
Static Analysis of Industrial Controller Code
using Arcade.PLC

Sebastian Biallas Stefan Kowalewski
Embedded Software Laboratory

RWTH Aachen University
Aachen, Germany

{lastname}@embedded.rwth-aachen.de

Stefan Stattelmann Bastian Schlich
ABB Corporate Research
Research Area Software

Ladenburg, Germany
{firstname}.{lastname}@de.abb.com

Abstract
In this paper, we present the static analysis capabilities of Ar-
cade.PLC: A tool to check software for Programmable Logic Con-
trollers, which are frequently used in industry to control or monitor
technical processes. These devices are usually programmed using
domain specific programming languages and unorthodox program-
ming practices such as a huge number of variables and large function
size. This imposes a challenge to standard static analysis techniques.

1. Introduction
Programmable logic controllers (PLCs) are control devices used in
industry to control, monitor, and operate technical processes [4].
They typically comprise a set of inputs (connected to sensors),
outputs (connected to actuators) and a program operating on internal
memory. In the most common mode of operation, the program is
called periodically at a high frequency, computing new outputs
based on the current inputs and internal memory. Arcade.PLC1

is a framework for the verification and analysis of PLC code [1],
combining model-checking and static analysis.

The static analysis of Arcade.PLC implements typical checks
for runtime errors and code smells, such as variables with constant
values, missing case labels in switch statements, unreachable code,
conditions with constant result or constant subexpressions, division
by zero, and illegal access into arrays or structured data types. These
checks can be applied to a whole controller program (regarding all
inputs as non-deterministic) or to a single function of the program.

This paper presents the challenges and results of adapting the
static analysis capabilities of Arcade.PLC to industrial PLC code
from the ABB Compact Control Builder development environment.

2. Technical and Pragmatic Challenges
2.1 A Zoo of Languages
The IEC 61131-3 standard defines five languages [4, Part 3], which
includes textual languages such as Instruction List (IL) and Struc-
tured Text (ST), graphical languages such as Function Block Dia-
gram (FBD) and Ladder Diagram (LD), and the state based language
Sequential Function Chart (SFC). Typically, PLCs are programmed
in a mixture of these languages, e.g., by writing function blocks in
ST, which are then combined graphically in FBD. Although stan-
dardized in principle, each PLC vendor usually implements a slightly
different dialect of these languages, sometimes even for different
products of the same vendor. For instance, ABB Compact Control
Builder offers a graphical language which adds meaning to the order
in which function blocks are arranged in the user interface. To cope

1 http://arcade.embedded.rwth-aachen.de/

with the different languages and dialects, Arcade.PLC translates
all input programs into an intermediate code, on which the abstract
interpretation is performed. Possible warnings are then mapped back
to the original program location.

2.2 Challenges in Accessing Real-World Code
The ABB Compact Control Builder tool uses encryption to protect
some parts of the code. While all function block libraries are
distributed as source code and compiled to native code internally,
the libraries are protected by encryption to avoid modification of the
source code by the users of a library. This protection was introduced
since modification by control engineers let to problems when
different versions of a library were used for control applications
that were relying on “unofficial” patches.

The missing information in encrypted libraries gives rise to a
technical challenge: since libraries can be completely encrypted,
even the signatures of the function blocks in some libraries are not
available for an external tool. Thus, the static analysis engine must
derive an appropriate signature for types from encrypted libraries
based on the way they are used in the unencrypted parts of the
source code. This creates a significant amount of overhead when
testing static analyses during analysis development. As it was often
unclear whether certain analysis warnings were triggered by flaws
in the analysis or simply by missing information, a lot of manual
inspection was necessary.

2.3 Size of the Programs
In principle, a controller program is one big function. It is not
uncommon for such a program to have thousands of lines of code,
accessing thousand global variables per cycle, and hundreds of
function blocks which themselves have variables for the internal
state. The sheer size thwarts a naïve flow-sensitive analysis because
of memory constraints.

Additionally, the way function block calls are handled introduces
even more variables: There are basically two ways to call a function
block in most PLC languages: In the first version, input and output
parameters are passed directly (akin to most regular programming
languages). Another, semantically equivalent way to call is to access
the input and output parameters outside the call:

functionblock.input1 := 1;
functionblock.input2 := a;
functionblock();
result := functionblock.output;

When implementing a context-sensitive analysis of the function
block calls, this syntax entails that all input and output parameters of
the function block have to be tracked at the caller’s side, introducing
even more variables. A context-sensitive analysis is advised for

http://arcade.embedded.rwth-aachen.de/


most simple function blocks from the standard library, such as
timers, edge detection, flip-flops, etc. We use a liveness-based pre-
analysis [2] to infer which variables values are relevant in which
parts of the program. This techniques nicely handles the huge
number of variables and allows a context-sensitive analysis of certain
function blocks.

2.4 Abstract Domains
PLC programs usually operate on simple data types and data struc-
tures only. Typically, the following operations should be precisely
reflected by a static analysis to produce good results:

• Simple integer and float arithmetic
• Bitwise logical operations and tests
• Conversions between bitwise and integer types
• Small sets of discrete values (i. e., enumerations)

To handle these operations in our static analysis, we use a partially
reduced product [3] of the following domains: We use the integer
and float interval domain to handle arithmetic. A bit-wise interval
domain is used to reflect bit-wise logic operations. Finally, we use
k-set domain (sets with at most k distinct values otherwise >). In
our experience, this setup is sufficient to capture most typical PLC
program operations.

2.5 Identifying Useful Analyses
We had to tune our checks in practice to account for different coding
styles. The following code fragment, e. g., shows a pattern which
we frequently encountered during our case study:

42 If CONDITION1 Then
43 OUTPUT := 65535;
44 ElsIf CONDITION2 Then
45 OUTPUT := INPUT1 And (INPUT2 Or (INPUT3 Xor 65535));
46 ElsIf Not CONDITION2 Then
47 OUTPUT := INPUT1 And (INPUT2 Or (INPUT3 Xor 0));
48 End_If;

Checking the condition in line 46 is obviously superfluous as the
condition in line 46 is the negation of the condition checked in
line 44. Arcade.PLC thus correctly reported that the condition in
line 46 yields a constant result. However, since essentially every
else-statement in the projects we analyzed were written in this way,
this resulted in a larger number of reported warnings, which were
not real problems in the code. Hence, we had to deactivate this
warning to make the number of warnings manageable.

2.6 Specific Checks
Compact Control Builder programs can make use of the firmware
functions GetStructComponent and PutStructComponent. They al-
low for accessing the n-th component of a structured data type. If n
is less than 1 or greater than the number of elements in the struct, a
runtime error is signaled. It is additionally detected if the accessed
element is of the wrong type. To allow for offline checking of cor-
rect usage of these functions, we implemented two new checks into
Arcade.PLC.

The first check infers the bounds for the index expression used
in the respective calls. If there are no structure elements for some
of the possible values, we issue a warning that the structure might
be accessed outside of its bounds. Additionally, we check that all
structure elements in this interval have the same type. The first check
is only an adaption of an array index out of bounds check to these
firmware functions. The second check, however, is a domain-specific
analysis which is able to detect runtime errors statically, but it only
makes sense in the context of Compact Control Builder programs.

3. Current Results & Future Work
During our case study using a real-world project from an industrial
plant containing about 50,000 lines of code, all checks could be
executed in about 10 minutes. After some fine tuning, the number
of warnings was reasonably low. The warnings could thus be easily
inspected manually. Some of the remaining false positives are caused
by the absence of relational information in our domain. We plan to
add (weakly) relational domains in the future.

What we learned is that not every analysis which looks useful
in theory can fulfill this promise in practice. On the other hand,
looking at real-world code can inspire new analyses and triggers
the need to optimize existing analysis techniques. We therefore
believe that applying analysis tools on large real-world projects helps
tremendously in improving static analysis tools. Whenever possible,
information about the application domain should be considered. This
includes considering the end user of an analysis tool. An ideal static
analysis should also be useful for someone who does not understand
the underlying theories.

Acknowledgments
This work was supported, in part, by the DFG research train-
ing group 1298 Algorithmic Synthesis of Reactive and Discrete-
Continuous Systems and by the DFG Cluster of Excellence on Ultra-
high Speed Information and Communication, German Research
Foundation grant DFG EXC 89. Further, the work of Sebastian
Biallas was supported by the DFG.

References
[1] S. Biallas, J. Brauer, and S. Kowalewski. Arcade.PLC: A verification

platform for programmable logic controllers. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2012, pages 338–341. ACM, 2012. ISBN 978-1-4503-1204-2.

[2] S. Biallas, S. Kowalewski, S. Stattelmann, and B. Schlich. Efficient
handling of states in abstract interpretation of industrial programmable
logic controller code. In Proceedings of the 12th International Workshop
on Discrete Event Systems, Cachan, France, 2014. IFAC. To appear.

[3] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In POPL, pages 238–252. ACM, 1977.

[4] International Electrotechnical Commission (IEC). IEC 61131-3 –
Programmable Controllers—Part 3: Programming languages. 2003.


	Introduction
	Technical and Pragmatic Challenges
	A Zoo of Languages
	Challenges in Accessing Real-World Code
	Size of the Programs
	Abstract Domains
	Identifying Useful Analyses
	Specific Checks

	Current Results & Future Work

