
BDDStab: BDD-based Value Analysis of Binaries

Sven Mattsen
Hamburg University of Technology

sven.mattsen@tuhh.de

Arne Wichmann
Hamburg University of Technology

arne.wichmann@tuhh.de

Sibylle Schupp
Hamburg University of Technology

schupp@tuhh.de

1. Introduction
Value analyses compute for each variable a superset of possible
values, called variation domain (VD). The results of value analyses
are helpful for verification as well as program comprehension and
are often used to enable or improve other analyses. For high-
level languages like C, value analyses are utilized, for example, to
compute targets of dynamic call sites.

For executables, value analyses could be similarly useful, for
example, for control-flow reconstruction. Compared to value anal-
yses on high-level languages, the analysis of executables poses the
following challenges:

1. Variables may be used as targets in indirect jumps, demanding
precise representation of the target’s VD.

2. Values are more likely to be the result of both bitwise and
arithmetic operations, hence both operations must be computed
precisely, even if mixed.

3. Conditional jumps are predicated on formulas that may contain
conjunctions, disjunctions, and negation, requiring a suitable
constraint solver.

Most value analysis tools require VDs to have a convex shape,
that is, all values on a line between any two included values must
be included as well. This requirement allows many operations to
be executed on the borders of VDs only, which makes such do-
mains efficient, even for large operands. On the down side, VDs
of convex domains cannot have holes. For domains that track VDs
for each variable independently, convexity implies that if a and b
are included in a VD A, then {x | a ≤ x ≤ b} ⊆ A. For
executables, convexity is problematic because targets of indirect
jumps are often loaded from tables that contain addresses of code,
and such addresses are essentially random; compilers often create
such jump tables for switch statements. Further, because of com-
piler optimizations, executables are more likely to contain bitwise
operations, which generally do not produce convex sets. We con-
clude, therefore, that convex domains are not suited for the analysis
of binary executables.

Naively implemented, non-convex sets for integer types are in-
efficient, because storing every element explicitly may require too
much space. Further, in the absence of information about rela-
tions, binary abstract operations A ◦̂B will have to consider each

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
TAPAS ’14, September 10, 2014, Munich, Bavaria, Germany.
Copyright is held by the owner/author(s).

combination of elements in A and B, to produce the required
{a ◦ b | a ∈ A, b ∈ B}, making the operation too inefficient
for large operands.

The following well known approaches mitigate these shortcom-
ings:

• Limit set size; introduce explicit > element (e.g. k-sets)
• Limited disjunctive refinements of convex domains (e.g. k-sets

of convex abstract elements, e.g. [3])
• Product of specialized property spaces; concretization uses

meet over individual concretizations (Direct Product[2])

Sadly, these methods, applied to contemporary abstract do-
mains, e.g., a direct product of a k-set domain and a disjunctive
refinement of an interval domain[3], cannot precisely represent or
compute a mix of arithmetic and bitwise operations.

2. BDDStab
BDDStab is a plug-in for the binary analysis framework Jakstab[6].
In difference to the standard interval and k-set abstract domains of
Jakstab, BDDStab allows an unlimited number of disjunctions, i.e.,
sets of arbitrary size, by basing the integer set representation on bi-
nary decision diagrams (BDDs) [1]. Any integer can be converted
to a sequence of booleans using the two’s complement. We use this
fact to store n-bit integer sets Xn in a BDD by letting it represent
the indicator function iXn(x) : {1, 0}n → {1, 0} that returns 1 ex-
actly when x ∈ Xn. Bits are ordered from most significant (MSB)
to least significant bit (LSB) because that allows us to find the
largest and smallest elements of a set quickly and enables efficient
conversion from and to intervals, which is the fallback for opera-
tions without BDD-specific algorithms. BDDs not only make the
representation size-efficient for non-convex sets, but also support
efficient union and intersection. Additionally, we introduce spe-
cialized algorithms for bitwise operations, subtraction, and addition
that operate directly on the BDD’s structure. Thereby, these algo-
rithms remain efficient, even for large operands. Note that we use
complemented edges as decribed by Madre and Billon[7] , which
further optimizes the BDD size and allows O(1) complementation
of sets. The fast complementation is helpful for our implementation
of an extensible, overapproximating constraint satisfaction solver
that we use in combination with forward substitution[4, 8] to re-
strict VDs at conditional branches.

3. Case Study
As an example, let us discuss the demo2.exe example, taken from
Kinder’s paper about alternating control-flow reconstruction [5].
The demo2.exe binary contains code sequences, identified as chal-
lenging in Section 1. The corresponding assembly code, with added
edges to visualize control flow originating from jump instructions
and shortened addresses for readability, is depicted in Figure 1.
Note that the edges represent exactly the jump information that

Jakstab[6], using our domain, will determine. The control flow of
the assembly code can be divided into two parts; a loop part from
0x00 to 0x33 that is terminated by a counter; and a loop-free part
from 0x35 to 0x58. Looking only at the code, without information
about possible jump targets, it is not obvious that the jump at 0x41
will not cause a loop. The method in the original paper found that
only 35 of the 37 instructions are reachable that objdump -d1 dis-
assembles. Although not specified in the paper, the code that was
found dead is likely at the addresses 0x02 and 0x03, as indicated
in the original assembly. Using our BDD-based domain to resolve
the targets of jumps, Jakstab is able to additionally determine that
the code at the addresses 0x4a and 0x4c is dead. There are three
crucial facts our domain must find to identify the dead code:

1. The VD of %ebx for the indirect jump at 0x33 must not contain
the addresses of dead code. Note that in practice, any approxi-
mation of VDs for indirect jumps causes approximation at sub-
sequent program locations, which may then cause dead code to
be identified as reachable.

2. Similarly, the VD of %eax for the indirect jump at 0x41 may not
be approximated.

3. It must be shown that %eax and %ebx cannot be equal at 0x3d,
to show that the jump at 0x3f will not be taken.

In the following in-depth discussion, we will take a look at
the contents of the %eax and %ebx registers as well as that of the
memory location 0x00403000, which stores a counter value that is
0 initially.

Table 1 lists a selection of flow data after stabilization as de-
termined by our BDD-based abstract domain. We denote the vari-
ation domains of %eax and %ebx in bits, where * indicates that the
value of a bit is not known. Because nothing is known about %eax
and %ebx initially, both are set to > in 0x00 and no subsequent
join operation will improve precision. After the shift instruction at
0x18, which shifts 30 times to the right and fills with zeros from
the left, only the least significant two bits of %ebx remain unknown.
The subsequent shift instruction will shift these bits to the left by
3 positions, and the following addl instruction does not interfere
with the unknown bits. The code from 0x24 to 0x31 increments
the counter, which terminates the loop that results from the jump
instruction at 0x33 after the second iteration. A look at the flow
data shows that the indirect jump at 0x33 can only have the tar-
gets 0x00, 0x08, 0x10, and 0x18 (Fact 1). When control reaches
0x35, %eax gets shifted by 31 positions to the right and filled with
zeros from the left. After the shift, all but the least significant bit
of %eax are known to be 0. As a result of the addition in 0x38, our
domain determines that %eax can only have the values 0x43 and
0x44, thereby generating precise jump targets for the jump at 0x41
(Fact 2). Because the intersection between the variation domains of
%eax and %ebx at 0x3d is empty, the corresponding jump at 0x3f
cannot be taken (Fact 3). Therefore, our domain can determine that
the code at 0x4a and 0x4c is dead as well.

We provide BDDStab as well as other material needed to re-
produce the case study at http://www.sts.tu-harburg.de/
research/bddstab.html.

1 objdump uses a simple linear sweep disassembler.

Location Counter Registers

0x00 {0, 1} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b **** **** **** **** **** **** **** ****

0x08 {0, 1} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b **** **** **** **** **** **** **** ****

0x10 {0, 1} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b **** **** **** **** **** **** **** ****

0x18 {0, 1} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b 0000 0000 0000 0000 0000 0000 0000 00**

0x1b {0, 1} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b 0000 0000 0000 0000 0000 0000 000* *000

0x1e {0, 1} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b 0000 0000 0100 0000 0001 0000 000* *000

0x24 {1, 2} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b 0000 0000 0100 0000 0001 0000 000* *000

0x23 {1, 2} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b 0000 0000 0100 0000 0001 0000 000* *000

0x33 {1, 2} %eax 0b **** **** **** **** **** **** **** ****
%ebx 0b 0000 0000 0100 0000 0001 0000 000* *000

0x35 {2} %eax 0b 0000 0000 0000 0000 0000 0000 0000 000*
%ebx 0b 0000 0000 0100 0000 0001 0000 000* *000

0x38 {2} %eax
0b 0000 0000 0100 0000 0001 0000 0100 0011
0b 0000 0000 0100 0000 0001 0000 0100 0100

%ebx 0b 0000 0000 0100 0000 0001 0000 000* *000

0x41 {2} %eax
0b 0000 0000 0100 0000 0001 0000 0100 0011
0b 0000 0000 0100 0000 0001 0000 0100 0100

%ebx 0b 0000 0000 0100 0000 0001 0000 000* *000

Table 1. VDs during analysis

start:
0x00: jmp 0x18
0x02: inc %edi
0x03: mov $0x1, %edi
0x08: cmpb $0x2, %al
0x0a: jle 0x10
0x0c: nop

0x0d: nop

0x0e: nop

0x0f: nop

l1:
0x10: cmpb $0x2, %al
0x12: jnl 0x18
0x14: nop

0x15: nop

0x16: nop

0x17: nop

l2:
0x18: shrl $0x1e, %ebx
0x1b: shll $0x3, %ebx
0x1e: addl $0x00, %ebx
0x24: incb $0x00403000
0x2a: cmpb $0x2, 0x00403000
0x31: je 0x35
0x33: jmp %ebx

l3:
0x35: shrl $0x1f, %eax
0x38: addl $0x43, %eax
0x3d: cmpl %eax, %ebx
0x3f: je $0x4a
0x41: jmp %eax
0x43: nop

0x44: addl %ebx, %eax
0x46: subl %eax, %ebx
0x48: jmp $0x4e

l4:
0x4a: addl %eax, %ebx
0x4c: subl %ebx, %eax

l5:
0x4e: xorl %eax, %eax
0x50: pushl $0x0
0x52: call 0x58
0x58: cmp ExitProcesskernel32.dll

Figure 1. demo2.exe from Kinder [5], with control flow edges
originating from jumps

References
[1] R. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677–691, Aug. 1986. .
[2] P. Cousot and R. Cousot. Systematic design of program analysis

frameworks. In Proceedings of the Sixth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 269–282.
ACM Press, 1979.

[3] A. Gurfinkel and S. Chaki. Boxes: A symbolic abstract do-
main of boxes. In Static Analysis, LNCS(6337), pages 287–
303. Springer, Jan. 2010. ISBN 978-3-642-15768-4, 978-3-642-
15769-1. URL http://link.springer.com/chapter/10.1007/
978-3-642-15769-1_18.

[4] J. Kinder. Static analysis of x86 executables. PhD thesis, Technische
Universität Darmstadt, 2010.

[5] J. Kinder and D. Kravchenko. Alternating control flow reconstruc-
tion. In Verification, Model Checking, and Abstract Interpretation,
LNCS(7148), pages 267–282. Springer, Jan. 2012. ISBN 978-3-642-
27939-3, 978-3-642-27940-9.

[6] J. Kinder and H. Veith. Jakstab: A static analysis platform for bina-
ries. In Computer Aided Verification, LNCS(5123), pages 423–427.
Springer, Jan. 2008. ISBN 978-3-540-70543-7, 978-3-540-70545-1.

[7] J.-C. Madre and J.-P. Billon. Proving circuit correctness using formal
comparison between expected and extracted behaviour. In Proceedings
of the 25th ACM/IEEE Design Automation Conference, DAC ’88, page
205–210. IEEE Computer Society Press, 1988. ISBN 0-8186-8864-5.

[8] A. Sepp, B. Mihaila, and A. Simon. Precise static analysis of binaries by
extracting relational information. In Proceedings of the 18th Working
Conference on Reverse Engineering, WCRE ’11, page 357–366. IEEE
Computer Society, 2011. ISBN 978-0-7695-4582-0. .

