
Modular Verification of the Subject-Observer
Pattern via Higher-Order Separation Logic

Neelakantan R. Krishnaswami, Jonathan Aldrich1, and Lars Birkedal2

1 Carnegie Mellon University, {neelk, aldrich}@cs.cmu.edu
2 IT University of Copenhagen, birkedal@itu.dk

Abstract. The subject-observer design pattern is a very common id-
iom in object-oriented systems; for example, it is an essential part of
the model-view-controller pattern for programming graphical user inter-
faces. We give a modular proof technique using separation logic to verify
this pattern. This proof method is modular in the sense that subjects
and observers can be verified independently, and both can be verified
independently of client code that calls both.

1 Introduction

The subject-observer design pattern[6] is a ubiquitous design pattern in object
oriented programs. The subject is a data structure which changes over time, and
the observers are objects whose own invariants depend on the state of the subject.
To remain in sync with the subject, the observers pass individual notification
methods to the subject, which the subject will call every time it changes.

The subject-observer pattern presents a lovely challenge to verification, be-
cause it is a design pattern which is fundamentally reliant on implicit communi-
cation through state. Observe that every observer can potentially have a different
invariant, and that the set of notification methods in the subject changes as new
observers register themselves.

Our contribution is:

– We give a simple, modular specification of the subject-observer pattern in
separation logic, and then show how this permits the modular verification of
an implementation and clients. The specification is written in a higher-order
variant of separation logic, and supports a strong form of information hiding
between the subject and the client.

2 The Programming Language

The core programming language we have formalized is an extension of the simply-
typed lambda calculus with a monadic type constructor[11] to isolate access
to the heap. In addition to function types τ → τ , we also have pair types

2

Types τ ::= 1 | τ × τ | τ → τ | N | list τ | © τ | ref τ

Expressions e ::= () | 〈e, e〉 | fst e | snd e | n | nil | cons(e, e) | lτ
| x | e e′ | λx : τ. e | [c]

Computations c ::= e | newτ e | !e | e := e | let x = e; c | fixτx. c
| case(e, nil → c | cons(h, t) → c)

Contexts Γ ::= · | Γ, x : τ

Fig. 1. Programming Language Syntax

τ × τ ′, integers N, references ref τ , mutable3 lists list τ , and the type of monadic
computations ©τ .

The terms inhabiting these types are all standard, and listed in Figure 1, and
are typed with a judgement Γ ` e : τ , which is read as “In variable context Γ ,
the pure expression e has type τ”. Some of the more interesting typing rules are
listed in figure 2.

The values of the monadic type ©τ are lazy, suspended computations [c].
These are not evaluated during the evaluation of pure terms, which allows us to
separate the pure and effectful parts of reduction. They are typed using a judge-
ment Γ ` c÷ τ , which is read “In variable context Γ , the effectful computation
c produces a value of type τ”.

The computations include treating a pure term e as a computation, assign-
ment e1 := e2, dereference !e, allocation newτ e, general recursion fixτx. c, and
sequential composition let x = e; c. Notice that each of the primitive com-
putations (assignment, allocations, and dereference) take pure expressions as
arguments, so the order of all side-effects is explicit. The sequential composition
is the monadic bind, and it has two additional purposes – it eliminates the sus-
pended monadic values, and binds the result of executing the first command to a
variable. So the computation let x = e; c can be read as “evaluate the expression
e to a suspended computation [c′], evaluate c′ and bind its result to x, and then
execute c”.

So, for example, an imperative factorial function might be written as:

fact : N →©N ≡ λx : N. [let count = [newN x];
let acc = [newN 1];
fix loop.

let n = [!count];
if n = 0 then
!acc;

else
let old = [!acc];
let () = [acc := old ∗ n];

3 Notice that the tail of a list is an updatable reference, unlike ML or Haskell linked
lists.

3

let () = [count := n− 1];
let ans = loop;
ans]

Notice that all of the side effecting operations are explicitly sequenced –
we do not permit compound expressions such as acc :=!acc ∗ n, whose result
could vary depending on the order of evaluation. This is because we intend this
particular language as a core calculus to experiment with verification of higher-
order programs with general references, and so are willing to accept infelicities
in the language in exchange for a simple core.

Γ ` nil : list τ
TNil

Γ ` e : τ Γ ` t : ref list τ

Γ ` cons(e, t) : list τ
TCons

Γ ` c÷ τ

Γ ` [c] : ©τ
TMonad

Γ ` e : τ

Γ ` e÷ τ
TPure

Γ ` e : τ

Γ ` newτ e÷ ref τ
TAlloc

Γ ` e : ref τ

Γ `!e÷ τ
TDeref

Γ ` e : ref τ Γ ` e′ : τ

Γ ` e := e′ ÷ 1
TAssign

Γ, x : ©τ ` c÷ τ

Γ ` fixτx. c÷ τ
TFix

Γ ` e : ©τ ′ Γ, x : τ ′ ` c÷ τ

Γ ` let x = e; c÷ τ
TLet

Γ ` e : list τ ′ Γ ` cn ÷ τ Γ, h : τ ′, t : ref list τ ′ ` cc ÷ τ

Γ ` case(e, nil → cn | cons(h, t) → cc)÷ τ
TCase

Fig. 2. Selected Typing Rules

3 Specifications with Separation Logic

The atomic form of a specification is a Hoare triple {P}c{a : τ . Q}. This triple
can be read as “Suppose we begin with a heap described by state P . If the
execution of c terminates, the heap will be in a state described by Q, with a
bound to the return value of the computation.”

The pre- and post-states are described using separation logic[17], which is
an extension of Hoare logic[7] originally proposed by Reynolds and O’Hearn to
simplify reasoning about aliasing. The basic idea is to extend logic with two
additional connectives, the separating conjunction p ∗ q and the separating im-
plication p−∗q (usually called the “magic wand”). The proposition p ∗ q is read

4

as “one part of the heap is described by the state p, and a separate disjoint
part is described by the state q”. This contrasts with the reading of the ordinary
conjunction p∧q as “the heap is described by the predicate p, and also described
the predicate q”.

Assertion Sorts ω ::= prop | τ | ω ⇒ ω | ω × ω | seq ω

Assertions p, q ::= > | p ∧ q | p ⊃ q | ⊥ | p ∨ q | emp | p ∗ q | p−∗q
| e 7→ e | p = q | ∀x : ω. p | ∃x : ω. p
| x | p q | λx : ω. p | (p, q) | π1 p | π2 p | ε | p · q

Specifications S ::= {p}c{a : τ . q} | S implies S′ | S and S′ | S or S′

| ∀x : ω. S | ∃x : ω. S

Fig. 3. Syntax of Assertions and Specifications

We extend separation logic to higher-order, following Biering et. al. [3]. That
is, the quantifiers are not just permitted to range over program values, but also
over arbitrary predicates. Doing so allows us to model information hiding –
we can abstract over the heap, and thereby allow programs to manipulate heap
through methods without revealing the precise representation of a data structure
to a client program. The terms of our higher order logic are given in Figure 3;
the assertion sorts ω give the sorts quantifiers can range over, and include terms
of program types τ , propositions prop, and pairs, sequences and function spaces
(used to represent predicates) over these base sorts.

While pure Hoare triples are sufficient to specify purely imperative programs,
we must extend the specification language to handle features such as procedures.
We do this by adapting the logic in the style of Reynolds’s specification logic [15],
which turns Hoare triples into the atomic propositions of a multi-sorted first-
order logic. The sorts are the sorts of the assertion language, and the logical
operators of this logic are the usual connectives of intuitionistic first-order logic.
The special features of our specification language are merely axioms, given in
Figure 4. We have rules corresponding to the “small footprint” rules of separation
logic, plus induction axioms and a frame rule.

As a simple example, consider this signature for a counter module:

∃counter : τc × N ⇒ prop
∃create : () →©τc

∃next : τc →©N
{emp}create(){a : τc. counter(a, 0)}
and
{counter(c, n)}next(c){a : N.. a = n ∧ counter(c, n + 1)}

We assert the existence of a counter heap predicate, and give two functions
create and next, whose behavior is defined in terms of this predicate. The exis-

5

tential quantifier over the predicate encapsulates the counter’s state, rendering
it opaque to clients – they do not know what the internal heap representation
might be. Likewise, the implementations of the create and next functions are
hidden, since they are the witnesses to the existential quantifiers. One way of
thinking about this is that in our specification methodology, a program is part of
the evidence that a specification can be met. The only information about them
that a client can use are the triples describing their behavior, which are grouped
together with a specification-level conjunction.

A client program that uses the counter spec will be verified against a spec-
ification Scounter implies S, where Scounter is the specification for the counter
module. This lets us verify the client and the implementation separately, and we
can combine the specifications for the client and the implementation with the
rule of modus ponens.

Pure {emp}e{a : τ . a = e ∧ emp}

New {emp}newτ e{a : ref τ . a 7→ e}

Assign {∃x : τ. e 7→ x}e := e′{a : 1. e 7→ e′}

Deref {e 7→ e′}!e{a : τ . a = e′ ∧ e 7→ e′}

Bind [〈P 〉e〈x : τ . Q〉 and {Q}c{a : τ . R}] implies {P}let x = e; c{a : τ . R}

Fix (∀x : ©τ. {P}x{a : τ . Q} implies {P}c{a : τ . Q}) implies {P}fixτx. c{a : τ . Q}

Induction [S(0) and ∀x : N. (S(x) implies S(x + 1))] implies ∀x : N. S(x)

Sequence Ind. [S(ε) and ∀x, xs. (S(xs) implies S(x · xs))] implies ∀xs : seq ω. S(xs)

Frame {P}c{a : τ . Q} implies {P ∗R}c{a : τ . Q ∗R}

Consequence {P ′}c{a : τ . Q′} implies {P}c{a : τ . Q}, when P |= P ′ and Q′ |= Q

Fig. 4. Axioms for Specification Logic

4 The Subject Observer Pattern

4.1 Specification

In Figure 5, we give the specification of a subject observer pattern in which the
observers synchronize on an integer-valued property of the subject. The intu-
itive, informal reading of this specification is “There exists an implementation
of the subject (lines 1-3), such that if we have a notify method which updates

6

τs ≡ ref N× ref list (N →©1)

1 ∃ sub : τs × N× seq ((N →©1)× (N ⇒ prop)) ⇒ prop.
2 ∃ register : τs × (N →©1) →©1.
3 ∃ broadcast : τs × N →©1.
4 ∀ obs : N ⇒ prop.
5 ∀ notify : N →©1.
6 ∀m, n. {obs(m)}
7 notify(n)
8 {a : 1. obs(n)}
9 implies
10 ∀s, n, os. {sub(s, n, os)}
11 register(s, notify)
12 {a : 1. sub(s, n, (notify, obs) · os)}
13 and
14 ∀s, m, n. {sub(s, m, ε)}
15 broadcast(s, n)
16 {sub(s, n, ε)}
17 and
18 [∀s, m, n, os. {sub(s, n, os) ∗ observers(os)}
19 broadcast(s, n)
20 {sub(s, n, os) ∗ observers at(n, os)}
21 implies
22 {sub(s, n, (notify, obs) · os) ∗ observers((notify, obs) · os)}
23 broadcast(s, n)
24 {a : 1. sub(s, n, (notify, obs) · os) ∗ observers at(n, (notify, obs) · os)}]

The helper predicates observers and observers at are defined as follows:

observers(ε) = emp
observers((f, o) · os) = (∃n : N. o(n)) ∗ observers(os)

observers at(n, ε) = emp
observers at(n, (f, o) · os) = o(n) ∗ observers at(n, os)

Fig. 5. Simple Subject-Observer Specification

7

its observer’s state (lines 4-8), then we may attach notify to the subject (lines
10-12) and the broadcast will update all of the observers (lines 14-24)”.

Line 1 of the specification requires the existence of a sub predicate describing
the mutable state of the subject, and lines 2 and 3 requires the existence of
appropriately-typed register and broadcast methods.

The sub predicate is a three-place higher-order predicate. The first argu-
ment, of type τs, links a term in the programming language with its associated
storage.4 The second argument, of type N, is the abstract state of the subject.
This corresponds to model fields in notations such as JML[5]; the concrete rep-
resentation of the subject might or might not contain an integer. (In our case,
for simplicity’s sake it does.) The third argument is the higher-order term, and
tracks the relationship between the observers and the subject. It consists of a se-
quence of the notification methods that have been passed to the subject, paired
with the predicates that each method updates.

The rest of the specification is written as an implication. This is because we
wish to constrain the notify methods passed to register. Since we want to allow
any suitable notification method, we universally quantify over the obs predicate
– representing the observer’s state – and the notify method that modifies it in
lines 4 and 5, and then in lines 6-8 we assert that the notify method updates the
observer state obs appropriately.

Given this hypothetical, we can specify the behavior of the register method
in lines 10-12, where we say that attaching a notify method satisfying the as-
sumption will result in the state of the subject changing to reflect the fact that
the subject will update this observer. (As an aside, note that this function is
written in a functional style; the appropriate notification function is passed to
the subject as a higher-order function, which allows us to avoid having to grant
the subject a reference to the observer.)

Then, in lines 14-24, we can assert that the broadcast action will update all
of the observers. We use two auxilliary assertion-level functions, observers and
observers at. The observers(os) function asserts that for each observer in os,
we have its associated state separately conjoined with the rest. We existentially
quantify each observer’s state, to reflect the fact that their states do not have
to be consistent with each other or the subjects prior to the method call. The
observers at(n, os) says that every observer is in the state n. 5

The specification of the broadcast function is given in two parts. The first
part, in lines 14-16, asserts that broadcast works correctly when it is used with
an empty sequence of observers. The second part, in lines 18-24, is more complex.
It asserts that if broadcast works correctly on sequence of observers os (lines 18-
20), then it will continue to work correctly when the observers are extended with
notify. This enables us to incrementally build up the specification of broadcast,
as we add observers in the program source.
4 τs is an abbreviation for the concrete type ref τ × ref list (N →©1) from our type

syntax, but for simplicity we write it as a parameter here. True System F-style
quantification over types in programs and specifications remains future work.

5 Since our assertion language is a higher-order logic, they are actually definitions
within the logic, and not new extensions to it.

8

Satisfyingly, the use of the separating conjunction automatically makes it
impossible to call broadcast if an observer has been added to the subject multiple
times – the definition of the observers and observers at functions means that
the state associated with each entry in the subject’s observer list must be disjoint
from all of the other observers. If an observer has been added multiple times, this
condition is impossible to satisfy and verification will rightly be blocked. It would
also be possible to change the precondition of register to require sub(s, n, os) ∗
observers(os) ∗ ∃x. obs(x), which would ensure that we could not register an
observer twice in the first place.

4.2 Subject Implementation

As mentioned earlier, a module correponds to an existential type in the specifi-
cation, and the implementations are the witnesses to that existential. In Figure
6, we give an example of some predicates and programs that will satisfy the
invariants of the spec in Figure 5, consisting of the concrete predicate for sub,
and implementations of register and broadcast.

The verification of these procedures is straightforward; we instantiate the sub
predicate with our definition, and then verify each of the bodies of register and
broadcast. Because notify is universally quantified, we can make no assumptions
about the implementation of the observer – in fact, the subject doesn’t even
know the type of the observer, because we pass in the notification as a higher-
order function that encapsulates all of the appropriate update behavior. Then
the verification merely needs to ensure that register adds an element to the linked
list of observers, and that notify calls all of the notification functions.

4.3 A Client Program

In Figure 7, we give an example of how to verify a client program that uses
this specification. In lines 1-4, we give some function definitions and predicates
which we will use later on in the verification of the client, corresponding to (in
lines 1-2) an observer method that will track the value of the subject and its
invariant, and (in lines 3-4) an observer method that will track twice the value
of the subject and its associated invariant. It should be clear that for any given
r, we can apply f1 r to get a notification action that closes over r, and likewise
for the invariant and f2.

Now, subsequently we will assume that the existential package for the subject
has been unpacked, and we have bindings for sub, register and broadcast in our
context.

Now, in line 5, we begin by assuming that we have a subject s state, with no
observers attached. Then, in lines 6-9, we allocate 2 new references r1 and r2.
Now, recall that the assertion r1 7→ n is equivalent to o1 r1, so we can register
f1 r1 in line 10. This updates the state of the subject predicate, and we can use
the specification of the broadcast along with the fact it works with an empty list
of observers to deduce that it will work when the sub predicate is extended with
(f1 r1, o1 r1). In lines 12 and 13, we repeat the process with f2, o2 and r2.

9

1 τs ≡ ref N× ref list (N →©1)

2 listof : (ref list τ)× seq τ ⇒ prop.

3 listof(c, ε) = c 7→ nil
4 listof(c, x · xs)= ∃c′. (c 7→ cons(x, c′)) ∗ listof(c′, xs)

5 sub : τs × N× seq ((N →©1)× (N ⇒ prop)) ⇒ prop.

6 sub(s, n, os) = (fst s 7→ n) ∗ listof(snd s, map π1 os)

7 register(s, notify) ≡
8 let cell = [!(snd s)];
9 let tail = [newlist τ

cell];
10 snd s := cons(notify, tail)

11 broadcast(s, n) ≡
12 let r = [newref list (N→©1)

(snd s)];

13 fix 1loop.
14 let list = [!r];
15 let cell = [!list];
16 case (cell,
17 | nil → fst s := n,
18 | cons(notify, tail) →let () = [r := tail];
19 let () = notify(n);
20 let () = loop;
21 ())

Fig. 6. Subject-Observer Implementation

10

In line 14, we use the beta-equality to change all the explicit points-to a call
to o1 and o2, and in line 15 we existentially quantify over their contents. This
lets us invoke the specification of broadcast(5) in line 16, which in line 17 shows
that both observer predicates have now been given the value 5. In line 18, we
expand out the definitions again, and see that r1 points to 5, and r2 points to
10, just as we would expect.

1 f1 : ref N → N →©1 ≡ λr : ref N. λn : N. [r := n]
2 o1 : ref N ⇒ N ⇒ prop ≡ λr : ref N. λn : N. r 7→ n
3 f2 : ref N → N →©1 ≡ λr : ref N. λn : N. [r := n× 2]
4 o2 : ref N ⇒ N ⇒ prop ≡ λr : ref N. λn : N. r 7→ (n× 2)

5 {sub(s, n, ε)}
6 let r1 = newN 0;
7 {sub(s, n, ε) ∗ (r1 7→ 0)}
8 let r2 = newN 0;
9 {sub(s, n, ε) ∗ (r1 7→ 0) ∗ (r2 7→ 0)}
10 let () = register(s, f1 r1);
11 {sub(s, n, (f1 r1, o1 r1) · ε) ∗ (r1 7→ 0)}

Deduce extended spec for broadcast.
12 let () = register(f2 r2);
13 {sub(s, n, (f2 r2, o2 r2) · (f1 r1, o1 r1) · ε) ∗ (r1 7→ 0) ∗ (r2 7→ 0)}

Deduce extended spec for broadcast.
14 {sub(s, n, (f2 r2, o2 r2) · (f1 r1, o1 r1) · ε) ∗ (o1 r1 0) ∗ (o2 r2 0)}
15 {sub(s, n, (f2 r2, o2 r2) · (f1 r1, o1 r1) · ε) ∗ (∃x : N. o1 r1 x) ∗ (∃y : N. o2 r2 y)}
16 let () = broadcast(5);
17 {sub(s, 5, (f2 r2, o2 r2) · (f1 r1, o1 r1) · ε) ∗ (o1 r1 5) ∗ (o2 r2 5)}
18 {sub(s, 5, (f2 r2, o2 r2) · (f1 r1, o1 r1) · ε) ∗ (r1 7→ 5) ∗ (r2 7→ 10)}

Fig. 7. Sample Client Program

5 Discussion

An interesting feature of our specification is that it enforces a form of informa-
tion hiding – the implementation of the subject is hidden behind an existential
quantifier, so clients and observers cannot depend on the particulars of the sub-
ject’s implementation; they can only rely on the specified interface. Conversely,
the use of a universal quantifier over the observers means that the verification
of a subject implementation cannot rely on any particular observer’s implemen-
tation – it must work for all possible observers, whose only common behavior is
that mandated by the spec.

This is not the same as classical data abstraction[16], since the representation
type τs is known to clients, but it has a similar flavor – we use abstract predicates
to keep portions of the heap abstract to different parts of our program. We tend
to describe this as the difference between abstraction and encapsulation.

11

Our specification currently forbids reentrant notification methods; for exam-
ple, we cannot write a notification action which registers another observer within
the notification. This is because our specification requires the notify method to
be oblivious to the state of the sub predicate. Relaxing this restriction should
be straightforward, at the price of complicating the invariant that must hold.

It should be clear that the specification methodology we have used here to
specify subject-observers is generally applicable. Indeed, in other work [8], we
have used it to specify abstractly the behavior of collections and iterators. In loc.
cit. we used, in particular, an abstract formal specification (given as a tautology
in separation logic) that iterators are valid only as long as the abstract state of
the underlying collection is left unchanged (forbidding, e.g., adding or removing
new elements, but permitting caching).

6 Related and Future Work

Separation logic was originally introduced by Reynolds and O’Hearn [17] to
reason about low-level pointer programs. Biering, Birkedal and Torp-Smith [3]
extended separation logic to higher order. Parkinson [13] has formalized a ver-
sion of separation logic for a subset of Java. He and Bierman also developed
a notion of abstract predicate[14], which was generalized which was generalized
via higher-order separation logic in [4]. In [4] it was suggested that higher-order
separation logic could be useful for data abstraction, and here we demonstrate
that by our verification of the subject-observer pattern. Nanevski, Morisett, and
Birkedal have proposed Hoare Type Theory[12], which is a dependently-typed
functional programming language which uses a spatial logic equivalent to higher-
order separation logic to describe monadic effects. Our work is very similar in
scope, but strongly separates the type system and the specification language.

Barnett and Nauman[2] proposed a method for reasoning about the subject
observer pattern, which works when all of the observer classes are known at
verification time. Recently, Leino and Schulte[9] proposed adapting Liskov and
Wing’s monotonic constraints[10] to model the subject-observer pattern. This
does not require all of the observers to be known to verify the subject, but each
observer must maintain a pointer to the subject and respect its field updates.
This contrasts with our verification approach, where the observers can be com-
pletely oblivious to the subject, and the connection between subject and observer
is maintained in the subject’s invariant. Both of these papers are in the context
of the Boogie methodology[1], which was designed for OO languages and handles
features such as subclassing, which we do not.

In the future, we plan on extending our core language to better model features
found in object-oriented languages and languages like ML; in particular, we plan
on adding impredicative polymorphism in the style of System F.

7 Acknowledgements

This work was supported in part by NSF grant CCF-0541021 and the Depart-
ment of Defense.

12

References

1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In F. S. de Boer, M. M.
Bonsangue, S. Graf, and W. P. de Roever, editors, FMCO, volume 4111 of Lecture
Notes in Computer Science, pages 364–387. Springer, 2005.

2. M. Barnett and D. Naumann. Friends need a bit more: Maintaining invariants
over shared shate. In Proceedings of Mathematics of Program Construction 2004,
2004.

3. B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines and higher order
separation logic. In Proc. of ESOP 2005: The European Symposium on Program-
ming, pages 233–247, Edinburgh, Scotland, April 2005.

4. B. Biering, L. Birkedal, and N. Torp-Smith. Bi-hyperdoctrines, higher-order sep-
aration logic, and abstraction. To appear in ACM Transactions on Programming
Languages and Systems, page 45, 2007.

5. G. Burdy, Y. Cheon, D. R. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M.
Leino, , and E. Poll. An overview of jml tools and applications. International
Journal on Software Tools for Technology Transfer, 7(3):212–232, June 2005.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of
reusable object-oriented software. Addison-Wesley, 1995.

7. C. A. R. Hoare. An axiomatic approach to computer programming. Communica-
tions of the ACM, 12(583):576–580, 1969.

8. N. R. Krishnaswami. Reasoning about iterators with separation logic. In
SAVCBS ’06: Proceedings of the 2006 conference on Specification and verification
of component-based systems, pages 83–86, New York, NY, USA, 2006. ACM Press.

9. K. R. M. Leino and W. Schulte. Using history invariants to verify observers. In
ESOP 2007, Proceedings of the Sixteenth European Symposium on Programming,
2007.

10. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

11. E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

12. A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in hoare
type theory. In Proceedings of International Conference on Functional Program-
ming 2006, 2006. To Appear.

13. M. Parkinson. Local Reasoning for Java. PhD thesis, Cambridge University, 2005.
14. M. Parkinson and G. Bierman. Separation logic and abstraction. In Proceedings

of the 32nd Annual ACM SIGPLAN - SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’05), pages 247–258, Long Beach, CA, USA, January
2005.

15. J. Reynolds. Idealized algol and its specification logic. In P. O’Hearn and R. Ten-
nent, editors, ALGOL like languages, volume 1. Birkhäuser, 1997.

16. J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP
Congress, pages 513–523, 1983.

17. J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS’02), pages 55–74, Copenhagen, Denmark, July 2002. IEEE Press.

