Declarative Static
Program Analysis

Yannis Smaragdakis : : : °
University of Athens | @ @ @ ®
000
joint work with Martin Bravenboer, | ® @
George Kastrinis, | @
George Balatsouras
.:.-:E.rc EDLGATICN AND LIFELONG LEARNING e NSRF = #
- TR == | . LOGICBLOX

Overview o

e What do we do?

static program analysis

“discover program properties that hold for all
executions”

declarative (logic-based specification)

e Why do you care?
simple, very powerful
screaming fast!

different, major lessons learned

several new algorithms, optimization techniques,
implementation insights (no BDDs)

Yannis Smaragdakis 2
University of Athens

Program Analysis: Run Faster

(e.g., compiler optimization)

Yannis Smaragdakis
University of Athens

Program Analysis:
Software Understanding

(e.g., slicing, refactoring, program queries)

Yannis Smaragdakis 4
University of Athens

Program Analysis: Find Bugs

Our Work

e In the past 5 years:

Doop: a very powerful framework for Java pointer
analysis

the mother of all sophisticated static analyses
declarative, using the Datalog language

some work on client analyses

e |n the future:
analyses for other languages
lots of other low- and high-level analyses

Yannis Smaragdakis 6
University of Athens

Pointer Analysis

by allocation sites

e What objects can a variable point to? (objects represented }

[program] [points-to :
void foo() { foo:a nhew A1()
——> Object a = new A1Q); bar:a | new A2()
Object b = 1d(a);
}
void bar() {
——> Object a = new A2(Q);
Object b = 1d(a);
}
Object 1d(Object a) {
return a;
q
5
Yannis Smaragdakis 7

University of Athens

X X J
o0
o
Pointer Analysis
e What objects can a variable point to?
[program] [points-to]
void foo() { foo:a hew A1(Q)
Object a = new A1(Q); bar:a hew A2()
——> Object b = id(a); id:a new A1), new A2()
}
void bar() {
Object a = new A2(Q);
—> Object b = id(a);
}
> Object id(Object a) {
return a;

Yannis Smaragdakis 8
University of Athens

Pointer Analysis

e What objects can a variable point to?

[program] [points-to]
void foo() { foo:a hew A1(Q)
Object a = new A1(Q); bar:a oA
——> Object b = id(a); id:a remember for later:
} foo:b context-sensitivity is what
bar:b makes an analysis precise
void bar() { []
Object a = new A2(); context-sensitive points-to
— Object b = id(a); foo:a new A1Q)
¥ bar:a hew A2()
: : : id:a (foo) hew A1()
ObJECt 'Id(ObJeCt a) { id:a (bar) new A2 ()
return a; foo:b new A1(Q)
bar:b hew A2()
Yannis Smaragdakis 9
University of Athens

Pointer Analysis: A Complex

Domain

flow-sensitive
field-sensitive

heap cloning
context-sensitive
binary decision diagrams
inclusion-based
unification-based
on-the-fly call graph
k-cfa

object sensitive
field-based
demand-driven

Results 1 - 20 @ Sort by :felevance ' v in '-_ex_panded form v
@ save results to a Binder

Resultpage:1 2 3 4 5 6 7 8

=]

1 next >>

1 Semi-sopointer analysis
®Januaw 2009 PORLQOsBrcedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages
Publisher: ACM

Full text available: ﬂﬂ (246.09 KB) Additional Information: full citation, abstract, references, index terms

Bibliometrics: Downloads (6 Weeks): 34, Downloads (12 Months): 34, Citation Count: 0

Pointer analysis is a prerequisite for many program analyses, and the effectiveness of these analyses depends
on the precision of the pointer information they receive. Two major axes of pointer analysis precision are
flow-sensitivity and context-sensitivity, ...

Keywords: alias analysis, pointer analysis

2 Efﬁcier{fae!d-sensitive\:ointer analysis of C

s David J.m W! Kelly, Chris Hankin
@November 2007 Transactions on Programming Languages and Systems (TOPLAS) , volume 30 Issue 1
Publisher: ACM

Full text available:ﬁ@ (924.64 KB) Additional Information: full citation, abstract, references, index terms

Bibliometrics: Downloads (6 Weeks): 31, Downloads (12 Months): 282, Citation Count: 1

The subject of this article is flow- and context-insensitive pointer analysis. We present a novel approach for
precisely modelling struct variables and indirect function calls. Our method emphasises efficiency and simplicity
and is based on a simple ...

Keywords: Set-constraints, pointer analysis

dhgontext-sensitivedbointer alias analysis usin(Einaw decision diagrams >

- , Mon| Cormsi
@June 2004 PLDI '04: Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and
implementation
Publisher: ACM

TRFOEP R N P T A o RS Vo Y

Yannis Smaragdakis 10
University of Athens

3 Cloning-base

1110 |

1018

procedure exhaustive g

Algorithms Found In a 10-Page
Pointer Analysis Paper

pro

be

pr

be

e

besin variation points
1 in Fienure 2 */ |
1 unclear ling to aten 3 in Figura 0
. ding to step 4 in Figure 2 */
2. orklist(worklist,value)
; for keeping the aliases to proce
every varlqnt RS oon to (N AA PA).
algorithm
not empty do
3. end 1A, PA) from worklist;
i node
propagated_at_call(N, AA, PA,
33 exit node
it implies(N, AA, PA,value
3.4 ; . ccessor(N)
iIncomparable In el
_implies_thru_assign(
. P A, value);
precision fue is Y ES
e true(M,AA, PA);
end i 1.4.3 else /* value is FALSIFIED
2. make_false(M,AA, PA);
3. end
4. .
Figure 5: Reiteration for the incremental algorith
end 2dd (N, AA, PA) to worklist;
end Yannis Smaragdak]s
Figure 4: Reintroduce aliases for naive PKREH G Athenss

i
fuq

[* Alias falsification for delating a pointer assignment
corresponding to step 1 in Figure 2 */
procedure folsify_for.deleting assign{N)
N: a pointer assisnment to be deleted; =

begin procedure update_for_adding_assign(N,M)
1. N: a pointer assignment to be added;
M: the statement after which statement N is added;
2. |begin
3. 1. make N as a successor of M, and leave N without
any SuCcessors;
2. create an empty worklist;
3. aliases_intro_by_assignment(N,Y ES);
4. repropagate_aliases(M, worklist);
i 5. reiterate_worklist(worklist,Y ES);
sl 6. for each may_hold(M, AA, PA = (01,02)) = YES,
and may-hold(N,AA, PA) = NO
T add (M, AA, PA) to worklist;
N 7. reiterate_worklist(worklist, FALSIFIEDY;
begir{end
L Figure 8: Procedure for falsifying aliases that are po-
5 |tentially affected by adding a pointer assignment

=5t Tiode of The Tanction called Oy I¥ Tespectively
- oliases_propagated.at_call(IV, [y 0, FALSIFIEDY;
. for each mayhold(N, A4, FA) = YES
J* If the ealled function may genetate new aliases
from the reaching alinses implied by PA */
if 3 AA' € bind(N, E, PA), such that some
PA" (# AA") Is generated from AA" at exit X
alizses_propagated.at_call(N, A4, PA,
FALSIFIED);
if & function becomes unreachable from the main pro-
gram after the call node is deleted, steps 3 and 4
are repeated on those calls within each of the
reachable functinne
6. reiterate_workiist{worklist, FALSIFIED;
end

Eigura T: Procadures for falgifuing aliaszeg arhich asp mn

What Does It Mean To Be
Declarative?

-

~

“denoting high-level programming languages 71 NEW

which can be used to solve problems without '

requiring the programmer to specify an exact OX FORD
procedure to be followed.” Dictsonary of

The foremo comprehensive
cov

Ma: olutionary

new

e high-level

e what, not how A e
e no control-flow
e Nno side-effects
e specifications, not programs, not algorithms

The World’s Most Trusted Dictionaries

Yannis Smaragdakis 12
University of Athens

Pointer Analysis:
Approaches

Context-sensitive pointer analysis for Java

e paddle

o Java + relational algebra +

binary decision diagrams (BDD)

e wala

e Java, conventional approach
e bddbddb (pioneered Datalog for realistic points to analysis)

o Datalog + Java + BDD

Yannis Sm
University

Previous

not a single purely

declarative approach

coupling of specification
and algorithm

13

Our Framework

e Datalog-based pointer analysis framework for Java

e Declarative: what, not how @OOP

e Sophisticated, very rich set of analyses

e subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity,
call-site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type
filtering, precise exception analysis

e Support for full semantic complexity of Java

e jvminitialization, reflection analysis, threads, reference queues, native methods, class
initialization, finalization, cast checking, assignment compatibility

http://doop.program-analysis.org

Yannis Smaragdakis 14
University of Athens

Key Contributions

e Expressed complete, complex pointer analyses in Datalog
core specification: ~600 logic rules
parameterized by a handful of rules per analysis flavor

e Synthesized efficient algorithms from specification
order of magnitude performance improvement
allowed to explore more analyses than past literature

e Approach: heuristics for searching algorithm space
targeted at recursive problem domains

e Demonstrated scalability with explicit representation
i no BDDs

Yannis Smaragdakis 15
University of Athens

These Contributions Are oe
Surprising

e Expressed complete, complex pointer analyses in Datalog

Lhotak: “[E[ncoding all the details of a complicated program analysis
problem [on-the-fly call graph construction, handling of Java features] purely
in terms of subset constraints may be difficult or impossible.”

e Scalability and Efficiency

Lhotak: “Efficiently implementing a 1H-object-sensitive analysis without
BDDs will require new improvements in data structures and algorithms”

Whaley: “Owing to the power of the BDD data structure, bddbddb can even
solve analysis problems that were previously intractable”

Lhotak: “I've never managed to get Paddle to run in available memory with
these settings [2-cfa context-heap], at least not on real benchmarks
=complete with the standard library.”

Yannis Smaragdakis 16
University of Athens

Program Analysis: a Domain of| 3:::

Mutual Recursion e

—
var points-to J

Yannis Smaragdakis 17
University of Athens

Program Analysis: a Domain of| 3:::

Mutual Recursion e

var points-to J

[call graph]

Yannis Smaragdakis 18
University of Athens

Program Analysis: a Domain of| 3:::

Mutual Recursion e

x = y.()

var points-to J

[call graph]

Yannis Smaragdakis 19
University of Athens

Program Analysis: a Domain of| 3:::

Mutual Recursion e

X = new A()

var points-to J

[call graph]

[reachable methods]

Yannis Smaragdakis 20
University of Athens

Program Analysis: a Domain of
Mutual Recursion

Xf=y

var points-to J

[call graph]

[field points-to]

[reachable methods]

Yannis Smaragdakis
University of Athens

21

Program Analysis: a Domain of
Mutual Recursion

var points-to J

[call graph]

[field points-to]

[reachable methods]

Yannis Smaragdakis 22
University of Athens

Program Analysis: a Domain of| ::::
Mutual Recursion oo
|
var points-to
[call graph] [exceptions]

[field points-to]

[reachable methods]

Yannis Smaragdakis 23
University of Athens

Program Analysis: a Domain of| ::::
Mutual Recursion oo
i var points-to J
[call graph] [exceptions]

[field points-to]

[reachable methods]

Yannis Smaragdakis 24
University of Athens

Program Analysis: a Domain of
Mutual Recursion

var points-to J

[call graph | ¢ | exceptions |

[field points-to]

[reachable methods]

Yannis Smaragdakis 25
University of Athens

Datalog: Declarative Mutual
Recursion

[source]
hew A(Q);

a =
b = new B();

c = new CQ); [:j>

a=b;

b = a;

c = b; N

Yannis Smaragdakis 26
University of Athens

Datalog: Declarative Mutual
Recursion

[source] [Alloc]
a = new AQ); a new AQ)
b = new B(O); b hew B(O)
c = new CQO; C new CQO
a = b;
b = a; [Move]
C = b; a b
b a
C b

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

Yannis Smaragdakis 27
University of Athens

Datalog: Declarative Mutual
Recursion

[source] [Alloc]
a = new AQ); a new AQ)
b = new B(O); b hew B(O)
c = new CQO; C new CQO
a = b;
b = a; [Move]
C = b; a b
b a
C b

"VarggintsTo(var, obj)|<—
Alloc(var, obj).

“VarPointsTo(to, obj) | <-
Move(to, from),
VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

28

Datalog: Declarative Mutual sec:
Recursion :
[source] [Alloc] [VarPointsTo]
a = new AQ); a new AQ)
b = new B(O); b hew B()
C i E?w CO; C new CQ)
b ; a; [Move]
C = b; a|b

3t

"VarEgintsTokvar, obj) <-
Alloc(var, obj).

“VarPointsToKto, obj) <-
Move(to, from),

VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

29

Datalog: Declarative Mutual sec:
Recursion :
[source] [Alloc] [VarPointsTo]
a = new AQ); a new AQ)
b = new B(O); b hew B(O)
C i E?w CO; C new CQO
b _ a; [Move]
c = b; a b

3t

VarPointsTo(var,

obj) <-

|A11oc(var, obj).

VarPointsTo(to,

obj) <-

Move(to, from),
VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

30

Datalog: Declarative Mutual sec:
Recursion :
[source] [Alloc] [VarPointsTo]
a = new AQ); a new AQ)
b = new B(O); b hew B()
C i E?w CO; C new CQ)
b _ a; [Move]
C = b; a b

3t

VarPointsTo(var, obj) <-
Allocf(var, obj).

VarPointsTo(to, obj) <-
Movel(to, from),

VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

31

Datalog: Declarative Mutual sec:
Recursion e
[source] [Alloc] [VarPointsTo]
a = new AQ); a new AQ)
b = new B(O); b hew B()
C i E?w CO; C new CQ)
b ; a; [Move]
C = b; a|b

3t

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move (to, |from) ,
VarPointsTo(from

obj).

Yannis Smaragdakis
University of Athens

32

Datalog: Declarative Mutual sec:
Recursion :
[source] [Alloc] [VarPointsTo]
a = new AQ); a new AQ)
b = new B(O); b hew B()
C i E?w CO; C new C(Q)
b ; a; [Move]
C = b; a|b
3k
C b

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),

|VarPointsTokfrom, obj).

Yannis Smaragdakis
University of Athens

33

Datalog: Declarative Mutual ot

Recursion

[source] [Alloc] [VarPointsTo]

a = new AQ); a new AQ) a hew AQ)

b = new B(O); b new B() b hew B()

c = new CQO; C new CQO C hew C(O)

a=b;

b = a; [Move]

C = b; a | b
2t
C b

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),

VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

34

Datalog: Declarative Mutual

Recursion

[source] [Alloc

a = new AQ); a new AQ)
b = new B(O); b hew B()
c = new CQO; C new CQ)
a=b;
b = a; Move
C = b; a b

b I a

C b

: VarPointsTo
a | new AO
b hew B()
C hew C()

2nd ryle evaluation

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),

VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

35

Datalog: Declarative Mutual
Recursion

: VarPointsTo
al new AO
b hew B()
c | new CO
a hew B()

[source] [Alloc

a = new AQ); a new AQ)
b = new B(O); b hew B()
c = new CQO; C new CQ)
a=b;
b = a; Move
C = b; a b

b I a

C b

2nd ryle result

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),

VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

36

Datalog: Declarative Mutual

] [VarPointsTo

Recursion
[source] [Alloc
a = new AQ; a new AQ)
b = new B(); b new B()
c = new CQ); C new CQ)
a =b;
b = a; [Move
C = b; a | b

b a

C b

N N T v N T Q

new
new
new
new
new
new
new

AQ
BO
CO
BO
AQ
BO
AQ

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),

VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

37

Datalog: Properties

e Limited logic programming
SQL with recursion
Prolog without complex terms (constructors)

e Captures PTIME complexity class

e Strictly declarative

as opposed to Prolog
conjunction commutative
rules commutative

Increases algorithm space
enables different execution strategies, aggressive optimization

Less programming, more specification

Yannis Smaragdakis 38
University of Athens

Grand Tour of Interesting Results

What have we done with this?

Yannis Smaragdakis 39
University of Athens

Better Understanding of Existing
Algorithms, More Precise and
Scalable New Algorithms

[PLDI'10, POPL'11, CC'13, PLDI'13, PLDI'14]

Yannis Smaragdakis 40
University of Athens

Expressiveness and Insights

e Greatest benefit of the declarative approach:
better algorithms
the same algorithms can be described non-
declaratively

the algorithms are interesting regardless of how they
are implemented

but the declarative formulation was helpful in
finding them
and in conjecturing that they work well

Yannis Smaragdakis 41
University of Athens

A General Formulation of cee
Context-Sensitive Analyses

e Every context-sensitive flow-insensitive
analysis there is (ECSFIATI)

ok, almost every
most not handled are strictly less sophisticated

and also many more than people ever thought
e Also with on-the-fly call-graph construction
e In 9 easy rules!

Yannis Smaragdakis 42
University of Athens

Simple Intermediate Language

e We consider Java-bytecode-like language
allocation instructions (Al 1oc)
local assignments (Move)
virtual and static calls (VCall, SCall)
field access, assignments (Load, Store)

standard type system and symbol table info
(Type, Subtype, FormalArg, ActualArg, etc.)

Yannis Smaragdakis 43
University of Athens

Rule 1: Allocating Objects

(Al1oc)

Record(obj, ctx) = hctx,

VarPointsTo(var, ctx, obj, hctx)

<_
Alloc(var, obj, meth),
Reachable(meth, ctx).

obj: var = new Something();

Yannis Smaragdakis 44
University of Athens

Rule 2: Variable Assignment | s::¢

(Move)

VarPointsTo(to, ctx, obj, hctx)

<_

Move(to, from),
VarPointsTo(from, ctx, obj, hctx).

Yannis Smaragdakis 45
University of Athens

Rule 3: Object Field Write

(Store)

F1dPointsTo(baseObj, baseHCtx, fld, obj, hctx)
<_
Store(base, fld, from),
VarPointsTo(from, ctx, obj, hctx),
VarPointsTo(base, ctx, baseObj, baseHCtx).

base . fld = from

baseObj obj

Yannis Smaragdakis 46
University of Athens

Rule 4: Object Field Read (Load)

VarPointsTo(to, ctx, obj, hctx)

<_

Load(to, base, fl1d),
F1dPointsTo(baseObj, baseHCtx, fld, obj, hctx),
VarPointsTo(base, ctx, baseObj, baseHCtx).

to = base.fld

baseObj

iﬂ d

obj

Yannis Smaragdakis 47
University of Athens

Rule 5: Static Method Calls
(SCall)

MergeStatic(invo, callerCtx) = calleeCtx,
Reachable(toMeth, calleeCtx),
CallGraph(invo, callerCtx, toMeth, calleeCtx)
<_
SCall(toMeth, invo, inMeth),
Reachable(inMeth, callerCtx).

invo: toMeth(..)

Yannis Smaragdakis 48
University of Athens

Rule 6: Virtual Method Calls o
(VCall)
\ \
Merge(obj,) = calleeCtx,
Reachable(t

VarPointsTo(hctx),
CallGraph(inv calleeCtx)
<—

VCall(base, s

Reachable(inMe

VarPointsTo(b ctx),

LookUp (obj,

ThisVar(toM

invo: base.sig(..)

obj
sig
toMeth

Yannis Smaragdakis 49
University of Athens

Rule 7: Parameter Passing

\ \
InterProcA rom, callerCtx)
<_
Call1Graph(calleeCtx),
ActualArg(i
FormalArg(me

Yannis Smaragdakis 50
University of Athens

Rule 8: Return Value Passing

A\

InterProcA

<-
Call1Graph(
ActualRetur
FormalReturn

\

rom, calleeCtx)

calleeCtx),

» meth(..) { .. return from; }

Yannis Smaragdakis 51
University of Athens

Rule 9: Parameter/Result
Passing as Assignment

VarPo1nts
<—

InterProcA fromCtx),
VarPointsTo

Yannis Smaragdakis
University of Athens

52

Can Now Express Past
Analyses Nicely

e 1-call-site-sensitive with context-sensitive heap:
o Context = HContext = Instr

e Functions:
e Record(obj, ctx) = ctx
e Merge(obj, hctx, invo, callerCtx) = i1nvo
e MergeStatic(invo, callerCtx) = invo

Yannis Smaragdakis 53
University of Athens

Can Now Express Past

Analyses Nicely

e 1-object-sensitive+heap:

o Context = HContext = Instr

e Functions:
e Record(obj, ctx) = ctx

e Merge(obj, hctx, invo, callerCtx) = obj

e MergeStatic(invo, callerCtx)

Yannis Smaragdakis
University of Athens

callerCtx

54

Can Now Express Past
Analyses Nicely

e PADDLE-style 2-object-sensitive+heap:
o Context =Instr? , HContext = Instr

e Functions:
e Record(obj, ctx) = first(ctx)

e Merge(obj, hctx, 1nvo, callerCtx) =
pair(obj, first(ctx))
e MergeStatic(invo, callerCtx) = callerCtx

Yannis Smaragdakis 55
University of Athens

Lots of Insights and New %
Algorithms

e Discovered that the same name was used for two
past algorithms with different behavior

e Proposed a new kind of context (type-sensitivity),
easily implemented by uniformly tweaking
Record/Merge functions

e Found connections between analyses Iin
functional/OO languages

e Showed that merging different kinds of contexts
| works great (hybrid context-sensitivity)

Yannis Smaragdakis 56
University of Athens

Impressive Performance,

Implementation Insights
[OOPSLA’09, ISSTA’09]

Yannis Smaragdakis 57
University of Athens

Impressive Performance

e Compared to Paddle
most complete, scalable past framework
iIncludes analyses with a context sensitive heap

e Large speedup for fully equivalent results

15.2x faster for 1-obj, 16.3x faster for 1-call, 7.3x faster
for 1-call+heap, 6.6x faster for 1-obj+heap

e Large speedup for more precise results!
9.7x for 1-call, 12.3x for 1-call+heap, 3x for 1-obj+heap

o Scallng to analyses Paddle cannot handle
2-call+1-heap, 2-object+1-heap, 2-call+2-heap

Yannis Smaragdakis 58
University of Athens

analysis time (seconds)

1-call-site-sensitive+heap

7000 i
doop
paddle
6000 - —
5000 — —
4000 —]
3000 - —

2000

antlr bloat chart eclipse hsqldb jython luindex lusearch

Yannis Smaragdakis
University of Athens

1l

xalan

59

Where Is The Magic?

e Surprisingly, in very few places

4 orders of magnitude via optimization methodology
for highly recursive Datalog!

straightforward data processing optimization (indexes),
but with an understanding of how Datalog does recursive
evaluation

no BDDs
are they needed for pointer analysis?

simple domain-specific enhancements that increase
both precision and performance in a direct (non-
BDD) implementation

Yannis Smaragdakis 60
University of Athens

Optimization Idea: Optimize Indexing | «¢
for Semi- Naive Evaluation

e Datalog rule

VarPointsTo(to, obj) <-
Move(to, from), VarPointsTo(from, obj).

e Semi-Naive Evaluation

AVarPointsTo(to, obj) <-
Move(to, from), AVarPointsTo(from, obj).

e Ensure the tables are indexed in such way that
deltas can bind all index variables

Move should be indexed from “from” to “to”
e Harder for multiply recursive rules

Yannis Smaragdakis 61
University of Athens

No Binary Decision
Diagrams (BDDs)

e Scalable precise (context-
sensitive) points-to analyses had
used BDDs in the past

e We use an explicit representation

e BDDs offer memory efficiency but
also overheads
traverse 48 links to get a 48-bit tuple
cost of normalizing/minimizing

Yannis Smaragdakis
University of Athens

Are BDDs Right For Points-To | :::
Analysis?

e We have not found the benefit of BDDs to
outweigh the costs

e Relations are reducible, but not clearly
extremely regular

even though we use BDD variable orderings that
have been heavily optimized

“Impressive results”

Yannis Smaragdakis 63
University of Athens

Are BDDs Right For Points-To | :::
Analysis?

e The Paddle results optimize for speed, size of
VarPointsTo relation

e But other relations may be large

e For no analysis does the “optimal” BDD
ordering simultaneously minimize relations
VarPointsTo, FieldsPointsTo, CallGraphEdge

e 30x differences in ratio facts/BDDnodes are
common! L

BDDs (as currently used in points-to
analyses) do not seem to pay off

Yannis Smaragdakis 64
University of Athens

Algorithmic Enhancements

e BDDs are necessary if one is not careful
about precision

e We introduced simple algorithmic
enhancements to avoid redundancy
static initializers handled context-insensitively
on-the-fly exception handling

e Better analyses, as well as faster!

Yannis Smaragdakis 65
University of Athens

Set-Based Pre-Analysis
a universal optimization technique for

flow-insensitive analyses
[OOPSLA13]

Yannis Smaragdakis 66
University of Athens

Set-Based Pre-Analysis

e |dea: can do much reasoning at the set level
instead of the value level
can simplify the program as a result
a local transformation

think of it as creating a normal form (or IR) for
points-to analysis

Yannis Smaragdakis 67
University of Athens

“hello, world” Example

P20 | p=aq;
UI R2P | r = p;
| R2Q | r = q; // redundant

(MOVE elimination)

e Simple subset reasoning
o statement redundant for analysis purposes

Yannis Smaragdakis 68
University of Athens

“hello, world” Example

occurring in any order b=
anywhere in same r= p,

method
r = q; // redundant
(MOVE elimination)

e Simple subset reasoning
statement redundant for analysis purposes

e Rewrite program, eliminate redundant statement
an intraprocedural, pattern-based transformation

Yannis Smaragdakis 69
University of Athens

More Examples

r = q;

p.T = r;

p.f = q; // redundant
(STORE elimination)

P . T = g,

r=p.f

r = q; // redundant

(another MOVE elimination)

Yannis Smaragdakis 70
University of Athens

Even More Examples

r=q;

q=p.ft;

r=p.tT; // redundant
(LOAD elimination)

r=q;

q=p.mQ;

r = p.m(); // redundant

(CALL elimination!!!)

Yannis Smaragdakis
University of Athens

71

Not Even Close To Done

r=4(q,
arr[*];

arr[*]; // redundant
(ARRAYLOAD elimination—
for array insensitive analyses)

a O
I

e can apply all previous patterns in combination
with array ops, or with static loads, calls, stores,
etc.

e transforms apply to fixpoint (one enables others)

Yannis Smaragdakis 72
University of Athens

And Also...

e Duplicate variable elimination

Constraint Graph:
same as past work using the
constraint graph to merge v
points-to sets . 4

e E.0.,
merge vars in same strongly connected component of
constraint graph [Faehndrich et al.]

merge vars with identical in-flows [Rountev and
Chandra, Hardekopf and Lin]

merge vars with same dominator [Nasre]

Yannis Smaragdakis 73
University of Athens

Transform Effect, Pictorially

private void rotateright(java.util.TreeMap$Entry)

Tabel0:

labell:

label2:

label3:

label4:

java.util.Treemap ro;
java.util.Treemap$entry rl, r2, $r3, $r4, $r5, $r6, $r7, $r8, $r9, $rio, $rii;

r0 := @this: java.util.Treemap;
rl := @param0: java.util.TreeMap$Entry;
if rl == null goto label4;

r2 = rl.<java.util.TreeMap$Entry: java.util.TreeMap$entry left>;
$r3 = r2.<java.util.TreeMap$eEntry: java.util.TreeMap$Entry right>;
rl.<java.util.TreeMap$Entry: java.util.TreeMap$entry left> = $r3;
$r4 = r2.<java.util.TreeMap$eEntry: java.util.TreeMap$Entry right>;
if $r4 == null goto labelO;

$r5 = r2.<java.util.TreeMap$eEntry: java.util.TreeMap$Entry right>;
$r5.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = rl;
$r6 = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = $r6;
$r7 = rl.<java.util.TreeMap$eEntry: java.util.TreeMap$Entry parent>;
if $r7 != null goto Tabell;

r0.<java.util.TreeMap: java.util.TreeMap$Entry root> = r2;

goto label3;

$r8 = rl.<java.util.TreeMap$eEntry: java.util.TreeMap$Entry parent>;
$r9 = $r8.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right>;
if $r9 != rl goto label2;

$r10 = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
$r10.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right> = r2;
goto Tabel3;
$rll = rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
$rll.<java.util.TreeMap$Entry: java.util.TreeMap$eEntry left> = r2;
r2.<java.util.TreeMap$Entry: java.util.TreeMap$eEntry right> = rl;
rl.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = r2;
return;

private void rotaterRight(java.util.TreeMap$eEntry)

Tabel0:

labell:

label2:
Tabel3:

label4:

java.util.Treemap$Entry r2, $r3, $r6, $r9;
if @param0 == null goto label4;

r2 = @param0.<java.util.TreeMap$Entry: java.util.TreeMap$eEntry left>;
$r3 = r2.<java.util.TreeMap$eEntry: java.util.TreeMap$Entry right>;
@param0.<java.util.TreeMap$Entry: java.util.TreeMap$eEntry left> = $r3;
if $r3 == null goto Tabel0;

$r3.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = @param0;
$r6 = @param0.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent>;
r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = $r6;

if $r6 != null goto Tabell;

@this.<java.util.TreeMap: java.util.TreeMap$Entry root> = r2;

goto label3;

$r9 = $r6.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right>;
if $r9 != @param0 goto label2;

$r6.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right> = r2;
goto label3;

$r6.<java.util.TreeMap$Entry: java.util.TreeMap$Entry left> = r2;
r2.<java.util.TreeMap$Entry: java.util.TreeMap$Entry right> = @param0;
@param0.<java.util.TreeMap$Entry: java.util.TreeMap$Entry parent> = r2;
return;

Yannis Smaragdakis
University of Athens

76

Observations

e The reduced program is NOT valid for
execution

only for flow-insensitive points-to analysis
e Set-based reasoning makes sense since

points-to analyses are expressible via subset
constraints

MOVE elimination follows from MOVE rule in analysis

d, VarPointsTo(to, obj) <-
P; Move(to, from),
q; // redundant VarPointsTo(from, obj).

1
o

Yannis Smaragdakis 77
University of Athens

So, How Well Does This Work?

e Over many analyses, DaCapo benchmarks
(ctx-insens, 1call, 1call+H, 10bj, 1obj+H, 20bj+H, 2type+H)

e 20% average speedup
(median: 20%, max: 110%)
e Eliminates ~30% of local vars

e Decimates (97% elimination!) MOVE
instructions

e Eliminates more than 30% of context-sensitive

Yannis Smaragdakis 78
University of Athens

Conclusions, Future Work

Yannis Smaragdakis 79
University of Athens

Declarative Program Analysis

e Doop has had impact on points-to analysis
order-of-magnitude performance improvement

e Several lessons learned
new combinations, directions, algorithms
algorithmic enhancements, no BDDs

e A lot more analyses are being built on top
flow-sensitive, different languages, different

contexts, client analyses (escape, may-happen-in-

parallel, etc.)

Yannis Smaragdakis
University of Athens

80

