
LANGUAGE-BASED INFORMATION FLOW BASICS

ASLAN ASKAROV

Introduction

These notes cover basics of language-based information flow security.1 We consider a toy imper-
ative language, define its semantics using small-step operational semantics, use the semantics
to introduce the basic notions of noninterference, and illustrate the ideas behind type-based
enforcement of information flow.

Comments, questions, errors, etc, are all welcome – please email them to aslan@cs.au.dk.

1. Small imperative language

Consider simple imperative language given by the following grammar.

c ::= skip | x := e | c; c | if e then c else c | while e do c

e ::= n | x | e op e

Assume that op ranges over total operations on arithmetic expressions. Consider memories
to be total functions from variable names to values. We use a big-step evaluation relation for
expressions, defined in Figure 1.

For commands, we introduce an auxiliary command stop that designates terminal configurations.
Semantics for commands is given using a small-step relation 〈c,m〉 → 〈c′,m′〉, where c is the
starting command, m is the starting memory, c′ is the updated command or stop, and m′ is the
updated memory. We refer to the pair 〈c,m〉 as a semantic configuration.

Rules for the semantic transitions are given in Figure 2. where, m[x 7→ v] is a shorthand for
memory update:

m[x 7→ v] , λy . if x = y then v else m(y)

We write 〈c,m〉 →∗ 〈c′,m′〉 when configuration 〈c,m〉 can reach configuration 〈c′,m′〉 in zero or
many steps.

2. Noninterference

Figure 3 depicts an intuition for noninterference.

Date: January 14, 2019.
1These notes are developed in the context of the Language-Based Security course at Aarhus University.

E-CONST

〈n,m〉 ⇓ n

E-VAR
m(x) = v

〈x,m〉 ⇓ v

E-OP
〈ei,m〉 ⇓ vi, i = 1, 2 v = v1 op v2

〈e1 op e2,m〉 ⇓ v

Figure 1. Semantics of expressions

2 ASLAN ASKAROV

S-SKIP

〈skip,m〉 → 〈stop,m〉

S-ASSIGN
〈e,m〉 ⇓ v

〈x := e,m〉 → 〈stop,m[x 7→ v]〉

S-SEQ1
〈c1,m〉 → 〈stop,m′〉
〈c1; c2,m〉 → 〈c2,m

′〉

S-SEQ2
〈c1,m〉 → 〈c′1,m′〉 c′1 6= stop

〈c1; c2,m〉 → 〈c′1; c2,m
′〉

S-IF1
〈e,m〉 ⇓ v v 6= 0

〈if e then c1 else c2,m〉 → 〈c1,m〉

S-IF2
〈e,m〉 ⇓ v v = 0

〈if e then c1 else c2,m〉 → 〈c2,m〉

S-WHILE

〈while e do c,m〉 → 〈if e then c;while e do c else skip,m〉

Figure 2. Semantics of commands

Program

confidential inputs

public inputs public outputs

confidential outputs

Figure 3. Intuition for noninterference

2.1. Basic end-to-end definition. Assume that the set of variables Vars is partitioned into
two disjoint sets – the set PubVars of public variables, and the set SecVars of secret vari-
ables.

Vars = PubVars] SecVars

Definition 1 (Memory agreement on public variables). Given two memories, m1 and m2, say
that they agree on public variables, written m1 ∼ m2, when

m1 ∼ m2 , ∀x ∈ PubVars . m1(x) = m2(x)

Definition 2 (Basic noninterference). Program c is secure when for all pairs of memories m1

and m2 such that m1 ∼ m2, and

〈c,m1〉 →∗ 〈stop,m′1〉
and

〈c,m2〉 →∗ 〈stop,m′2〉
it holds that m′1 ∼ m′2.

2.2. Examples. In the following examples, for clarity, we assume that variables that have suffix
p are public, and variables that have suffix s are secret.

Example 1. Program

x_p := y_s

is insecure according to Definition 2.

Example 2. Program

x_p := 42

is secure according to Definition 2.

Example 3. Program

y_s := 42; x_p := y_s

LANGUAGE-BASED INFORMATION FLOW BASICS 3

is secure according to Definition 2.

Example 4. Program

if y_s > 0

then x_p := 1

else x_p := 0

is insecure according to Definition 2.

Example 5. Program

if y_s > 0

then x_p := 0

else x_p := 0

is secure according to Definition 2.

Exercise 1. Explain why the above example programs are secure or insecure (w.r.t. Defini-
tion 2)

Exercise 2. What can be said about security of the following program?

while y_s > 0

do skip

Exercise 3. Definition 2 is termination-insensitive. What would a termination-sensitive vari-
ation of this definition – that is a definition that would rule out programs that leak by their
termination behavior as insecure – look like? How would it change security of the above exam-
ples?

Exercise 4. Note that we were very implicit about attacker model so far. What attacker model
do we actually assume in this section? For example, consider program

x_p := y_s; x_p := 0

Is this program accepted by Definition 2? Is our current attacker model realistic? What
alternative attacker models can you propose?

Exercise 5 (*). Consider an extension of our programming language with a construct for
nondeterministic assignment x := nondet(). Formally, we extend the language so that the
extended grammar is now

c ::= . . . | x := nondet()

The operational semantics for the new construct is given by the following rule

〈x := nondet(),m〉 → 〈x := v,m〉

Here, v is an arbitrary value (in other words, the semantics of the language is now nondetermin-
istic)2. Observe that, with the addition of this construct, it is difficult to justify applicability of
Definition 2. For example, a program such as x p := nondet() always terminates, but because
the final value of x p may be different, this program is rejected by Definition 2, yet clearly, the
program is innocuous.

Extend Definition 2 so that it can be justified for programs written with nondeterministic
assignments.

Hint. What does your extended definition say about security of the following programs

2This may model a random assignment primitive in a mainstream language; it can also model reading infor-
mation from a nondeterministic input source, such as user input or system clock.

4 ASLAN ASKAROV

(1) x_p := nondet();

if z_s <= x_p then y_p := 0

else y_p := 1

(2) x_p := nondet();

if x_p then y_p := z_s

else y_p := 42

(3) x_p := nondet();

if x_p - x_p then y_p := z_s

else y_p := 42

(4) x_p := nondet();

x2_p := nondet();

if x_p - x2_p then y_p := z_s

else y_p := 42

Remarks. Structural Operational Semantics has been introduced by Plotkin [Plotkin(1981)];
for a nice exposition, see Winskell’s text [Winskel(1993)]. The idea of noninterference is in-
troduced in [Goguen and Meseguer(1982)]. Sabelfeld and Myers [Sabelfeld and Myers(2003)]
survey many of the basic approaches of language-based information-flow security.

LANGUAGE-BASED INFORMATION FLOW BASICS 5

3. Dynamic enforcement

This section shows how to enforce noninterference (as defineby Definition 2) using runtime
monitoring. For simplicity, rather than defining a separate monitoring relation we inline the
monitoring behavior in our semantics.

3.1. Monitoring for expressions. The rules for evaluating expressions are modified so that
evaluation of expressions now has the form 〈e,m〉 ⇓ 〈v, `〉, where ` stands for the level of the
expression, and can be either Public or Secret. Figure 4 presents the updated rules. In the rules
here, function levelof(x) returns the level of the variables (i.e., variables with suffix p have level
Public, and variables with suffix s are considered Secret).

E-CONST-D

〈n,m〉 ⇓ 〈n,Public〉

E-VAR-D
m(x) = v levelof(x) = `

〈x,m〉 ⇓ 〈v, `〉

E-OP-D

〈ei,m〉 ⇓ 〈vi, `i〉, i = 1, 2 v = v1 op v2 `′′ =

{
Public if `1 = `2 = Public

Secret otherwise

〈e1 op e2,m〉 ⇓ 〈v, `′′〉

Figure 4. Semantics of expressions updated for dynamic monitoring

3.2. Monitoring for commands. The rules for commands are a little more interesting. We
now need to know explicitly when a join point in the computation is reached. For this purpose,
we introduce an auxiliary command join. The configurations are extended to include a stack

of security levels, denoted as a vector ~̀, that record the levels of the branch conditions that
control the current execution. When we want to refer to the content of the stack, we use the
notation [`1 . . . `n], where `1 is last pushed entry on the stack.

Figure 5 A level is pushed onto the stack when we execute a branch (rules S-IF1-D and S-IF2-
D). Observe that these rules also add the join marker in the form of the command join when
transitioning to the respective branches. A level is popped off the stack when a join point is
reached (rule S-JOIN-D).

presents the updated rules. Note how the rule S-ASSIGN-D requires that if the level of the
variable is public, then it must be that

(1) the level of expression `0 must be public, and

(2) all levels on the stack `1 to `n are also public.

Finally, initial configurations start with an empty stack, [], also denoted as ε.

Exercise 6. Revisit the example programs from Section 1 under the monitoring semantics.
Which of the examples will successfully execute under this semantics, and which ones will get
stuck in a non-stop configuration (stuck non-stop evaluation models the crash).

6 ASLAN ASKAROV

S-SKIP-D

〈skip,m, ~̀〉 → 〈stop,m, ~̀〉

S-ASSIGN-D
〈e,m〉 ⇓ 〈v, `0〉 levelof(x) = Public =⇒ ∀j = 0..n . `j = Public

〈x := e,m, [`1 . . . `n]〉 → 〈stop,m[x 7→ v], [`1 . . . `n]〉

S-SEQ1-D

〈c1,m, ~̀〉 → 〈stop,m′, ~̀′〉
〈c1; c2,m, ~̀〉 → 〈c2,m

′, ~̀′〉

S-SEQ2-D

〈c1,m, ~̀
′〉 → 〈c′1,m′, ~̀′〉 c′1 6= stop

〈c1; c2,m, ~̀〉 → 〈c′1; c2,m
′, ~̀′〉

S-IF1-D
〈e,m〉 ⇓ 〈v, `0〉 v 6= 0

〈if e then c1 else c2,m, [`1 . . . `n]〉 → 〈c1; join,m, [`0`1 . . . `n]〉

S-IF2-D
〈e,m〉 ⇓ 〈v, `0〉 v = 0

〈if e then c1 else c2,m, [`1 . . . `n]〉 → 〈c2; join,m, [`0`1 . . . `n]〉

S-JOIN-D

〈join,m, [`0`1 . . . `n]〉 → 〈stop,m, [`1 . . . `n]〉

S-WHILE-D

〈while e do c,m, ~̀〉 → 〈if e then c;while e do c else skip,m, ~̀〉

Figure 5. Semantics of commands updated for dynamic monitoring

LANGUAGE-BASED INFORMATION FLOW BASICS 7

T-INT

Γ ` n : `

T-VAR
Γ(x) = `

Γ ` x : `

T-OP
Γ ` ei : `i, (i = 1, 2)

Γ ` e1 op e2 : `1 t `2

Figure 6. Security typing of expressions

T-SKIP

Γ, pc ` skip

T-ASSIGN
Γ ` e : ` pc t ` v Γ(x)

Γ, pc ` x := e

T-SEQ
Γ, pc ` ci, (i = 1, 2)

Γ, pc ` c1; c2

T-IF
Γ ` e : ` Γ, pc t ` ` ci, (i = 1, 2)

Γ, pc ` if e then c1 else c2

T-WHILE
Γ ` e : ` Γ, pc t ` ` c

Γ, pc ` while e do c

4. Type-based enforcement

Another way to enforce noninterference is to do it statically using security types. We introduce
a variable security type environment, denoted as Γ, that maps variable names to security levels.
We start with a simplifying assumption that security levels, denoted by `, can be either Public
or Secret.

Typing rules for expressions have form Γ ` e : `. Security typing rules for expressions are given
in Figure 6. In these rules, `1 t `2 corresponds to the least upper bounds of the two security
levels `1 and `2. In our setting, we let `1t `2 = Public when both `1 and `2 are Public; otherwise
`1 t `2 = Secret.

Exercise 7. What is the intuition behind the rule T-OP?

For commands, we use a security typing judgment that has the form Γ, pc ` c, where pc is the
program counter level – it specifies how much information is leaked by knowing that a particular
program point in the program is reached.

In rule T-ASSIGN, we use label comparison operator v. For our setting, we have that

` v ` and Public v Secret

Example derivation tree.

Suppose we have a program

x_p := 0;

while (y_s) do y_s := y_s - 1

x_p := 1;

Figure 4 gives an example derivation tree for this program (depending on how we associate the
sequential composition), assuming an environment Γ such that Γ(x p) = Public and Γ(y s) =
Secret.

8
A

S
L

A
N

A
S

K
A

R
O

V

Γ ` 0 : Public Public v Γ(x)

Γ,Public ` x p := 0

Γ(y s) = Secret

Γ ` y s : Secret

Γ(y s) = Secret

Γ ` y s : Secret Γ ` 1 : Public

Γ ` y s− 1 : Secret Secret v Γ(y s)

Γ, Secret ` y s := y s− 1

Γ,Public ` while y s do y s := y s− 1

Γ ` 1 : Public Public v Γ(x)

Γ,Public ` x p := 1

Γ,Public ` while y s do y s := y s− 1; x p := 1

Γ,Public ` x p := 0; while y s do y s := y s− 1; x p := 1

Figure 7. Example typing derivation tree

LANGUAGE-BASED INFORMATION FLOW BASICS 9

Reformulation of memory agreement on public variables. Now that we have introduced
a security environment Γ, we define memory agreement on public variables according to security
environment Γ as follows

m1 ∼Γ m2 , ∀x . Γ(x) = Public =⇒ m1(x) = m2(x)

Whenever Γ is implicit (because it does not changes in our setting), we omit it for clarity, and
simply write m1 ∼ m2 (this overrides our earlier notation, but hopefully does not introduce too
much confusion).

Exercise 8. Revisit example programs from Section 2.2 and examine whether these programs
can be typed according to the typing rules of this section. The expectation is that all insecure
programs are rejected by the type system (we postpone a formal proof of this), while there may
be programs that despite being accepted by Definition 2, will be rejected by the typing rules;
the latter illustrates imprecision of our enforcement.

Exercise 9. How can one change rule T-WHILE to satisfy termination-sensitive version of NI?
While there are many ways to approach this, think of two possible techniques

(1) Modifying only typing of rule T-WHILE.

(2) Modifying the form of the typing judgment to include a termination taint label. This in
general may increase permissiveness of the typing.

Remarks. The type system is based on [Volpano et al.(1996)Volpano, Smith, and Irvine]. The
idea of behind such an analysis goes back to [Denning and Denning(1977)]; the literature fre-
quently refers to this as “Denning-style” analysis.

5. Proof of soundness

This section establishes the formal relationship between the type system of Section 4 and the
termination-insensitive noninterference given by Definition 2.3

Our main theorem is formulated as follows.

Theorem 1 (Soundness of the security type system). Given a program c such that Γ, pc ` c
then c satisfies Definition 2.

To prove this theorem we introduce a number of auxiliary definitions.

5.1. Well-formedness and preservation.

Definition 3 (Well-formedness of memory w.r.t. a typing environment). Given a memory m
and a typing environment Γ say that m is well-formed w.r.t. Γ if dom(m) ⊆ dom(Γ)

Because the language is so small (the types only range over integers), the only requirement on
the well-formedness is that if a variable appears in the program text it must be defined in the
environment.

In the following, whenever we write m1 ∼Γ m2 we also assume that m1 and m2 are well-formed
w.r.t. Γ.

Well-formedness is lifted to configurations as follows.

Definition 4 (Well-formedness of configurations). We say that a configuration 〈c,m〉 is well-
formed w.r.t. a typing environment Γ and a level pc when both of the following hold:

(1) either c is stop, or the program is well-typed, i.e., Γ, pc ` c

(2) and, m is well-formed w.r.t. Γ.

3 A mechanization of this proof in Coq is available at https://github.com/aslanix/SmallStepNI

https://github.com/aslanix/SmallStepNI

10 ASLAN ASKAROV

S-Assign-Pub
〈e,m〉 ⇓ v Γ(x) = Public

〈x := e,m〉_(x,v) 〈stop,m[x 7→ v]〉

S-Assign-Sec
〈e,m〉 ⇓ v ¬(Γ(x) = Public)

〈x := e,m〉_ε 〈stop,m[x 7→ v]〉

S-Seq1-Ev
〈c1,m〉_α 〈stop,m′〉
〈c1; c2,m〉_α 〈c2,m

′〉

S-Seq2-Ev
〈c1,m〉_α 〈c′1,m′〉 c′1 6= stop

〈c1; c2,m〉_α 〈c1; c2,m
′〉

Figure 8. Auxiliary semantics with events – selected rules.

Lemma 1 (Preservation of well-formedness). Assume we are given a typing environment Γ,
level pc, and a configuration 〈c,m〉, such that the configuration is well-formed w.r.t. Γ and pc.
Suppose this configurations takes a step

〈c,m〉 → 〈c′,m′〉.
Then the resulting configuration 〈c′,m′〉 is also well-formed w.r.t. Γ and pc.

Proof. By induction on c. �

5.2. Auxiliary semantics and bridge relation.

5.2.1. Auxiliary semantics with events. We define an auxiliary semantics that is operationally
equivalent to the semantics in Section 1, but records additional information that is needed for
the proof. We call the additional information recorded in the semantic transitions public events.
In our setting, the only source of public events is public assignments – we record this by setting
the form of public events to be (x, v), where x is the name of the variable that is being assigned
to, and v is the value that is assigned to the variable. We abbreviate a single event by α.

α ::= ε | (x, v)

Figure 8 presents the selected rules for the auxiliary semantics. The omitted cases are trivial,
and all produce an empty event ε.

As a sanity check, we establish the following technical lemma.

Lemma 2 (Adequacy of the semantics with events). Suppose we are given a typing environment
Γ, a program c and memory m. Then 〈c,m〉 → 〈c′,m′〉 if and only if there is an event α such
that 〈c,m〉_α 〈c′,m′〉.

Proof. We inspect each of the directions separately.

From standard to auxiliary: By induction of the steps relation →. For the base cases,
the only interesting case is assignment. In this case, we proceed by analysis of Γ(x). We
have the following cases

(1) Γ is defined on x and Γ(x) = Public. In that case, the S-Assign-Pub is applied to
pick the corresponding auxiliary transition.

(2) Γ is undefined on x or Γ(x) = Secret. In that case, the rule S-Assign-Sec is
applied to pick the corresponding auxiliary transition.

The inductive cases are straightforward.

From auxiliary to standard: By induction on _; all cases are trivial.

�

Using Lemma 2 we can lift our proof of preservation to the auxiliary semantics.

LANGUAGE-BASED INFORMATION FLOW BASICS 11

Bridge-Stop
〈c,m〉_ε 〈stop,m′〉
〈c,m〉y0

ε 〈stop,m′〉

Bridge-Public
〈c,m〉_α 〈c′,m′〉 α 6= ε

〈c,m〉y0
α 〈c′,m′〉

Bridge-Multi
〈c,m〉_ε 〈c′,m′〉 c′ 6= stop 〈c′,m′〉yn

α 〈c′′,m′′〉
〈c,m〉yn+1

α 〈c′′,m′′〉

Figure 9. Bridge relation

Lemma 3 (Preservation of typing for the auxiliary semantics). Assume we are given a typing
environment Γ, level pc, and a configuration 〈c,m〉, such that the configuration is well-formed
w.r.t. Γ and pc. Suppose this configurations takes a step

〈c,m〉_ α〈c′,m′〉.

Then the resulting configuration 〈c′,m′〉 is also well-formed w.r.t. Γ and pc.

Proof. Immediate from Lemma 1 and Lemma 2. �

5.2.2. Bridge relation. Using the auxiliary semantics, we introduce our main techincal vehicle of
this proof – a so-called bridge relation. We say that configuration 〈c,m〉 bridges to configuration
〈c′,m′〉 when 〈c′,m′〉 is the first configuration reachable from 〈c,m〉 with a public assignment
event, or a 〈c′,m′〉 is a terminal configuration. Bridge relation is defined in terms of the auxiliary
semantics with events. Bridge relations are indexed by the number of the intermediate steps
leading to the event; this is needed to apply the strong induction principle in the proof of
noninterference for the bridge relation.

We denote the bridge relation as 〈c,m〉 yn
α 〈c′,m′〉, where α is the event produced by the

transition to the configuration 〈c′,m′〉, and n is the number of the intermediate steps. Figure 9
presents this relation. Note that this relation is not reflexive.

5.2.3. Properties of bridge relation. We observe that in order for a sequential composition of two
commands to produce an event, it must be that either the first command is consumed silently
(emitting an empty event ε), or it is the first command that actually produces the event. This
is formalized by the following lemma.

Lemma 4 (Bridge of sequential composition). Given a typing environment Γ, a sequential
composition of two commands c1 and c2 such that 〈c1; c2,m〉yn

α 〈c′,m′〉 then one of the following
holds

(1) it must be that n > 0 and there are k and m′1 such that k < n and 〈c1,m〉yk
ε 〈stop,m′1〉

and 〈c2,m
′
1〉yn−k−1

α 〈c′,m′〉

(2) or, α 6= ε and there is c′1 such that 〈c1,m〉yn
α 〈c′1,m′〉 and c′ =

{
c′1; c2 if c′1 6= stop

c2 o/w
.

Proof. By inspection of the rules in the bridge relation and the associated rules of the auxiliary
semantics. �

5.3. Noninterference for expressions. Our proof of noninterference for commands relies on
noninterference for expressions that we formalize via the following lemma below.

12 ASLAN ASKAROV

Lemma 5 (Noninterference for expressions). Given a typing environment Γ and two memories
m1 and m2 such that m1 ∼Γ m2, and an expression e such that Γ ` e : `, such that 〈e,m〉 ⇓ v1

and 〈e,m〉 ⇓ v2, then we have that

` v Public =⇒ v1 = v2.

Proof. By induction on the typing derivation Γ ` e : `. �

5.4. Properties of public-memory–equivalence. We establish a number of useful technical
lemmas for public-memory–equivalence.

Lemma 6 (Transitivity of ∼Γ). Given Γ and m1,m2,m3, if m1 ∼Γ m2 and m2 ∼Γ m3 then
m1 ∼Γ m3.

Proof. Immediate by definition of ∼Γ. �

Lemma 7 (Public updates preserve pubilc-memory–equivalence). Given Γ and two memories
m1 and m2 such that m1 ∼Γ m2 and a variable x such that Γ(x) = Public. Then for all values
v, it must be that m1[x 7→ v] ∼Γ m2[x 7→ v].

Proof. Immediate by definition of memory update and definition of ∼Γ. �

5.5. High steps. An important property of our type system is that it disallows assignments
to public variables when the program counter level is secret. In particular, this means that
programs that are well-typed when pc = Secret it must hold that the initial and the final
memories are public-memory–equivalent.

The following lemma expresses the above intuition for a single step, allowing a straightforward
generalization to a number of steps.

Lemma 8 (Commands typed in secret context are not making public assignments). Given a
typing environment Γ, and program c such that Γ,Secret ` c, memory m, such that 〈c,m〉 _α

〈c′,m′〉 then α = ε and m ∼Γ m
′.

Proof. By induction on the structure of c. �

5.6. Noninterference for bridge relation. We are now ready to formulate our noninterfer-
ence for the bridge relation.

Theorem 2 (Noninterference for bridge). Suppose we are given a typing environment Γ, two
memories m1 and m2 such that m1 ∼Γ m2, and program c such that Γ, pc ` c. Suppose further
that we have a pair of (potentially empty) events α1, α2, some n and n2, and two configurations
〈c′1,m′1〉 and 〈c′2,m′2〉 such that

〈c,m1〉yn
α1
〈c′1,m′1〉 and 〈c,m2〉yn2

α2
〈c′2,m′2〉

Then, it must be that

(1) the final commands are the same: c′1 = c′2.

(2) the final memories agree on public variables: m′1 ∼Γ m
′
2.

(3) α1 6= ε if and only if α2 6= ε.

(4) if α1 6= ε then α1 = α2.

Proof. The proof is “two-dimensional” – it uses two nested inductions: an outer induction is
on the number of steps n, with the inner inductions on the structure of the commands. We
examine this in detail.

Outer base case n = 0: We proceed by an inner induction on the structure of c.

LANGUAGE-BASED INFORMATION FLOW BASICS 13

Case c is skip: For both runs, the only applicable rule is Bridge-Stop that produces
stop-configurations. Moreover, the memories do not change, and both events α1

and α2 must be ε.

Case c is x := e: We examine the bridge relation 〈x := e,m〉y0
α 〈c′1,m′1〉. The only

two possible bridge rules are Bridge-Stop and Bridge-Public (rule Bridge-
Multi is not applicable because n = 0). We examine each of the cases.

Case Bridge-Stop: It must be that 〈x := e,m〉 _ε 〈c′1,m′1〉. This is only
possible by rule S-Assign-Sec, in particular we have that ¬(Γ(x) = Public).
By Lemma 3, it must be that Γ is defined for x and hence it must be that
Γ(x) = Secret. This means that assignment to variable x does not change
public-memory–equivalence, and therefore it must be that m1 ∼Γ m

′
1.

Now that we have established that Γ(x) = Secret, we observe that the bridge
transition for the second run must also be produced by an assignment to secret
variable x (also via Bridge-Stop and S-Assign-Sec). Thus, m2 ∼Γ m

′
2.

We are then done by (two applications of) transitivity of ∼Γ (Lemma 6),
observing that the final commands are stop.

Case Bridge-Public: The only applicable rule in the auxiliary semantics is
S-Assign-Pub. This means that Γ(x) = Public.

Now that we have established that Γ(x) = Public, we observe that the bridge
transition for the second run must also be produced by an assignment to
public variable x (also via Bridge-Public and S-Assign-Pub).

Because our program is well-typed, it must be that Γ, pc ` x := e. The only
applicable typing rule is T-Assign. This rule requires that it must be that
pc t ` v Public, where Γ ` e : `. This means, in particular, that it must be
that ` v Public. By Lemma 5, it must be that v1 = v2, where v1 and v2 are
the results of evaluating expression e in two respective runs, i.e., 〈e,m1〉 ⇓ v1

and 〈e,m2〉 ⇓ v2.

Then we are done by Lemma 7, observing that the resulting commands must
be stop, and that for the produced events it holds that α1 = (x, v1) = (x, v2) =
α2.

Case c is d1; d2: We apply Lemma 4, and observe that only one of the cases indicated
by that lemma is possible (the other one would require 0 > 0). So, it must be that
α1 6= ε and there is d′1 such that

〈d1,m1〉y0
α1
〈d′1,m′1〉. (5.1)

and c′1 =

{
d′1; d2 if d′1 6= stop

d2 o/w

Given 〈d1; d2,m2〉yn2
α2
〈c′2,m′2〉, then by Lemma 4, we have two possibilities:

(1) it must be that n2 > 0 and there are k and m′′2 such that k < n2 and

〈d1,m2〉yk
ε 〈stop,m′′2〉 (5.2)

and 〈d2,m
′′
2〉yn2−k−1

α2
〈c′2,m′2〉.

Using equations 5.1 and 5.2 we can apply the inner induction hypothesis for
d1 to arrive at a contradiction that α1 = ε. Thus, this case is impossible.

(2) or, α2 6= ε, and there is d′′1 s.t. 〈d1,m2〉yn2
α2
〈d′′1,m′2〉 and c′2 =

{
d′′1; d2 if d′′1 6= stop

d2 o/w
.

14 ASLAN ASKAROV

In this case, we apply the induction hypothesis to d1 to conclude that

• d′1 = d′′1.

• m′1 ∼Γ m
′
2

• α1 6= ε if and only if α2 6= ε.

• if α1 6= ε then α1 = α2.

Using this, we obtain that it must be that c′1 = c′2, which together with the above
facts closes this subcase.

Case c is if e then c1 else c2: Not applicable, because n = 0.

Case c is while e do c: Not applicable, because n = 0.

Outer inductive case: We proceed by an inner induction on the structure of c.

Case c is skip: Not applicable, because n > 0.

Case c is x := e: Not applicable, because n > 0.

Case c is d1; d2: We apply Lemma 4 to each of the runs to obtain the following.

(1) For the first run, we have the two possibilities

(a) it must be that n1 > 0 and there are k1 and m′′1 such that k1 < n and

〈d1,m1〉yk1
ε 〈stop,m′′1〉 (5.3)

and
〈d2,m

′′
1〉yn−k1−1

α1
〈c′1,m′1〉 (5.4)

(b) or, α1 6= ε, and there is d′′1 such that

〈d1,m1〉yn
α1
〈d′′1,m′1〉 (5.5)

and c′1 =

{
d′′1; d2 if d′′1 6= stop

d2 o/w
.

(2) Similarly, for the second run, we have the two possibilities

(a) it must be that n2 > 0 and there are k2 and m′′2 such that k2 < n2 and

〈d1,m2〉yk2
ε 〈stop,m′′2〉 (5.6)

and
〈d2,m

′′
2〉yn2−k2−1

α2
〈c′2,m′2〉 (5.7)

(b) or, α2 6= ε, and there is d′′2 such that

〈d1,m2〉yn2
α2
〈d′′2,m′2〉 (5.8)

and c′2 =

{
d′′1; d2 if d′′2 6= stop

d2 o/w
.

This gives four cases in total to consider: (1a,2a), (1a,2b), (1b, 2a), and (1b, 2b). Out
of these, the two – namely (1a,2b) and (1b,2a) – are impossible. This can be seen by
applying the inner induction hypothesis to d1 to arrive at contradicting conclusions. In
case of (1a, 2b), the contradicting conclusion is α2 = ε, and in case of (1b,2a), it is that
α1 = ε. We consider the remaining two cases:

Case (1a,2a): We apply the inner induction hypothesis twice. First, we apply it
to d1 which gives us that m′′1 ∼Γ m′′2. From here, we are done by applying the
induction hypothesis to d2.

LANGUAGE-BASED INFORMATION FLOW BASICS 15

Case (1b,2b): Here, we are done immediately by applying the inner induction hy-
pothesis to d1.

Case c is if e then c1 else c2: By T-If, it must be that Γ, pc t ` ` ci, for i = 1, 2, where
Γ ` e : `. We consider two cases

Case pc t ` v Public: . In this case, it must be that by Lemma 5, both runs take
the same branch, and we are done by the inner induction hypothesis.

Case pc t ` 6v Public: In this case, by Lemma 8, it must be that neither of the runs
update public variables, and we are done by repeated applications of Lemma 6.

Case c is while e do c: Immediately by the outer induction hypothesis.

�

5.7. Bridge adequacy.

Lemma 9 (Bridge adequacy). Given a program c such that Γ, pc ` c, and memory m that
is well-formed w.r.t. Γ, and such that 〈c,m〉 →n 〈stop,mfinal 〉, and some mfinal , then there

are c′,m′, α, k, and n′ such that 〈c,m〉 yk
α 〈c′,m′〉 and 〈c′,m′〉 →n′ 〈stop,mfinal 〉, where

k + n′ + 1 = n.

Proof. By induction on n. Base case n = 0 is trivial. For the inductive case, we assume that
the lemma holds for n− 1 steps, and consider the case of n steps.

We have that

〈c,m〉 → 〈c′,m′〉 and 〈c′,m′〉 →n−1 〈stop,mfinal 〉
By Lemma 2, there is α such that 〈c,m〉_α 〈c′,m′〉.

We consider two possibilities:

Case α 6= ε: Then we are done by rule Bridge-Public, and we set k = 0 and n′ = n−1.

Case α = ε: We have two cases

(1) n − 1 = 0. In this case we are done by Bridge-Stop, and once again k = 0 and
n′ = n− 1.

(2) n − 1 > 0. In this case, it must be that c′ 6= stop. By the induction hypothesis

〈c′,m′〉 yk′′
α 〈c′′,m′′〉, and 〈c′′,m′′〉 →n′′ 〈stop,mfinal 〉, where k′′ + n′′ + 1 = n − 1.

Then, using Bridge-Multi we have that 〈c,m〉 yk′′+1
α 〈c′′,m′′〉, so we set k =

k′′ + 1 and n′ = n′′.

�

5.8. Revisiting Theorem 1. We are now ready to combine all the pieces necessary for the
proof of Theorem 1.

Restatement of Theorem 1 (Soundness of the security type system). Given a program c
such that Γ, pc ` c then c satisfies Definition 2.

Proof. Unfolding Definition 2 (and instantiating it to equivalence under Γ), we need to show
that for all pairs of memories m1 and m2 such that m1 ∼Γ m2, and

〈c,m1〉 →∗ 〈stop,m′1〉 (5.9)

and

〈c,m2〉 →∗ 〈stop,m′2〉 (5.10)

it holds that m′1 ∼Γ m
′
2.

16 ASLAN ASKAROV

From equations 5.9 and 5.10, there are n1 and n2 such that

〈c,m1〉 →n1 〈stop,m′1〉 and 〈c,m2〉 →n2 〈stop,m′2〉

We proceed by strong induction on n1.

Base case n1 = 0: In this case, c must be stop, and we are done immediately.

Inductive case: In this case, c is not stop. By Lemma 9, applied to both runs, we have:

(1) for the first run: 〈c,m1〉yk1
α1
〈c′1,m′′1〉 and 〈c′1,m′′1〉 →n′

1 〈stop,m′1〉, with n′1 < n1.

(2) for the second run: 〈c,m2〉yk2
α2
〈c′2,m′′2〉 and 〈c′2,m′′2〉 →n′

2 〈stop,m′2〉.

By Theorem 2, we get that c′1 = c′2 and m′′1 ∼Γ m′′2. By preservation, it must be that
either c′1 = stop or Γ, pc ` c′1. In case c′1 = stop ,we are done immediately, and it must
be that m′i = m′′i , i = 1, 2. Otherwise, we can apply the induction hypothesis for n′1 to
obtain the public-memory–equivalence of the final memories, as desired.

�

Acknowledgments. Thanks to the students of Language-Based Security course at Aarhus
University who provided useful feedback for these notes.

References

[Denning and Denning(1977)] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. Comm. of the ACM, 20(7):504–513, July 1977.

[Goguen and Meseguer(1982)] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symp. on Security and Privacy, pages 11–20, Apr. 1982.

[Plotkin(1981)] G. D. Plotkin. A structural approach to operational semantics. 1981.
[Sabelfeld and Myers(2003)] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J.

Selected Areas in Communications, 21(1):5–19, Jan. 2003.
[Volpano et al.(1996)Volpano, Smith, and Irvine] D. Volpano, G. Smith, and C. Irvine. A sound type system for

secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.
[Winskel(1993)] G. Winskel. The Formal Semantics of Programming Languages. 3rd edition, 1993.

	Introduction
	1. Small imperative language
	2. Noninterference
	2.1. Basic end-to-end definition
	2.2. Examples
	Remarks

	3. Dynamic enforcement
	3.1. Monitoring for expressions
	3.2. Monitoring for commands

	4. Type-based enforcement
	Remarks

	5. Proof of soundness
	5.1. Well-formedness and preservation
	5.2. Auxiliary semantics and bridge relation
	5.3. Noninterference for expressions
	5.4. Properties of public-memory–equivalence
	5.5. High steps
	5.6. Noninterference for bridge relation
	5.7. Bridge adequacy
	5.8. Revisiting Theorem 1

	References

