 7{Q} : Type asI" - VR : Prop.(A).{P *
R}z : 7{Q = R} : Type, at the modeling level. This idea comes from [8, 9]; type tké&oally the ideas
was also used in the earlier formulations of HTT [18, 17].

In HTT every pure term can also be viewed as a computatiorelmtodel this holds because pure terms
are modeled vizontinuously realizedunctions, and such can, of course, also be extended tonconis
computations. Note that a cruder set-theoretic model opthie fragment of HTT, with types as sets with
bounded cardinality and kinds as all sets, would not workgntive would not be able to extend every pure
term (any function, not necessarily continuous) to a catirs computation.

This completes our informal overview of the model. Along thay we have given some pointers to
related work on models of separation logic and categoricadets of dependent type theory. Other very
related work include the recent step-indexed model by Appedl. [2]. Inloc. cit. Appel et. al. describe
a model that can be used to model types for imperative lareguaghe model of Appel et. al. is for a
much simpler type system than the one we consider since wevithalependent types involving pre- and
postconditions. Appel et. al. do, however, include a tresinof recursive types; we have left that for future
work, since it is more complicated in our setting, exactlgdaese our types are much more expressive qua
the use of pre- and postconditions and dependency. In cbrtith Appel et. al. we further include a logic
to reason about terms; so far it is not well-understood homadel logics in step-indexed models.

The remainder of the paper is organized as follows. In Se@iwe present the language of impred-
icative HTT. The model is then presented in Section 3. IniBeet we show how to derive some sound
equations from the model, and in Section 5 we conclude andidbesuture work.

2 Language

In this section we present our formulation of impredicathd€T. As mentioned in the introduction we

have adapted the earlier formulations of HTT so as to makedn@ections with separation logic more
transparent. We will explain the changes below along withgresentation of the language. We include
some examples in Section 2.11.

2.1 Grammar

The grammar for HTT includes a grammar for types and kindgairier presentations of HTT they were
called monotypes and types, respectively. As mentiondakiimtroduction, there is a kiriflype of all types
and a kindProp of all propositions.

On the term level we have pure terms and computations, wtaohbe effectful. Computations are
not a separate syntactic category but rather terms of aic@ttss of types, namely all types of the form

(O){ P}z : T{Q}
The grammar for types, kinds, propositions, terms and cdatipuas is as follows:
Types T7,0,pu= Nat|1|IITx: A7 |XTx: AT |
(I) AP}z : 7{P}
Kinds A,B = 7 |Type|Prop|I¥z: AA| XKz : AA
Prop’s P,Q,R:u= T|L|M=4M|PAP|PVP|
POP|-P|Vz:AP|3z: AP
emp | Mw—,M|P x P|P —«P
Terms M,N := =z |zero|succ M |recnat(M,M) | ()|
Mo AM|XNlw: AM | M M|
(M, M)E | (M, M)T | £st M |
snd M |unpack M as (z,y) in M
case M of zero = M or succz = M
fix f(x)in M | ret M |
LM | M:=; M|dox « M in M |

alloc,; M | dealloc M
and the language sports the following sequents, which wikxplained in the following:

' A: Kind I'-A=A:Kind
I'7:Type
I'+ P : Prop I' = P : PureProp
r-M:A 'EFM=M:A
rerp

6

To express the pre- and post conditions of computationsrimg@f propositions, we define a convenient
macro:
M, —=3x:7.M—,x

The model that we present in the Section 3 also accommodapesduicts of types and kinds, but we
have omitted these from this paper.
2.2 Structural Rules

Here are the structural rules. We [@tdenote anything that can appear on the right side of a tlensti

I'+A:Kind '-M:A T''x: A ART
— proj su
Ne:AFz: A I'A[M/z| = J[M/x]
Nx:Ay: A AT 'tA:Kind THJ
cont weak
Fyz: A Alx/ylF Tlz/y] Lz: AR T

I'FB:Kind Thx:Ay:B,AFTJ
y:Azxz:B,AFTJ

€T

2.3 Contexts

A contextI’ = x1 : Aq,...,x, : A, is a list of kinded variables. Since any type is also a kind,dee
not have a separate type context. We also As® range over contexts. These are the rules for context
formation:
' A : Kind
———
0 Ctx I'x: ACtx

To use any of the following rules, one must first establisfitx.

2.4 Kind Judgments

Rules for establishin@’ - A : Kind are as follows:

I't7:Type

—_——ext
I't+7:Kind

Type Prop
) F Type : Kind) = Prop : Kind

I'z: A+ B : Kind I''z: A+ B : Kind
I'FII"z: A.B: Kind I'EX%x: A.B:Kind

Iz:AFB:Kind TFHA=A":Kind

eqctx
Iz: A+ B:Kind
Note that types are included into kinds viat.
2.5 Type Judgments
Rules for establishing’ - 7 : Type are as follows:
———— Nat —— 1
() Nat : Type fF1:Type

Ix: A7 Type Ix: AF 7: Type
Inr

T, . . T, . . xT
I'FII'z: A7 : Type I'EX"2z: A7 : Type

I'AF7:Type I''AFP:Prop I''A,x:7FQ :Prop
I'F(A){P}x: 7{Q} : Type
Note that the language supports dependent products andafdamsilies of both kindsA and types . The

sums for kinds:X are strong, the sums for types are weak, c.f. the discussigarding the elimination
rules below.

spec

2.6 Proposition Judgments

Rules for establishin@’ - P : Prop are as follows:

I'-T:Prop Tk _L:Prop

'FM=N:A I'FM:A TEN:A

exteq eq
I'-M =4 N : Prop I'-M =4 N : Prop

— emp
I'+ emp : Prop

I'FM:Nat T'F7:Type T'HFN:7T
I'-M+—, N :Prop

—

I'P:Prop T'FQ :Prop I'P:Prop T'FQ :Prop
* -k

I'EP x Q:Prop I'HP —Q:Prop

I'P:Prop T'HQ:Prop ope{AV,D}
I'PopQ : Prop

I'P:Prop T,z:AFP:Prop Q€ {V,3}
I'--=P:Prop I'FQx:A.P:Prop

The judgment F P : PureProp holds ifI" - P : Prop and, moreoverP does not contaiamp, +—, *, - .

2.7 Logical Entailment Rules

Entailment is formulated in a judgment of the foiij © - P where® is a list of propositions’,, . .., P,
such that, for ali, T - P; : Prop and, moreoved' - P : Prop.

We writel' = PforI' | T + P.

We have the standard rules for classical higher-order gaggliogic together with the standard rules for
separation logic. In particular, we have extensionalitgatailment for propositions (two propositions are
equal at kindProp iff they entail each other) and extensionality for funcgon

2.8 Typing Rules

Rules for establishin@’ - M : A are as follows:

Pure Terms

I' M : Nat

I'Fzero: Nat succ M : Nat

'EM:A Tz:AEN: A

rec

T F recnas (M, N) : IIn : Nat.A rEQ:1
I'z:A-M:B INx:AF7:Type Tyo:AFM: 7
I'X2:AM:TI%z: AB FtXT2:AM:TI"z: Ar

r-M:u%Tz:BA I'N:B

I'+M N : A[B/x]

I'M:A TFN:B[M/l

(M N)* . 2%z: AB

'M:A T,z:AF7:Type T'F N :7[M/z]

LEM,N)T 2Tz Ar

Tz: Ao :Type Thz:Ay:c-M:B

I,z:%"2: Ao unpack z as (x,y) in M : B

I'-M:25z: AB I'FM:2%z: AB

I-fst M: A '+ snd M : B[fst M/z]

Note that there are two sets of elimination rules for sume (@ith unpack z as (x,y) in M and one with
fst andsnd). The first one is used for the weak sums over families of types for sums=’z : A.0 (a
type) and and the second one is used for the strong sums oniiegaof kinds, i.e., for sum&Xz : A.B
(a kind). In the following section describing the model welein why we get these different kinds of

elimination rules when we show the concrete interpretatisums. We sometimes leave out the superscript
K and”, when there is no risk of confusion.

Computations

10

I'EM:(A){P}y:0{S} T,A,z:7FQ:Prop
Iy:ok N:(A){S}z: 7{Q}

seq
'tdoy«— Min N : (A){P}z: 7{Q}
I'NAF7:Type T'HFM: 71
dia
Pkret M: (A){emp}z : 7{emp Az =, M}
I'7:Type I' M :Nat
lookup
THAM : (y:7)AM —r ytz : 7{M —r y Az =7 y}
I'7:Type 'M:Nat T'HFN:7
update
'-M:= N:(-){M s -}z : {M —, N}
I'k7r:Type I'EM: 7
alloc
'+ alloc, M : (—).{emp}z : Nat{z —, M}
I'k7:Type I' M :Nat
dealloc

'+ dealloc M : (=).{M +—, —}x : 1{emp}

' M : (A){PAM =nat zero}z : 7{Q} T'F M : Nat
I'yy:Nat b Mz : (A){P A M =nat succ y}z: 7{Q}

case

I' - case M of zero = M or succy = M : (A).{P}z: 7{Q}
D f 1"y A(A){PYz: 7{Q},y : A M : (A){P}z : 7{Q}

Ik fix f(z)in M 117y : A(A){P}z: 7{Q}
Since we have recursion over the natural numbers in the pagenent, one might ask why the factorial
example in the introduction is coded via a combinatiorf@af andcase and perhaps even question the need
for a case rule for computations. It has been included fofdhewing reason: when reasoning about each
branch of acase, the pre-condition will contain information about whichabch it is. This allows us to
conclude thaff ac indeed does compute the factorial in its post-conditionS@etion 2.11 for details).
We often abbreviatéo y < M in N to M; N wheny does not occur irV.

T

11

2.9 Structural Rules for Computations

'-M:(A){R}x:7{S} T’,AFPDOR T AFSDQ

consequent
' M: (A)A{P}z:7{Q}
I'EM:(A){P}z:7{Q} TI';AF R:Prop
frame
'EM:(A){P x R}z :7{Q x R}
'EM:(A){P}z:7{Q} T,AF R:PureProp
A— frame
PEM:(A){PAR}x:7{QAR}
PEM:(A){P}z:7{Q} TI''AFo:Kind
weakening
'EM:(Ay:o0){P}z:7{Q}
I'AFP:Prop T'A,xz:7FQ:Prop
CHM:(Ay:o){P}z:{Q} .
strengthening

' M: (A)A{P}z:7{Q}
The A-frame rule is not standard in separation logic and indeedtisalid in standard models of separation
logic, where term variables can be mutable. The intuitiasoa for why the rule holds in our model is that
the propositionk is assumed to be pure (not involving the heap) and, moretharall our term variables are
immutable. In other word& can only speak about immutable variables so if it holds lsefocomputation
is executed, then it also holds after the computation iswgrelcsince the variables are not mutated.

2.10 External Equality

The external equality rules for terms, types, kinds, ang@sdions correspond to the least congruence
relation derived from the following equations.

(MSTg: AM)N = M[N/z) : 5Tz . A.B
M =\Ty: AMz 15Ty : AB
fst (M,N)=M: A
snd (M,N) =N : A[M/z]
unpack z as (z,y) in (z,y) =z : 7
unpack (M, N) as (z,y) in K = K[M/xz,N/y| : T
M = (fst M,snd M) : 5z : A.B
recNat(M, N)(zero) =M : A
recNat (M, N)(succ (n)) = N(recnat(M,N)(n)) : A
dox « Minretx =M : (A){P}x: 7{Q}
dox «ret M in N = N[M/x]: (A){P}y: 7{Q}
dox « (doy«— M in N)in K =
doy«— Min(dox «— N in K): (A){P}x : 7{Q}

12

2.11 Examples

As mentioned in Section 1, we can code the factorial funcfiea: IIn : Nat.(—).{emp}m : Nat{emp A
m =nat N} as
fac=f£fix f(n) in case n of
zero = ret 1 or

succy = dom « f(y) inret m X succy

Let us discuss why it has the claimed type. For conveniencd’ ldenotelln : Nat.(—).{emp}m :
Nat{emp A m =na¢ n!}. We begin with the two branches, starting with #eero case. Since : Nat + 1 :
Nat we get

n:Nat - retl:(—).{emp}x : Nat{emp A x =Nat 1}.

Using A~frame we obtain

n:NatFretl:(—).
{emp A n =Nat 0}z : Nat{emp A =Nat 1 A7 =Nat 0}

By consequence we can weaken the post-condition slighthptain
n:Nat Fretl: (—).{emp An =N 0}z : Nat{emp A z =Nat n!}.

We can then weaken the contextfto 7', n : Nat.
For thesucc case we can similarly conclude that

y : Nat,m : Nat - ret m x succy : (—).
{emp A m =Nat y!}x : Nat{emp A x =nat (succ y)!}
which by weakening)—frame and consequent gives
f:T,n:Nat,y: Nat,m: Nat - ret m x succy: (—).
{emp A m =Nat y! A n =nNat succ y}z : Nat{emp A x =Nqat n!}
Now, using/A—frame, we can show
f:T,n:Nat,y:NatF f(y): (—).
{emp A n =Nat succ y}m : Nat
{emp A'M =Nat Y! A n =Nat SUCC y}

Thus we can run the two in sequence to obtain

f:T,n:Nat,y: Nat -dom « f(y) inret m X succy : (—).
{emp A n =Nat succ y}x : Nat{emp A x =nq n!}

The case rule now gives that

case n of
zero = ret 1 or

succy = dom « f(y) inret m X succy

has typel in contextf : T, n : Nat. Thus, by the fix rule, alsgac has typeT.

13

3 Model

In this section we define our realizability model. We begindegcribing the universe of realizers; next we
define a structure for modeling the pure type theory (kind$ tgpes); a structure for modeling the logic
(props); and finally we explain how computations are modeled

3.1 Universe of Realizers

Let Cppo, denote the category of chain-complete pointed partialrerdad strict continuous functions.
Recall that one can solve recursive domain equatioi%jpv for locally continuous bifunctors o@'ppo | .
We take our universe of realizers to be a domidisatisfying a recursive domain equationGfppo . To
defineV” we first recall a number of objects tippo ;| and locally continuous (bi)functors @rippo | .

In Cppo_ , we find the following objects:

L: {L,*} with L < =

N, : The flat naturals. The set of natural numbers, all relatedhémnselves, none related to any other,
augmented with a bottom element.

E: {L1,err}with L < err. The lifted error value. Isomorphic o .
We further find the following functors:

—o: strict continuous function space.

@: smash sum.

®: smash product.

H: V — {h € Cppo| (N, V) | supp(h) is finite}, wheresupp(h) is the sef{z € dom(h) | h(x) # L},
ordered in the following wayh < h' < supp(h) = supp(h’) A Vn € supp(h).h(n) < h/(n). The
functorial action is by composition.

T: V—HV), - V&®HV), @E.
The domain of realizers is a domdinsatisfying the following recursive domain equationCiippo :
Vel oN eVxV)ie(V-V) L eTV)L

whereV — V is the set of continuous functions froii to V. Note that(V x V), ~ V|, ® V| and
V -V ~V, — V,sothe above recursive domain equation really can be soiv€gpo | .

To denote elements i we shall make use of the following injection maps, mappirgrents into the
appropriate summand and then, via the above isomorphisml/in

ing1l—V
iny: N—V
ing: (VxV)—=V
in:(V-V)-V
int: T(V) =V
We use these maps so that whenever we write(f), say, we know thaf is a function and not the added
bottom element ofV — V), .

14

Lemma 1 V is a total combinatory algebra.

Proof.
This follows sinceV — V is aretract oft’. (J

3.2 Semantic Operations on Heaps

Elements ot (V') are total functions albeit with finite support. We wish taithof them as partial functions
in order to model separation logic. This is accomplishednbgrpretingh(n) = L as “n is not allocated in
h”. Here we describe some definitions reflecting this integiren.

Firstly we can express that two heaps are “equally definedt.nEh’ € H(V') we define the relation

h+ 1/ ash andh’ having the same support.

We can then define theoperator on “disjoint” heaps. For heaps, ho € H(V') such thasupp(hi) N
supp(hz) = (), we defineh; *h, as the heap with suppestipp (71)Usupp(he) satisfying(hi +ha)|supp(n,) =
h1 A (h1 % h2)|supp(he) = ha2- In other wordshy * hy is the (disjoint) amalgamation @f andhs.

Forh € H(V), it makes sense to ask for “the least unallocated cell’ofleastfree(h) is defined as
min{n € N|h(n) = L}.

Updating the heap cell is by redefining the value at. Forh € H(V), n € N andd € V, we define
the heaph[n — d] by

Am € N.if m = n then d else h(m).

Allocation is then given by updating a cell that was previpumallocated with an element different
from _L and deallocation of celt in A results inh[n — _L].

3.3 Types and Kinds

In this section we describe the FhoDTT structure needechferpreting types and kinds. As mentioned in

the introduction, the structure is reasonably standand; atvariation over the one described in, e.g., [14,

Examples 11.6.7]; we use another universe of realizers &ub& complete pers instead of extensional pers.
First we describe the categafysm (V') of assemblies ovar, which will be used for modeling contexts:

Definition (Asm(V)):
Objects: (X, E), whereX is a set, and? : X — P(V), such that for all: € X, E(x) # 0.

Morphisms: f : (X,E) — (X', E’), wheref : X — X' is a set-theoretic function, such that there
exists a realizew for it, i.e

Jo:V — VVz e X.Vd € E(x).a(d) € E(f(z))

Note thatAsm(V') is an extension of the category of sets and functions: tregefull and faithful
functorV : Set — Asm(V'), which maps a seX to (X, E) with E(x) = V. FunctorV is right adjoint

tol' : Asm(V) — Set, defined byl'(X, E) = X, that is, there is a one-to-one correspondence between

morphismg X, E) — V(Y) in Asm(V') and functionsX — Y in Set.

15

Kinds in context are modeled as objects in a category
UFam(Asm(V')) which is the total category of the fibration

UFam(Asm(V)) (1)

|

Asm(V)

Let us explain what this means concretely. For every olfj&ctE) in Asm(V), there is a category, called
the fibre over(X, F') and denoted by/Fam(Asm(V)) x,g). Itis defined as follows:

Definition (UFam(Asm(V))x,g)):

Objects: ((Az, E4,))zex families of assemblies ovér indexed byX, i.e. forallx € X, (A5, E4,)
is an object ofAsm(V").

Morphisms: (f.)zex:((Az, Ea,))zex — ((Bz, EB,))zex, Where for allz € X, f,: A, — B, and
there exists aniformrealizera €¢ V -V — V, i.e.

Ve e XVee€ E(z)Va€ Ay.de Ep, (a) =
a(e)(d) € Ep,(f(a)).

Thus objects in the fibre ovéX, E') are families of assemblies indexed ovéiand morphisms between two
such families are uniformly realized morphisms between bemsiof the family. The functor in (1) maps
an indexed family to its indexing obje¢X,). The fact that the functor is a fibration means in particular
that whenever we have a familyA,, £4,)),cy in the fibre over(Y, Ey) and a morphism: : (X, Ex) —
(Y, Ey) in Asm(V'), then we canreindexthe family to be a family((A(,), E4,,,))zex Over (X, Ex).

This indexed structure is needed to interpret kinds in cdantecontextI" is interpreted as obje¢X,)
in Asm(V'), then kindl" - A : Kind is interpreted as an object in the fibre oyéf, £), i.e., as a family of
assemblies indexed ovéf.

The fibration of uniform families of assemblies is equivalenthe standard codomain fibration over
assemblies, denotetbm (V)™ — Asm(V).

Types in context are modeled as objects of the total categfdhe fibration

UFam(CPer(V)) 2
Asm(V)
of which the fibre ovef X, E) is given by
Definition (UFam(CPer(V)) x,g)):

Objects: (R,).cx families of chain-complete partial equivalence relationsr V' indexed byX, i.e.
forall x € X, R, is a chain-complete per ovéf.

Morphisms: (f;)zex:(Rz)zex — (Sz)zex, Where for allx € X, f, : V/R, — V/S, in Set (here
V/R, is the set of equivalence classeshf) and there exists aniformrealizera. : V. — V — V,
i.e.

Vo € X.Ve € E(z).Yv € |Ry|.ae)(v) € fo([v]R,)-

16

There is a full and faithful fibred inclusion froFam(CPer(V')) to UFam(Asm(V')), which maps a
family of pers to a family of assemblies. It works simply bywing every per as an assembly, which can
be done as follows. Suppogeis a per; then the corresponding assembl{}igR, E), whereV/R is the
set of equivalence classes Bfand E is the identity function. In fact, the inclusion has a fibrett hdjoint:

Lemma 2 The fibred inclusion oFam(CPer(V')) into
UFam(Asm(V)) has a fibred left adjoint.

Proof.

The proof proceeds by showing tHaFam (CPer (1)) forms a fibred reflective subcategoryléFam (Per(V'))
and then composing with the well-known fibred reflection EwWUFam(Per(V)) andUFam(Asm(V))
(see, e.g., [14, 1.2.6 and 1.8.7]). For the former, we jussemt the proof that the inclusion 6fPer (1)
into Per(V) has a left adjoint; it lifts easily to uniform families. Theft adjoint maps a peR to R, the
least complete per containing. For adjointness, we need to show that morphisms fiomoe S, with S

a complete per, are in one-to-one correspondence with risongHfromR — S. To this end, one gives a
construction ofR by transfinite recursion and then shows the corresponden¢eatsfinite induction, as
in [1, Section 15.7]1

We now present the formal statement which ensures that thetwtes defined above can be used to
model soundly the pure type and kind fragment of HTT. Afteatttwe explain how types and kinds are
modeled concretely.

Theorem 1 The categories and functors in the diagram

UFam(CPer(V))C UFam(Asm(V)) = Asm(V)™

T T

Asm(V)

constitute a split weak FhoDTT [14, Ch. 11] with a fibred nafunumbers object itUFam(CPer(V)),
which is also a fibred natural numbers objectliiram (Asm(V)).

Proof.
As in [14, Example 11.6.4], using Lemmas 1 and 2. In the fiber X, F), the natural numbers object is
the constant family of per§R,).cx given by R, = {(inx(n),inn(n)) | n € N}. O

Corollary 1 The pure type and kind fragment (excluding computationsypé HTT is sound wrt. the
interpretation in the above FhoDTT.

We now explain in concrete terms how pure types, kinds, amdst@re interpreted in the FhoDTT. For
a contextl’, let Kindr denotes the set of syntactic kindssuch that” - A : Kind and Typesp denotes
the set of syntactic types such thatl’ + 7 : Type. For a kindA in Kindsr, let Terms4 denote the set
of syntactic terms\/ such tha” - M : A. The interpretation of contexts, types, kinds, and punasds

17

given by functions:

I : Ctxs — Asm,

[[_]]Kinds i YrectxsKindsp — UFam(ASIH(V))[[FﬂCtxs,
[-]5¥Pes : Srecixs Typesy — UFam(CPer(V))rjouss,
[

Y PeCtxs B AcKindsp 1erms 4 —
UFam(Asm(V))prpons (1, [A] Kinds)

Note that[—]“** appears in the domain of the other functions. This is feasdiiice the functions are
defined by simultaneous induction on the derivation and deoto derive that, say, a certain type is a type,
one first has to derive that the appropriate context is a orifdus]—]“** will be defined per the induction
hypothesis. For the same reader]¥"% can be used in the domain pf] Terms,

The empty context is interpreted as the terminal objectsm(V):

019 =1=({x},x = V)
and if [[]°% = (X, E) and[I" - A : Kind]¥i"ds = ((A,, Ea,))zex then[T, x : AJC% is
(CpexAy, (x,a) = {(d,d) eV xV | de E(x) Nd € Eq,(a)})

Thus context formation is modeled by dependent sum.
We now describe the interpretation of kinds.

ext is modeled by the inclusion froddFam (CPer (1)) to
UFam(Asm(V)).

Type is modeled as an object in the fibddam (Asm(V')); over the terminal object in Asm(V), i.e., as
an object inAsm(V'), namely the objec¥ (Obj(CPer(V)), whereObj(CPer(V)) is the set of all
chain-complete pers ovéf.

Prop is modeled byWP(H(V")) (a full explanation will be given in the next subsection).

IIK is modeled by dependent product:[If - A : Kind]¥"% = ((A,, E4,))zex and[[,z : AF B :
Kind[X" = ((B(y.0), BBy, 1)) (@.a)eze:x.4, then[[= T8z : A.B : Kind]**% is given by

({f € Haea, By | En,(f) # 0}, En,)zex,

whereFEr;, is given by

fr—=Adino(g) |Va € Ay.e € Ea,(a) = ge € Ep,, (f(a)}

YK is modeled by dependent sum: [- A : Kind]¥" = ((A4,, Ex,))eex and [T,z : A F B :
Kind[X"% = ((Bg.0), BBy, .)))(@.a)esa:x.4, then[[= X5z : A.B : Kind]*"% is given by

(ZaEAa:B(:c,a)y (CL, b) =
{inx(d,e) |d € Ea,(a) Ne € Ep, (D)})sex-

18

eqctr External equality of kinds is interpreted by equality in thedel, so the interpretation of = : A’ -
B : Kind is the same as the interpretationlfr : A - B : Kind.

We now describe the interpretation of the pure types:
Nat is modeled by the flat naturals, i(&(iny(n), inn(n)) | n € N})

1 is modeled by the terminal object @Per(V), i.e., as

({(ina(x), ina(+)) }).-

IIT is modeled by dependent product:[If - A : Kind]¥"® = ((A,, Ea,))sex and [,z : A F 7 :
Type] ¥ = (R(;.0)) (z.a)es:x.4, then[D = Tz : A7 : Type] VP is given by

{(in~(f),in~(9)) | Va € As.c € En,(a) = f(e) Rz 9(e)}

YT is modeled by dependent sum: [- A : Kind]®¥"® = ((4,,E4,))eex and [T,z : A F 7 :
Type] ¥ = (R(;.0)) (z.a)esa: .4, then[[' = STz« Ar : Type]1¥Pe is given by

{(inx(d,e),inx (d',¢')) | 3a € Ap.d,d' € Ea,(a) Ne R q) €'}

Note the use of the chain completion (the reflection itteum (CPer(1))). We need to use the chain-
completion to get a chain-complete per and the elementsichhin-completion are not necessarily
pairs of realizers for the constituent types. It is becadgheouse of this chain-completion that these
sums are only weak, i.e., that the associated eliminatitenisihe rule forunpack, rather than rules
involving fst andsnd. Indeed, if we try to apply the first-projection realizer toealizer for an
element of the above sum, then we will not be sure to end upawigtalizer forA (we only know that
we’ll get something in the chain-completion 4).

An external equality judgment of kinds- A = B : Kind holdsif A andB are interpreted as the same
objects in the fibre over the interpretationlaf Likewise for external equality of typdsSt+ 7 = o : Type.
The soundness corollary 1 means that any external equadignjent that can be derived holds.

Lemma 3 For any typel I o : Type, no per in the familyiT" - o : Type] T¥P* relates L to itself.

Proof.
By induction on the derivation df - o : Type. O
The above lemma shows that any well-typed term correspam@sproper value in the model, even the
diverging computation. The computation types relate thstlelement o’ (1) to itself.

We now describe the concrete interpretation of terms. IFér M : A, [I = M : A]Te™s gives
a morphism in the fibre categofyFam(Asm(V))rjces from the terminal object to [A]¥"s. Such a
morphism can be described by a continuous function that mesgdizers for the context to realizers fdr.
Assume thaf[']“** = (X, Ex) and thaff AJ¥"% = (Y, Fy,),cx. Then a morphism

(fw):BEX : ({*}7 * = {inl(*)});BEX - (Y$7EYT)$EX

has a uniform realizat, such that

Vo € X.Ve € Ex(x).Va € {x}.Vd € {ini(x)}.a(e)(d) € Ey,(f(a))

19

Sincea is alwaysx in the above equation we can simplify it a bit. If we dengie) by [M] and write
a(e)(iny(x)) as justa(e), the requirement becomes

Vz € X.Ve € Ex(z).a(e) € Ey,([M])

In the case thatl is a type,[M] will be the equivalence class of the complete p&f>Pe. In this casef is
uniquely defined byv. Otherwise][M] will just be an element oY, and the subset df, Ey, ([M]), may
overlap with other subsets returned by, . Thus, we must provide botf\/] anda, unless we knowA to
be a type.

The interpretation of terms of pure types and kifils- M : A]Te™s s as follows:

[T F zero : Nat]™erms = \e.iny(0)
[T F succ M : Nat]Terms
= Me.case [+ M : Nat]Terms(e) of
iny(m) = iny(m + 1)
otherwise = L

[T F recyag (M, N)|Terms
= Xe.in_,(A\v.case v of iny(x) = f(x)
otherwise = 1),
wheref(0) = [F M]Terms(e)
andf(n+1) = [T - NJ™™(e)(f(n))
[0 () : 1]7ms = Xe.ing (¥)
[T AR A M - T Ky o A B]Terms
= desin_(\z.[T,x : A+ M : B]T™s(e, x))
[0 =M N : A[B/z]]*erms
= Xe.case [[' = M : Nat]™™s(e) of
in_.(f) = f([L = N : Nat]Terms(e))
otherwise = L
[T F (M, N)TEK . 5T Ky . A B]Terms
= de.letd = [['F M : A]Te™S(¢) in
ing(d,[T,z: AF N : B]T™S(e, d))
[T,z : %72 : Ao I unpack z as (x,y) in M : 7] Terms
= Me, (z,y). [T,z : Ay : o = M : 7]Te™S((e,),)
[T+ st M : A]Terms
= Xe.case [['+ M : %Kz : A.B]Terms(e) of
ing(m,n) =m
otherwise = L
[T F snd M : A]terms
= Ae.case [['+ M : %Kz : A.B]Terms(e) of
ingx(m,n) =n

otherwise = |

20

Most of the interpretations are straightforward. The iptetation ofunpack works because of the follow-
ing. The realizers: andy come from the interpretation of the weak sum, hence from tiagnecompletion
(c.f., the explicit description of the interpretation ofnss). But since[l’,z : A,y : ¢ = M : 7]™™s s

a continuousrealizer, it also works for elemenisandy possibly added via the chain-completion process.
Formally this is exactly what Lemma 2 guarantees (see thef gietch of the lemma).

This completes the description of the interpretation ofrtbe-structural rules for pure types and kinds.
The structural rules are interpreted using the basic fitmmatistructure of an FhoDTT. Here we just discuss
a simple example; see [14] for details. Suppose thét interpreted by(X, Ex), thatT' F A : Kind
is interpreted by the familyY,, Ey,).cx over (X, Ex), thatl' = M : A is interpreted bym : 1 —
(Yz, By,)zex over (X, Ex), andl',z : A+ B : Kind is interpreted bY(Z,), F(z.y)) (z,4)€5,.x Yo- THEN
I' = B[M/z] : Kind is interpreted by the familyZ ;. .,(2)), Flz,m(z)))zex -

We say that an external judgment of kinds- M = N : A holdsif M and N are interpreted as the
same morphism. The soundness corollary 1 means that ampaixéguality judgment of terms that can be
derived using the rules in Sections 2.10 holds.

3.4 Logic

As in separation logic, the logic is really a logic of heapd hence propositions will be modeled as subsets
of H(V'). Again, we begin with the abstract description of the stiretneeded and then follow it by a
concrete description of the interpretation.

We obtain the structure needed for interpreting the logidodews. First, the power set of heaps
P(H(V)) ordered by inclusion is a Bl-algebra #et. We now embed it intdAsm(1") via the functorVv
to getV(P(H(V))). One can now show that the object is an internally completal@bra inAsm(V).
Hence, as explained in [6], there is a canonical Bl-hypeardeeP = Asm(_, V(P(H(V)))), which soundly
models classical higher-order separation logic. Note tafibre over an objedtX, F) in P is the set of
morphisms inAsm(V') from (X, E) to V(P(H(V"))), which, as mentioned earlier, is in one-to-one corre-
spondence with functions froot to P(H(1)) in Set. In line with the earlier presentations of structures for
types and kinds, we tur® into a fibration via the Grothendieck construction to getftheation

Fam(P(H(V))) 3)

|

Asm(V)

of which the fibre ovef X, E) is the poset given by
Definition (Fam(P(H(V)))(x,r)):
Objects: ¢ : X — P(H(V)) functions fromX to P(H(V)).
Morphisms: ¢ < ¢ iffforall z € X, ¢(x) C ().

Theorem 2 The fibration in(3) is a Bl-hyperdoctrine with quantification along all maps hetbase cate-
gory?

The phrase “with quantification along all maps in the basegmly” means that there are left and right adjoint along all
reindexing functor.™, for all morphismsu in the base. This ensures that the logic quantifiers can bepiretted over the dependent
type theory (c.f. [14, Section 11.2]). In the definition ofByperdoctrine given in [6] we only asked for quantifierstwig¢spect to
simple projections since that suffices for interpretingdawer a non-dependent type theory.

21

Proof.

Each fibre is a Bl-algebra since it is defined pointwise overBhkalgebraP(H(V)). Clearly, V(P(H(V)))
is a generic object. For evety: (X, Ex) — (Y, Ey) in Asm(V), there is a right adjoint,, to reindexing
alongu, given byV,(¢)(y) = {h € H(V) | V2 € Xwu(z) =y D h € ¢(x)}. The Beck-Chevalley
condition is easily seen to hold. Existential quantifiers given similarly.(]

Corollary 2 The interpretation of the logic in the above Bl-hyperdowris sound.

We now describe the interpretation of the proposition judgta concretely. For a contekf let Propsp
denote the set of syntactic predicatésuch thaf’ - P : Prop. The interpretation function has the type

[<]F™°P : SrecixsPropsy — Asm([I]°%S, VP(H(V))).
Assume thaf[']“** = (X, E). Then the proposition judgments are interpreted as fotlows

[T F emp : Prop]s™ = {An.L}
[P M =7 N s Prople™ = {h | h(m) ([7]:"*")=n},
where[l' - N : 7)1 = p and[I" F M : Nat][erms = m
[T+ PxQ : Prop]s™® =
{h|3hy € [T F P : Prop]s™ hy € [T+ Q : Prop]L™.
h = hy % hy}
[THP —Q : Prop]y™™™ =
{h|Vhp € [T+ P:Prop]s™.h+hp € [T+ Q : Prop]s™"}
[THT: Prop]]gmps =H(V)
[THL: Prop]]gmps =0
[+ M =4 N : Prop];" =
{h][I F M]ge™ = [[- NJ;o™}
[T FPAQ : Prop]h™ =
[T+ P: Prop];"” N [T+ Q : Prop]; ™

[C+PVQ: Prop];™™ =

[THP: Plrop]]gmpS Ul +Q: Prop]]grops
[TFPDOQ: Prop]]gmps =

{h|he[lF P:Prop]s™ = h e[+ Q : Prop]y "™}
[T+ =P : Prop]y™ = H(V) \ [T+ PJ5™
[THYy:AP: Prop]]gmps

—{h|Vy € [[FA:Kind[$™ h e [I,y: A+ P] %)
[T+ 3z : A.P : Prop]s

={h|Iye[l'FA: Kind]]lxﬁnds, hell,y: AF P]]fxroy};s}

In the display above, we use the following convention whessenting the semantics for the quantifiers.
Note that[I" - A : Kind]¥" is a uniform family of assemblies ovéX, £), so[I" - A : Kind]¥inds js

22

an assemblyY, Ey). When we writey € [F A : Kind]¥"s, we mean thay € Y. Note thaty may, of
course, depend an

LetT be a context and suppose thBf“*s = (X, E). We say that a logical entailmeFt| Py, ..., P, F
P holdsif, forall z € X, [l - P, A --- P,JF™P(2) C [I' P]P™Ps(x). The soundness corollary
(Corollary 2) means that any logical entailment that candxévdd using the rules for logical entailment in
Section 2.7 holds.

Now it should also be clear why the kiittop was interpreted a¥ (P(H (V")) earlier.

Lemma4 LetI' - P : PureProp, and suppose thdi']“** = (X, E). Then the interpretation aoP is a
function¢ from X to P(H(V')) satisfying thatp(z) is either the empty set of the set of all heaps, for:ah
X.

3.5 Computations

We now describe how computations are interpreted in the médanentioned in Section 1, a computation
type (A).{P}z : 7{Q} is modeled as an admissible per of realizerd'{iV'), that given heaps satisfying
the preconditionP do not produce error and upon termination leaves a heagysagishe postcondition
Q. The contextA is implicitly quantified, so that this behaviour should bdackd to for all instantiations
of A. Formally it looks like this. Assumél'|“*® = (X, FE) and [, A]°* = (X,cxYz, F). Then
[T F (A){P}z : 7{Q} : Type]™¥Pes is the family of pers(S.).cx with fields given byd € |S,| iff
d = int(f)and

Vy € Y,.VE € Propp a.Vh € [[,A F (P % E)]J;o%

(zy) -
(f(h) # exr) A (F(h) = (v, hg) =
vr € |[T,AbFT: Type]](ngfs\ A

hf - [[F,A,.’L‘ . T }_ (Q * E)]]z;z}?:v))

So suitable realizers are elementsTdfl/) that for any extensior? *x E of P takes heaps satisfying
P x FE to heaps satisfying the chain completion@f « E and do not produce error. Thus the frame
rule is baked into the interpretation of computations. Ttte@ per is then given bynr(f) Sy int(g) iff
ing(f),int(g) € |S:| and

Vy € Y,.VE € Propp o.Vh, W € [[,AF (P * E)]]f;‘;};?
hth =
F() L g0 LA(F(R) = (v5,hp) A g(B') = (vg, hg) =

vp [0, A7 Typel (205 vy A hy = hy)

So two realizers denote the same computation if they bothl thle specification and on heaps with equal
support gives results related in the interpretation of gtern type and heaps with equal support.

Lemmas Let [I]°* = (X, E) and[I' - (A).{P}z : 7{Q} : Type]™P* = (S,).ex. Then for all
x € X S, is a chain-complete per relatinge(Ah.L) to itself and relating only elements in (the image of)
T(V). As such it is an admissible per ovE(V').

Proof.
S, is easily a per. It trivially relates only elementsiiV’) andinr(\h. L) to itself and it is chain complete

23

because the interpretation nfis chain complete as is the chain completion of the integpict of Q * E
and the relatior=. [J

As mentioned in the introduction, the reason we require ¢batputations should produce heaps with
equal support (given suitable heaps with equal support)asthen allocation can simply be modeled by
taking the least unallocated address (see the semanticklot below). An unfortunate consequence of
this choice is that two computations that intuitively beddw the same way but allocate cells in different
order maynot be equated by the model. We believe that the model can be ddineising realizers in
FM-domains [23, 22, 4], such that support would then be upperautation of the locations in the heap.
(Indeed, FM-domains have already been applied in a receatrgric model for separation logic [9].) We
leave this refinement for future work, however.

We now describe how terms of computation types are intexgrietthe model. Recall that for a compu-
tation type(A).{P}z : 7{Q}, we can give the interpretation 6f- M : (A).{P}z : 7{Q} by giving the
realizera.

We first consider the structural rules for computations. &gimwith the frame rule. Assunf&]“ts =
(X,E) and that]ll' = M : (A).{P}x : 7{Q}]T™s is realized bya. Then[[' - M : (A).{P * R}z :
{Q * R}] ™™ is also realized by since, for allr € X, the field of [l - (A).{P}x : 7{Q} : Type],***
is included in the field of ' - (A).{P * R}z : 7{Q * R} : Type].""* (here we use that the frame rule
is baked into the interpretation of computation types). fidmeaining structural rules are also interpreted by
using the same realizer (for the consequence rule we usththahain-completion operation is monotone).

24

Now for the non-structural rules. AssunE]“*™s = (X, F) and that[M] is given bya and[N] is
given by when they are of computation types anmdandn otherwise. Then

[l Fdoy« M in N : (A){P}x: 7{Q}]Te™s
= Ae.\h.case a()(h) of

(var, b) B(e; var)(har)
err = err
1L = 1
[0 Fret M : (A).{emp}z : T{emp A x =, M }]Terms
= Xe.\h.(m(e), h)

[CHELM : (y:7)AM vy gtz 7{M —, y Az =, y}]Terms

= Ae.\h.if h(m(e)) = L then err else (h(m(e)),h)
[CFM:=;, N:(=){M — =}z : M s, N}]Terms

= Xe.Ah.(x, h[m — n))
[0 Falloc, M : (—).{emp}x : Nat{x s, M }]Terms

= Ae.\h.let | = leastfree(h) in (I, h[l — m))
[T Fdealloc M : (—).{M +, —}x : 1{emp}]Terms

= Xe.A\h.if h(m) = L then err else (x, h[m — L])
[T+ case M of zero = Mj or succy = My :

(A) AP}z : 7{Q}] ™ = Xe.\h.

if m(e) = inyn(0) then ay(e)(h) else aa(e,m — 1)(h)

[0 Ffix f(z) in M : 1Ty : 0.(A){ P}z : 7{Q}]*erms

= Ae.fixedpointof Af.\y.a(e, f,y))

Note that the realizers for computations are as should bectsg. Consider, for example, lookllf, whose
realizer ishe.Ah.if h(m(e)) = L then err else (h(m(e)),h). Given a realizee in Ex(x) (intuitively,
a realizer forl"), it produces a computation that when given a heggelds error if the locatiomn(e) is not
allocated inh and otherwise the value stored/iratm(e), along withh. The realizee is needed, as always,
because the type theory is dependent.

For fixed points, the realizer is obtained by the usual leastlfpoint construction, which applies since
A Ay.ale, f,y) is indeed an endofunction of the pointed dom&in— 7'(V'), whena is the realizer for

[0, f: Ty : 0. (A) AP}z : T{QY,y : o = M : (A){P}x : 7{Q}]Te™™s.

Theorem 3 The interpretation of computations is well-defined, i.ay avell-typed computation terin +
M : (A){P}x : 7{Q} is interpreted as a morphisih— [I" - (A).{P}x : 7{Q} : Type] P in the fibre
over [T']°*s. Moreover, the external equality rules for computationgiho

Proof.

Well-definedness is proved by induction. The monadic eglerquality rules for computations (the last four
rules in Subsection 2.10) hold since the interpretatioroafgutation types really does involve a categorical
monad. The essential point is that there is an adjunctiond®st the category of admissible pers oVgl)
andCPer(V); this adjunction gives rise to a monad 6®er(1). [J

25

Notice that the above theorem expresses welk-typed programs do not produce errdif [T =
(X,Ex)and[l' - M : (A){P}z : 7{Q}]"®™ = m then, for allz € X, alle € Ex(z), m(e) is in
[l F (A) 4P}z : 7{Q} : Type]2**. Thusmi(e) is a realizer inT(V'), which given a heap satisfying
P does not producesrr. If m(e) then terminates (does not give), it returns a value and a heap in the
chain-completion of).

Let us discuss the use of the chain-completion briefly.

When computations are typed with a post conditipthat is not chain-complete, the interpretation can
be counterintuitive because the resulting heap may not lig¢ (but, of course, it will be inQ’s chain-
completion). As an example we consider the function from Bdction 5.1]. It takes some recoding due to
the monadic presentation of HTT.

LetNat, = (—).{emp}x : Nat{emp}. We then have the following terms

Q : Nat | = diverging
zero| : Nat| = ret zero
succ | : IIn: Nat, .Nat

= An: Nat,.dom < ninret succm

We can now describe partial functions. Let= IIn : Nat.Nat; then non-totality can be described by the
predicate
nt = 3n : Nat.f(n) =Nat,

with the free variablef : T'. From this we can build a type of non-total functions
nontotal = (—).{emp}f : T{emp A nt(f)}.

Given a partial function we can produce one that is definedanenplaces via the terrwp : I1f : T.T
given by:
Af :T.\n : Nat. case n of zero = zero
or succy = dot < f(y) in succ | (¢)

If fis defined at: thenexp(f) is defined at + 1 as well as or). However, if f is non-total then so is
exp(f), SO we can write a termpand : Ilp : nontotal.nontotal:

expand = \p : nontotal.do f < p in ret exp(f)

To type this function we use that(f) D nt(exp(f)). Now taking a fixed point ofxpand should leave us
with the identity function, which is certainly a total fummb. The fixed point does leave us with the identity
function, but we can give it the tydéu : 1.nontotal:

fix f(u) indo p < f(u) in expand(p) : ITu : 1.nontotal

wheref is of typellu : 1.nontotal.

This may seem disturbing and highlights the fact that for styoondition the chain-completion of
@ may be difficult to guess. The reason tldatis not chain-complete already is that we used existential
guantification over an infinite set in the predicate and it is well-known from domain theory that chain-
complete predicates are not closed under such existen@dlsourse, there are two ways to deal with this
issue. One is simply to ban postconditions that are not ebamnplete (and there are well-known ways
to do so by restricting the grammar for propositions; seg,, §11]). Another, which we have chosen

26

here, is to formally chain-complete the post-conditionhie tmodel. This has the following advantage:
If the post-condition@ is already chain-complete then chain completing it doeschange it, of course.
Thus in this case the heap possibly resulting from the coatiout will in fact satisfy@. This holds,even

if subcomputations have been specified using pre- and pogiioosdthat are not chain-complete, qua
soundness. For example, since the interpretationngd is chain complete, we can conclude that any
computation of typé—).{emp}x : 7{emp} must deallocate any memory that it allocates, just as wedvoul
expect. Moreover, if you prefer a more standard interpigiathen you can just restrict yourself to using
only chain-complete predicates; then our interpretatidhindeed be the standard one.

4 Reasoning via the model

We now exemplify reasoning via the model. For reasons ofespae only include two simple examples.

The model can be used to show that terms are propositiorgligl eAs a simple example, we now argue
that the two implementations of factorifhc and fac’ presented in the introduction are propositionally equal
at their typeT' = IIn : Nat.(—).{emp}m : Nat{emp A m =nat n!}. Looking at the interpretations in
the model they both, when applied to a numhegive a computation that takes the empty heap. L to
(n!, Am._L), even thougtyac’ allocates and deallocates local storage during its cortipntal hus they are
related in the interpretation @f. This means that they are propositionally equal-H.e fac =7 fac.

We can also use the model to show types propositionally e@aaisider the two computation types

Ty =(x:0,y:7){P}r:p{Q} and
Ty = (2 : ¥z : 0.7).{unpack z as (z,y) in P}
r : unpack z as (z,y) in p
{unpack z as (z,y) in Q}
Intuitively they contain the same terms, since computatida not depend on the logic variables. This

intuition is reflected in the model as the two types are imtgal as the same family of pers. This can be
seen by comparing their fields. Assuifi¢- 71 : Type andT - T : Type and that][[']™Pe = (X, E).

Consider therinH(f) € [T1].. For all realizersd,d’ with ((z,d),d’) in [,z : o,y : 7]* andr in
Iz : c 7 B op] WP must satisfy the computational requwements imposed By ">
Pl((x,d),a) (z,d),d")
QI P“’ps .~ and[r Types . This happens iff for all realizerd” with (z,d”) in [I',z : Hz : o.7 G
(((w,d),d"),r)

andrin [,z : Iz : o.7 F unpack z as (z,y) in p]](ép;,b, f satisfies the computational requirements

imposed by

[unpack z as (z,y) in P]]Proz/s/ , [unpack z as (z,y) in Q]]PEOPZ,,) and[unpack z as (z,y) in 7] yp;/s/)
Thus we can conclu e that the two types are propositionajhak i.e., 71 =1ype T5. Their mterpre—

tations contain the same realizers, so we could add two talése calculus stating that - M : T iff

' M:1T5.

5 Conclusion and Future Work

We have developed a realizability model for impredicativaake Type Theory, a very expressive dependent
type theory in which one can specify and reason about mutdid&act data types. The model is used to
establish the soundness of the type theory. Moreover, thdehean be used to discover new equations
between terms and types; we have presented a few simple Bs&

27

We are presently working on a simple implementation of a fooHTT, which will make it easier to
experiment with larger examples.

Our model also accommodates certain kinds of subset kirdisyaes. For a kindd we can model the
subset kind{z : A | P}, for all propositionsP. For a typer we can model the subset kida: : 7 | P},
for all chain-completepropositionsP; it also seems possible to model subset types = | P}, for all
propositionsP by using the chain-completion. The subset kinds / typesnaillbefull subset kinds / types,
however, for the same reason that we do not have full subpettior the standard separation logic Bl-
hyperdoctrine oveBet [6]. Future work includes investigating how to model reatgsypes, as needed
for the specification of programs that recurse through tbeeq0]. It would also be interesting to refine
the model using, e.g., FM-domains to get a more abstract hoddglocation leading to more equalities
among terms, c.f. the discussion in Section 3.5. Anothemador future work is to explore the soundness
of higher-order frame rules [8]. This seems to involve alfertlevel of indexing over a Kripke structure
similar to the one in [8]. Finally, it would also be interegjito investigate relational parametricity for the
impredicative polymorphism.

References

[1] R.Amadio and P.-L. CurierDomains and Lambda Calculrolume 46 ofCambridge Tracts in Theoretical Computer Science
Cambridge University Press, 1998.

[2] A. Appel, P.-A. Melliees, C. Richards, and J. VouilloA very modal model of a modern, major, general type system. In
Proceedings of POPL 2002007.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pasgming system: An overview. IBASSIS 2004_ecture Notes
in Computer Science. Springer, 2004.

[4] N. Benton and B. Leperchey. Relational reasoning in ainafrsemantics for storage. Rroc. of TLCA'05 pages 88-101,
Nara, Japan, 2005.

[5] M. Berger, K. Honda, and N. Yoshida. A logical analysisadifasing in imperative higher-order functions. In O. Danvy
and B. C. Pierce, editorfnternational Conference on Functional Programming, ICE%, pages 280-293, Tallinn, Estonia,
September 2005.

[6] B. Biering, L. Birkedal, and N. Torp-Smith. Bi hyperdaoictes and higher-order separation logic. ImProceedings of
European Symposium on Programming 2008ume 3444 ot ecture Notes in Computer Scienpgages 233—-247, 2005.

[7] B. Biering, L. Birkedal, and N. Torp-Smith. Bl hyperdoittes, Higher-Order Separation Logic, and Abstractib@PLAS
2007. To Appear.

[8] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of aegiion-logic typing and higher-order frame rules for &l
languagesLogical Methods in Computer Scien&5:1):1-33, 2006.

[9] L. Birkedal and H. Yang. Relational parametricity angbaration logic. InProceedings of 10th International Conference on
Foundations of Software Science and Computation Strustt®SSACS 200viumber 4423 in LNCS. Spring, 2007.

[10] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leans, K. R. M. Leino, and E. Poll. An overview of JML tools and
applications.International Journal on Software Tools for TechnologyrBter, 7(3):212—232, June 2005.

[11] K. Crary. Type-Theoretic Methodology for Practical Programming gaages PhD thesis, Cornell University, 1998.

[12] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. téhded static checking. Compaqg Systems Research Center,
Research Report 159, December 1998.

[13] D. Evans and D. Larochelle. Improving security usingeesible lightweight static analysiSEEE Software 19(1):42-51,
2002.

[14] B.JacobsCategorical Logic and Type Theqryolume 141 ofStudies in Logic and the Foundations of Mathematifisevier,
1999.

[15] N. Krishnaswami. Separation logic for a higher-ordgretd language. IWorkshop on Semantics, Program Analysis and
Computing Environments for Memory Management, SPACGEages 73-82, 2006.

28

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

N. Krishnaswami, J. Aldrich, and L. Birkedal. Modulagnification of the subject-observer pattern via highereostparation
logic. In9th Workshop on Formal Techniques for Java-like ProgranigJP 2007 2007.

A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. stbact Predicates and Mutable ADTs in Hoare Type Theory. In
European Symposium on Programming, ESOP¥@Tume 4421 of ecture Notes in Computer Scienpages 189-204, 2007.

A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphi and separation in Hoare Type Theorylriternational Conference
on Functional Programming, ICFP’Qéages 62—-73, Portland, Oregon, 2006.

P. W. O’'Hearn, H. Yang, and J. C. Reynolds. Separati@hiaiormation hiding. IrSymposium on Principles of Programming
Languages, POPL’'Q4ages 268-280, 2004.

B. Reus and J. Schwinghammer. Separation logic forériginder store. Innternational Workshop on Computer Science
Logic, CSL’06 2006.

J. C. Reynolds. Separation logic: A logic for shared aile data structures. Bymposium on Logic in Computer Science,
LICS'02, pages 55-74, 2002.

M. Shinwell. The Fresh Approach: Functional Programming with Names aidl&s PhD thesis, Computer Laboratory,
Cambridge University, Dec. 2004.

M. R. Shinwell and A. M. Pitts. On a monadic semanticsffeshnessTheoretical Computer Sciencg42:28-55, 2005.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. @ncurrent logical framework: The propositional fragmeth.
S. Berardi, M. Coppo, and F. Damiani, editofgpes for Proofs and Programgolume 3085 ol ecture Notes in Computer
Sciencepages 355-377. Springer, 2004.

H. Xi and F. Pfenning. Dependent types in practical pangming. InProceedings of the 26th ACM SIGPLAN Symposium
on Principles of Programming Languaggsages 214-227, San Antonio, January 1999.

N. Yoshida, K. Honda, and M. Berger. Local state in hdaggc for imperative higher-order functions. Rroceedings of 10th
International Conference on Foundations of Software Smeand Computation Structures, FOSSACS 280wber 4423 in
LNCS. Spring, 2007.

29

